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Abstract

We consider the problem of model selection in a high-dimensional sparse linear
regression model under privacy constraints. We propose a differentially private (DP)
best subset selection method with strong statistical utility properties by adopting
the well-known exponential mechanism for selecting the best model. To achieve
computational expediency, we propose an efficient Metropolis-Hastings algorithm
and under certain regularity conditions, we establish that it enjoys polynomial
mixing time to its stationary distribution. As a result, we also establish both
approximate differential privacy and statistical utility for the estimates of the mixed
Metropolis-Hastings chain. Finally, we perform some illustrative experiments on
simulated data showing that our algorithm can quickly identify active features
under reasonable privacy budget constraints.

1 Introduction

In this paper, we consider the problem of private model selection in high-dimensional sparse regres-
sion which has been one of the central topics in statistical research over the past decade. Consider n
observations {(xi, yi)}ni=1 ⊆ X × Y following the linear model:

yi = x⊤
i β + wi, i ∈ {1, . . . , n}, (1)

where {xi}i∈[n] are fixed p-dimensional feature vectors, {wi}i∈[n] are i.i.d. mean-zero σ-sub-
Gaussian noise, i.e., E exp(λwi) ≤ exp(λ2σ2/2) for all λ ∈ R and i ∈ [n], and the signal vector
β ∈ Rp is unknown but is assumed to have a sparse support. In matrix notation, the observations can
be represented as

y = Xβ +w,

where y = (y1, . . . , yn)
⊤, X = (x1, . . . ,xn)

⊤, and w = (w1, . . . , wn)
⊤. We consider the standard

high-dimensional sparse setup where n < p, and possibly n ≪ p, and the vector β is sparse in the
sense that ∥β∥0 :=

∑p
j=1 1(βj ̸= 0) = s, which is much smaller than p. The main goal of variable

selection is to identify the active set γ∗ := {j : βj ̸= 0}.

For the past two decades, there has been ample work on model selection problem in the non-private
setting for ℓ1-penalized methods[57, 54, 46, 23], concave regularized methods [55, 53, 12, 16], ℓ0-
penalized/constrained methods [13, 1, 37, 39] in high-dimensional setting. On the computational side,
recent advancements related to mixed integer optimization (MIO) in [4, 5] and [20] have pushed the
computational barrier of best subset selection (BSS) in terms of solving problems of large dimensions
(large p), and consequently, simulation studies in [19] have revealed the improved performance of
BSS over its computational surrogates like LASSO, SCAD, and MCP.

Despite these theoretical and computational advancements related to BSS, to the best of our
knowledge, there is no computationally efficient private algorithmic framework for BSS for high-
dimensional sparse regression setup (1). This is especially surprising as private model selection
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is important in many contemporary applications involving sensitive data including genetics [21],
neuroimaging [33], and computer vision [56]. One major reason for this could be the lack of DP
mechanisms for MIO problems which restricts us from exploiting the MIO formulation of BSS
introduced in [4]. Secondly, the apparent computational burden stemming from the requirement of
exponentially large numbers of search queries in private BSS has eluded the majority of the machine
learning and statistics community. In this paper, we address the latter issue by mainly focusing on the
utility and computational complexity of BSS under privacy constraints. To be specific, we make the
following contributions listed below:

1. We adopt the exponential mechanism [31] to design a DP BSS algorithm, and we
establish its good statistical or utility guarantee under high-privacy regime whenever
βmin := minj∈γ∗ |βj | ≳ σ{(s log p)/n}1/2.

2. Under the low-privacy regime, we show that accurate model recovery is possible whenever
βmin ≳ σ{(log p)/n}1/2, which is the minimax optimal βmin requirement for model recov-
ery under non-private setting. Therefore, this paper points out an inflection phenomenon in
the signal strength requirement for the model consistency across different privacy regimes.

3. In addition, we design an MCMC chain that converges to its stationary distribution that
matches the sampling distribution in the exponential mechanism. As a consequence, the
model estimator generated by the MCMC also enjoys (approximate) DP. Furthermore,
under certain regularity conditions on the design, we show that the MCMC chain enjoys a
polynomial mixing time in (n, p, s) to the stationary distribution with good utility guarantee.

In summary, this paper proposes a DP version of BSS that generates a private model estimator of γ∗

with strong model recovery property within polynomial time in the problem parameters n, p, s. In the
next section, we will discuss some prior related works on DP model selection and discuss some of
their limitations.

1.1 Comparison with Prior Related Works

In the past decades, there has been a considerable amount of work studying DP sparse regression
problems. However, most of these works focus either on empirical risk minimization [25, 44, 26, 48]
or establishing ℓ2-consistency rate [47, 6] which are not directly related to the task of model selection.
To the best of our knowledge, there are only three works considering the problem of variable selection
in sparse regression problems under the DP framework, [27, 45], and [29]. Table 1 shows a clear
comparison between those methods and our method. [27] proposed two algorithms under sparse
regression setting. One of them is based on the exponential mechanism, which is known to be
computationally inefficient due to exponentially large numbers of search queries. However, they
do not analyze the algorithm under the model selection framework. Moreover, for the privacy
analysis, they assume that the loss functions are bounded over the space of sparse vectors, which is
rather restrictive in the linear regression setting. In comparison, our paper provides a solid model
recovery guarantee (Theorem 3.5) for a similar exponential mechanism without using the bounded
loss assumption. Furthermore, under a slightly stronger assumption, we design a computationally
efficient MCMC algorithm that also enjoys desirable utility similar to the exponential mechanism
(Theorem 4.3) under DP framework. The other algorithm in [27] is based on the resample-and-
aggregate framework [36, 42]. Although computationally efficient, this method requires sub-optimal
βmin condition compared to Theorem 3.5. In [45], the authors introduced two concepts of stability
for LASSO and proposed two PTR-based (propose-test-release) algorithms for variable selection.
However, these methods have nontrivial probabilities of outputting the null (no result), which is
undesirable in practice. Also, the support recovery probabilities for these methods do not approach
1 with a growing sample size even under the strong irrepresentability condition [57] on the design
matrix. In [29], the authors proposed to use the Akaike information criterion or Bayesian information
criterion coupled with the exponential mechanism to choose the proper model. However, the runtime
of this algorithm is exponential and also requires stronger βmin condition. As mentioned earlier,
in this paper, we show that our proposed MCMC algorithm is both computationally efficient and
produces approximate DP estimates of γ∗ with a strong utility guarantee under a better βmin condition.
One may also apply sparse vector techniques (SVT) to choose important features [43]. In this case,
each feature can be associated with an appropriate choice of score function, and then apply SVT to
choose the relevant features. However, the choice of the score function in high-dimensional sparse
regression cases remains unclear, and moreover, it is also known that the exponential mechanism
enjoys better accuracy compared to SVT [30] under such an offline setting.
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Table 1: Comparison of DP model selection methods.

Paper Method βmin cond. failure prob. → 0 runtime

[27] Exp-Mech NA NA exp

Lasso + Samp-Agg Ω(
√

s log p

n1/2 ) yes poly

[45] Lasso + Sub-samp. stability Ω(
√

s log p
nε

) no poly

Lasso + Pert. stability Ω(max{
√

s log p
n

, s3/2

εn
}) no poly

[29] Exp-Mech Ω(
√

max{1, s
ε
} s logn

n
) yes exp

This paper Exp-Mech Ω(
√

max{1, s
ε
} log p

n
) yes exp

Approx. Exp-Mech via MCMC Ω(
√

max{1, s
ε
} log p

n
) yes poly

2 Differential Privacy

Differential privacy requires the output of a randomized procedure to be robust with respect to a
small perturbation in the input dataset, i.e., an attacker can hardly recover the presence or absence of
a particular individual in the dataset based on the output only. It is important to note that differential
privacy is a property of the randomized procedure, rather than the output obtained.

2.1 Preliminaries

In this section, we will formalize the notion of differential privacy. Consider a dataset D :=
{z1, . . . , zn} ∈ Zn consisting of n datapoints in the sample space Z . A randomized algorithm A
maps the dataset D to A(D) ∈ O, an output space. Thus, A(D) is a random variable on the output
space O.

For any two datasets D and D′, we say they are neighbors if |D∆D′| = 1. We can now formally
introduce the definition of differential privacy.
Definition 2.1 ((ε, δ)-DP, [9]). Given the privacy parameters (ε, δ) ∈ R+ × R+, a randomized
algorithm A(·) is said to satisfy the (ε, δ)-DP property if

P(A(D) ∈ K) ≤ eεP(A(D′) ∈ K) + δ (2)

for any measurable event K ∈ range(A) and for any pair of neighboring datasets D and D′.

In the above definition, the probability is only with respect to the randomness of the algorithm A(·),
and it does not impose any condition on the distribution of D or D′. If both ε and δ are small, then
Definition 2.1 essentially entails that distribution of A(D) and A(D′) are almost indistinguishable
from each other for any choices of neighboring datasets D and D′. This guarantees strong privacy
against an attacker by masking the presence or absence of a particular individual in the dataset. As a
special case, when δ = 0, the notion of DP in Definition 2.1 is known as the pure differential privacy.

