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ABSTRACT

Embodied agents can identify and report safety hazards in the home environments.
Accurately evaluating their capabilities in home safety inspection tasks is curcial,
but existing benchmarks suffer from two key limitations. First, they oversimplify
safety inspection tasks by using textual descriptions of the environment instead
of direct visual information, which hinders the accurate evaluation of embodied
agents based on Vision-Language Models (VLMs). Second, they use a single,
static viewpoint for environmental observation, which restricts the agents’ free
exploration and cause the omission of certain safety hazards, especially those
that are occluded from a fixed viewpoint. To alleviate these issues, we propose
HOMESAFEBENCH, a benchmark with 12,900 data points covering five common
home safety hazards: fire, electric shock, falling object, trips, and child safety.
HOMESAFEBENCH provides dynamic first-person perspective images from sim-
ulated home environments, enabling the evaluation of VLM capabilities for home
safety inspection. By allowing the embodied agents to freely explore the room,
HOMESAFEBENCH provides multiple dynamic perspectives in complex environ-
ments for a more thorough inspection. Our comprehensive evaluation of main-
stream VLMs on HOMES AFEBENCH reveals that even the best-performing model
achieves an F1-score of only 10.23%, demonstrating significant limitations in cur-
rent VLMs. The models particularly struggle with identifying safety hazards and
selecting effective exploration strategies. We hope HOMESAFEBENCH will pro-
vide valuable reference and support for future research related to home security
inspections. Our dataset and code will be publicly available soon.

1 INTRODUCTION

Homes often present safety hazards due to human negligence, potentially posing a serious threat to
residents (Stewart, 2001; Josephson et al., 1991} |Goldstick et al.| 2022). While regular inspections
can prevent these issues, manual checks are time-consuming and labor-intensive. Fortunately, the
recent development of vision language models (VLMs) (Alayrac et al., 2022;|Liu et al., | 2023 /Wang
et al., 2024} Bai et al.| |2025a)) has enabled VLM-based embodied agents to perform various practical
tasks such as visual exploration, navigation, and embodied question-answering (Duan et al.| 2022}
Chen et al.| [2019} |Batra et al.,|2020; |Ye et al., 2021} Zhao et al., 2025). The embodied VLM agents
show great promise for diverse applications, especially within home environments (Y1n et al.||2024;
Liu et al.| 2024). Consequently, the automation of safety inspections using embodied VLMs agents
is a promising new area of research.

However, the evaluation of embodied VLM agents in home safety inspection tasks still has signifi-
cant flaws. Specifically, previous evaluation benchmarks exhibit notable limitations (Mullen Jr et al.,
2024;|Hassan et al., 2024) primarily in two aspects. First, they convert visual data into textual modal-
ities such as object relationship graphs, for processing by text-only large language models (LLMs).
This modality transformation discards critical spatial information, as nuanced spatial concepts are
simplified into inadequate positional relationship descriptions in text, thus failing to evaluate the
general visual understanding capabilities of VLM-based embodied agents. Second, they rely on
fixed-view cameras for hazard identification. The fixed and limited field-of-view is susceptible to
occlusion, potentially causing the embodied VLM agents to overlook hazards.
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Figure 1: Schematic diagram of the home safety inspection. VLM agents are tasked with identifying
the objects that pose a safety hazard given the first-person perspective image from the environment,
and select the next action from the action list to iteratively inspect the entire room.

To address the lack of visual presentations and flexible viewpoints in existing home inspection
benchmarks, we propose HOMESAFEBENCH, a comprehensive benchmark for evaluating safety
inspection performance of embodied VLMs under free exploration with visual feedback. The con-
struction of HOMESAFEBENCH combines human annotation and rule-based generation, obtaining
a large scale dataset with significant diversity. Throughout and after the construction process, hu-
man reviews are adopted to ensure the correctness and high quality of the benchmark. Collectively,
HOMESAFEBENCH contains 12,900 safety inspection tasks with diverse variations based on the
simulated environment of VirtualHome (Puig et al., 2018; 2020), covering five prevalent domestic
hazard categories: fire, electric shock, falling object, trip, and child safety. Each instance repre-
sents a room environment containing multiple hazards, and agents are instructed to autonomously
explore the room to report these hazards. During the inspection, the VLM-based agents interacts
with the environment to acquire egocentric visual perspectives, identifies hazards within the current
field-of-view, and autonomously determines subsequent actions. The process is shown in Figure[T]

We conduct a systematic evaluation on mainstream VLMs using HOMESAFEBENCH. Our results
show that existing VLMs have significant capability deficiency in identifying potential home safety
hazards under the paradigm of free exploration with visual feedback. Even the top-performing
proprietary VLMs like Qwen-VL-Max and GPT-40 achieve an F1 score under 10%. Our finding in-
dicates that current VLMs are not yet reliable for real-world applications in home safety inspection.

