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Abstract
Traditional benchmark models generate networks with given structural character-
istics such as degree distribution, degree correlations, or community structure
but do not consider dynamic processes on networks. Since dynamics are often
superordinate to structure and guide network formation, we can learn about the
structure from dynamics but lack methods for translating modular dynamics
into network structure. To bridge this gap, we introduce a generative network
model rooted in the modular compression of dynamic processes on a network as
provided by the map equation, an information-theoretic method for community
detection. We evaluate our approach by sampling networks according to the
modular compression of network flows in empirical networks from different
domains. We recover the original community structure and preserve the nodes’
expected out-degrees, enabling benchmark networks by sampling from dynamic
processes.

1 Introduction
Traditional benchmark models generate networks with given structural characteristics such as degree
distribution, degree correlations, or community structure [1–5]. They enable testing and evaluating
network analysis methods against known ground truth, for example, node membership in planted
communities [6]. However, existing benchmark models do not consider dynamic processes on
networks describing flow patterns that capture first or higher-order dependencies. But the structure
of networks and dynamics on networks are interdependent and, as network structure constrains
dynamics, we can learn about dynamics from structure and vice versa. Often, dynamics on networks
are prior to structure and essential for our understanding of how networked entities behave and
communicate. Dynamics extend beyond pairwise interactions and hold the key to understanding how
distant parts can influence each other indirectly.

Flow-based community-detection methods such as Markov stability [7, 8] and the map equation [9]
model dynamic processes on networks as random walks and identify communities as those sets of
nodes that trap the random walker for a relatively long time. That is, they learn about the structure
from the dynamics. Here, we focus on the map equation and reverse this approach: we propose a
generative model based on the modular compression of network flows induced by the map equation
and analyse emerging structures.

Early work in the study of random networks goes back to Erdős and Rényi [10] who proposed a
random graph model where each link in a graph with n nodes exists independently with uniform
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probability p. An emerging structural phenomenon in such Erdős-Rényi random graphs is the
transition from disconnected to connected graphs at p∗ = lnn

n . Barabási and Albert [1] proposed a
random graph model following the preferential attachment principle, reflecting that nodes in many
real networks connect to existing nodes at a rate proportional to their degree, leading to networks with
power-law distributed node degrees [11]. The preferential attachment mechanism has been found to
explain properties of real networks, including clustering and degree correlations [2].

Lancichinetti et al. [3] proposed a method to generate networks with planted community structure
where the user can choose the number n of nodes in the networks, the mixing µ, and the exponents for
the power-law distributions of node degrees and community sizes. A generalisation of the approach
generates networks with overlapping planted community structure [4]. Bazzi et al. [5] proposed a
general framework for generating multilayer networks with planted community structure.

Recently, Bontorin et al. [12] formulated a generative model with spatial constraints whose optimisa-
tion leads to the emergence of features found in real traffic networks.

2 Background
Here, we review the map equation and a related node similarity score, MapSim, which we use as the
basis for defining a generative model based on dynamic processes on networks.

2.1 The Map Equation

The map equation [9] is an information-theoretic objective function for community detection that
uses random walks to model dynamics on networks, introducing a notion of flow. By exploiting
the duality between compression and finding patterns in data, the map equation turns community
detection into a compression problem, aiming to minimise the codelength: the per-step number of
bits to describe a dynamical process represented as a random walk.

In the simplest case, we group all nodes into a single community, call it M1, and assign unique
codewords to the nodes, for example using Huffman coding. The codelength L (M1) is the Shannon
entropy of the nodes’ stationary visit rates, L (M1) =

∑
u pu log2 pu, where pu is u’s visit rate.

In networks with community structure (Fig. 1(b)), we can compress the codelength by partitioning
nodes into disjoint modules m ∈ M and assigning codewords that are unique within modules. This
enables re-using the same codewords across different modules, resulting in shorter codewords on
average. But for a unique description of the random walk, we need to add a module-exit codeword
per module and an index-level codebook to encode transitions into modules. Then, the codelength is
a weighted average of module-level and index-level codelengths, expressed by the two-level map
equation: L (M) = qH (Q)+

∑
m∈M pmH (Pm). Here, q is the rate at which the random walker uses

the index-level codebook, and Q is the set of module entry probabilities; pm is the rate at which the
random walker uses module m’s codebook, including exiting, and Pm is the set of module-normalised
node visit rates, including the exit rate.

Minimising the map equation is a search problem and means identifying the community structure
that describes the random walker’s movement patterns most efficiently; In practice, the map equation
neither simulates random walks nor assigns codewords. Through recursion, the map equation can be
generalised for networks with nested communities [13].

2.2 Map Equation Similarity

Map equation similarity, MapSim for short, is an information-theoretic node similarity measure
based on the map equation’s compression principles: MapSim interprets the modular structure of a
network as an implicit embedding of its nodes in a non-metric latent space and relates the similarity
between nodes u and v to the number of bits required to describe a random-walker step from u to
v [14]. The key insight behind MapSim is that, while a network’s topology constrains a random
walker’s steps, a coding scheme for describing transitions allows us to calculate similarities between
any node pair, whether the nodes are connected or not. Applied to an unsupervised link-prediction
task, MapSim was shown to outperform popular embedding methods in terms of the area under both
the receiver-operator and precision-recall curves.