2.2 Privacy Mechanisms

For any DP procedure, a specific randomized procedure A must be designed that takes a database
D ∈ Zn as input and returns an element of the output space O while satisfying the condition in
(2). Several approaches exist that are generic enough to be adaptable to different tasks, and which
often serve as building blocks for more complex ones. A few popular examples include the Laplace
mechanism [11], Gaussian mechanism [10], and Exponential mechanism [31]. We only provide the
details of the last technique, since the other two techniques are out-of-scope for the methods and
experiments in this paper.

Exponential mechanism: The exponential mechanism is designed for discrete output space,
Suppose S = {αi : i ∈ I} for some index set I, and let u : S × Zn → R be score function that
measures the quality of α ∈ S . Denote by ∆uK the global sensitivity of the score function u, i.e.

∆uK := max
α∈S

max
D,D′ are neighbors

|u(α,D)− u(α,D′)| .
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Intuitively, sensitivity quantifies the effect of any individual in the dataset on the outcome of the
analysis. The score function u(·, ·) is called data monotone if the addition of a data record can either
increase (decrease) or remain the same with any outcome, e.g., u(α,D) ≤ u(α,D ∪ {z}). Next, we
have the following result.
Lemma 2.2 ([8, 31]). Exponential mechanism AE(D) that outputs samples from the probability
distribution

P(AE(D) = α) ∝ exp

{
εu(α,D)

∆u

}
(3)

preserves (2ε, 0)-differential privacy. If u(·, ·) is data monotone, then we have (ε, 0)-differential
privacy.

In general, if the S is too large, the sampling from the distribution could be computationally
inefficient. However, we show below that the special structure of the linear model (1) allows us to
design an MCMC chain that can generate approximate samples efficiently from the distribution (3)
for privately solving BSS under an appropriately chosen score function.

3 Best Subset Selection

We briefly review the preliminaries of BSS, one of the most classical variable selection approaches.
For a given sparsity level ŝ, BSS solves for β̂best(ŝ) := argminθ∈Rp,∥θ∥0≤ŝ ∥y −Xθ∥22 . For model

selection purposes, we can choose the best fitting model to be γ̂best(ŝ) := {j : [β̂best(ŝ)]j ̸= 0}. For
a subset γ ⊆ [p], define the matrix Xγ := (Xj ; j ∈ γ). Let Φγ := Xγ(X

⊤
γ Xγ)

−1X⊤
γ be orthogonal

projection operator onto the column space of Xγ . Also, define the corresponding residual sum of
squares (RSS) for model γ as Lγ(y,X) := y⊤(In −Φγ)y. With this notation, the γ̂best(ŝ) can be
alternatively written as

γ̂best(ŝ) := argminγ⊆[p]:|γ|≤ŝ Lγ(y,X). (4)

Let Xγ be the matrix comprised of only the columns of X with indices in γ, and Φγ denotes the
orthogonal projection matrix onto the column space of Xγ . In addition, let Σ̂ := n−1X⊤X be the
sample covariance matrix and for any two sets γ1, γ2 ⊂ [p], Σ̂γ1,γ2

denotes the submatrix of Σ with
row indices in γ1 and column indices in γ2. Finally, define the collection Aŝ := {γ ⊂ [p] : γ ̸=
γ∗, |γ| = ŝ}, and for γ ∈ Aŝ write Γ(γ) = Σ̂γ∗\γ,γ∗\γ − Σ̂γ∗\γ,γΣ̂

−1

γ,γΣ̂γ,γ∗\γ . Then, it follows
that β⊤

γ∗\γΓ(γ)βγ∗\γ is equal to the residualized signal strength n−1∥(In − Φγ)Xγ∗\γβγ∗\γ∥22.
Therefore, β⊤

γ∗\γΓ(γ)βγ∗\γ quantifies the separation between γ and the true model γ∗. Ideally, a
larger value of the quantity will help BSS to discriminate between γ∗ and any other candidate model
γ. More details on this can be found in [40]. Now we are ready to introduce the identifiability margin
that characterizes the model discriminative power of BSS.

3.1 Identifiability Margin

The discussion in Section 3 motivates us to define the following identifiablity margin:

m∗(ŝ) := min
γ∈Aŝ

β⊤
γ∗\γΓ(γ)βγ∗\γ

|γ \ γ∗|
. (5)

As mentioned earlier, the quantity m∗(ŝ) captures the model discriminative power of BSS. To add
more perspective, note that if the features are highly correlated among themselves then it is expected
that m∗(ŝ) is very close to 0. Hence, any candidate model γ is practically indistinguishable from the
true model γ∗ which in turn makes the problem of exact model recovery harder. On the contrary, if
the features are uncorrelated then m∗(ŝ) becomes bounded away from 0 making the true model γ∗

easily recoverable. For example, [17] showed that under the knowledge of true sparsity, i.e., when
ŝ = s, the condition

m∗(s) ≳ σ2 log p

n
, (6)

is sufficient for BSS to achieve model consistency. One can also view m∗(s) as a quantifier of the
coupled effect of model correlation and signal strength. If we define the minimum and maximum
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eigenvalues over all models to be λ∗ = minγ∈As λmin(Γ(γ)) and λ∗ = maxγ∈As λmax(Γ(γ))
respectively, then it follows that

λ∗β
2
min ≤ m∗(s) ≤ λ∗β2

min.

Therefore, it suffices to have βmin ≳ σ{(log p)/(nλ∗)}1/2 in order to satisfy condition (6). In this
case, λ∗ captures the degree of model correlation, and βmin is the minimum signal strength. Similar
to our previous discussion, if there is high collinearity in the model, λ∗ will be typically small, and
BSS needs a large value of βmin to identify the true model γ∗. On the other hand, if βmin is too small
for a given level of model correlation, i,e, if βmin ≪ σ{(log p)/(nλ∗)}1/2, then also BSS fails to
achieve model consistency as it is hard to identify active features under the presence of weak signals
[17, Theorem 2.1]. As we will see in the next section, the DP BSS algorithm also requires a margin
condition similar to (6) to ensure model recovery, and this is indeed an indispensable condition as it
is needed even in non-private case.

3.2 Differentially Private BSS and Utility Analysis

In order to privatize the optimization problem in (4), we will adopt the exponential mechanism
discussed in Section 2.2. In particular, for a tuning parameter K > 0, we consider the score function

uK(γ;X,y) := − min
θ∈Rs:∥θ∥1≤K

∥y −Xγθ∥22 ,

and for a given privacy budget ε > 0, we sample γ ∈ Aŝ from the distribution

π(γ) ∝ exp

{
εuK(γ;X,y)

∆uK

}
1(γ ∈ Aŝ ∪ {γ∗}). (7)

As we are concerned with the exact recovery γ∗, from here on we assume ŝ = s. The above algorithm
is essentially the same as Algorithm 4 in [27]; however, they do not introduce the extra ℓ1-constraint
on the parameter space. Instead, their algorithm needs the loss-term (y − x⊤

γ θ)
2 to be bounded by

a constant for every possible choice of x, y, γ and θ. This assumption is not true in general for the
squared error loss, and to remedy this issue, we introduce the extra ℓ1-constraint in the score function.
This is a common strategy that is used to guarantee worst-case sensitivity bound and similar methods
also have been adopted in [29, 6] to construct private estimators. Next, we present the following
lemma that shows the data-monotonicity of the proposed score function.
Lemma 3.1. The score function uK(γ; ·) in (7) is data monotone.

Therefore, Lemma 2.2 automatically guarantees that the above procedure is (ε, 0)-DP. However, in
practice, we need an explicit form for ∆uK to carry out the sampling method, and it is also needed to
analyze the utility guarantee of the exponential mechanism. To provide a concrete upper bound on
the global sensitivity of uK(·; ·), we make the following boundedness assumption on the database:
Assumption 3.2. There exists positive constants r, xmax such that supy∈Y |y| ≤ r, supx∈X ∥x∥∞ ≤
xmax.

Under this assumption, the following lemma provides an upper bound on the global sensitivity of the
score function along with the DP guarantee.
Lemma 3.3 (Sensitivity bound and DP). Under Assumption 3.2, the global sensitivity ∆uK is
bounded by ∆K := (r+ xmaxK)2. Therefore, the exponential mechanism (7) with ∆uK replaced by
∆K satisfies (ε, 0)-DP.

The above lemma provides an upper bound on the global sensitivity of the score function rather than
finding the exact value of it. However, to guarantee (ε, 0)-DP property of exponential mechanism, it
suffices to use the upper bound of ∆uK in (7). Now we will shift towards the utility analysis of the
proposed exponential mechanism. First, we require some technical assumptions.
Assumption 3.4. We assume the following hold:

(a) There exists positive constants bmax such that ∥β∥1 ≤ bmax.

(b) There exists positive constants κ−, κ+ such that

κ− ≤ λmin

(
X⊤

γ Xγ/n
)
≤ λmax

(
X⊤

γ Xγ/n
)
≤ κ+, (8)

for all γ ∈ As ∪ {γ∗}.
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(c) The true sparsity level s follows the inequality s ≤ n/(log p).

