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ABSTRACT

The diffusion model has shown remarkable performance in modeling data dis-
tributions and synthesizing data. However, the vanilla diffusion model requires
complete or fully observed training data. Incomplete data is a common issue
in various real-world applications, including healthcare and finance, particularly
when dealing with tabular datasets. This work considers learning a diffusion-based
model from data with missing values for missing value imputations and generating
synthetic complete data in a unified framework. With minimal assumptions on the
missing mechanisms, our method models the score of complete data distribution by
denoising score matching on data with missing values. We prove that the proposed
method can recover the score of the complete data distribution, and the proposed
training objective serves as an upper bound for the negative likelihood of observed
data. Extensive experiments on imputation tasks together with generation tasks
demonstrate that our proposed framework outperforms existing state-of-the-art
approaches on multiple tabular datasets.

1 INTRODUCTION

Diffusion models have emerged as an effective tool for modeling the data distribution and synthesize
various types of data, such as images (Ho et al., 2020; Song et al., 2021b; Dhariwal & Nichol, 2021;
Rombach et al., 2021), videos (Ho et al., 2022), point clouds (Luo & Hu, 2021), and tabular data (Kim
et al., 2023; Kotelnikov et al., 2022). These machine learning models typically rely on high-quality
training data, which are usually expected to be free of missing values. In reality, it is often challenging
to obtain complete data, particularly in healthcare, finance, recommendation systems, and social
networks, due to privacy concerns, high cost or sampling difficulties, and the skewed distribution of
user-generated content. For example, the respiratory rate of a patient may not have been measured,
either because it was deemed unnecessary or was accidentally not recorded (Yoon et al., 2017; Alaa
et al., 2016; Yoon et al., 2018a). Additionally, some information may be difficult or even dangerous
to acquire, such as information obtained through a biopsy, which may not have been gathered for
those reasons (Yoon et al., 2018b).

Moreover, deep generative models, particularly diffusion models, can be used to augment training
data to protect the privacy of original tabular data and enhance the performance of machine learning
models on tabular data (Kim et al., 2023; Xu et al., 2019; Kotelnikov et al., 2022; Zhang et al., 2023).
Following this idea, we can achieve better performance for downstream tasks by utilizing generative
model learning on incomplete data for synthetic data generation. Therefore, in this work, we focus
on learning a generative model from training data containing missing values and synthesize new
complete data, not just imputing the missing value.

Numerous studies have been proposed to deal with missing values in the training data. Some
approaches use the variational lower bound on observed data to train a VAE-based model (Ipsen
et al., 2021; Nazábal et al., 2018; Ma et al., 2020; Mattei & Frellsen, 2019; Valera et al., 2017). Other
methods use adversarial training by optimizing a min-max objective to train a GAN-based model
(Yoon et al., 2018a; Li et al., 2019; Li & Marlin, 2020). Most of the works mentioned above mainly
focus on imputation tasks. They cannot be directly used for generating new complete samples 1.
One line of work first completes the data and then learns a generative model on imputed data. Some

1A detailed discussion can be found in Appendix B.1.
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approaches delete instances or features with missing data or replace missing values with the mean of
observed values for that feature. Other methods employ machine learning approaches (van Buuren
& Groothuis-Oudshoorn, 2011; Bertsimas et al., 2017) or deep generative models for imputation
tasks (Yoon et al., 2018a; Biessmann et al., 2019; Wang et al., 2020; Ipsen et al., 2022; Muzellec
et al., 2020). It has been shown that imputation may reduce the diversity of the training data and may
lead to biased performance in downstream tasks (Bertsimas et al., 2021; Ipsen et al., 2022). Another
line of works first learns the generative model directly on the data with missing values by using the
existing VAE-based or GAN-based model (Ipsen et al., 2021; Nazábal et al., 2018; Ma et al., 2020;
Mattei & Frellsen, 2019; Valera et al., 2017; Yoon et al., 2018a; Li et al., 2019; Li & Marlin, 2020).
After that, they first generate new samples containing missing values by removing different values in
observed data and then apply the learned generative model to impute the missing data as described
in Neves et al. (2022). In summary, these works require two-stage inference for synthesizing new
complete samples, which might be biased (proven in Remark 3.1) or computationally expensive
(detailed described in Section 3.4).

In this work, we propose a unified diffusion-based framework, which we call MissDiff, for both
imputation and synthetic complete data generation without two-stage inference or training additional
neural networks. MissDiff models the score (gradient log density) of complete data distribution by
denoising score matching on data with missing values. We present the theoretical justification of
MissDiff on recovering the oracle score function of the complete data and also upper bounding the
negative likelihood of the observed data under mild assumptions.

We primarily utilize tabular data for the numerical experiments, as tabular data is a commonly
encountered data type and frequently contains missing values in various applications Yoon et al.
(2017); Alaa et al. (2016). Moreover, by considering tabular data as an example, we simultaneously
study the missing value scenarios in categorical and continuous variables, which are both contained
in tabular-type data.

To verify the effectiveness of MissDiff, we conduct a suite of numerical experiments under various
missing mechanisms. For both imputation tasks and generation tasks, MissDiff outperforms existing
state-of-the-art methods in most settings by a considerable margin.

Our contributions can be summarized as follows.

• We propose a diffusion-based unified framework, which we call MissDiff, for imputation and
complete sample generation by learning from data with missing values.

• We provide the theoretical justifications of MissDiff on recovering the oracle score function of
the complete data and upper bounding the negative likelihood of the observed data under mild
assumptions.

• MissDiff outperforms existing state-of-the-art methods in most settings on both imputation
tasks and generation tasks on multiple real tabular datasets under different missing mecha-
nisms.

The rest of the paper is organized as follows. Section 2 reviews the setup of the missing data
mechanism and the score-based generative model. Section 3 introduces the proposed method and
theoretically characterizes the effectiveness of the proposed method. Numerical results are given in
Section 4. We conclude the paper in Section 5. All proofs and additional numerical experiments are
deferred to the appendix.

2 PROBLEM SETUP AND PRELIMINARIES

2.1 TRAINING WITH MISSING DATA

We aim to learn a diffusion-based generative model from training data that may contain a certain
proportion of missing values. Following the settings in Little & Rubin (1988); Li et al. (2019); Ipsen
et al. (2022), we denote the underlying complete d-dimensional data as x = (x1, . . . , xd) ∈ X and
assume it is sampled from the unknown true data-generating distribution p0(x). Here, each variable
xi, i = 1, . . . , d, can be either categorical or continuous. For each data point x, suppose there is a
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binary mask m = (m1, . . . ,md) ∈ {0, 1}d which indicates the missing entry for the sample, i.e.,

mi =

{
1 if xi is observed,
0 if xi is missing.

Then, the observed (incomplete) data xobs = x⊙m+na⊙ (1−m), where na indicates the missing
value, ⊙ denotes element-wise multiplication, and 1 is the all-one vector.

Suppose we have n complete (unobservable) data points x1, . . . ,xn
iid∼ p0(x) and simultaneously n

corresponding masks m1, . . . ,mn generated from a specific missing data mechanism detailed later.
Then, the observed data samples are denoted as Sobs = {xobs

i }ni=1. The missing mechanisms can be
categorized based on the relationships between the mask m and the complete data x (Little & Rubin,
1988) as follows,

• Missing Completely At Random (MCAR): mask m is independent from complete data x.

• Missing At Random (MAR): mask m only depends on the observed value xobs.

• Not Missing At Random (NMAR): m depends on the observed value xobs and missing value.

Compared with previous work which typically develops their algorithms and theoretical foundations
under the M(C)AR assumption Li et al. (2019); Ipsen et al. (2022); Yoon et al. (2018a); Li & Marlin
(2020); Mattei & Frellsen (2019), our method and theoretical guarantees aim to provide a general
framework for learning on incomplete data and generate complete data. By modeling the score of
the complete data distribution from the observed data, we only require mild assumptions of missing
mechanisms for recovering the oracle score (we refer to Theorem 3.2). In the following, we provide a
brief introduction to the score-based generative model.

2.2 SCORE-BASED GENERATIVE MODEL

In this work, we adopt the diffusion model2 as the prototype for developing our proposed method.
We propose to train the model with missing values directly without the need for prior imputation. We
first briefly review the key components of score-based generative models (Ho et al., 2020; Song et al.,
2021b).

Score-based generative models are a class of generative models that learn the score function, which is
the gradient of the log density of the data distribution. These models have gained attention due to
their flexibility and effectiveness in capturing complex data distributions. Following the notation in
Song et al. (2021b), the score-based generative models are based on a forward stochastic differential
equation (SDE), x(t) with t ∈ [0, T ], defined as (which corresponds to Eq (5) in Song et al. (2021b))

dx(t) = f(x(t), t)dt+ g(t)dw, (1)

where w is the standard Wiener process (Brownian motion), f(·, t) : Rd → Rd is a vector-valued
function called the drift coefficient of x(t), and g(·) : R → R is a scalar function known as the
diffusion coefficient of x(t).