To offer a deeper understanding of the deficiencies of current VLMs in home safety inspection tasks,
we conduct an in-depth analysis of the effectiveness of free exploration by embodied VLM agents.
Our key findings highlight the importance of free exploration in these tasks, while also revealing
a significant weakness in the exploration effectiveness of current embodied VLMs, particularly in
complex environments and over a larger number of interaction steps.

Our main contributions are as follows:

¢ We introduce HOMESAFEBENCH, a novel benchmark for embodied VLMs on home
safety inspection, which enables visual feedback and agentic free exploration. HOME-
SAFEBENCH contains 12,900 instances across five categories of common household safety
hazards, including fire, electric shock, falling object, trip, and child safety hazards. Its
quality is ensured through carefully designed construction process and extensive reviews.

* We conduct a comprehensive evaluation of prevalent VLMs using HOMESAFEBENCH.
Our results show the significant limitations of existing models in home safety inspection
tasks under a free exploration paradigm with visual feedback, demonstrating that HOME-
SAFEBENCH is a highly challenging benchmark.

* We conduct an in-depth analysis of VLM agents’ free exploration during safety inspections
to understand the root of their deficiencies. We demonstrate that while free exploration
is crucial for a successful inspection, it remains a significant challenge for VLM agents,
especially in complex environments and over a larger number of interaction steps.



2 RELATED WORK

2.1 VISION-LANGUAGE MODEL ON EMBODIED Al

The superior performance of Language Models (LMs) on various downstream tasks has motivated
researchers to explore their application in embodied Al In early work, researchers attempt to convert
the image modality into the text modality to adapt to Large Language Models (LLMs) (Liu et al.,
2024;|Zhu et al., 2024). However, this approach inevitably leads to loss of image information. With
the rise of Vision-Language Models (VLMs) (Bai et al., [2025a; |Chen et al.,|2024bza), using VLMs
to process the image modality in embodied Al has become mainstream.

VLM are widely used in embodied Al scenarios (Ma et al.|[2024; |Li et al.| | 2025b; |Shao et al.,|2025),
where a VLM-based agent gathers information about the surrounding environment through interac-
tion and updates its internal environment models. In vision-language navigation tasks, embodied
VLMs are tasked with conduct navigation given natural language commands (Anderson et al.,2018;
Zhu et al., 2020; Hong et al., 2021} |[Zhang et al.| [2025). Embodied question answering tasks (Das
et al.|[2018;|Ong & Jang|, 2025} |Li et al.|[2025c¢;|Zhao et al.l [2025) require agents to actively explore
in an environment to collect visual information and answer natural language questions about the
environment. Embodied VLM agent task involves robots performing complex and language-driven
physical tasks, ranging from single turn instruction following, to long-horizon planning |Gao et al.
(2022); IL1 et al.[(2023)); [Patel et al.|(2025)); Yang et al.| (2025)); |Sripada et al.| (2025)).

Our proposed HOMESAFEBENCH introduces a challenging multi-task scenario in the embodied
VLM tasks, which is to discover safety hazards in the room as much as possible, and complete the
room safety inspection. Such home safety inspection task requires not only the VLM to identify
safety hazards, but also to independently decide the next action with the space perception and plan-
ning capability. Compared to existing work, HOMESAFEBENCH introduces a novel and challenging
task that is of great practical use.

2.2 SAFETY OF EMBODIED Al

With the extensive development of embodied Al, its safety has become a critical direction requir-
ing researchers’ attention. In recent years, numerous studies on embodied Al safety have emerged,
broadly falling into two categories: making embodied Al itself safer (Yin et al., 2024} [Liu et al.,
2024} |[Zhang et al.| [2024a; [Zhu et al., 2024; |[Zhang et al., 2024b)) and utilizing embodied Al to ac-
complish human safety-related tasks (L1 et al.l [2025aj |Zhou et al. [2024; Mullen Jr et al.| 2024;
Hassan et al., 2024). For the task of making embodied Al safer, researchers typically focus on
whether the operations performed by the agent are safe. For instance, techniques like prompt injec-
tion or jailbreaking are used to enable the model to execute dangerous human instructions normally
(Y et al.,2024;|Zhang et al.|[2024a)) or generate dangerous specific actions (Zhu et al.,2024; Zhang
et al., 2024b). In scenarios where embodied Al performs human safety-related tasks, it is often re-
quired to address hazardous situations in real life, such as analyzing the causes of traffic accidents
(L1 et al.l [2025a)), rescuing items in fire, flood, or strong wind environments (Zhou et al.| 2024), or
checking homes for unsafe or unsanitary conditions (Mullen Jr et al.,[2024).

The goal of our work is to utilize embodied Al to conduct home safety inspection, belonging to
the second category of accomplishing human safety-related tasks. Compared to previous work, our
embodied environment poses a significantly more flexible and challenging scenario. Specifically,
the agents are required to autonomously patrol the home to identify safety hazards with the visual
feedback, placing great demands on the agent’s spatial conception and path planning capabilities.
The detailed comparison is shown in Table 2]

3 HOMESAFEBENCH

3.1 TASK DEFINITION

We propose a home safety hazard inspection task in which an embodied agent actively navigates a
simulated 3D home environment to identify and report safety hazards. Following real-world home
safety guidelines, we define five categories of common household hazards in our benchmark. Each
category represents a specific configuration of item placement that poses a safety risk.