Assumption 3.4(a) tells that the true parameter β lies inside a ℓ1-ball. Similar boundedness as-
sumptions are fairly standard in privacy literature [49, 29, 6]. Assumption 3.4(b) is a well-known
assumption in the high-dimensional literature [54, 22, 32] which is known as the Sparse Riesz
Condition (SRC). Finally, Assumption 3.4(c) essentially assumes that the s = o(n), i.e., sparsity
grows with a sufficiently small rate compared to the sample size n.

Theorem 3.5 (Utility gurantee). Let the conditions in Assumption 3.2 and Assumption 3.4 hold. Set
K ≥ {(κ+/κ−)bmax + (8xmax/κ−)σ}

√
s. Then, under the data generative model (1), there exist

universal positive constants c1, C1 such that whenever

m∗(s) ≥ C1σ
2 max

{
1,

∆K

εσ2

}
log p

n
, (9)

with probability at least 1− c1p
−2 we have π(γ∗) ≥ 1− p−2.

Cost of privacy. Theorem 3.5 essentially says that whenever the identifiability margin is large
enough, the exponential mechanism outputs the true model γ∗ with high probability. Note that
∆K/σ2 = Ω(s). In the low privacy regime, i.e., for ε > ∆K/σ2 we only require m∗(s) ≳
σ2(log p)/n to achieve model consistency and this matches with the optimal rate for model con-
sistency of non-private BSS. Note that, the margin condition does not depend at all on ε in this
regime. In contrast, in a high privacy regime, i.e., for ε < ∆K/σ2, Condition (9) essentially demands
m∗(s) ≳ σ2(s log p)/(nε) to achieve model consistency. Thus, in a high privacy regime, we pay an
extra factor of (s/ε) in the margin requirement.

Remark 3.6. The failure probability in Theorem 3.5 can be improved to O(p−M ) for any arbitrary
integer M > 2. However, we have to pay a cost in the universal constant C1 in terms of a
multiplicative constant larger than 1.

Remark 3.7. Under Assumption 3.4(b), it follows that λ∗ ≥ κ−. Therefore, it suffices to have
minj∈γ∗ β2

j ≥
(

C1σ
2

κ−

)
max

{
1,∆K/(εσ2)

}
log p
n in order to hold condition (9). Therefore, in high-

privacy regime, our method requires minj∈γ∗ |βj | ≳ σ{(s log p)/(nεκ−)}1/2. In contrast, under
the low-privacy regime, we retrieve the optimal requirement minj∈γ∗ |βj | ≳ σ{(log p)/(nκ−)}1/2.

4 Efficient Sampling through MCMC

In this section, we will propose an efficient sampling method to generate approximate samples from
the distribution (7). One of the challenges of sampling methods in high-dimension is their high
computational complexity. For example, the distribution in (7) places mass on all

(
p
s

)
subsets of [p],

and it is practically infeasible to sample γ from the distribution as we have to essentially explore over
an exponentially large space. This motivates us to resort to sampling techniques based on MCMC,
through which we aim to obtain approximate samples from the distribution in (7). Past works on
MCMC algorithms for Bayesian variable selection can be divided into two main classes – Gibbs
sampler [15, 24, 34] and Metropolis-Hastings [18, 28]. In this paper, we focus on a particular form
of Metropolis-Hastings updates.

In general terms, Metropolis-Hastings (MH) random walk is an iterative and local-move based method
involving three steps:

1. Given the current state γ, construct a neighborhood N (γ) of proposal states.

2. Choose a new state γ′ ∈ N (γ) according to some proposal distribution F(γ, ·) over the
neighborhood N (γ).

3. Move to the new state γ′ with probability R(γ, γ′), and stay in the original state γ with
probability 1−R(γ, γ′), where the acceptance probability is given by

R(γ, γ′) = min

{
1,

π(γ′)F(γ′, γ)

π(γ)F(γ, γ′)

}
,

where π(·) is same as in Equation (7).
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This procedure generates a Markov chain for any choice of the neighborhood structure N (γ) with
the following transition probability:

PMH(γ, γ
′) =


F(γ, γ′)R(γ, γ′), if γ′ ∈ N (γ),

1−
∑

γ′ ̸=γ PMH(γ, γ
′), if γ′ = γ,

0, otherwise.

The specific form of Metropolis-Hastings update analyzed in this paper is obtained by following the
double swap update scheme to update γ.

Double swap update: Let γ ∈ As ∪ {γ∗} be the initial state. Choose an index pair (k, ℓ) ∈ γ × γc

uniformly at random. Construct the new state γ′ by setting γ′ = γ ∪ {ℓ} \ {k}.

The above scheme can be viewed as a general MH update scheme when N (γ) is the collection of
all models γ′ which can be obtained by swapping two distinct coordinates of γ and γc respectively.
Thus, letting dH(γ, γ′) = |γ \ γ′| + |γ′ \ γ| denote the Hamming distance between γ and γ′, the
neighborhood is given by N (γ) = {γ′ | dH(γ, γ′) = 2,∃ (k, ℓ) ∈ γ × γc such that γ′ =
γ ∪ {ℓ} \ {k}}. With this definition, the transition matrix of the previously described Metropolis-
Hastings scheme can be written as follows:

PMH(γ, γ
′) =


1

|γ||γc| min{1, π(γ′)
π(γ) }, if γ′ ∈ N (γ),

1−
∑

γ′ ̸=γ PMH(γ, γ
′), if γ′ = γ,

0, otherwise.
(10)

4.1 Mixing Time and Approximate DP

Let C be a Markov chain on the discrete space S with a transition probability matrix P ∈ R|S |×|S |

with stationary distribution ν. Throughout our discussion, we assume that C is reversible, i.e.,
it satisfies the balanced condition ν(γ)P(γ, γ′) = ν(γ′)P(γ′, γ) for all γ, γ′ ∈ S . Note that the
previously described transition matrix PMH in (10) satisfies the reversibility condition. It is convenient
to identify a reversible chain with a weighted undirected graph G on the vertex set S , where two
vertices γ and γ′ are connected if and only if the edge weight Q(γ, γ′) := ν(γ)P(γ, γ′) is strictly
positive. For γ ∈ S and any subset S ⊆ S , we write P(γ, S) =

∑
γ′∈S P(γ, γ′). If γ is the initial

state of the chain, then the total variation distance to the stationary distribution after t iterations is

∆γ(t) =
∥∥Pt(γ, ·)− ν(·)

∥∥
TV

:= max
S⊂S

∣∣Pt(γ, S)− ν(S)
∣∣ .

The η-mixing time is given by

τη := max
γ∈S

min{t ∈ N | ∆γ(t
′) ≤ η for all t′ ≥ t}, (11)

which measures the number of iterations needed for the chain to be within distance η ∈ (0, 1) of the
stationary distribution.

Privacy of MCMC estimator: Now, we will show that once the MH chain in (10) has mixed
with its stationary distribution π(·) defined in (7), the model estimators at each iteration will enjoy
approximate DP. To fix the notation, let γt be the tth iteration of the MH chain in (10). Then, we have
the following useful lemma:

Lemma 4.1. The model estimator γτη is (ε, δ)-DP with δ = η(1 + eε).

The above lemma shows that smaller η entails a better privacy guarantee for a fixed level ε as δ
decreases with η. Therefore, allowing more mixing of the chain will provide better privacy protection.
However, this raises a concern about how long a practitioner must wait until the chain archives
η-mixing. In particular, it is important to understand how τη scales in the difficulty parameters of the
problem, for example, the dimension of the parameter space and sample size. In our case, we are
interested in the covariate dimension p, sample size n, sparsity s, and the privacy parameter ε. In the
next section, we will show that the chain with transition matrix (10) enjoys rapid mixing, meaning
that the mixing time τη grows at most at a polynomial rate in p, s and the sample size n.
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4.2 Rapid Mixing of MCMC

We now turn to develop sufficient conditions for MH scheme (10) to be rapidly mixing. To this end,
we make a technical assumption on the design matrix. Essentially, the following assumption controls
the amount of correlation between active features and spurious features.
Assumption 4.2. For every γ′ ∈ As \ {γ∗}, there exists k /∈ γ∗ ∪ γ′ such that

max
j∈γ∗\γ′

∣∣X⊤
j (In −Φγ′)Xk

∣∣
∥(In −Φγ′)Xk∥2

≤ b−1
max

√
(κ−C1σ2/2) log p,

where C1 is the same universal positive constant as in Theorem 3.5.

First, note that Assumption 4.2 basically controls the length of the projection of the feature Xj on the
unit vector uk := (In −Φγ′)Xk/ ∥(In −Φγ′)Xk∥2. Therefore, the above inequality restricts the
correlation between an active feature Xj and the spurious scaled feature uk from being too large. To
this end, we emphasize that stronger assumptions on model correlation (on top of the SRC condition)
are common in literature for establishing the computational efficiency of Bayesian variable selection
methods involving MH algorithm. For example, to show the computational efficiency MH algorithm
under Zellner’s g-prior, [51] assumes

max
γ:|γ|≤s0

∥∥(X⊤
γ Xγ)

−1X⊤
γ Xγ∗\γ

∥∥2
op

= O

(
n

s log p

)
, (12)

where s0 (larger than s) is a specific tuning parameter of their algorithm that controls the model
size. The assumption in the above display is akin to the well-known irrepresentability condition
[57] which is a very strong assumption on the design. On a high level, at any given current state γ,
Assumption 4.2 or Condition (12) helps to identify a good local move towards the true model γ∗ in
the MH algorithm via deletion of the least influential covariate in γ. Now, we present our main result
for the mixing time of MCMC.
Theorem 4.3 (Rapid mixing time). Let the conditions in Assumption 3.2, Assumption 3.4 and
Assumption 4.2 hold. Then, under the data generative model (1), there exists a universal constant
C ′

1 > 0 such that under the margin condition

m∗(s) ≥ C ′
1σ

2 max

{
1,

∆K

(κ− ∧ 1)εσ2

}
log p

n
, (13)

there exist universal positive constants c2, C2 such that the mixing time τη of the MCMC chain (10)
enjoys the following with probability at least 1− c2p

−2:

τη ≤ C2ps
2
{
nεΨ−1κ+b

2
max + log(1/η)

}
, (14)

where Ψ =
{
r + (κ+/κ−)bmaxxmax + (σ/κ−)x

2
max

}2
.