The solution of a stochastic differential equation is a continuous trajectory of random variables
{x(t)}t∈[0,T ]. Let p(x) denote the path measure for the trajectory x on [0, T ], pt(x) denote the
marginal probability density function of x(t), and p(x(t)|x(s)) denote the conditional probability
density of x(t) conditioned on x(s), where s < t is a previous time point. When constructing the
SDE, we let p0(x) be the true data distribution, and after perturbing the data according to the SDE,
the data distribution becomes pT (x) which is close to a tractable noise distribution, usually set as the
standard Gaussian distribution.

The data generation process is performed via the reverse SDE, i.e., first sampling data xT from pT (x)
and then generate x0 through the reverse of equation 1. For any SDE in equation 1, the corresponding
backward/reverse process is as follows (we refer Anderson (1982) for detailed explanation):

dx(t) =
[
f(x(t), t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw, (2)

2We use the diffusion model and score-based generative model interchangeably as they are equivalent Song
et al. (2021b).
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where w is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative time step.

We can generate new data by running backward the reverse-time SDE equation 2 when the score of
each marginal distribution, ∇x log pt(x) is known. Score Matching (Hyvärinen, 2005; Vincent, 2011;
Song et al., 2019) can be used for training a score-based model sθ(x(t), t) to estimate the score:

θ∗ =argmin
θ

Et

{
λ(t)Ep(x(0))Ex(t)|x(0)

[∥∥sθ(x(t), t)−∇x(t) log p(x(t)|x(0))
∥∥2
2

]}
, (3)

where λ : [0, T ] → R>0 is a positive weighting function, t is uniformly sampled over [0, T ],
x(0) ∼ p0(x) and x(t) ∼ p(x(t)|x(0)). The local consistency of score matching is shown in
(Hyvärinen, 2005), i.e., Ep(x(0))[∥sθ(x)−∇x log p(x)∥22] = 0 ⇔ θ = θ∗ under the assumption that
there exists an unique θ∗ such that the true score function ∇x log p(x) can be represented by sθ∗ .
Vincent (2011) builds the connection between Denoising Score Matching and Score Matching, and
Song et al. (2019) further proves Sliced Score Matching can learn the consistent estimator of the
oracle score and the asymptotic normality for the Sliced Score Matching.

3 METHOD

In this section, we first discuss the room for improvement in existing frameworks for synthesizing
new complete data in Section 3.1. Then, we propose a diffusion-based unified framework, MissDiff,
for learning a generative model from incomplete data in Section 3.2. The theoretical guarantees of
MissDiff are provided in Section 3.3 and the related work is summarized in 3.4.

3.1 THE LIMITATION OF “IMPUTE-THEN-GENERATE” FRAMEWORK

To learn a generative model from data with missing values for generating complete data, we can first
construct a complete training dataset and then learn a generative model on the complete data, which
is referred to as the "impute-then-generate" framework. We can either delete instances (rows) or
features (columns) with missing data or adopt traditional imputation methods or training machine
learning imputation models (van Buuren & Groothuis-Oudshoorn, 2011; Bertsimas et al., 2017) or
deep generative models for imputation tasks (Vincent et al., 2008; Yoon et al., 2018a; Biessmann
et al., 2019; Wang et al., 2020; Ipsen et al., 2022; Muzellec et al., 2020). However, this pipeline may
bring bias to the training objective. We clarify this claim in remark 3.1.
Remark 3.1 (“Impute-then-generate” framework is biased). Inspired by the analysis pipeline of
“impute-then-regress” (Bertsimas et al., 2021; Ipsen et al., 2022) for the prediction task, we can
study a corresponding framework for the generation task. The generative model pϕ represents
the probability distribution of the synthetic data x. Under the maximum likelihood framework,
ϕ∗ := argmaxϕ Ex∼p0(x)[log pϕ(x)]. When data has missing values, the general approach, known
as “impute-then-generate”, may be used in practice. In this approach, the observed data xobs is first
imputed using an imputation model fφ, where fφ(x

obs) is trained by minimizing the regression
loss E(xobs,xmiss)∼p0(x)∥fφ(xobs) − xmiss∥2 with xmiss as the ground truth value3. The optimal
f∗
φ(x

obs) satisfies f∗
φ(x

obs) = Ep0(xmiss|xobs)

[
xmiss

]
. Then, the generative model is trained by

maximizing the likelihood of imputed data, i.e., maxϕ log pϕ(x
obs,xmiss := fφ(x

obs)). In general,
Ep0(xmiss|xobs)[pϕ(x

obs,xmiss)] ̸= pϕ(x
obs,Ep0(xmiss|xobs)[x

miss]). Therefore, this pipeline is biased
because the optimal single imputation can no longer capture the data variability.

In this work, we show that modeling the score of the complete data distribution can help to form a
unified way for both imputation and generation tasks. However, the vanilla diffusion model mentioned
in Section 2.2 is unable to directly deal with data with missing values. Therefore, we propose a
diffusion-based framework designed for training diffusion models on tabular data with missing values,
which enjoys certain advantages as compared with aforementioned framework.

3Here the notation (xobs,xmiss) means the complete data x.
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3.2 MissDiff: DENOISING SCORE MATCHING ON MISSING DATA

We propose the following Denoising Score Matching method for data with missing values. Instead of
using Eq equation 3 to learn the score-based model sθ(x(t), t), we propose MissDiff as solution to

θ∗ = argmin
θ

JDSM (θ)

:=
T

2
Et

{
λ(t)Exobs(0)Exobs(t)|xobs(0)

[∥∥∥(sθ(xobs(t), t)−∇xobs(t) log p(x
obs(t) | xobs(0))

)
⊙m

∥∥∥2

2

]}
,

(4)

where λ(t) is a positive weighting function, m = 1{xobs(0) ̸= na} indicated the observed entries
in xobs and p(xobs(t)|xobs(0)) = N (xobs(t);xobs(0), βtI) is the Gaussian transition kernel. More
implementation details can be found in Appendix C.4.

More specifically, we mainly adopt the Variance Preserving (VP) SDE in this paper although Variance
Exploding (VE) SDE (Song et al., 2021b) is also applicable. The forward diffusion process of the
Variance Preserving SDE is defined as (which corresponds to Eq (11) in (Song et al., 2021b)):

dx = −1

2
β(t)xdt+

√
β(t)dw,

where {βt ∈ (0, 1)}t∈(0,T ) is the increasing sequence denoting the variance schedule. Algorithm 1
demonstrates the Denoising Score Matching objective on missing data4.

As long as the score function of complete data distribution is learned by Algorithm 1, we can adopt
Algorithm 2 for imputation and Algorithm 3 for generating complete samples, which are provided in
the Appendix C.3.

Algorithm 1 MissDiff: Denoising Score Matching on Data with Missing Values
Require: Diffusion process hyperparameter βt, σt, denote αt = 1− βt and ᾱt =

∏t
s=1 αs.

1: repeat
2: Sample xobs

0 according to the data distribution and missing mechanism;
3: Infer mask m = 1[xobs

0 ̸= na];
4: t ∼ Uniform({1, . . . , T});
5: ϵt ∼ N (0, I);
6: Take gradient descent step on

∇θ

∥∥∥(ϵt − sθ(
√
ᾱtx

obs
0 +

√
1− ᾱtϵt, t))⊙m

∥∥∥2

.

7: until converged.

3.3 THEORETICAL GUARANTEES OF MissDiff

In this section, we examine the effectiveness of MissDiff by theoretically characterizing the Score
Matching objective under mild conditions on the missing mechanisms and build a further connection
between Score Matching and maximizing likelihood objective for training the diffusion model.

In the following theorem, we present our first theoretical result that verifies that Denoising Score
Matching on missing data can learn the oracle score, i.e., the score on complete data. Theorem 3.2
states that the global optimal solution of Denoising Score Matching on missing data obtained by
MissDiff is the same as the oracle score, as long as we do not have a variable that is completely
missing in the training data. The proof can be found in Appendix A.1.
Theorem 3.2. Denote ρ(x) = [ρ1, . . . , ρd] = Ep(m|x)[1 −m] as the missing probability of each
entry when the complete data equals x 5. Define ρmax := maxi=1,...,d supx ρi(x) as the supreme
of missing rates and assume ρmax < 1. Let θ∗ be the solution to the training objective of MissDiff
defined in Eq equation 4. Then we have

sθ∗(x(t), t) = ∇x(t) log pt(x(t)).