* Fire Hazards: Flammable materials are located close to active or potential heat sources.
Examples include curtains or stacks of paper placed next to a lit stove, and a pile of dry
cloth near a burning candle.

* Electric Shock Hazards: Appliances or power devices in contact with water, which may
cause electric shock or short circuits. Examples include an appliance in a sink or a toilet.

* Falling Object Hazards: Items positioned in a way that they may fall from height and
cause injury or damage. Examples include a coffee pot placed at the edge of a refrigerator,
or a box positioned at the edge of a shelf.

» Trip Hazards: Objects or clutter on the floor that could cause someone to stumble or lose
balance during normal movement. Examples include a bar of soap left in a hallway.

* Child Safety Hazards: Placement of dangerous or harmful items within easy reach of a
child. Examples include a bottle of alcohol on a low table, or sharp kitchen knives placed
on TV stand.

Formally, let the initial state denoted as sg with a ground-truth hazard set . At each discrete time

step ¢, the agent policy 7 is to identify hazards H, with the current observation, and select an action
a; € A. The state is then transitioned following the transition function f, updating the observation.

7‘Alt,at ~ 7f('|5t), St41 = f(5t7at)- (D

The action space A consists of basic navigation primitives such as move-forward, turn-left,
turn-right, and look-up, as detailed in Appendix [A] After executing a sequence of actions
{ag,a1,...,ar_1} within a step budget T, the final identified hazard set is defined as the union of
the hazard sets identified at each step.

H=|]J M 2)

Task performance is evaluated by comparing the reported hazards H against the ground-truth hazards
‘H using the precision, recall, and F1 score. A hazard is considered correctly reported if both its
category and the name of the associated item are correct. Note that we do not require a perfect
match for the item name. Instead, we use a rule-based matching system for a more flexible and
reliable evaluation, as detailed in Appendix [A]
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3.2 CONSTRUCTION AND QUALITY CONTROL PROCEDURE

HOMESAFEBENCH is constructed based on the engine of VirtualHome by combining manual an-
notation and rule-based generation. The careful reviews are conducted through out the construction
process to ensure the correctness and quality of the benchmark. The construction process consists
of three stages, as shown in Figure

Annotation of Potential Hazard Locations Firstly, the spatial locations within the virtual envi-
ronment that are likely to contain safety hazards are annotated, such as the top of a refrigerator,
inside a sink, or on a stove. The process is performed by two annotators, each responsible for six
rooms across three environments (12 rooms in total). To ensure annotation quality, the annotators
cross-verify each other’s annotation case by case, filter out locations with low risks, and the final
annotations reflect consensus between the annotators. Each identified location is assigned exactly
one hazard type tag. In total, we obtain 136 annotated hazard locations across all environments.

Annotation of Object Attributes Then, the common objects in the virtual environment are as-
signed with a predefined set of attributes, including flammable, electrical, tripping hazard, falling
object, and child safety hazard. An object may be assigned multiple attributes. In total, 367 objects
across the three environments are separately annotated by two annotators, and any disagreement
between them is referred to a third annotation for a consolidated assignment.
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Figure 2: Annotation process of HOMESAFEBENCH.

Rule-based Sample Generation Finally, the final samples of HOMESAFEBENCH are generated
following the combination rule of locations and objects. Specifically, based on the potential hazard
types associated with these locations, we place suitable objects with corresponding attributes at the
sampled positions. For instance, a location tagged as fire hazard (e.g., a stove) may have an object
of paper placed on it, while a location tagged as falling object hazard (e.g., the top of a refrigerator)
may have a glass cup assigned to it.

For quality control of the final samples, we conduct tests in two ways. First, we randomly select 100
samples, examine every hazard of the gold labels in the virtual environment. It is verified that all the
hazard points marked are indeed risky and the placement of items is visually discoverable. Second,
we randomly select other 100 sample, and manually conduct inspection with no golden label given.
The Precision, Recall, and F1 scores achieve 82.29%, 69.50%, and 75.36% for human inspection,
validating that the tasks in HOMESAFEBENCH are solvable.

3.3 DATASET STATISTICS

Collectively, HOMESAFEBENCH contains 12,900 samples generated from 12 unique scenes, cover-
ing five types of hazards. Considering its relatively large size, we select a small subset sized 1,580
as detailed in Appendix [A]for quick experiments. Hazard statistics are shown in Table [T}

Table 1: Statistics of hazard types in HOMESAFEBENCH for subset (top) and full set (bottom).