The main technical innovation in the theorem is the double swap updating scheme in the MCMC that
allows us to leverage the canonical path ensemble construction argument [41] to prove the bound (14)
on the mixing time. Essentially, we show that under Assumption 4.2, there exists a canonical path in
a specially weighted graph corresponding to the MCMC random walk with low path congestion. The
complete proof can be found in Appendix A.5.

Regarding the statement of the theorem, note that the margin condition (13) is slightly stronger
than the margin condition in Theorem 3.5. Under that condition, the above theorem shows that the
η-mixing time of the MCMC algorithm designed for approximate sampling from the distribution
(7) grows at a polynomial rate in (n, p, s). Recall that according to the previous definition (11) of
the mixing time, Theorem 4.3 characterizes the worst-case mixing time, meaning the number of
iterations when starting from the worst possible initialization. If we start with a good initial state —
for example, the true model γ∗ would be an ideal though impractical choice - then we can remove the
n term in the upper bound in (14). Therefore, the bound in (14) can be thought of as the worst-case
number of iterations required in the burn-in period of the MCMC algorithm. Furthermore, it is
important to point out that Assumption 4.2 is only needed to ensure the “quick” mixing time of the
MCMC chain. It is possible to relax this assumption, however, in that case, the MCMC chain is not
guaranteed to mix under polynomial time. Nonetheless, given enough iterations, the chain will indeed
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converge to the distribution (7) as MH algorithm always generates an ergodic chain that eventually
mixes to its stationary distribution.

It is interesting to note that Theorem 4.3 suggests that in a large ε regime, the chain mixes slower
compared to the small ε regime. The main reason for this is that Theorem 4.3 only relies on worst-case
analysis. The intuition is the following: When ε is very large, then the target distribution is essentially
fully concentrated on γ∗ (assuming the score for γ∗ is highest). Now, the current analysis of Theorem
4.3 does not assume any condition on the initial state of the MCMC chain. It treats the initial state
γ0 as if it is chosen in a completely random manner, i.e., it is the worst case. From this point of
view, it is hard for a completely uninformative distribution to converge to a target distribution that is
concentrated on a single subset (very informative), and resulting in a longer mixing time. Finally,
Theorem 4.3 leads to the following corollary:

Corollary 4.4. Let πt denote the distribution of the tth iterate γt of the MCMC scheme (10). Then,
under the conditions of Theorem 3.5 and Theorem 4.3, there exists a universal constant c3 > 0
such that for any fixed iteration t such that t ≥ C2ps

2
{
nεΨ−1κ+b

2
max + log(1/η)

}
, we have

πt(γ
∗) ≥ 1− η − p−2 with probability at least 1− c3p

−2.

The above corollary is useful in the sense that it provides a quantitative choice of η that yields
high utility of the estimator γt. For example, if we set η = p−2 and ε = O(1), then for any
t ≳ ps2(nε+ log p) the resulting sample γt will match γ∗ with probability 1− c3p

−2.

Remark 4.5. Similar to Remark 3.6, the failure probability in Theorem 4.3 and Corollary 4.4 can
be improved to O(p−M ) for arbitrary large M > 2, but at the cost of paying higher values for the
absolute constants C ′

1 and C2.

5 Numerical experiments

In this section, we will conduct some illustrative simulations. To compare the quality of the DP model
estimator, we compare F-score [19] of the estimated model with that of the true model γ∗ and the
BSS estimator. As the actual BSS is computationally infeasible, we use the adaptive best subset
selection (ABESS) algorithm [58] as a computational surrogate to BSS. Throughout this section, we
assume that the true sparsity s is known, i.e., we provide the knowledge of s to the algorithm. All
codes are available at https://github.com/roysaptaumich/DP-BSS.

Uniform design. We consider a random design matrix, formed by choosing each entry from the
distribution Uniform(−1, 1) in i.i.d. fashion. In detail, we set n = 900, p = 2000, and the sparsity
level s = 4. We generate the entries of the noise w independently from Uniform(−0.1, 0.1), and
consider the linear model (1). We choose the design vector β with true sparsity s = 4 and the support
set γ∗ = {j : 1 ≤ j ≤ 4}. We set all the signal strength to be equal, taking the following two
forms: (i) Strong signal: βj = 2{(s log p)/n}1/2, and (ii) Weak signal: βj = 2{(log p)/n}1/2 for
all j ∈ γ∗.

Under these setups, we consider the privacy parameter ε ∈ {0.5, 1, 3, 5, 10} which are acceptable
choices of ε [35]. Moreover, similar (or larger) choices of ε are common in various applications
including US census study [14], socio-economic study [38], and industrial applications [3, 52]. For
the Metropolis-Hastings random walk, we vary K ∈ {0.5, 2, 3, 3.5} and initialize 10 independent
Markov chains from random initializations and record the F-score of the last iteration. We use the
CVXPY package [7, 2] for solving the ℓ1-constrained optimization problem in the updating step
of MCMC. We also track the qualities of the model through its explanatory power for convergence
diagnostics. In particular, we calculate the scale factor Rγ := y⊤Φγy/ ∥y∥22 for each model update
along the random walk and compare those with Rγ̂best

to heuristically gauge the quality of mixing.
More details and a set of comprehensive plots can be found in Appendix D.1 where we also discuss
more about the effect of ε and K on the utility. For K = 2, Table 2 shows that F-score increases
as ε increases both in the cases of strong and weak signals. In fact, for ε ≥ 3, the performance of
the algorithm is on par with the non-private BSS. This is consistent with the inflection phenomenon
pointed out in Theorem 3.5 and Corollary 4.4. Furthermore, as expected, we see that for a fixed ε, the
F-score is generally higher in the strong signal case.
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Table 2: Comparison of mean F-score across chains for K = 2 under independent Uniform and
Gaussian design. (∗) denotes that the chain has mixed reasonably well.

Privacy Level
Uniform Design Gaussian Design

Strong Signal Weak Signal Strong Signal Weak Signal

ε = 0.5 0.025 0.00 0.00 0.00
ε = 1 0.15 0.05 0.00 0.00
ε = 3 1.00* 0.15 0.025 0.00
ε = 5 1.00* 0.40 0.375 0.075
ε = 10 1.00* 1.00* 0.925* 0.025

Non-private 1.00 1.00 1.00 1.00

We also carry out experiments under independent Gaussian design. The details and more compre-
hensive discussion of the findings are deferred to Appendix D.2. In summary, in this case also, our
algorithm enjoys greater utility under the strong signal case as shown in Table 2.

Computational resources and license information : All the experiments were performed in the
Great Lakes cluster with 16 cores and 10 GB RAM. ABESS package is distributed under GNU
General Public License, Version 3. CVXPY package is distributed under Apache License, Version 2.

6 Conclusion

In this paper, we study the variable selection performance of BSS under the differential privacy
constraint. In order to achieve (pure) differential privacy, we adopt the exponential mechanism and
establish its high statistical utility guarantee in terms of exact model recovery. Furthermore, for
computational efficiency, we design a MH random walk that provably mixes with the stationary
distribution within a mixing time of the polynomial order in (n, p, s). We also show that the samples
from the MH random walk enjoy approximate DP while retaining a high utility guarantee with
experimental underpinnings. In summary, as discussed in Section 1.1, we establish both high utility
and efficient computational guarantee for our model selection algorithm under privacy constraints,
which is in sharp contrast with the previous works in DP model selection literature. Moreover, the
proposed MCMC method is generic enough to adopt in other models beyond linear structures. For
example, one can use this technique under the setup of generalized linear models with likelihood
loss as the utility function. Therefore, our method can be used in diverse domains including medical
studies to fast-track scientific discoveries and promote the practice of responsible AI.

To this end, we also point out some of the open problems and future directions. One limitation, of
our main result Theorem 3.5 is that it requires the condition minj∈γ∗ |βj | = Ω(

√
(s log p)/n) in

high-privacy regime. It is still an open question whether the extra
√
s factor is necessary for model

selection. Future research along this line could focus on solving BSS through DP mixed integer
optimization (MIO). This would mean an important contribution in this field as commercial solvers
like GUROBI or MOSEK would be capable of solving the BSS problems at an industrial scale with
high computational efficiency using a general DP framework.
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A Proof of Main results

A.1 Proof of Lemma 3.1

Recall that uK(γ;X,y) = −Lγ,K(X,y) where Lγ,K(X,y) :=
∑n

i=1(yi − x⊤
i,γβ)

2. There-
fore, it suffices to show that Lγ,K(·, ·) is data monotone. Let D = {(xi, yi)}ni=1 and D′ =
D ∪ {xn+1, yn+1}. We define

β̂n,γ := argminβ:∥β∥1≤K

n∑
i=1

(yi − x⊤
i,γβ)

2,

β̂n+1,γ := argminβ:∥β∥1≤K

n+1∑
i=1

(yi − x⊤
i,γβ)

2.