4We write x(t) as xt in the algorithm box for simplicity.
51 denotes all one vector.
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It is well known that with careful design of the weighting function λt, Denoising Score Matching
can upper bound the negative log-likelihood of the diffusion model on the complete data (Song et al.,
2021a). Therefore, it is straightforward to extend such a connection to incomplete data scenarios,
which is detailed in the following theorem. These results provide insightful connections between
the training objective of MissDiff and the maximum likelihood objective of the generative model on
observed data.

Theorem 3.3. The objective function of Denoising Score Matching on missing data is an upper
bound for the negative likelihood of the generative model on observed data xobs up to a constant, that
is, for λt = βt and under the same condition of Theorem 3.2 and mild regularity conditions detailed
in Appendix A.2, we have

−Ep(xobs) [log pθ(x)] ≤
1

1− ρmax
JDSM (θ) + C1,

where C1 is a constant independent of θ.

The proof of Theorem 3.3 can be found in Appendix A.2. When there are missing values, Theorem
3.3 shows that the Denoising score matching on incomplete data still upper bounds the likelihood of
the incomplete data up to a constant coefficient 1/(1− ρmax). When there is no data missing, ρ is all
zero vector, then we have 1/(1− ρmax) = 1 and Theorem 3.3 degenerates to the Corollary 1 in Song
et al. (2021a), i.e.,

−Ep(x)[log pθ(x)] ≤ JDSM(θ; g(·)2) + C1,

where the JDSM(θ; g(·)2) is the Denoising Score Matching objective on complete data.

3.4 RELATED WORK

Learning from data with missing value: Numerous studies have been proposed to deal with
missing values in the training data. Variational Autoencoder (VAE) based models (Ipsen et al., 2021;
Nazábal et al., 2018; Ma et al., 2020; Mattei & Frellsen, 2019; Valera et al., 2017; Ipsen et al.,
2022) maximize the evidence low bound of the observed data, while Generative Adversarial Network
(GAN) based models (Yoon et al., 2018a; Li et al., 2019; Li & Marlin, 2020) employ adversarial
training for both the generative and discriminative models; Trevor et al. adopt flow-based model
for imputation (Richardson et al., 2020).. Recently, Tashiro et al. (2021) proposes the conditional
score-based generative model for time series imputation and Zheng & Charoenphakdee (2022)
adopts the conditional score-based diffusion model proposed in Tashiro et al. (2021) for imputing
tabular data. However, all of the above works mainly focus on imputation tasks. They either need
two-stage inference for generating new complete samples, such as learning a generative model on
imputed data or imputing the generated data containing missing values, or require training additional
networks6. For example, Li et al. (2019) trains two generator-discriminator pairs for the masks and
data respectively, which increases the computational cost, and Li & Marlin (2020) adopts Partial
Bidirectional GAN, which requires an encoding and decoding network for the generator. Moreover,
Nazábal et al. (2018); Ma et al. (2020) require training a different VAE independently of each data
dimension. MissDiff is a diffusion-based unified framework for imputation and generation tasks
without two-stage inference or training additional networks. There are some concurrent works that
adopt gradient-boosted decision trees (Jolicoeur-Martineau et al., 2023), diffusion model (Zhang
et al., 2024), and autoregression modeling (McCarter, 2024). In (Jolicoeur-Martineau et al., 2023),
the authors adopt XGBoost to estimate the score. Zhang et al. (Zhang et al., 2024) leverages the
Expectation-Maximization that first learns the joint distribution of both the observed and currently
estimated missing data and then re-estimates the missing data based on the conditional probability
given the observed data. And McCarter wt al. (McCarter, 2024) adopts tree-based autoregressive
modeling of tabular data.

Generative model for tabular data: Tabular data, as mixed-type data that typically contains
both categorical and continuous variables, has attracted significant attention in the field of machine
learning. The presence of mixed variable types and class imbalance for discrete variables make it a
challenging task to model tabular data. Recently, several deep learning models have been proposed

6Additional network means the extra network needed compares with the same model dealing with complete
data.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for tabular data generation (Xu et al., 2019; Choi et al., 2017; Srivastava et al., 2017; Park et al., 2018;
Kim et al., 2021; Finlay et al., 2020; Kim et al., 2023; Kotelnikov et al., 2022). Among these methods,
(Kotelnikov et al., 2022) employs Gaussian transitions for continuous variables and multinomial
transitions for discrete variables, while (Kim et al., 2023) proposes a self-paced learning technique
and a fine-tuning strategy for score-based models and achieves state-of-the-art performance in tabular
data generation. Moreover, the discrete Score Matching methods proposed in Meng et al. (2022) and
Sun et al. (2023) can also be employed to handle discrete variables in tabular data. However, all of
the methods mentioned above did not take missing values in the training data into consideration.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of the proposed MissDiff against existing state-
of-the-art models. Since most of the approaches dealing with missing data work on imputation
tasks, we compare with them in Section 4.1. Then, we mainly focus on the complete synthetic data
generation task, which was much less evaluated in the literature with missing data. We present a
careful experimental setup, including datasets, baseline models, and evaluation criterion, in Section
4.2. The detailed experimental results under different missing mechanisms are in Section 4.3.

Table 1: Evaluation on imputation tasks. The standard deviations of five independent trials are shown
in the parenthesis. The lower the RMSE, the better the performance.

Method Census Breast Wine Concrete Libras diabetes

Mean /Mode 0.120(0.003) 0.263(0.009) 0.076(0.003) 0.217(0.007) 0.099(0.001) 0.222(0.003)
MICE(linear) 0.101(0.002) 0.154(0.011) 0.065(0.003) 0.153(0.006) 0.034(0.001) 0.263(0.002)

MissForest 0.112(0.004) 0.163(0.014) 0.060(0.002) 0.173(0.005) 0.024(0.001) 0.216(0.003)
GAIN 0.123(0.057) 0.165(0.006) 0.072(0.004) 0.203(0.007) 0.089(0.006) 0.202(0.003)

MIWAE 0.113(0.042) 0.1874(0.079) 0.074 (0.005) 0.195(0.006) 0.083(0.003) 0.194(0.081)
CSDI_T 0.099(0.003) 0.153(0.003) 0.065(0.004) 0.131(0.008) 0.011(0.001) 0.197(0.001)
MissDiff 0.089(0.006) 0.136(0.002) 0.053(0.001) 0.161(0.001) 0.0787(0.002) 0.051(0.004)

4.1 EXPERIMENTAL FOR IMPUTATION TASKS

We follow the experimental setup as Zheng & Charoenphakdee (2022), which is evaluating MissDiff
on six UCI Machine Learning Repository (Kelly et al.), e.g., Census (Kohavi & Becker, 1996), Breast
(WIlliam, 1992), Wine (Paulo et al., 2009), Concrete (I-Cheng, 2007), Libras (Daniel et al., 2009),
and Diabetes Dataset (Kohavi & Becker). We compare MissDiff with (i) the simple imputation
method that uses mean values for continuous values and mode values for discrete variables (Mean /
Mode), (ii) Multiple Imputation by Chained Equations (MICE) with linear regression (MICE_linear)
(White et al., 2011), (iii) MissForest (Stekhoven, 2015), (iv) GAN-based imputation model, GAIN
(Yoon et al., 2018a), (v) VAE-based imputation model, MIWAE (Mattei & Frellsen, 2019), and (vi)
Diffusion-based imputation model, CSDI_T (Zheng & Charoenphakdee, 2022). We either adopt
the results and hyperparameters from Zheng & Charoenphakdee (2022) or use the open source
implementation from hyperimpute (Jarrett et al., 2022) concerning the baselines methods in Table 1.
We evaluate these methods under the same criterion as Zheng & Charoenphakdee (2022), i.e., Root
Mean Squared Error (RMSE) between the predicted value with the oracle missing value. The details
of the missing mechanism can be found in Appendix C.1.

The performance comparison of MissDiff with state-of-the-art imputation approaches is presented in
Table 1. For most datasets, MissDiff achieves the lowest RMSE. We provide some explanations about
why MissDiff can achieve better performance than previous methods in the following. VAE-based
imputation methods maximize the variational lower bound on observed data that may not have the
guarantees on complete data, while MissDiff recovers the oracle score on complete data by Theorem
3.2. MissDiff avoids the instability caused by adversarial training, which might be the reason for
achieving better results than the GAN-based method. Compared with the Diffusion-based imputation
model, CSDI (Tashiro et al., 2021) and its tabular variant CSDI_T (Zheng & Charoenphakdee, 2022),
that use conditional score matching, MissDiff achieves better results for the following two reasons.
Conditional scores (depending on which information is conditioned) are difficult to learn and analyze.
Therefore, there were no theoretical guarantees on whether the learned conditional score satisfied the
optimality condition similar to Theorem 3.2 and 3.3. Moreover, although conditional score matching
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performs better in time series imputation tasks than unconditional score matching, it is not necessarily
the case for tabular data. There may exist some complex or irregular dependencies between different
columns in tabular data, e.g., some features might be redundant (uninformative). MissDiff achieves
better results than CSDI_T.