Fire Electric Shock Trip Falling object Child Safety
# of Hazard Locations 17 3 51 13 19
# (and %) of Samples 958 (60%) 417 26%) 1486 (94%) 973 (61%) 716 (45%)
# Hazard Locations 22 10 58 24 22

# (and %) Samples 9051 (70%) 3558 (28%) 11019 (85%) 8836 (69%) 8999 (70%)

Compared to existing safety inspection datasets in Table 2] HOMESAFEBENCH is larger in scale.
More importantly, it is built within interactive virtual environments, enabling visual feedback and
free exploration of embodied VLM:s.



Table 2: Comparison of HOMESAFEBENCH with existing safety related datsets, including Safety-
Detect (Mullen Jr et al.| 2024), M-CoDAL (Hassan et al. 2024)), SafeAgentBench (Huang et al.,
2025), and Safe-BeAl (Huang et al.| [2025)).

Dataset Samples Hazard Categories Scene Visual Free Exploration
SafetyDetect 1,000 3 7 b 4 b 4
M-CoDAL 908 16 b 4 b 4
SafeAgentBench 750 10 1 b 4
Safe-BeAl 2,027 8 1 b 4 b 4
HOMESAFEBENCH 12,900 5 12

4 EXPERIMENTS

4.1 SETTINGS

Models Considering the information loss during image-to-text conversion, we chose VLMs over
LLMs as the foundation models for embodied home safety inspection agents. We comprehensively
test mainstream VLMs. Open-sourced models are locally deployed, including Qwen2.5-VL-7B
(Bai et al., 2025b), InternVL2.5-4B, InternVL2.5-8B (Chen et al., 2024b)), Llama3.2-11B-V (Dubey
et al.l 2024), and Gemma3-12B (Team et al. [2025). proprietary models are called through API,
including Qwen-VL-Max (Bai et al.| 2023) and GPT-40 (Hurst et al.| [2024).

Inference The open-sourced models are locally deployed with transformers (Wolf et al.,
2020). We set temperature as 0.6, top-p as 0.9 during sampling for all models. We don’t use greedy
decoding to avoid the endless repeation of the generated actions.

Agent Design The interaction flow between the VLM agents and the virtual environments is illus-
trated in Figure 1. The agents perform a 10-turn dialogue-based room inspection,where environment
transmits a first-person perspective image to the VLM, and the VLM identifies and reports safety
hazards based on the image, then autonomously decides the next action. Agent prompts, and other
implementation details are listed in Appendix

Metrics We report the micro average of precision, recall, and F1 scores as the final metrics fol-
lowing Equation[3] Specifically, we calculate the metrics for each task instance, and average across
the dataset sourced from HOMESAFEBENCH.

4.2 MAIN RESULT

Table 3: Main results of embodied VLMs on HOMESAFEBENCH. Best scores among all models
are shown in bold. Prec and Rec refer to Precision and Recall respectively.

Subset Others All
Prec Rec F1 Prec Rec F1 Prec Rec F1

Qwen2.5-VL-7B  5.16 242 291 1.61  0.87 1.02 197 1.03 1.21
InternVL2.5-4B 798 273 3.66 4.10 1.25 1.69 457 143 1.93
InternVL2.5-8B  9.38 3.05 4.06 742 1.91 287 7.67 205 3.01
Llama3.2-11B-V  9.77 17.84 11.84 787 11.11 878 811 1193 09.16
Gemma3-12B 9.00 1814 1146 851 1293 10.06 857 13.57 10.23
Qwen-VL-Max  7.26 3.15 4.03 5.13 1.64 223 515 176 244
GPT-40 7.67 444 542 1030 6.15 6.89 991 589 6.67

Models

In the main experiment, we evaluate VLMs using the complete HOMESAFEBENCH dataset. The
results are shown in Table 3] In safety hazard identification, all models scores below 20% on Preci-
sion, Recall, and F1. Comparing to human inspectors that obtaining 82.29%, 69.50%, and 75.36%



Precision, Recall, and F1 on a subset, it can be concluded that current VLMs have a very poor
performance on home safety inspection tasks. Even the commercial models Qwen-VL-Max and
GPT-40, which perform well on many tasks, achieved low scores comparable to smaller models.
Gemma3-12B achieved the best performance among all, with a recalling 13.57% of all hazards.
Qwen2.5-VL-8B achieved the lowest score, whose action selection is single-minded, usually se-
lecting and repeatedly executing only one action. Furthermore, Qwen2.5-VL-8B was more likely
to choose the passive “None” answer rather than proactively identifying safety hazards. To further
understand the poor performance of current VLMs, we conduct a analysis on their free exploration
behaviors in Section 5} and introduce case studies in Appendix [D]

As detailed in Appendix [A] the subset contains more hazard points in obvious places which are
easier to notice. Comparison between results of different test sets show that the subset generally
obtains higher scores, which meets our expectations. However, the final results are still very low
compared to human scores (75.36% F1 score), again validating the tasks of home safety inspection
from HOMESAFEBENCH pose strong challenges to VLMs.