Therefore, we have the following inequalities:

Lγ,K(D′) =

n+1∑
i=1

(yi − x⊤
i,γβ̂n+1,γ)

2 ≥
n∑

i=1

(yi − x⊤
i,γβ̂n+1,γ)

2 ≥
n∑

i=1

(yi − x⊤
i,γβ̂n,γ)

2 = Lγ,K(D).

The above inequalities conclude the proof.

A.2 Proof of Sensitivity Bound (Lemma 3.3)

Let (X,y) and (X̃, ỹ) be two neighboring datasets with n and n+ 1 observation respectively. For a
subset γ ∈ As ∪ {γ∗}, consider the OLS estimators as follows:

βγ,K := argminθ:∥θ∥1≤K ∥y −Xγθ∥22 , and β̃γ,K := argminθ:∥θ∥1≤K

∥∥∥ỹ − X̃γθ
∥∥∥2
2
.

From the definition of the score function u(γ;X,y), we have

u(γ;X,y) = −
n∑

i=1

(yi − x⊤
i,γβγ,K)2

u(γ; X̃, ỹ) = −
n∑

i=1

(yi − x⊤
i,γβ̃γ,K)2 − (ỹn+1 − x̃⊤

n+1,γβ̃γ,K)2.

By the property of the OLS estimators, we have

u(γ;X,y)− u(γ; X̃, ỹ)

=

n∑
i=1

(yi − x⊤
i,γβ̃γ,K)2 + (ỹn+1 − x̃⊤

n+1,γβ̃γ,K)2 −
n∑

i=1

(yi − x⊤
i,γβγ,K)2

≤
n∑

i=1

(yi − x⊤
i,γβγ,K)2 + (ỹn+1 − x̃⊤

n+1,γβγ,K)2 −
n∑

i=1

(yi − x⊤
i,γβγ,K)2

= (ỹn+1 − x̃⊤
n+1,γβγ,K)2

≤ (r + xmaxK)2.

Similarly, we have u(γ; X̃, ỹ) − u(γ;X,y) ≤ (r + xmaxK)2. Next, the (ε, 0)-DP follows from
Lemma 2.2. This finishes the proof.

A.3 Proof of Utility Guarantee (Theorem 3.5)

Consider the notation in Section B.1 and recall the event EK := ∩γ:γ∈As
{βγ,K = βγ,ols}. We will

For notational brevity, we use Lγ to denote Lγ(X,y). Now, we restrict ourselves to the event EK .
therefore we have Lγ,K = Lγ for all γ. To establish a lower bound π(γ∗), we make use of its specific
form, thereby obtaining the following inequality:
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π(γ∗) =
1

1 +
∑

γ′∈As
exp

{
− ε(Lγ′−Lγ∗ )

∆u

} .
Now we fix k ∈ [s], and and consider any γ ∈ As,k. For any η ∈ [0, 1], note that

n−1(Lγ − Lγ∗) = n−1{y⊤(In −Φγ)y − y⊤(In −Φγ∗)y}

= n−1
{
(Xγ∗\γβγ∗\γ +w)⊤(In −Φγ)(Xγ∗\γβγ∗\γ +w)−w⊤(In −Φγ∗)w

}
= ηβ⊤

γ∗\γΓ(γ)βγ∗\γ + 2−1(1− η)β⊤
γ∗\γΓ(γ)βγ∗\γ − 2

{
n−1(In −Φγ)Xγ∗\γβγ∗\γ

}⊤
(−w)

+ 2−1(1− η)β⊤
γ∗\γΓ(γ)βγ∗\γ − n−1w⊤(Φγ −Φγ∗)w.

Consider the random variable Following the analysis of Theorem 2.1 in [17], we have

P
[
max

γ∈As,k

∣∣∣2n−1{(In −Φγ)Xγ∗\γβγ∗\γ}⊤w
∣∣∣ ≥ 2−1(1− η)β⊤

γ∗\γΓ(γ)βγ∗\γ

]
≤ 2e−6k log p,

and,

P
[
max

γ∈As,k

n−1
∣∣w⊤(Φγ −Φγ∗)w

∣∣ ≥ 2−1(1− η)β⊤
γ∗\γΓ(γ)βγ∗\γ

]
≤ 4e−2k log p,

whenever
minγ∈As,k

β⊤
γ∗\γΓ(γ)βγ∗\γ

k
≥ Cσ2

{
log p

n(1− η)

}
for large enough universal constant C > 0. Setting η = 1/2, we note that whenever m∗(s) ≥
2Cσ2{(log p)/n}, we get

n−1(Lγ − Lγ∗) ≥ 1

2
β⊤
γ∗\γΓ(γ)βγ∗\γ ≥ km∗(s)

2
for all γ ∈ As,

with probability at least 1− 2p−6 − 4p−2. Also, note that β⊤
γ∗\γΓ(γ)βγ∗\γ ≤ κ+sb

2
max. Hence, if

we have

m∗(s) ≥ max

{
2C,

16∆u

εσ2

}
σ2 log p

n
,

the following are true: ∑
γ′∈As

exp

{
−ε(Lγ′ − Lγ∗)

∆u

}

≤
∑

γ′∈As

exp

{
−nkεm∗(s)

2∆u

}

≤
s∑

k=1

(
p− s

k

)(
s

k

)
exp

{
−nkεm∗(s)

2∆u

}

≤
s∑

k=1

p2k.p−4k ≤ p−2.

Therefore, we have

min
γ∈As∪{γ∗}

π(γ) ≥ 1

1 + p−2
≥ 1− p−2

with probability 1−2p−6−4p−2. Now by the discussion in Section B.1, we have P(EK) ≥ 1−2p−2

for K ≥
√
s
{
(κ+

κ−
)bmax + ( 8

κ−
)σxmax

}
. This finishes the proof.
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A.4 Proof of Lemma 4.1

For clarity, we first specify some notations. Let γD
t denote the model update of MH chain run over

dataset D. Let τDη be the corresponding η-mixing time. Let D and D′ be two neighboring datasets,
and πD and πD′

be the corresponding probability mass functions for the exponential mechanism.
Then, we have the following:

P(γD
τD
η

= γ) ≤ πD(γ) + η

≤ eεπD′
(γ) + η

≤ eεP(γD′

τD′
η

= γ) + η(1 + eε).

This finishes the proof.

A.5 Proof of Mixing Time (Theorem 4.3)

We again restrict ourselves to the event EK with K ≥
√
s
{
(κ+

κ−
)bmax + ( 8

κ−
)σxmax

}
. For the proof,

let P̃ denote the transition matrix of the original Metropolis-Hastings sampler (10). In this case, the
state space is S = As ∪ {γ∗}. Now consider the transition matrix P = P̃/2 + In/2, corresponding
to the lazy version of the random walk that stays in its current position with a probability of at least
1/2. Due to the construction, the smallest eigenvalue of P is always non-negative, and the mixing
time of the chain is completely determined by the second largest eigenvalue λ2 of P. To this end,
we define the spectral gap Gap(P) = 1− λ2, and for any lazy Markov chain, we have the following
sandwich relation [41, 50]

1

2

(1− Gap(P))

Gap(P)
log(1/(2η)) ≤ τη ≤ log[1/minγ∈S π(γ)] + log(1/η)

Gap(P)
. (15)

Lower Bound on π(·) :

To establish a lower bound on the target distribution in (7), we make use of its specific form, thereby
obtaining the following inequality:

π(γ) = π(γ∗).
π(γ)

π(γ∗)

=
1

1 +
∑

γ′∈As
exp

{
− ε(Lγ′−Lγ∗ )

∆u

} . exp{−ε(Lγ − Lγ∗)

∆u

}
.

Now we fix k ∈ [s], and and consider any γ ∈ As,k.

Similar to the proof of Section A.3, we note that whenever m∗(s) ≥ 2Cσ2{(log p)/n} for a large
enough universal constant C > 0, we get

3

2
β⊤
γ∗\γΓ(γ)βγ∗\γ ≥ n−1(Lγ − Lγ∗) ≥ 1

2
β⊤
γ∗\γΓ(γ)βγ∗\γ ≥ km∗(s)

2
for all γ ∈ As,

with probability at least 1− 2p−6 − 4p−2. Also, note that β⊤
γ∗\γΓ(γ)βγ∗\γ ≤ κ+sb

2
max. Hence, if

we have

m∗(s) ≥ max

{
2C,

16∆u

εσ2

}
σ2 log p

n
,
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the following are true: ∑
γ′∈As

exp

{
−ε(Lγ′ − Lγ∗)

∆u

}

≤
∑

γ′∈As

exp

{
−nkεm∗(s)

2∆u

}

≤
s∑

k=1

(
p− s

k

)(
s

k

)
exp

{
−nkεm∗(s)

2∆u

}

≤
s∑

k=1

p2k.p−4k ≤ p−2,

and,

exp

{
−ε(Lγ − Lγ∗)

∆u

}
≥ exp

{
−
3nεβ⊤

γ∗\γΓ(γ)βγ∗\γ

2∆u

}

≥ exp

{
−3nsεκ+b

2
max

2∆u

}
Combining these two facts we have

min
γ∈As∪{γ∗}

π(γ) ≥ 1

1 + p−2
exp

{
−3nsεκ+b

2
max

2∆u

}
≥ 1

2
exp

{
−3nsεκ+b

2
max

2∆u

}
(16)

with probability 1− 2p−6 − 4p−2.