4.2 EXPERIMENTAL SETUP FOR GENERATION TASK

Datasets: We present a suite of numerical evaluations of the proposed MissDiff approach on a
simulated Bayesian Network data, a real Census tabular dataset (Kohavi & Becker, 1996), and the
MIMIC4ED tabular dataset (Xie et al., 2022), with various proportions of missing values. The details
of the missing mechanism can be found in Appendix C.2.

(a) Row missing (b) Column missing (c) Independent missing

Figure 1: Fidelity evaluation of MissDiff on data generated by Bayesian Network under different
missing ratios. We shade the area between mean ± std. More discussions are provided in Appendix
C.5.

Baseline Methods: Since few previous works provide the experimental results of the generative
models learned on tabular data with missing values for generating new complete samples, we mainly
compare with the following five baseline methods:

1. Diff-delete: Learn a vanilla diffusion model after deleting rows containing missing values.

2. Diff-mean: Learn a vanilla diffusion model after imputing missing values using the mean
value in that column.

3. STaSy (Kim et al., 2023) with the above two data completion methods. STaSy is the state-
of-the-art diffusion model on tabular data, which outperforms MedGAN (Choi et al., 2017),
VEEGAN (Srivastava et al., 2017), CTGAN (Xu et al., 2019), TVAE (Xu et al., 2019),
TableGAN (Park et al., 2018), OCTGAN (Kim et al., 2021), RNODE (Finlay et al., 2020) by
a large margin.

4. CSDI_T (Zheng & Charoenphakdee, 2022) learns a conditional diffusion on missing data.

Remark 4.1. MIWAE (Mattei & Frellsen, 2019) cannot be used for generation tasks directly. We
provide the detailed discussion in Appendix C.5. CSDI_T can be used for generation tasks. However,
no information can be conditioned on, which makes CSDI_T degenerate to MissDiff. Moreover, using
CSDI_T for generation task exists a mismatch between training and generation, which makes the
performance of CSDI_T worse than MissDiff.

In the following experiments, we use the variance-preserving SDE with the time duration T = 100
for the Bayesian Network and Census dataset and T = 150 for the MIMIC4ED dataset. We adopt
four layers residual network as the backbone of the diffusion model. The dimension of the diffusion
embedding is 128 with channels as 64. We use the standard pre/post-processing of tabular data to
deal with mixed-type data (Kim et al., 2023; Kotelnikov et al., 2022; Zheng & Charoenphakdee,
2022), i.e., we use the min-max normalization for the continuous variables and reverse its scalar
when generation. We use one-hot embedding for the discrete variables and use the rounding function
after the softmax function when generation. We train the diffusion model for 250 epochs with batch
size 64. For more details, please refer to Appendix C.4.
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Evaluation Criterion: Following Xu et al. (2019); Kim et al. (2023); Kotelnikov et al. (2022), we
use two types of criteria, fidelity and utility, to evaluate the quality of the synthetic data generated. To
evaluate the fidelity of synthetic data compared with real data, we adopt a model-agnostic library,
SDMetrics (Dat, 2023). The result is a float number range from 0 to 100%. The larger the score, the
better the overall quality of synthetic data is.

To evaluate the utility of synthetic data, we follow the same pipeline of Kim et al. (2023), i.e.,
training various models, including Decision Tree, AdaBoost, Logistic/Linear Regression, MLP
classifier/regressor, RandomForest, and XGBoost, on synthetic data, and validate the model on
original training data, and test them with real test data. For classification tasks, we mainly use
classification accuracy and also report AUROC, F1, and Weighted-F1 in Appendix C.6. For regression
tasks, we mainly use RMSE and also report R2 in the Appendix C.6. All the experiments are obtained
from 3 repetitions.

4.3 EXPERIMENT RESULTS FOR GENERATION TASK

4.3.1 SIMULATION STUDY

Q1: How does MissDiff perform on different missing ratios against the vanilla diffusion model
learned on the data completed by two baseline methods mentioned in Section 4.2?

Figure 1 summarizes the SDMetrics score on the simulated Bayesian Network dataset example.
With the same diffusion model architecture and the same training hyperparameter, MissDiff achieves
consistently better results against the vanilla diffusion model deleting the incomplete row or using the
mean value for imputation on various missing ratios. Moreover, the advantage of MissDiff becomes
more obvious for large missing ratios. These experimental results verify the motivation of MissDiff
proposed in Remark 3.1 that the learning objective of impute-then-generate is biased. Directly
learning on the missing data can significantly enhance the performance of the learned generative
model 7.

4.3.2 REAL TABULAR DATASETS

Q2: How does MissDiff perform on more complicated real-world data and compared with state-of-
the-art generative model on tabular data?

Table 2 demonstrates the effectiveness of MissDiff on the Census dataset under MCAR. STaSy
is a state-of-the-art generative model for tabular data, which means MissDiff achieves quite good
performance on learning from incomplete data and generating complete data. More importantly,
MissDiff achieves better performance than STaSy-delete and STaSy-mean even without adopting the
self-paced learning technique and the fine-tuning strategy used by STaSy. More experiments and
discussions can be found in Appendix C.6.

Table 2: Utility (classification accuracy) evaluation of MissDiff on Census dataset. “-” denotes the
corresponding method cannot applied since no data xi will be left after deleting the incomplete data.
The larger the accuracy, the better the performance.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean CSDI_T

Row Missing 79.48% - 78.45% - 70.79% 79.15%
Column Missing 71.68% 72.89% 79.60% 68.96% 74.47% 80.31%

Independent Missing 79.49% 75.39% 75.96% 78.36% 77.34% 79.12%

Table 3 shows the performance of MissDiff on the MIMIC4ED dataset under MCAR. On this
large dataset with dozens of continuous and discrete variables, MissDiff gives consistently better
performance with the same training epochs (250 epochs).

Q4: How does MissDiff perform on other missing mechanisms beyond MCAR, i.e., MAR and NMAR?

Table 4 demonstrates the effectiveness of MissDiff on the Census dataset beyond MCAR. The results
show the great potential of learning directly on the missing data when the missing mechanism is not

7We provide more discussions on the “Column missing” scenario in Appendix C.5.
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Table 3: Utility (RMSE) evaluation of MissDiff on MIMIC4ED dataset. Diff-delete and STaSy-delete
cannot be applied since no data xi will be left after deleting the incomplete data. The lower the
RMSE, the better the performance.

MissDiff Diff-mean STaSy-mean CSDI_T

Row Missing 1.826 2.166 1.894 1.853
Column Missing 1.834 2.011 1.935 1.874

Independent Missing 1.852 2.483 1.972 1.879

Table 4: Utility (classification accuracy) evaluation of MissDiff on Census dataset under MAR,
NMAR. The larger the accuracy, the better the performance.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean CSDI_T

MAR 79.95% 69.48% 77.43% 71.28% 73.65% 79.42%
NMAR 80.95% 66.50% 80.03% 78.11% 73.92% 80.23%

MCAR, which cannot be easily dealt with by previous methods (Li et al., 2019; Ipsen et al., 2022;
Yoon et al., 2018a; Li & Marlin, 2020).

5 CONCLUSION

We propose a unified diffusion-based framework, called MissDiff, for synthetic data generation and
imputation trained on data with missing values. Compared with the two-stage inference pipeline,
MissDiff is an unbiased, and computationally friendly framework. The theoretical justification for
MissDiff’s effectiveness is provided. Moreover, extensive numerical experiments demonstrate strong
empirical evidence for the effectiveness of MissDiff.

Limitations and broader impact Overall, this research presents a promising direction for handling
missing data in generative model training. The proposed framework, MissDiff, has potential applica-
tions in a wide range of domains where missing data is a common issue. A potential limitation of this
work is that it has only been empirically validated on standard tabular data. For future directions, it
would be interesting to see how MissDiff performs empirically with more complicated data types,
e.g., tabular data that contains text information in medical diagnosis. Furthermore, further research
could explore the theoretical effectiveness of MissDiff on the utility perspective or differential privacy
perspective.
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A PROOFS FOR SECTION 4

A.1 PROOF OF THEOREM 3.2

In order to show Theorem 3.2, we aim to show that the optimal solution θ∗, which minimizes the
objective function JDSM (θ) satisfies sθ∗(x(t), t) = ∇x(t) log pt(x(t)), i.e., the optimal solution to
the population loss function can recover the oracle score function.