5 ANALYSIS

In the introduction of HOMESAFEBENCH, we utilize an interactive simulated environment to enable
free-exploration for home safety inspection, bridging the gap between evaluation and real-world
performance. In the design of VLM embodied agents, we allow the VLM to control the agent’s
free exploration by generating navigation primitives such as move-forward, turn-left,
turn-right, and look-up, as detailed in Appendix [A] The paradigm of free exploration plays
a crucial role in our proposed HOMESAFEBENCH. On one hand, it introduces more flexibility to
home safety inspection tasks thus raising its upper-bound capability. On the other hand, it places
greater demands on embodied agents and poses greater challenges for VLMs, which potentially
leads to the low performance of current models, as shown in Table [3]

To offer a deeper understanding of the role free exploration plays in home safety inspection tasks,
we conduct in-depth analysis to answer the three research questions (RQs) about free exploration.

* RQ1: Is free exploration useful for home safety inspection task?
* RQ2: How is the free exploration performance of current embodied VLMs?
* RQ3: How does the multi-turn interaction affect exploration effectiveness?

5.1 IMPORTANCE OF FREE EXPLORATION

Table 4: The performance with (w/) and without (w/o) free exploration, and the corresponding
difference between the two paradigms (A).

Precision Recall F1
w/ w/o A w/ w/o A w/ w/o A

Qwen2.5-VL-7B 197 11.09 -9.12 1.03 041 +0.62 121 0.79 +0.42
InternVL2.5-4B 457 358 +099 143 055 +0.88 193 094 +0.99
InternVL2.5-8B  7.67 4.03 +3.64 205 0.63 +142 3.01 1.08 +193
Llama3.2-11B-V 811 5.64 4247 1193 151 +1042 9.16 232 +6.84
Gemma3-12B 857 19.17 -10.60 13.57 341 +10.16 10.23 5.69 +4.54
Qwen-VL-Max 5.15 1674 -11.59 176 1.13 +0.63 244 212 +0.32
GPT-40 991 1400 -4.09 589 233 +356 6.67 396 +2.71

Models

Intuitively, a fixed single viewpoint of agents can cause problems such as blurring of distant objects
and obstruction of safety hazards by other objects. To validate the impact of agent free exploration
on inspection capabilities, we design an inspection experiment without it. The experiment is con-
ducted with 10% randomly sampled data of HOMESAFEBENCH, ensuring that each type of room
and environment is included. We fix the agent in a corner of the room and rotated it to ensure that
the agent’s first-person perspective could see the entire room, then calculate the model’s Precision,
Recall, and F1 scores.



The results are shown in Table @ When deprived of the ability to explore freely, all models suffer
from a consistent and significant decrease in F1 scores. Although Qwen2.5-VL, Qwen-VL-Max, and
Gemma3-12B models achieve improvements in precision compared to when deprived, they suffer
from a more significant recall drop due to insufficient environmental information and occlusion,
finally scoring lower F1. These results indicate that enabling the VLM to control the agent’s free
exploration is a key factor in ensuring the model’s effectiveness in safety inspection tasks.

5.2 PERFORMANCE OF FREE EXPLORATION

Given that free exploration plays a significant positive role in home safety inspection by offering
flexible viewpoints, we are interested in the performance of current VLM-based agents in effec-
tively conduct exploration. In doing so, we introduce the Navigation (Nav) metric to reflect the
agent’s ability to sufficiently navigate the entire environment. Specifically, we use the built-in func-
tion get_visible_objects in VirtualHome to record the objects visible to the agent, and then
calculate the ratio of the number of hazards into the occurrence of the agent view, to the total number
of hazards.
Homls N HH
=

where O,,;s refers to the set of all objects visible to the agent, and H is the ground truth hazard set.
The experimental results are shown in Table [3]

Navigation =

“4)

Table 5: The navigation (Nav) and F1 scores across different types of rooms. The navigation score
of an agent is defined as the ratio of the number of observed hazards to that of all hazards. The
highest scores among models are shown in bold.

Kitchen Bathroom Bedroom Livingroom All
Nav F1 Nav F1 Nav F1 Nav F1 Nav F1

Qwen2.5-VL-7B  36.77 0.70 54.12 124 4098 3.73 2373 0.79 33.64 1.21
InternVL2.5-4B 3836 2.58 5327 2.69 4455 202 37.10 0.63 3945 193
InternVL2.5-8B  37.44 3.10 5331 5.03 4224 243 4088 2.53 4032 2.86
Llama3.2-11B-V 37.06 994 53.69 12.07 4141 691 3846 886 3924 9.16
Gemma3-12B  43.72 9.21 60.78 11.18 47.33 10.78 25.22 11.68 39.54 10.23
Qwen-VL-Max 36.77 329 54.12 5.11 4398 251 44.03 093 4124 244
GPT-40 44.22 1045 52.64 10.01 5136 3.34 51.89 2.87 4994 6.67

Models

First, all the models perform badly on navigation, with less than 50% of the risk points included in
the observation throughout the inspection. The poor navigation scores partially explain the deficien-
cies of current embodied VLMs in home inspection task. Since embodied VLMs have significant
difficulties navigating to extensively observe the items, it becomes less likely for them to identify
the hazards and get a high recall rate.