Lower Bound on Spectral Gap:

Now it remains to prove a lower bound on the spectral gap Gap(P), and we do so via the canonical
path argument [41]. We begin by describing the idea of a canonical path ensemble associated with a
Markov chain. Given a Markov chain C with state space S , consider the weighted directed graph
G(C) = (V,E) with vertex set V = S and the edge set E in which a ordered pair e = (γ, γ′) is
included as an edge with weight Q(e) = Q(γ, γ′) = π(γ)P(γ, γ′) iff P(γ, γ′) > 0. A canonical
path ensemble T corresponding to C is a collection of paths that contains, for each ordered pair
(γ, γ′) of distinct vertices, a unique simple path Tγ,γ′ connecting γ and γ′. We refer to any path in
the ensemble T as a canonical path.

[41] shows that for any reversible Markov chain and nay choice of a canonical path ensemble T , the
spectral gap of P is lower bounded as

Gap(P) ≥ 1

ρ(T )ℓ(T )
, (17)

where ℓ(T ) corresponds to the length of the longest path in the ensemble T , and the quantity
ρ(T ) := maxe∈E

1
Q(e)

∑
(γ,γ′):e∈Tγ,γ′ π(γ)π(γ

′) is known as the path congestion parameter.

Thus, it boils down to the construction of a suitable canonical path ensemble T . Before going into
further details, we introduce some working notations. For any two given paths T1 and T2:

• Their intersection T1 ∩ T2 denotes the collection of overlapping edges.

• If T2 ⊂ T1, then T1 \ T2 denotes the path obtained by removing all the edges of T2 from T1.

• We use T̄1 to denote the reverse of T1.

• If the endpoint of T1 is same as the starting point of T2, then T1 ∪ T2 denotes the path
obtained by joining T1 and T2 at that point.

We will now shift focus toward the construction of the canonical path ensemble. At a high level, our
construction follows the same scheme as in [51].
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Canonical path ensemble construction:

First, we need to construct the canonical path Tγ,γ∗ from any γ ∈ S to the true model γ∗. To this
end, we introduce the concept of memoryless paths. We call a set TM of canonical paths memoryless
with respect to the central state γ∗ if

1. for any state γ ∈ S satisfying γ ̸= γ∗, there exists a unique simple path Tγ,γ∗ in TM
connecting γ and γ∗;

2. for any intermediate state γ̃ ∈ S on any path Tγ,γ∗ ∈ TM , the unique path connecting γ̃
and γ∗ is the sub-path of Tγ,γ∗ starting from γ̃ and ending at γ∗.

Intuitively, this memoryless property tells that for any intermediate step in any canonical path, the
next step towards the central state does not depend on history. Specifically, the memoryless canonical
path ensemble has the property that in order to specify the canonical path connecting any state γ ∈ S
and the central state γ∗, we only need to specify the next state from γ ∈ S \ {γ∗}, i.e., we need a
transition function G : S \ {γ∗} → S that maps the current state γ to the next state. For simplicity,
we define G(γ∗) = γ∗ to make S as the domain of G. For a more detailed discussion, we point the
readers to Section 4 of [51]. We now state a useful lemma that is pivotal to the construction of the
canonical path ensemble.

Lemma A.1 ([51]). If a function G : S \ {γ∗} → S satisfies the condition dH(G(γ), γ∗) <
dH(γ, γ∗) for any state γ ∈ S \ {γ∗}, then G is a valid transition map.

Using the above lemma, we will now construct the memoryless set of canonical paths from any state
γ ∈ S to γ∗ by explicitly specifying a transition map G. In particular, we consider the following
transition function:

• If γ ̸= γ∗, we define G(γ) to be γ′, whch is formed by replacing the least influential
covariate in γ with most influential covariate in γ∗ \ γ. In notations, we have γ′

j = γj for all

j /∈ {jγ , kγ}, γ′
jγ

= 1 and γ′
kγ

= 0, where jγ := argmaxj∈γ∗\γ
∥∥Φγ∪{j}Xγ∗βγ∗

∥∥2
2

and

kγ := argmink∈γ\γ∗

∥∥Φγ∪{j}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ∪{j}\{k}Xγ∗βγ∗

∥∥2
2
. Thus, the transition

step involves a double flip which entails that dH(G(γ), γ∗) = dH(γ, γ∗)− 2.

Due to Lemma A.1, it follows that the above transition map G is valid and gives rise to a unique
memoryless set TM of canonical paths connecting any γ ∈ S and γ∗.

Based on this, we are now ready to construct the canonical path ensemble T . Specifically, due to
memoryless property, two simple paths Tγ,γ∗ and Tγ′,γ∗ share an identical subpath to γ∗ starting
from their first common intermediate state. Let Tγ∩γ′ denote the common sub-path Tγ∩γ∗ ∩ Tγ′∩γ∗,
and Tγ\γ′ := Tγ,γ∗ \ Tγ∩γ′ denotes the remaining path of Tγ,γ∗ after removing the segment Tγ∩γ′ .
The path Tγ′\γ is defined in a similar way. Then it follows that Tγ\γ′ and Tγ′\γ have the same
endpoint. Therefore, it is allowed to consider the path Tγ\γ′ ∪ T̄γ′\γ .

We call γ a precedent of γ′ if γ′ is on the canonical path Tγ,γ∗ ∈ T , and a pair of states γ, γ′ are
adjacent if the canonical path Tγ,γ′ is eγ,γ′ , the edge connecting γ and γ′. Next, for γ ∈ S , define

Λ(γ) := {γ̃ | γ ∈ Tγ̃,γ∗} (18)

denote the set of all precedents. We denote by |T | the length of the path T . The following lemma
provides some important properties of the previously constructed canonical path ensemble.

Lemma A.2. For any distinct pair (γ, γ′) ∈ S × S :

(a) We have
|Tγ,γ∗ | ≤ dH(γ, γ∗)/2 ≤ s, and

|Tγ,γ′ | ≤ 1

2
{dH(γ, γ∗) + dH(γ′, γ∗)} ≤ 2s.

(b) If γ and γ′ are adjacent and γ is precedent of of γ′, then

{(γ̄, γ̄′) | eγ,γ′ ∈ Tγ̄,γ̄′} ⊂ Λ(γ)× S .

18



Proof. For the first claim, let us first assume that |Tγ,γ∗ | = k, i.e., Gk(γ) = γ∗ for the appropriate
transition map G. Also, recall that |γ| = |γ∗| = s. Hence, due to an elementary iterative argument, it
follows that

2s ≥ dH(γ, γ∗) = dH(G(γ), γ∗) + 2

= dH(G2(γ), γ∗) + 4

...
= 2k.

Also, note that |Tγ,γ′ | ≤ |Tγ,γ∗ |+ |Tγ′,γ∗ |. Hence, the claim follows using the previous inequality.

For the second claim, note that for any pair (γ̄, γ̄′) such that Tγ̄,γ̄′ ∋ eγ,γ′ , we have two possible
options : (i) eγ,γ′ ∈ Tγ̄\γ̄′ , or (ii) eγ,γ′ ∈ Tγ̄′\γ̄ . As γ is precedent of γ′, the only possibility that we
have is eγ,γ′ ∈ Tγ\γ′ . This shows that γ belongs to the path Tγ̄,γ∗ and γ̄ ∈ Λ(γ).

According to Lemma A.2(b), the path congestion parameter ρ(T ) satisfies

ρ(T ) ≤ max
(γ,γ′)∈Γ∗

1

Q(γ, γ′)

∑
γ̄∈Λ(γ),γ̄′∈S

π(γ̄)π(γ̄′) = max
(γ,γ′)∈Γ∗

π[Λ(γ)]

Q(γ, γ′)
, (19)

where the set Γ∗ := {(γ, γ′) ∈ S × S | Tγ,γ′ = eγ,γ′ , γ ∈ Λ(γ′)}. Here we used the fact that the
weight function Q satisfies the reversibility condition Q(γ, γ′) = Q(γ′, γ) in order to restrict the
range of the maximum to pairs (γ, γ′) where γ ∈ Λ(γ′).

For the lazy form of the Metropolis-Hastings walk (10), we have

Q(γ, γ′) = π(γ)P(γ, γ′)

≥ 1

ps
π(γ)min

{
1,

π(γ′)

π(γ)

}
≥ 1

ps
min {π(γ), π(γ′)} .