For the Gaussian transition distribution that we used with the isotropic covariance matrix, the score
on the incomplete data is equivalent to the score on the complete data when performing element-wise
multiplication with mask, i.e., ∇xobs(t) log p(x

obs(t)|xobs(0))⊙m = ∇x(t) log p(x(t)|x(0))⊙m8,
where m = 1{xobs(0) ̸= na} indicated the missing entries in xobs(0). Therefore, under cer-
tain conditions9, we may first relate the Denosing Score Matching objective on missing data
to the Denosing Score Matching objective on the complete data, i.e., the optimal solution of
argmin

θ
Ep(xobs(0),m)Ep(xobs(t)|xobs(0))[∥(sθ(xobs(t), t) −∇xobs(t) log p(x

obs(t)|xobs(0))) ⊙m∥22] ad-

mits the same solution as argmin
θ

Ep(x(0),m)Ep(x(t)|x(0))[∥(sθ(x(t), t)−∇x(t) log p(x(t)|x(0)))⊙

m∥22].
Moreover, notice that we have

Ep(x(0),m)Ep(x(t)|x(0))[∥(sθ(x(t), t)−∇x(t) log p(x(t)|x(0)))⊙m∥22]

= Ep(x(0),x(t))∥[(sθ(x(t), t)−∇x(t) log pt(x(t)))⊙
√

Ep(m|x(0))[m]∥22],

where
√
z denotes the element-wise operation on vector z. The last equation is because we take the

conditional expectation of the binary mask m and since mi ∈ {0, 1} we have E[m2
i ] = E[mi] for any

distribution of m. Since Ep(m|x(0))[m] = 1− ρ with ρ = [ρ1, . . . , ρd] and ρi < 1, i ∈ {1, 2, ..., d}
being the population percentage of missing samples for the i-th entry, we have Ep(m|x(0))[m] > 0
and thus we can show the global optimal of Denoising Score Matching on missing data is the same as
the oracle score.

A.2 PROOF OF THEOREM 3.3

The notations are defined as follows. We let π denote the pre-specified prior distribution (e.g.,
the standard normal distribution), C denote all continuous functions, and Ck denote the family of
functions with continuous k-th order derivatives. Denote ρ = [ρ1, . . . , ρd] = Ep(m|x(0))[1 − m]
as the population percentage of missing samples for the i-th entry in the training data. Suppose
maxi=1,...,d supx(0) ρi < 1. In addition, we make the same mild regularity assumptions as Song et al.
(2021a) in the following.
Assumption A.1. (i) p(x) ∈ C2 and Ex∼p0 [∥x∥22] < ∞.

(ii) π(x) ∈ C2 and Ex∼π[∥x∥22] < ∞.

(iii) ∀t ∈ [0, T ] : f(·, t) ∈ C1,∃C > 0,∀x ∈ Rd, t ∈ [0, T ] : ∥f(x, t)∥2 ≤ C(1 + ∥x∥2).

(iv) ∃C > 0,∀x,y ∈ Rd : ∥f(x, t)− f(y, t)∥2 ≤ C∥x− y∥2.

(v) g ∈ C and ∀t ∈ [0, T ], |g(t)| > 0.

(vi) For any open bounded set O,
∫ T

0

∫
O ∥pt(x)∥22 + dg(t)2∥∇xpt(x)∥22 dxdt < ∞.

(vii) ∃C > 0∀x ∈ Rd, t ∈ [0, T ] : ∥∇x log pt(x)∥2 ≤ C(1 + ∥x∥2).

(viii) ∃C > 0,∀x,y ∈ Rd : ∥∇x log pt(x)−∇y log pt(y)∥2 ≤ C∥x− y∥2.

8Assume p(xobs(t)|xobs(0)) = N (xobs(t);µobs,Σ) and p(x(t)|x(0)) = N (x(t);µ,Σ), with Σ = (1−ᾱt)I
and µobs = µ⊙m. It is not hard to see ∇xobs(t) log p(x

obs(t)|xobs(0))⊙m = − 1
(1−ᾱt)

(xobs(t)−µobs)⊙m =

− 1
(1−ᾱt)

(x(t)− µ)⊙m = ∇x(t) log p(x(t)|x(0))⊙m.
9We assume the score network sθ possesses sufficient approximation capability to encompass the true score

function.
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(ix) ∃C > 0∀x ∈ Rd, t ∈ [0, T ] : ∥sθ(x, t)∥2 ≤ C(1 + ∥x∥2).

(x) ∃C > 0,∀x,y ∈ Rd : ∥sθ(x, t)− sθ(y, t)∥2 ≤ C∥x− y∥2.

(xi) Novikov’s condition: E[exp( 12
∫ T

0
∥∇x log pt(x)− sθ(x, t)∥22 dt)] < ∞.

(xii) ∀t ∈ [0, T ],∃k > 0 : pt(x) = O(e−∥x∥k
2 ) as ∥x∥2 → ∞.

We mainly follow the proof strategy in Song et al. (2021a). Consider the predefined SDE on the
observed data,

dxobs = f(xobs, t)dt+ g(t)dw, (5)
and the SDE parametrized by θ,

dx̂obs
θ = sθ(x̂

obs
θ , t)dt+ g(t)dw. (6)

Let µ and ν denote the path measure of {xobs(t)}t∈[0,T ] and {x̂obs
θ (t)}t∈[0,T ], respectively. Therefore,

the distribution of p0(x) and pθ(x) can be represented by the Markov kernel K({z(t)}t∈[0,T ],y) :=
δ(z(0) = y) as follow:

p0(x) =

∫
K({xobs(t)}t∈[0,T ],x)dµ({xobs(t)}t∈[0,T ]),

pθ(x) =

∫
K({x̂obs

θ (t)}t∈[0,T ],x)dν({x̂obs
θ (t)}t∈[0,T ]).

According to the data processing inequality with this Markov kernel, the Kullback–Leibler (KL)
divergence between the distribution of p0(x) and pθ(x) can be upper bounded, i.e.,

DKL(p0∥pθ) =DKL

(∫
K({xobs(t)}t∈[0,T ],x)dµ

∥∥∫ K({x̂obs
θ (t)}t∈[0,T ],x)dν

)
≤ DKL(µ∥ν).

(7)

By the chain rule of KL divergences,

DKL(µ∥ν) = DKL(pT ∥π) + Ez∼pT
[DKL(µ(· | xobs(T ) = z)∥ν(· | x̂obs

θ (T ) = z))]. (8)

Under assumptions (i) (iii) (iv) (v) (vi) (vii) (viii), the SDE in Eq equation 5 has a corresponding
reverse-time SDE given by

dxobs = [f(xobs, t)− g(t)2∇xobs log pt(x
obs)]dt+ g(t)dw. (9)

Since Eq equation 9 is the time reversal of Eq equation 5, it induces the same path measure µ. As a
result, DKL(µ(· | xobs(T ) = z)∥ν(· | x̂obs

θ (T ) = z)) can be viewed as the KL divergence between
the path measures induced by the following two (reverse-time) SDEs:

dxobs = [f(xobs, t)− g(t)2∇xobs log pt(x
obs)]dt+ g(t)dw, xobs(T ) = xobs,

dx̂obs = [f(x̂obs, t)− g(t)2sθ(x̂
obs, t)]dt+ g(t)dw, x̂obs

θ (T ) = xobs.

Under assumptions (vii) (viii) (ix) (x) (xi), we apply the Girsanov Theorem II [(Øksendal, 1987),
Theorem 8.6.6], together with the martingale property of Itô integrals, which yields

JSM(θ; g(·)2) =
∫ T

0

Em,pt(xobs(t))[g(t)
2∥(∇xobs(t) log pt(x

obs(t))− sθ(x
obs(t), t))⊙m(x)∥22]dt

=

∫ T

0

Ept(xobs(t))[g(t)
2∥(∇xobs(t) log pt(x

obs(t))− sθ(x
obs(t), t))⊙

√
E[m(x)]∥22]dt

≥ 2(1− ρmax)Eµ[
1

2

∫ T

0

g(t)2∥∇xobs(t) log pt(x
obs(t))− sθ(x

obs(t), t)∥22 dt]

≥ 2(1− ρmax)DKL(µ(· | xobs(T ) = z)∥ν(· | x̂obs
θ (T ) = z))

(10)
where ρmax = maxi=1,...,d supx E[1 − mi(x)] denotes the supreme of missing rates, and 1 −
ρmax > 0 by assumption. Combining Eqs. equation 7, equation 8 and equation 10, we have
DKL(p0∥pθ) ≤ 1

1−ρmax
JSM(θ; g(·)2) + DKL(pT ∥π), which further yields −Ep(xobs)[log pθ(x)] ≤

1
1−ρmax

JDSM(θ; g(·)2) + C1 by Lemma A.2, where C1 is a constant independent of θ.
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Lemma A.2. Denoising Score Matching on missing data is equivalent to Score Matching on missing
data, i.e.,

Ept(xobs)[∥(sθ(xobs
t , t)−∇xobs log pt(x

obs
t ))⊙m∥22]

= Ep(xobs
0 )Ep(xobs

t |xobs
0 )[∥(sθ(xobs

t , t)−∇xobs
t
log p(xobs

t | xobs
0 ))⊙m∥22] + C,

(11)

where m = 1{xobs
0 ̸= na} indicated the missing entries in xobs and C is a constant that does not

depend on θ. We interchange xobs(t) with xobs
t .