MapSim measures the similarity between nodes u and v as the rate at which a random walker
transitions from u to v, based on the network’s modular structure. The rate at which a random walker
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Figure 1: (a) A synthetic network with two communities for illustration. Each codeword is unique
within modules, but the same codeword can be re-used across modules for a shorter average length.
The description of the random-walk sequence on the network is shown at the bottom. (b) Repre-
sentation of the network’s community structure as a tree, annotated with transition rates for the
random walker. The tree can be used to calculate description lengths for links as well as for non-links.
Describing a random walker transition from node 5 to node 7 requires − log2

(
1
12 · 1

2 · 2
10

)
≈ 6.9 bits.

visits nodes within the current module is simply the respective target node’s module-normalised
visit rate. To find the transition rates to nodes in a different module, MapSim multiplies the module-
normalised visit rates along the shortest path in the coding tree (Figure 1(b)).

3 Sampling from Modular Compression of Network Flows
We generalise MapSim and propose a sampling approach based on the modular flows in a given
network. We interpret the similarity between nodes u and v as a distance by taking their logarithm
with base 2: duv = − log2 mapsim (M, u, v), and calculate distances between all node pairs. Then,
we turn the distances into probabilities on a per-node basis using the softmax function,

puv ∝ kout
u · 2−βduv∑

v ̸=u 2
−βduv

, (1)

where β is a temperature parameter that controls how peaked the resulting probability distribution
is, and kout

u is node u’s out-degree. Finally, we sample links using the probabilities defined in
Equation (1). Because link probabilities depend on the source and target nodes’ degrees, generating a
network requires considering n2 many possible links, where n is the number of nodes. For calculating
MapSim values, we can exploit the coding scheme’s modular structure for describing transitions.
Since the similarity mapsim (M, u, v) does not depend directly on node u, but on its module mu

[14], we only need to compute m · n similarities, where m ≪ n is the number of modules, typically
scaling as

√
n [15]. For softmax normalisation, we can precompute the values for the denominator,

requiring in total m normalisation values – one per module – resulting in m · n operations.

We calculate the expected in and out degrees resulting from our sampling approach by summing over
all nodes. The expected out-degrees kout

u are preserved, E [kout
u ] =

∑
v k

out
u · 2−βduv∑

v 2−βduv
= kout

u , while

the expected in-degrees kin
u are randomised E

[
kin
u

]
=

∑
v k

out
v · 2−βduv∑

v 2−βduv
̸= kin

u . This does not hold
in undirected networks because we cannot distinguish between in and out links.

Table 1: Data set of four networks where |V | is the number of nodes, |E| the number of edges, ⟨k⟩
the average degree, |M| the number of communities, and µ the mixing.

Network Ref Type |V | |E| ⟨k⟩ |M| µ

Interactome [16] undirected 161 209 1.3 7 0.15
Highschool [17] directed 67 359 5.36 8 0.31

Anybeat [18] directed 8518 58799 6.9 542 0.53
arXiv citation HepPh [19] directed 12711 139981 11.01 270 0.38

By using the various generalisations of the map equation [20–23], we can incorporate various
structural patterns in the community-detection stage, such as hierarchical and higher-order patterns
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or node metadata. Because MapSim is based on the detected communities, these generalisations
naturally integrate into sampling from MapSim to generate networks.

To analyse the structural properties of networks generated by our model, we consider dynamical
processes on four empirical networks: a protein interaction network, a high school social network, an
online social network, and a citation network (Table 1). For each network, we generate 100 samples
for each β ∈ [0, 3] with step size 0.1 and show the average symmetrically normalised adjusted mutual
information (AMI) between the generated and original network’s community structure, the mixing
µ, as well as the average number of sampled links (Fig. 2). For detecting communities, both in the
original and the generated networks, we use Infomap, an open-source software that seeks to minimise
the map equation.
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Figure 2: Sampling from the modular flows of four real networks. Each panel shows the average
AMI, average mixing µ, and the average number of links for 100 samples for each β ∈ [0, 3], and the
original and resulting degree distributions for β = 1. (a) Interactome, (b) Highschool, (c) Anybeat,
(d) arXiv citation HepPh.

Our experiments confirm that we preserve the out-degree distribution in directed networks that are
sufficiently large. For β = 0, links are uniformly distributed, resulting in AMI values of 0 in all
cases. Depending on whether random community structure emerges, initial mixing values µ are
either relatively high or 0. As we increase β, the sampled networks become sparser and fewer
inter-community links manifest. Depending on the network, AMI scores increase sharply and tend
to 1 around β = 1. For large values of β, we recover the identified community structure because
the softmax normalisation pushes links to be placed within communities while probabilities for
inter-community become smaller.

4 Conclusion
By turning MapSim, an information-theoretic node similarity measure, into a generative model for
networks, we show that mesoscopic network structures can be recovered from modular compression
of dynamics on networks, connecting generative and descriptive notions of community detection.
This connection opens new avenues for studying how dynamic processes influence the properties
of the networks they generate, which we begin to explore by using our approach on a set of real
networks. Furthermore, our sampling approach can be used to generate benchmark networks based
on dynamical processes incorporating first or higher-order information to evaluate the performance of
network analysis methods, adding to the scarce amount of current higher-order benchmark models.

In future work, we will investigate incorporating node metadata and higher-order dependencies into
the network generation. Furthermore, we will explore alternative sampling approaches for scalability
and efficient sampling from the modular compression of network regularities.
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