Substituting this bound in (19), we get

ρ(T ) ≤ ps max
(γ,γ′)∈Γ∗

π(Λ(γ))

min{π(γ), π(γ′)}

= ps max
(γ,γ′)∈Γ∗

{
max

{
1,

π(γ)

π(γ′)

}
· π(Λ(γ))

π(γ)

}
.

(20)

In order to prove that ρ(T ) = O(ps) with high probability, it is sufficient to prove that the two terms
inside the maximum are O(1). To this end, we introduce two useful lemmas.
Lemma A.3. Consider the event

An =

{
max

γ∈S ,ℓ/∈γ
w⊤(Φγ∪{ℓ} −Φγ)w ≤ 12σ2s log p

}
Then we have P(An) ≥ 1− p−2.

Proof. First note that w⊤(Φγ∪{ℓ}−Φγ)w = (h⊤
γ,ℓw)2 for an appropriate unit vector hγ,ℓ depending

only upon Xγ and Xℓ. By Sub-gaussian tail inequality, we have

P
{
(h⊤

γ,ℓw)2 ≥ t
}
≤ 2e−

t
2σ2 .

Setting t = 12σ2s log p and applying an union bound we get

P
{

max
γ∈S ,ℓ/∈γ

(h⊤
γ,ℓw)2 ≥ 12σ2s log p

}
≤ 2

(
p

s

)
(p− s)p−6s

≤ 2p−3s

≤ p−2.
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Lemma A.4. Suppose that, in addition to the conditions in Theorem 4.3, the event An holds. Then
for all γ ̸= γ∗, we have

π(γ)

π(G(γ))
≤ p−3.

Moreover, for all γ,
π[Λ(γ)]

π(γ)
≤ 2.

Therefore, both Lemma A.3 and Lemma A.4 give ρ(T ) ≤ 2ps with probability 1 − p−2. Lemma
A.2(a) suggests that ℓ(T ) ≤ 2s. Therefore, Equation (17) shows that Gap(P) ≥ 1

4ps2 with probability
1− p−2. Finally, combining (16) and (15), we get the following with 1− 8p−2

τη ≤ C2ps
2

 nεκ+b
2
max{

r + (κ+

κ−
)bmaxxmax + ( σ

κ−
)x2

max

}2 + log(1/η)

 ,

where C2 > 0 is a universal constant. Finally, the proof is concluded by arguing that P(Ec
K) ≤ 2p−2.

B Proof of Auxiliary Results

B.1 Constrained problem to unconstrained OLS problem

Now we are ready to bound
∥∥βγ,K

∥∥
1
. Define the OLS estimator corresponding to the model γ as

βγ,ols = (
X⊤

γ Xγ

n
)−1

X⊤
γ Xγ∗βγ∗

n︸ ︷︷ ︸
:=u1

+(
X⊤

γ Xγ

n
)−1

X⊤
γ w

n︸ ︷︷ ︸
:=u2

.

In this section, we will show that there exists a choice for K such that the event EK :=
∩γ:|γ|=s{βγ,ols = βγ,K} holds with high probability. By Holder’s inequality we have ∥u1∥2 ≤∥∥(X⊤

γ Xγ/n)
−1
∥∥
op

∥∥X⊤
γ Xγ∗/n

∥∥
op

∥∥βγ∗

∥∥
2

≤ (κ+

κ−
)bmax. Hence, an application of Cauchy-

Schwarz inequality directly yields that ∥u1∥1 ≤ 2(κ+

κ−
)
√
sbmax. Next, note that

∥u2∥2 ≤

∥∥∥∥∥(X⊤
γ Xγ

n
)−1

∥∥∥∥∥
2

∥∥∥∥∥X⊤
γ w

n

∥∥∥∥∥
2

≤
√
s

∥∥∥∥∥(X⊤
γ Xγ

n
)−1

∥∥∥∥∥
2

∥∥∥∥∥X⊤
γ w

n

∥∥∥∥∥
∞

≤
√
s

∥∥∥∥∥(X⊤
γ Xγ

n
)−1

∥∥∥∥∥
2

∥∥∥∥X⊤w

n

∥∥∥∥
∞

.

Therefore, we get ∥u2∥1 ≤ s
κ−

∥∥X⊤w/n
∥∥
∞. In order to upper bound the last term in the previous

inequality, we define Di,j = X[i, j]wj for all (i, j) ∈ [s]× [n]. Using the sub-Gaussian property of
wj , we have E(eλwj ) ≤ eλ

2x2
maxσ

2/2. Therefore, due to Hoeffding’s inequality, we have

P

 1

n

∣∣ ∑
j∈[n]

Di,j

∣∣ ≥ 8σxmax

√
log p

n

 ≤ 2p−4.

Note that
∥∥X⊤w/n

∥∥
∞ = maxi∈[s] n

−1
∣∣∑

j∈[n] Di,j

∣∣. Hence, by simple union-bound argument, it
follows that

P

(
max

γ:|γ|=s

∥∥∥∥∥X⊤
γ w

n

∥∥∥∥∥
∞

≥ 8σxmax

√
log p

n

)
≤ 2p−4 ≤ 2p−2.

Thus, Assumption 3.4(c) yields that
∥∥βγ,K

∥∥2
1
≤ s

{
(κ+

κ−
)bmax + ( 8

κ−
)σxmax

}2

. Therefore, if K ≥
√
s
{
(κ+

κ−
)bmax + ( 8

κ−
)σxmax

}
then P(EK) ≥ 1− 2p−2.

B.2 Proof of Corollary 4.4

Based on Theorem 4.3, we have ∥πt − π∥TV ≤ eta with probability at least 1− c2p
−2 whenever t

is sufficiently large. Also, by Theorem 3.5, we know π(γ∗) ≥ 1− p−2 with probability 1− c1p
−2.

Therefore, we have πt(γ
∗) ≥ 1− η − p−2 with probability at least 1− (c! + c2)p

−2. This finishes
the proof.
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C Proof of Lemma A.4

part (a):

Let jγ , kγ be the indices defined in the construction of G(γ). The we have γ′ = γ ∪ {jγ} \ {kγ}. Let
v1 = (Φγ∪{jγ} −Φγ)Xγ∗βγ∗ and v2 = (Φγ∪{jγ} −Φγ′)Xγ∗βγ∗ . Then Lemma C.1 guarantees
that

∥v1∥22 ≥ nκ−m∗(s), and ∥v2∥22 ≤ nκ−m∗(s)/2. (21)

By the form in (7), we have

π(γ)

π(γ′)
= exp

{
−y⊤(Φγ′ −Φγ)y

(∆u/ε)

}
.

To show that the above ration is O(1), it suffices to show that y⊤(Φγ′ −Φγ)y is large. By simple
algebra, it follows that

y⊤(Φγ′ −Φγ)y = y⊤(Φγ∪{jγ} −Φγ)y − y⊤(Φγ∪{jγ} −Φγ′)y

= ∥v1∥22 + 2v⊤
1 w +w⊤(Φγ∪{jγ} −Φγ)w −

{
∥v2∥22 + 2v⊤

2 w +w⊤(Φγ∪{jγ} −Φγ′)w
}

= ∥v1∥22 + 2v⊤
1 (Φγ∪{jγ} −Φγ)w +w⊤(Φγ∪{jγ} −Φγ)w

−
{
∥v2∥22 + 2v⊤

2 (Φγ∪{jγ} −Φγ′)w +w⊤(Φγ∪{jγ} −Φγ′)w
}

≥ ∥v1∥2 (∥v1∥2 − 2
∥∥(Φγ∪{jγ} −Φγ)w

∥∥
2
)− ∥v2∥2 (∥v2∥2 + 2

∥∥(Φγ∪{jγ} −Φγ′)w
∥∥
2
)

−
∥∥(Φγ∪{jγ} −Φγ′)w

∥∥2
2
.

(22)
Now, we recall the event

An =

{
max

γ∈S ,ℓ/∈γ
w⊤(Φγ∪{ℓ} −Φγ)w ≤ 12σ2s log p

}
.

Let A2 := nκ−m∗(s) ≥ κ−C0σ
2 log p. Then for C0 large enough so that κ−C0 ≥ (128 × 12)s,

Equation (22) leads to the following inequality under event An:

y⊤(Φγ′ −Φγ)y ≥ A(A−A/4)− (A/
√
2)(A/

√
2 +A/4)−A2/16 ≥ A/8.

This readily yields that
π(γ)

π(γ′)
≤ exp

{
−nκ−m∗(s)

(16∆u/ε)

}
≤ p−3 (23)

under the margin condition of Theorem 4.3.

Part (b):

From the previous part, the bound (23) implies that π(γ)/π(G(γ)) ≤ p−3. For each γ̄ ∈ Λ(γ), we
have that γ ∈ Tγ̄,γ ⊂ Tγ̄,γ∗ . Let the path Tγ̄,γ be γ0 → γ1 → . . . → γk, where k = |Tγ̄,γ | is the
length of the path, and γ0 = γ̄ and γk = γ are the two endpoints. Now note that {γℓ}ℓ≤k−1 ⊂ S ,
and (23) ensures that

π(γ̄)

π(γ)
=

k∏
ℓ=1

π(γℓ−1)

π(γℓ)
≤ p−3k.