Proof. We begin with the Score Matching on the left-hand side of equation 11

LHS = Ept(xobs
t )[∥(sθ(xobs

t , t)−∇xobs
t
log pt(x

obs
t ))⊙m∥22]

= Ept(xobs
t )[∥sθ(xobs

t , t)⊙m∥2]− S(θ) + C2,
(12)

where C2 = Ept(xobs
t )[∥∇xobs

t
log pt(x

obs
t )⊙m∥2] is a constant that does not depend on θ, and

S(θ) = 2Ept(xobs
t )[⟨sθ(xobs

t , t),∇xobs
t
log pt(x

obs
t )⊙m⟩]

= 2

∫
xobs
t

pt(x
obs
t )⟨sθ(xobs

t , t),∇xobs
t
log pt(x

obs
t )⊙m⟩ dxobs

t

= 2

∫
xobs
t

⟨sθ(xobs
t , t),∇xobs

t
pt(x

obs
t )⊙m⟩ dxobs

t

= 2

∫
xobs
t

⟨sθ(xobs
t , t),

d

dxobs
t

∫
xobs
0

p0(x
obs
0 )p(xobs

t | xobs
0 )⊙m dxobs

0 ⟩ dxobs
t

= 2

∫
xobs
t

∫
xobs
0

p0(x
obs
0 )p(xobs

t | xobs
0 )⟨sθ(xobs

t , t),
d log p(xobs

t | xobs
0 )

dxobs
t

⊙m⟩ dxobs
0 dxobs

t

= 2Ep(xobs
t ,xobs

0 )[⟨sθ(xobs
t , t),

d log p(xobs
t | xobs

0 )

dxobs
t

⊙m⟩].

Substituting this expression for S(θ) into Eq equation 12 yields

LHS = Ept(xobs
t )[∥sθ(xobs

t , t)⊙m∥2]

− 2Ep(xobs
t ,xobs

0 )[⟨sθ(xobs
t , t),

d log p(xobs
t | xobs

0 )

dxobs
t

⊙m⟩] + C2.
(13)

On the other hand, we also have the Denoising Score Matching objective on the right-hand side of
equation 11 is

RHS = Ept(xobs
t )[∥sθ(xobs

t , t)⊙m∥2]

− 2Ep(xobs
t ,xobs

0 )[⟨sθ(xobs
t , t),

d log pt(x
obs
t | xobs

0 )

dxobs
t

⟩ ⊙m] + C3,
(14)

where C3 = Ep(xobs
t ,xobs

0 )[∥
d log pt(x

obs
t |xobs

0 )

dxobs
t

⊙m∥2] + C is a constant that does not depend on θ.

Comparing equations equation 13 and equation 14, we thus show that the two optimization objectives
are equivalent up to a constant.

B DISCUSSION WITH RELATED WORKS

B.1 RELATED WORKS THAT CAN BE USED FOR IMPUTATION TOGETHER WITH GENERATION
TASKS

In the following, we provide a detailed discussion about which work about learning from missing
data can be used for imputation together with generation tasks.

• HI-VAE (Nazábal et al., 2018) and VAEM (Ma et al., 2020) can be used for generation since
they model each data dimension by a VAE, albeit at a high computational cost.
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• GAN-based approaches (Li et al., 2019; Li & Marlin, 2020) can also be used for generation
tasks, while (Li et al., 2019) trains two generator-discriminator pairs for the masks and data
respectively, which increases the computational cost and (Li & Marlin, 2020) adopts Partial
Bidirectional GAN, which requires an encoding and decoding network for the generator. (Yoon
et al., 2018a) can be used for generation without additional computational cost. However,
there exists a mismatch between the training and inference for GAIN. And the smaller the
missing ratio of the observed data, the larger the discrepancy will be.

• MIWAE (Mattei & Frellsen, 2019) and non-MIWAE (Ipsen et al., 2021) do not have additional
computational costs, but they are not suited for generation tasks due to their use of a student t
distribution in the decoder p(xobs|z), which has limited capacity to accurately represent real
distributions. The experimental results of directly using MIWAE for generation can be found
in Table 6, column MIWAE in Appendix C.5.

• CSDI_T (Zheng & Charoenphakdee, 2022) is the previous SOTA method that can be used
for generation tasks. We compared with CSDI_T in all imputation and generation tasks and
discuss the advantages of our method at the end of Section 4.1.

B.2 DISCUSSION WITH CORRUPTED DATA BASED METHOD

Missing value belongs to a special case of data corruption. Ambient Diffusion (Daras et al., 2023)
generally studies how to solve the linear inverse problem y = Ax. When the corruption matrices A
is a diagonal matrix where each Aii ∼ Ber(1− p), then this can be used for solving Independent
Missing under MCAR mechanism. Under this setting, we prove the equivalence between Eq (3.1) in
Daras et al. (2023) and Denoising Score Matching on Missing Data (Eq equation 4) in our paper as
follows:

J corr
naive (θ) =

1

2
E(x0,xt,A) ∥A (hθ (A,Axt, t)− x0)∥2

=
1

2
E(xobs(0),xobs(t))

∥∥(hθ

(
A,xobs(t), t

)
− xobs(0)

)
⊙m

∥∥2 ,
where xobs(0) = Ax0 = x0 ⊙m, m = 1{xobs(0) ̸= na} is the mask representing missing indexes,
and xobs(t) = Axt = xt ⊙m.

Our score-matching objective is

JDSM (θ) =
T

2
Et

{
λ(t)Exobs(0)Exobs(t)|xobs(0)

[
∥(sθ(xobs(t), t)−∇xobs(t) log pt(x

obs(t)))⊙m∥22
] }

.

The equivalence between J corr
naive (θ) and JDSM (θ) can be built upon the equivalence of score predictor

and data predictor. Specifically, Theorem B.1 in Zheng et al. (2023) proves that the optimal data
predictor satisfies hθ∗ (xt, t) = xt + σ2

t sθ∗ (xt, t).

In the context of dealing with missing data, Ambient Diffusion is very similar to CSDI which learns
the complete data distribution in a self-supervised learning manner. The essence of Ambient Diffusion
lies in modeling the conditional distribution E[x0|Ãxt, Ã] (or p(x|y) for the inverse problem).

At the end of Section 4.1, we discussed the advantages of utilizing unconditional score matching
over conditional score matching, as employed by CSDI_T, for both imputation and generation tasks,
which can be summarized as follows:

• Ambient Diffusion masks additional data by using the corruption matrix Ã and using the data
predictor hθ∗ to predict the known masked value. MissDiff does not need to mask additional
data.

• Ambient Diffusion models the conditional distribution p(x|xobs), where MissDiff exactly
models p(x). Therefore, when using Ambient Diffusion to generate new complete samples,
there exists a mismatch between training and generation, since there is no information that
Ambient Diffusion can condition for generation tasks. We demonstrate this mismatch makes
the performance of CSDI_T worse than MissDiff in all of the experiments in generation tasks.

• We also demonstrate modeling the conditional distribution p(x|xobs) is not good as modeling
unconditional distribution p(x) for tabular data. There may exist some complex or irregular
dependencies between different columns in tabular data, e.g., some features might be redun-
dant (uninformative). We demonstrate this phenomenon by the experimental comparison of
MissDiff against CSDI_T.
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C MORE DETAILS ON EXPERIMENTS

C.1 DATASETS FOR IMPUTATION TASK

We adopt the same missing mechanism as Zheng & Charoenphakdee (2022), i.e., MCAR with the
missing ratio of 0.2. To be more precise, the detailed implementation of MCAR is the “Row Missing”
defined in paragraph C.2. We also provide the comparisons of imputation results under MAR and
NMAR assumptions in the Table 5. Our method still achieves a smaller Mean Squared Error than
CSDI_T under MAR and NMAR settings.