Second, according to the experimental results, the model performs different on navigation and F1
scores in different rooms. All models perform poorly in the living room, likely due to the large
number of items such as sofas and TV tables, which complicates the environment and presents a
greater challenge for the models. In the bathroom, most models achieve relatively strong scores,
likely due to the smaller size and fewer items of the room which makes it easier for the models
to inspect the entire room. The difference between rooms indicate that current VLM agents still
struggle with conducting effective navigation in complex environments.

5.3 FREE EXPLORATION UNDER MULTI-TURN INTERACTION

The free exploration in HOMESAFEBENCH involves multi-turn interaction with the virtual environ-
ment. A natural question under this paradigm is, how will the effectiveness of free exploration be
affected as the number of turn grows. Therefore, we conduct an investigation by setting the maxi-
mum number of turns to 30, and calculating the model score every five turns. This maximum number
of turns is set to 30, as empirical evidences suggest that the models tend to output meaningless con-
tent, and the performance will not change significantly when the number of turns exceeds 30. The
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Figure 3: VLM performance changes as a function of the number of action turns. Sub-figure (a),
(b), (c), and (d) shows the change of Navigation score, Precision score, Recall score, and F1 score
of each VLM with action turns.

model’s Navigation, Precision, Recall, and F1 scores as a function of the number of turns as line
graphs are shown in Figure 3]

As is demonstrated in Figure 3] as the number of interaction turn grows, the F1 score does not nec-
essarily increases monotonically with it. Instead, the performance general reaches its high value
or even its peak at the first few steps, and then saturates or even decrease along with more steps.
Analysis on other metrics other than F1 scores offers further insights about the long-horizon free ex-
ploratino process. Along with the turn number increases, the Navigation score and Recall score gain
per five turns gradually slows down, indicating that the free exploration and hazard identification
are less and less effective for later turns in the whole process. Meanwhile, the Precision score sig-
nificantly decreases when turn number grows, also demonstrating the decrease of inspection quality
after a certain number of turns.

Generally, the analysis highlights another weakness of current embodied VLMs in the free explo-
ration of home safety inspection tasks, namely the effectiveness drop under a long horizon of multi-
turn interaction. These VLM-based agents lack clear and solid planning to conduct a well-organized
inspection, but conduct exploration and identification in a arbitrary way, thus obtaining little gain in
a long-sequence task.

6 CONCLUSION

To address the limitations of fixed viewpoints and the loss of critical visual information during
home safety inspection evaluation, we propose HOMESAFEBENCH, a benchmark for embodied
VLM evaluation on home safety inspection tasks, featured by first-person visual perception and
interactive free exploration. HOMESAFEBENCH comprises a large-scale and multi-category dataset
constructed based on the VirtualHome simulation environment, containing 12,900 samples with
significant variations across five common hazard categories, including fire, electric shock, falling
objects, falls, and child safety hazards. The correctness and quality of HOMESAFEBENCH is ensured
by human reviews throughout the annotation process.

Using HomeSafeBench, we systematically evaluate the mainstream VLMs, highlighting significant
shortcomings of existing models in safety hazard identification and exploration strategies. In par-
ticular, we conduct a in-depth analysis on the free exploration pattern of embodied VLMs on home
safety inspection tasks. The analysis reveals not only the importance of free exploration, but also the
significant weaknesses of VLMs in effective navigation especially in complex environment under a
multi-turn paradigm, partially explaining the deficiency of them to conduct safety inspection.

Focusing on the home safety inspection task, our work provide a solid foundation through the com-
prehensive benchmarking of embodied VLMs. On a broader impact, our key findings indicate the
weaknesses of current VLMs on purposeful navigation and hazard identification, and can inspire
future work for a general VLM capability improvement.



7 ETHICS STATEMENT

Our work falls under the category of embodied agents controlled by VLLMs, a field that carries certain
inherent risks. However, as a benchmark built upon existing theory and application, our study intro-
duces little additional risks beyond current ones. Moreover, this work proposes HOMESAFEBENCH
specifically for security checks, which aims to enhance the safety of embodied VLM systems and
thus has a substantial positive impact.

8 REPRODICIBILITY STATEMENT

A comprehensive description of our dataset construction process is provided in Section 3 and Ap-
pendix [A]. The experimental setup and implementation details are elaborated in Section 4 and Ap-
pendix |B| for reproduction. Furthermore, our dataset and source code will be publicly available to
ensure reproducibility.
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A BENCHMARK DETAILS

A.1 VIRTUAL ENVIRONMENT

We utilize VirtualHome as the virtual home environment, and the agent within this environment is
simulated using the “Character” module from VirtualHome. Specifically, an agent can be added
using the add_character function. We adopt the FIRST_PERSON camera of the “Character” as
the primary egocentric viewpoint for all actions except for the “Look Up” action.