Also, by Lemma A.2(a) we have k ∈ [s]. Now, we count the total number of sets in Λ(γ) for each
k ∈ [s]. Recall that by the construction of the canonical path, we update the current state by adding a
new influential covariate and deleting one unimportant one. Hence any state in S has at most sp
adjacent precedents, implying that there could be at most skpk distinct paths of length k. This entails
that

π(Λ(γ))

π(γ)
≤

∑
γ̄∈Λ(γ)

π(γ̄)

π(γ)
≤

s∑
k=1

(ps)kp−3k ≤
s∑

k=1

p−k ≤ 1

1− 1/p
≤ 2.
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C.1 Supporting lemmas

Recall the definition of jγ and kγ . The first result in the following lemma shows that the gain in
adding jγ to the current model γ is at least nκ−m∗(s). The second result shows that the loss incurred
by removing kγ from the model γ ∪ {jγ} is at most nκ−m∗(s)/2. As a result, it follows that it is
favorable to replace Xkγ

with the more influential feature Xjγ in the current model γ.
Lemma C.1. Under Assumption 3.4(b) and Assumption 4.2, the following hold for all γ ∈ As:

(a)
∥∥Φγ∪{jγ}Xγ∗βγ∗

∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
≥ nκ−m∗(s), and

(b)
∥∥Φγ∪{jγ}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ∪{jγ}\{k}Xγ∗βγ∗

∥∥2
2
≤ nκ−m∗(s)/2.

Proof. For each ℓ ∈ γ∗ \ γ, we have∥∥Φγ∪{ℓ}Xγ∗βγ∗

∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
= β⊤

γ∗X⊤
γ∗(Φγ∪{ℓ} −Φγ)Xγ∗βγ∗

=
β⊤
γ∗X⊤

γ∗(In −Φγ)XℓX
⊤
ℓ (In −Φγ)Xγ∗βγ∗

X⊤
ℓ (In −Φγ)Xℓ

≥
β⊤
γ∗\γX

⊤
γ∗\γ(In −Φγ)XℓX

⊤
ℓ (In −Φγ)Xγ∗\γβγ∗\γ

n
,

where the second equality simply follows from Gram-Schmidt orthogonal decomposition. By
summing the preceding inequality over ℓ ∈ γ∗ \ γ, we get∑
ℓ∈γ∗\γ

∥∥Φγ∪{ℓ}Xγ∗βγ∗

∥∥2
2
−
∥∥ΦγXγ∗βγ∗

∥∥2
2
≥

β⊤
γ∗\γX

⊤
γ∗\γ(In −Φγ)Xγ∗\γX

⊤
γ∗\γ(In −Φγ)Xγ∗\γβγ∗\γ

n

≥ κ−β
⊤
γ∗\γX

⊤
γ∗\γ(In −Φγ)Xγ∗\γβγ∗\γ

≥ nκ− |γ \ γ∗| m∗(s)
= nκ− |γ∗ \ γ| m∗(s).

The last inequality follows from the fact that |γ| = |γ∗| = s. Since jγ maximizes
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over all ℓ ∈ γ∗ \ γ, the preceding inequality implies that∥∥Φγ∪{jγ}Xγ∗βγ∗
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Similarly, to prove the second claim, first note that for any k ∈ γ \ γ∗, we have∥∥Φγ′∪{k}Xγ∗βγ∗
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Since kγ minimizes
∥∥Φγ′∪{k}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ′Xγ∗βγ∗

∥∥2
2

over all possible k ∈ γ \ γ∗, by As-
sumption 4.2 we have∥∥Φγ∪{jγ}Xγ∗βγ∗

∥∥2
2
−
∥∥Φγ∪{jγ}\{k}Xγ∗βγ∗

∥∥2
2
≤ nκ−m∗(s)/2.
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D More simulation details

D.1 Independent Uniform design

Under the setup of Section 5, we consider the privacy parameter ε ∈ {0.5, 1, 3, 5, 10}. For the
Metropolis-Hastings random walk, we vary K ∈ {0.5, 2, 3, 3.5} and initialize 10 independent
Markov chains from random initializations and record the F-score of the last iteration. We also track
the qualities of the model through its explanatory power. In particular, we calculate the scale factor
Rγ := y⊤Φγy/ ∥y∥22 for each model γ ∈ {γt}t≥1 along the random walks. Typically, a high value
of Rγ will indicate the superior quality of the model γ. Note that −∥y∥22 (1−Rγ) is proportional to
the log of the probability mass function function of γ. Thus, tracking Rγ is equivalent to tracking the
log-likelihood of γ along the random walks.

Strong signal: Under this setup, note that the model estimate of ABESS exactly matches the true
model. For ε ≥ 3 and K ≥ 2, Figure 1 shows that all the chains have identified a reasonably good
estimate of the true model γ∗ within 50p iterations. This empirical phenomenon validates theoretical
findings in Theorem 4.3. However, for larger values of K the performance is worse as the noise
level is also large. On the other hand, for the case of K = 0.5, the performance is also worse due to
too much shrinkage that results in a bad estimate of β. The mean F-score’s also suggest the same
phenomenon. For smaller values of ε, the performance is generally bad due to increased noise level.
This is expected as higher privacy usually entails a worse performance in terms of utility.

Weak signal: We perform the same experiments under a weak signal regime. As expected, both
Figure 2 and Table 1 show that the performance of the proposed algorithm is generally inferior to that
in the strong signal regime for K ≥ 2. However, note that our algorithm enjoys a better utility for
K = 0.5. In fact, performance is as good as the non-private BSS for ε ≥ 3. This is not surprising as
K = 0.5 closer to ∥β∥1 ≈ 0.7 in the weak signal case and results in better estimation for β. On the
contrary, larger values of K inject more noise into the algorithm and the utility deteriorates.

D.2 Independent Gaussian Design

We consider an independent Gaussian design matrix, formed by sampling entries from identical
independent standard normal distributions and normalized by the ℓ∞ norm. Specifically, we set
n = 900, p = 2000 with the sparsity level s = 4. Similar to the setup in Section 5, we generate entries
with independent Uniform(−0.1, 0.1) noise w following the linear model (1). We choose the design
vector β with true sparsity s = 4 and the support set γ∗ = {j : 1 ≤ j ≤ 4}. All the signal strengths
are set to be equal, taking the following two forms: (i) Strong signal: βj = 2{(s log p)/n}1/2,
and (ii) Weak signal: βj = 2{(log p)/n}1/2 for all j ∈ γ∗. We consider the privacy parameter
ε ∈ {0.5, 1, 3, 5, 10}. For the Metropolis-Hastings random walk, we vary K ∈ {0.5, 2, 3, 3.5} and
initialize 10 independent Markov chains from random initialization and record the F-score of the
last iteration.

Strong signal: Under this setup, note that the model estimate of ABESS exactly matches the true
model with F-score = 1. For the case of K = 0.5, Figure 3 shows the performance is better
compared with settings K ≥ 2 when ε ≤ 5. However, when ε = 10, the performance is worse
due to shrinkage of the estimate of β while the estimations in other settings are easier due to lower
privacy requirements. For higher values of ε, the performance is generally strong because of the
reduced noise level. This is expected since lower privacy typically leads to better utility performance.
Notice that for ε = 10 and K = 2, we have a fairly accurate estimate of the true model γ∗ within
50p iterations.

Weak signal: We conduct the same experiments under a weak signal regime. As expected, Figure
4 shows that the performance of the proposed algorithm is generally inferior to that in the strong
signal regime for K ≥ 2. However, note that our algorithm enjoys a better utility for K = 0.5 when
ε ≥ 3. In fact, performance is as good as the non-private BSS for ε = 10. This is not surprising as
K = 0.5 closer to ∥β∥1 ≈ 0.7 in the weak signal case, leading to better estimation for β. In contrast,
larger values of K introduce more noise into the algorithm and weaken the utility.
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Figure 1: Metropolis-Hastings random walk under different privacy budgets and ℓ1 regularization.
(Strong signal)
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Figure 2: Metropolis-Hastings random walk under different privacy budgets and ℓ1 regularization.
(Weak signal)
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Figure 3: Gaussian setting Metropolis-Hastings random walk under different privacy budgets and ℓ1
regularization. (Strong signal)
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Figure 4: Gaussian setting Metropolis-Hastings random walk under different privacy budgets and ℓ1
regularization. (Weak signal)
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction we claim that our our method provides a DP
model estimator while enjoying computational efficiency. This matches with the theoretical
and experimental demonstrations in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: We point out some of the limitations of the work and possible future directions
in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We explicitly mention all the assumptions in the statement of the theorems and
lemmas. The proofs of these results can be found in the appendix sections.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.x

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We clearly state all of the key parameters of the simulation experiments in the
simulation section.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The Github Link is provided in the footnote of Page 9.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do the experiments on simulated data. Therefore, technically, we just have
the testing step. We do specify clearly about this step in the simulation section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not include the error bar for the F-scores as the results are pretty robust
across different repetitions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have added the information about the computational resources in Section
5.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research work does not violate any NeurIPS Code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We point toward the potential positive impacts of our work in the conclusion
sections. To the best of our knowledge, we could not think of any negative societal impact
of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We clearly cite the main webpage information and relevant papers regarding
the used packages in the paper along with the license information.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The Github Link to our code is provided in the footnote of Page 9.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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