Table 5: The effectiveness of MissDiff on imputation tasks under MAR and NMAR.
Method MAR NMAR

CSDI_T 0.1205(0.004) 0.1274(0.005)
MissDiff 0.1053(0.005) 0.1092(0.006)

C.2 DATASETS FOR GENERATION TASK

Details of the Bayesian Network Figure 2 demonstrates the Bayesian Network for generating
the tabular data. It contains two continuous variables C1, C2, and three discrete random variables
D1, D2, and D3. The distribution of these variables is set as follows. The marginal distribution of
C1 is N (25, 2), the conditional distribition of C2 given C1 is C2|C1 ∼ N (0.1 · C1 + 50, 5), and
the marginal distribution of D1 is Bernoulli(0.3), where Bernoulli(ξ) stands for the Bernoulli
distribution with mean equal to ξ. The conditional distribution of D2, given C1, C2 and D1, is set as

D2|C1,C2,D1 ∼



Ca(0.3, 0.6, 0.1) C1 > 26,C2 > 55,D1 = 1;

Ca(0.2, 0.3, 0.5) C1 > 26,C2 ≤ 55,D1 = 1;

Ca(0.7, 0.1, 0.2) C1 ≤ 26,C2 > 55,D1 = 1;

Ca(0.1, 0.2, 0.7) C1 ≤ 26,C2 ≤ 55,D1 = 1;

Ca(0.05, 0.05, 0.9) D1 = 0,

where Ca(p1, p2, 1− p1− p2) denotes the categorical (discrete) distribution for three pre-specified
categories. The conditional distribution of D3 given D2 is

D3|D2 ∼


Bernoulli(0.2) D2 = 0;

Bernoulli(0.4) D2 = 1;

Bernoulli(0.8) D2 = 2.

C2 C1

D1 D3

D2

Figure 2: The demonstration of the Bayesian Network for generating the tabular data. “C1” and “C2”
denote the continuous variables and “D1”, “D2”, “D3” denotes the discrete random variables. The
marginal/conditional distributions for each node are detailed in Section C.2.

Choice of Masks under Different Missing Mechanisms To evaluate the performance of MissDiff
on different missing mechanisms, we give a detailed explanation of the practical implementation of
MCAR (Li et al., 2019; Yoon et al., 2018a), MAR(Ipsen et al., 2022; Li & Marlin, 2020), and NMAR
(Muzellec et al., 2020; Ipsen et al., 2021).
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• MCAR: there are three types of missing mechanisms in MCAR.

– Row Missing. For a given missing ratio α ∈ (0, 1), we have the number of elements
missing in each row (i.e., for each sample xi) is ⌊dα⌋, where ⌊z⌋ is the greatest integer
less than z, and the location/index of the missing entries is randomly chosen according
to the uniform distribution.

– Column Missing. For a given missing ratio α, we have the number of elements missing
in each column (for each feature) is ⌊nα⌋, and the location/index of the missing entries
is randomly chosen according to the uniform distribution.

– Independent Missing. Each entry in the table is masked missing according to the
realization of a Bernoulli random variable with parameter α.

• MAR: a fixed subset of variables that cannot have missing values is first sampled. Then,
the remaining variables will have missing values according to a logistic model with random
weights, which takes the non-missing variables as inputs. The outcome of this logistic model
is re-scaled to attain a given missing ratio α.

• NMAR: the same pipeline as MAR with the inputs of the logistic model are masked by the
MCAR mechanism. We refer to Muzellec et al. (2020) for more detailed explanations.

Remark C.1. Under the three missing mechanisms in MCAR, with the missing ratio parameter set
as 0 < α < 1, the condition in Theorem 3.2 can be satisfied with probability at least 1− δ, where
δ = max{(αd−1

d )nd, α, αnd} and it will be sufficiently small when α is small and n is sufficiently
large.

Remark C.1 gives the guarantee that MissDiff can recover the oracle score under MCAR with high
probability. For the data generated by the Bayesian Network in Section 4.3, there are only five
variables (columns) (three categorical variables and two continuous variables). Therefore, in the row
missing mechanism, we only have the missing ratio [0.2,0.4,0.6,0.8]. For the column missing or the
independent missing mechanisms, we set the missing ratio to be [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9].
In other datasets in Section 4.3, we adopt the missing ratio α = 0.2 and XGBoost for the downstream
tasks as the default setting. More experimental results can be found in Appendix C.6.

C.3 ALGORITHMS FOR IMPUTATION AND GENERATION TASKS

MissDiff adopts the algorithm 2 for imputation task and algorithm 3 for generating new complete
data. For the imputation, the key operation is in line 9. The element-wise multiplication guarantees
the output x0 has the same value as xobs in the observed entries. Therefore, in each iteration, the
noising version of the observed data is used as the guidance.

Algorithm 2 MissDiff for Imputation
Require: Observed data xobs

0 , Diffusion model sθ, hyperparameter βt, σt, denote αt = 1− βt and
ᾱt =

∏t
s=1 αs.

1: Sample xT ∼ N (0, I);
2: Infer mask m = 1[xobs

0 ̸= na];
3: t = T ;
4: while t ̸= 0 do
5: Sample ϵobs

t ∼ N (0, I) if t > 1, else ϵobs
t = 0;

6: xobs
t−1 =

√
ᾱt−1x

obs
0 + (1− ᾱt−1) ϵ

obs
t

7: Sample ϵt ∼ N (0, I) if t > 1, else ϵt = 0;
8: xt−1 = 1√

αt
(xt − βt√

1−ᾱt
sθ(xt, t)) + σtϵt;

9: xt−1 = m⊙ xobs
t−1 + (1−m)⊙ xt−1

10: t = t− 1;
11: end while
12: return x0.
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Algorithm 3 MissDiff for Generation
Require: Diffusion model sθ , hyperparameter βt, σt, denote αt = 1− βt and ᾱt =

∏t
s=1 αs.

1: Sample xT ∼ N (0, I);
2: t = T ;
3: while t ̸= 0 do
4: Sample ϵt ∼ N (0, I) if t > 1, else ϵt = 0;
5: xt−1 = 1√

αt
(xt − βt√

1−ᾱt
sθ(xt, t)) + σtϵt;

6: t = t− 1;
7: end while
8: return x0.

C.4 IMPLEMENTATION DETAILS

To make the transition p(xobs(t)|xobs(0)) and the gradient ∇xobs(t) log p(x
obs(t) | xobs(0)) well

defined for the mixed-type data, we use 0 to replace na for continuous variables and a new category
to represent na for discrete variables, which is the same operation as in Nazábal et al. (2018); Ma
et al. (2020) that can help to feed fixed dimensional data into neural networks. One-hot embedding is
applied to discrete variables.

We set the minimum noise level β1 = 0.0001 and the maximum noise level βT = 0.5 in Algorithm 1
and Algorithm 3 with quadratic schedule

βt =

(
T − t

T − 1

√
β1 +

t− 1

T − 1

√
βT

)2

.

We mainly follow the hyperparameter in the previous works that train the diffusion model on tabular
data Tashiro et al. (2021); Zheng & Charoenphakdee (2022). We use the Adam optimizer with
MultiStepLR with 0.1 decay at 25%, 50%, 75%, and 90% of the total epochs and with an initial
learning rate as 0.0005.

With regard to the baselines of STaSy, we adopt the same setting of its open resource implementation
10, i.e., Variance Exploding SDE with six layers ConcatSquash network as the backbone of the
diffusion model and Fourier embedding, the adam optimizer with learning rate as 2e-03, training with
batch size 64 and 250 epochs/1000 epochs with additional 50 finetuning epochs.

For the downstream classifier/regressor, we adopt the same base hyperparameters in [Kim et al.
(2023), Table 26].

C.5 ADDITIONAL DISCUSSION FOR GENERATION RESULTS

In this section, we provide more discussion on the experimental results of generation tasks.

Discussion 1: the performance of MissDiff as the missing ratio in range (0.1-0.6) In “Row
missing” and “Column missing” in Figure 1, we can see the performance of MissDiff slightly increase
when the missing rate increase in range (0.1-0.6). we conjecture that this is a phenomenon due to
the unique structure of certain tabular datasets. For this simulated Bayesian network dataset, the
dependencies between different columns are demonstrated in Figure 2. Some features might be
uninformative, for instance, variables C1, C2, and D1 are all uninformative to the value of D3, given
that D2 is observed. This implies that for some rows with missing C1, C2, and D3 values, the model
still has enough information to learn the full dependence between variables D3 and D2. Moreover,
the model can potentially learn the distribution of D3|D2 better in such cases since other redundant
variables are excluded. Moreover, the performance starts to decrease when we increase the missing
rate to 0.8, since in such case, we only have one variable left in each row and thus it is reasonable to
expect worse performance.

Discussion 2: the performance of MissDiff in “Column missing” scenario in Census dataset In
Table 2, MissDiff does not perform well on the “Column missing” scenario in the Census dataset.
We believe the column missing mechanism described in Appendix C.2 is a special scenario. Most

10https://openreview.net/forum?id=1mNssCWt_v
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specifically, the mask m (an indicator of missing values) for each row (sample) would depend on the
masks of other rows as well, since the missing rate for each column is fixed. It leads to dependence
between missing samples. We further note that in our population objective function Eq equation 4, as
a standard practice, we regard the sample pair (m,x) are iid and the expectation in Eq equation 4 is
taken with respect to this joint distribution. When the sample size of the dataset is relatively small,
such sample dependence is more evident, and MissDiff is not as good as Diff-mean.