Regarding the actions described in Section 3.1, we have modified the original actions provided by
VirtualHome as follows:

Walk Straight In VirtualHome, the “walkforward” action moves the agent forward by only one
step per execution. However, a single step results in minimal change in the agent’s field of view,
and traversing an entire room would require an excessive number of meaningless steps. To address
this, we define “Walk Straight” as moving forward three steps in sequence, i.e., executing three
consecutive “walkforward” actions.

Turn Left & Turn Right In VirtualHome, each “turnleft” or “turnright” action rotates the agent
by 30 degrees. Similar to the walking action, this would lead to inefficient and repetitive rotations.
Therefore, we define “Turn Left” and “Turn Right” as rotating the agent by 90 degrees, achieved by
executing three consecutive “turnleft” or “turnright” actions.

Look Up VirtualHome does not natively provide a “look up” action. To implement this, we attach
an upward-facing camera, named “up_camera”, to the agent during its initialization. The relative
position of this camera is set to Position = [0, 1.5,0] and its rotation to Rotation = [—15,0,0].
When the agent performs a “Look Up” action, the image captured by the “up_camera” is used.

A.2 SMALL SUBSET SELECTION

During the location selection phase, annotators identify 57 conspicuous locations, such as tabletops
and floors. Subsequently, from all samples, we form a subset comprising entries where over 50% of
hazard locations are located in such conspicuous locations. This subset contains 1,586 data instances
and is characterized as relatively simpler compared to the complete dataset.

A.3 EVALUATION DETAILS

To address the issue that objects in the environment may be referred to by multiple names, which
can lead to evaluation inaccuracies if a model uses a synonym instead of the standard name defined
in the environment, we create a mapping that links alternative names of objects to their canonical
names used in the virtual environment.

This mapping is constructed using GPT-40, which generated preliminary synonym associations
based on the standard object names. The initial mappings were then reviewed and refined by two hu-
man annotators to ensure relevance and accuracy, resulting in a finalized mapping table. An example
of this mapping is provided in the Table[6]

Table 6: Examples of Mapping

Standard Name Mapping Names
Wallshelf Bookshelf, Rack, Shelf
Candle Wax, Light, flame
Computer PC, Laptop, Desktop
Toaster Bread heater, Bread maker, Tost machine
Clothespants Pants, Trousers, Jeans
Fridge Refrigerator

During evaluation, object names predicted by the model are first mapped to their standard canonical
names before scoring is performed.
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B EXPERIMENT DETAILS

B.1 INFERENCE DETAILS

During model inference, we utilize the PyTorch framework and the Transformers library, with the
versions of the Python libraries aligned with the requirements of each respective model. The infer-
ence process is conducted using six NVIDIA TITAN RTX GPUs in parallel. Executing inference on
the entire dataset requires approximately 24 to 48 hours.

B.2 PROMPT

Our experiments used multiple prompts. To ensure reproducibility, this section demonstrates the
prompts used.

(Prompt for HomeSafeBench R

You are a home security robot responsible for inspecting the room thoroughly and reporting any
dangers found. The input image represents your current first-person perspective. Please complete

the following two tasks **in sequence** and follow the specified output formats exactly.

Task 1: Identify Safety Hazards
- Detect if there are any safety hazards in your current view.
- Hazard categories to identify: [fire, electric shock, falling object, trip, child safety].
- For each hazard detected, output the hazard category and the name of the object causing it (only
the object name).
- If multiple hazards exist, output all of them. Use the format:
‘Taskl: {{hazardl, objectl; hazard2, object2; ...} }

where each " { {hazard, object} }" pair is enclosed in braces and multiple pairs are separated by

semicolons.
- If no hazards are detected, reply with:
"Taskl: {{None}}"

Task 2: Choose Your Next Operation

- Select one operation from: [walk straight, turn left, turn right, look up].

- Choose an operation that helps you inspect the room as much as possible without bumping into
objects.

- Output format:

“Task2: {{your next operation}}"

Examples:

Example 1:

Taskl: {{fire, stove}}, Task2: {{turn right}}.

Example 2:

Taskl: {{slips and falls, box}}, Task2: {{walk straight}}.

Example 3:

Taskl: {{falling objects, coffeepot; electric shock, microwave} }, Task2: {{turn right} }.

**Strictly follow the above formats without adding any other content or explanation.**

Your previous action was: {history}. Please complete the two tasks accordingly.

. /

Figure 4: Prompt using in HomeSafeBench

15



In the main experiment, we used HomeSafeBench to evaluate a mainstream VLM. To ensure the
VLM fully understood the task, we split the inspection task into Task 1 and Task 2, describing each
task’s requirements in detail. For ease of evaluation, we specified the output format and required the
VLM to strictly adhere to it. We also provided three examples to facilitate contextual learning for
the VLM. As shown in Figure 4]

In the Without Action analysis experiment, we deleted Task 2 and made appropriate modifications
to the prompt to ensure that the VLM could complete the task, as shown in Figure 3]

(Prompt for Without Action R

You are a home security robot responsible for inspecting the room thoroughly and reporting any
dangers found. The input image represents your current first-person perspective. Please complete

the following task and follow the specified output format exactly.

Task: Identify Safety Hazards
- Detect if there are any safety hazards in your current view.
- Hazard categories to identify: [fire, electric shock, falling object, trip, child safety].
- For each hazard detected, output the hazard category and the name of the object causing it (only
the object name).
- If multiple hazards exist, output all of them. Use the format:
"Task: {{hazardl, objectl; hazard2, object2; ...} }"

where each {{hazard, object}} pair is enclosed in braces and multiple pairs are separated by

semicolons.

Examples:

Example 1:

Task: {{fire, stove}}
Example 2:

Task: {{slips and falls, box}}
Example 3:

Task: {{falling objects, coffeepot; electric shock, microwave} }

**Strictly follow the above formats without adding any other content or explanation.**

Figure 5: Prompt using in without action

B.3 USAGE OF DATA

In Section 4, we evaluated all models except GPT-40 using the full dataset. In Section 5, a randomly
selected 10% subset of the data was used for the experiments in Sections 5.1 and 5.3. The specific
data selection and processing procedures for individual experiments are detailed below.

GPT-40 For both the evaluation and analysis experiments involving GPT-40, we used a randomly
selected sample of 100 instances, ensuring the sample included data from all room types.

Data for the Without-exploration Experiment In Section 5.1, we utilized the selected subset of
data and adjusted the agent’s viewpoint to ensure a complete view of the entire room. The agent’s
starting position for each data instance was consistent with the initial position used in the Section 4
experiments. The rotation angles applied in each room are specified in Table[7}

Additionally, the camera configuration was adjusted. A camera with a relative position of
Position = [0,1.5,0] and rotation of Rotation = [0,0,0] was attached to the agent, serving as
the primary image capture camera.
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Table 7: Initialize of Without-exploration

Kitchen Bedroom Livingroom Bathroom

EnvO0 Turnright 30°  Turn right 30°  Turn left 30°  Turn right 30°
Envl Turnright 30° Turnright 30° Turn left 60°  Turn right 30°
Env3 Turnright 30° Turn right 30° Turn left 60°  Turn left 30°

C DATASET DETAILS

In this section, we employ examples of hazard locations and types to enhance the clarity of the
dataset’s details.

C.1 EXAMPLE OF HAZARD LOCATION

HomeSafeBench dataset comprises 3 distinct environments, each containing 4 different room types,
resulting in a total of 12 scenarios. During the data construction phase, the process requires the
initial annotation of hazard locations. To illustrate the specifics of our annotation methodology, for
all 12 scenarios, a number of Hazard locations are selected, ensuring that at least one instance of
each type of hazard is included. An example of a hazard location is presented in Figure[6]

N d
A Fire Hazard Electric Shock Hazard @ Child Safety Hazard > Trip Hazard ’ Falling Object Hazard

Figure 6: Example of hazard location

C.2 EXAMPLE OF HAZARD TYPE

HomeSafeBench contains five distinct hazard types, and we provide a representative example for
each category, as illustrated in Figure[7}
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Figure 7: Example of Hazard Type. The left image in the first row illustrates a fire hazard, the center
depicts an electric shock hazard, while the right image demonstrates a falling object hazard. The
second row presents a child safety hazard on the left and a trip hazard on the right, respectively.

D CASE STUDY

To analyze the inaccurate recognition of VLMs, we selected some representative results and ana-
lyzed the errors of the model in Navigation and Objects Identification respectively.

Navigation Table [3] and Table [3] shows that all models achieve relatively low recall and Nav
scores, suggesting that their suboptimal performance may stem from poor navigation when pa-
trolling rooms. The figure below illustrates several example trajectories of the models operating
within the rooms. Figure [§] shows two trajectories produced by GEMMA. In both examples, al-
though the navigation paths differ, the model consistently misses the slip hazard placed on the floor.
Notably, the hazard is never observed throughout the entire process.

Objects Identification In addition to navigation errors, models may also produce object recogni-
tion mistakes or fail to identify hazards. For example, as shown in Figure 0] even when the model
gwen-max navigates correctly and observes the hazard (a computer in the sink, belonging to the
electric shock hazard category) within its field of view, it still fails to report it.

E USE oF LLMS

The use of LLMs was strictly limited to grammatical corrections and improving readability in the
final editing stage, and did not influence the scholarly substance of the work. We guarantee that
paper’s ideas, writing and experimental settings are solely the work of human authors, did not use
LLMs as an assistant.
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(a) Brief paths (Different colors represent different paths, with yel-
low indicating the same action).

(c) Detailed path (red one in .

Figure 8: Example paths of Gemma3 (Hazards are highlighted with red circles).
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You are a home

Taskl1: {None}
Task2: {Turn left}

Computer in sink
(electric shock hazard)

Figure 9: Example of model misidentifications
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