Discussion 3: the performance of MIWAE in Census dataset MIWAE models the distribution
p(xobs|z) by a student t distribution with location, scale, and degrees of freedom outputted by the
decoder, which has limited representation power for the real distribution. Directly using this learned
distribution to generate samples has poor performance demonstrated in Table 6. A possible solution
is using the “generate-then-impute” framework, i.e., randomly removing different values in observed
data and then applying the learned model to impute the missing data. We refer to this method as
MIWAE (modified) in the following table. MissDiff still achieves better results compared to other
approaches together with the “generate-then-impute” framework.

Table 6: Comparison with MIWAE and “generate-then-impute” framework on Census dataset. “-”
denotes the corresponding method cannot applied since no data xi will be left after deleting the
incomplete data. The larger the accuracy, the better the performance.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean CSDI_T MIWAE MIWAE (modified)

Utility evaluation 79.48% - 78.45% - 70.79% 79.15% 23.7% 72.11%
Fidelity evaluation 80.59% - 76.92% - 56.75% 77.60% 59.11% 67.14%

C.6 ADDITIONAL EXPERIENTIAL RESULTS

C.6.1 ADDITIONAL RESULTS FOR FIDELITY EVALUATION

Table 7, 8, and 9 provide SDMetrics metric evaluation on MissDiff. They correspond to Table 2, 3,
and 4 in Section 4.3.2.

Table 7: Fidelity evaluation of MissDiff on Census dataset. The larger the score, the better the overall
quality of synthetic data is.

MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean CSDI_T

Row Missing 80.59% - 76.92% - 56.75% 77.60%
Column Missing 82.70% 75.03% 76.17% 56.90% 51.54% 73.84%

Independent Missing 83.16% 74.94% 76.60% 56.07% 57.06% 82.56%

Table 8: Fidelity evaluation of MissDiff on MIMIC4ED dataset. Diff-delete and STaSy-delete cannot
be applied since no data xi will be left after deleting the incomplete data.

MissDiff Diff-mean STaSy-mean CSDI_T

Row Missing 84.45% 75.22% 82.94% 83.15%
Column Missing 79.24% 76.57% 79.03% 79.10%

Independent Missing 78.01% 76.16% 77.21% 77.53%

Table 9: Fidelity evaluation of MissDiff on Census dataset under MAR, NMAR.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean CSDI_T

MAR 77.45% 73.78% 76.08% 57.51% 50.06% 78.14%
NMAR 77.88% 75.72% 76.97% 54.11% 50.6% 77.51%
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C.6.2 ADDITIONAL RESULTS OF OTHER CRITERIA FOR Utility EVALUATION

Table 10, 11, and 12 provide the additional experimental results for other criteria under Utility
evaluation for Table 2, 3, and 4 in the main paper, i.e., the F1, Weighted-F1, AUROC for the
classification task and R2 for the regression task. A detailed explanation of the above-mentioned
criteria can be found in Kim et al. (2023). To make our paper self-contained, we briefly restate it here.

1. Binary F1 for binary classification: sklearn.metrics.f1_score with ‘average’=‘binary’.
2. Macro F1 for multi-class classification: sklearn.metrics.f1_score with ‘average’=‘macro’.

3. Weighted-F1: =
∑K

i=0 wisi, where K denotes the number of classes, the weight of i-th class
wi is 1−pi

K−1 , pi is the proportion of i-th class’s cardinality in the whole dataset, and score si is
a per-class F1 of i-th class (in a One-vs-Rest manner).

4. AUROC: sklearn.metrics.roc_auc_score.

From the results in Table 10, 11, and 12, it can be seen that the proposed MissDiff consistently
outperforms the compared methods in most instances. For the column missing case, MissDiff
tends to perform worse, which indicates the potential limitations of the proposed method for future
investigations.

Table 10: Utility evaluation of MissDiff on Census dataset with other criteria.
Criterion Missing Mechanism MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Binary F1
Row Missing 0.344 - 0.280 - 0.314

Column Missing 0.141 0.063 0.413 0.509 0.383
Independent Missing 0.291 0.045 0.225 0.274 0.241

Weighted-F1
Row Missing 0.470 - 0.423 - 0.488

Column Missing 0.305 0.249 0.523 0.571 0.490
Independent Missing 0.431 0.237 0.375 0.416 0.389

AUROC
Row Missing 0.772 - 0.685 - 0.731

Column Missing 0.539 0.469 0.757 0.750 0.637
Independent Missing 0.650 0.474 0.655 0.621 0.613

Table 11: Utility evaluation of MissDiff on MIMIC4ED dataset with R2 criterion. Diff-delete and
STaSy-delete cannot be applied since no data xi will be left after deleting the incomplete data.

Missing mechanism MissDiff Diff-mean STaSy-mean

Row Missing 0.088 0.057 0.067
Column Missing 0.095 0.023 0.073

Independent Missing 0.156 0.062 0.142

Table 12: Utility evaluation of MissDiff on Census dataset under MAR, NMAR with other criteria.
Criterion Missing Mechanism MissDiff Diff-delete Diff-mean

Binary F1 MAR 0.346 0.108 0.224
NMAR 0.464 0.233 0.383

Weighted-F1 MAR 0.473 0.276 0.376
NMAR 0.564 0.364 0.501

AUROC MAR 0.833 0.441 0.774
NMAR 0.834 0.499 0.746

C.6.3 EXPERIMENT RESULTS FOR DIFFERENT CLASSIFIERS/REGRESSORS

As mentioned in Section 4.2, we train various models, including Decision Tree, AdaBoost, Logis-
tic/Linear Regression, MLP classifier/regressor, RandomForest, and XGBoost, on synthetic data.
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Table 13 to 17 present the corresponding results on different classifiers/regressors, from which we
can see that MissDiff still performs well under most cases.

Table 13: Utility evaluation of MissDiff on Census dataset by Decision Tree.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 78.08% - 74.55% - 60.74%
Column Missing 62.65% 69.10% 78.88% 65.38% 66.31%

independent 80.68% 72.68% 67.70% 76.35% 55.99%

Table 14: Utility evaluation of MissDiff on Census dataset by AdaBoost.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.38% - 79.28% - 73.23%
Column Missing 72.18% 76.30% 80.65% 69.60% 42.24%

independent 78.70% 76.13% 75.96% 76.55% 78.39%

Table 15: Utility evaluation of MissDiff on Census dataset by Logistic Regression.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 79.20% - 77.08% - 71.04%
Column Missing 73.50% 76.30% 77.45% 66.91% 69.08%

independent 76.20% 76.30% 76.25% 77.13% 69.68%

Table 16: Utility evaluation of MissDiff on Census dataset by Multi-layer Perceptron (MLP).
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 77.70% - 75.13% - 49.78%
Column Missing 68.33% 65.75% 75.00% 70.97% 58.83%

independent 75.33% 72.18% 74.30% 76.81% 37.59%

Table 17: Utility evaluation of MissDiff on Census dataset by Random Forest.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.10% - 77.13% - 72.68%
Column Missing 73.68% 76.33% 79.88% 74.70% 71.58%

independent 79.33% 76.30% 76.38% 76.31% 76.98%

C.6.4 ADDITIONAL RESULTS FOR STaSy-delete AND STaSy-mean

The experimental results of STaSy-delete and STaSy-mean in Tables 2 and 7 are obtained by training
diffusion model for 1000 epochs, compared with 250 epochs of MissDiff, Diff-delete, and Diff-
mean. If we train STaSy-delete and STaSy-mean as the same training epochs (250 epochs) on the
Census dataset under MCAR as MissDiff, their performance is demonstrated in Table 18 and 19.
This observation highlights that the proposed MissDiff requires considerably fewer training epochs
compared to STaSy in order to achieve satisfactory results when handling data with missing values.
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Table 18: Fidelity evaluation of MissDiff on Census dataset with 250 training epochs.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 80.59% - 76.92% - 50.08%
Column Missing 82.70% 75.03% 76.17% 52.49% 49.63%

independent 83.16% 74.94% 76.60% 53.7% 50.11%

Table 19: Utility evaluation of MissDiff on Census dataset with 250 training epochs.
MissDiff Diff-delete Diff-mean STaSy-delete STaSy-mean

Row Missing 79.48% - 78.45% - 60.96%
Column Missing 71.68% 72.89% 79.60% 56.19% 61.46%

independent 79.49% 75.39% 75.96% 49.78% 70.68%
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