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ABSTRACT

Event cameras like the Hybrid Event-based Vision Sensor (HybridEVS) camera
capture brightness changes as asynchronous "events" instead of frames, offering
advantages over traditional cameras: high temporal resolution, wide dynamic range,
and no motion blur. However, challenges arise from combining a Quad Bayer Color
Filter Array (CFA) sensor with event pixels lacking color information, resulting in
aliasing and artifacts on the demosaicing process before downstream application.
Current methods struggle to address these issues, especially on resource-limited
mobile devices. In response, we introduce TSANet, a lightweight Two-stage
network via State space augmented cross-Attention, which can handle event pixels
inpainting and Quad Bayer demosaicing separately, leveraging the benefits of divid-
ing complex tasks into manageable subtasks and learning them through a two-step
training strategy to enhance robustness. Additionally, we propose a lightweight
Cross-Swin State Block (CSSB) designed to augment the model’s capacity to
capture global dependencies using state space models in a linear format, along
with cross-modality Swin attention to integrate additional priors like CFA pattern
and event map, outperforming traditional local attention mechanisms while also
reducing model size. In summary, TSANet demonstrates excellent demosaicing
performance on HybridEVS while maintaining a lightweight model, averaging
better results than the previous state-of-the-art method DemosaicFormer across
seven diverse datasets in both PSNR and SSIM, while respectively reducing pa-
rameter and computation costs by 1.86× and 3.29×. Our approach presents new
possibilities for efficient image demosaicing on mobile devices. Code and models
are available in supplementary materials.

1 INTRODUCTION
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Figure 1: Left: Bayer CFA vs. Quad Bayer CFA on
HybridEVS. Right: PSNR vs. FLOPs running on seven
datasets, each model indicates its respective parameters
on the right side. Our state space (SS) based TSANet
presents three different sizes, each delivering optimal
performance across various complexity ranges.

In recent years, event cameras have made sig-
nificant progress as a new type of image sen-
sor. Compared to conventional digital cam-
eras, event cameras can capture event infor-
mation by sensing the intensity change of spe-
cialized event pixels, thereby capturing infor-
mation about objects’ movement Litzenberger
et al. (2006); Lichtsteiner et al. (2008). This
additional visual data enables the precise cap-
ture of fast-moving objects, presenting exten-
sive potential across various domains includ-
ing robotics, automotive technology, and drone
systems. However, basic imaging before down-
stream applications is essential for event cam-
eras, which has not received adequate attention.
On the other hand, with the development of mo-
bile photography technology, it has been found
that traditional Bayer CFA sensors are constrained by their design on mobile devices, making it
difficult to attain high-quality images in low-light scenes. Therefore, non-Bayer CFA sensors have
gradually become mainstream in mobile photography in recent years, utilizing specifically designed
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CFA to enhance low-light imaging performance. Quad Bayer CFA is one of the most popular formats,
which can acquire high-resolution images on common scenes and enhance low-light imaging by
pixel-binning Yoo et al. (2015). However, different from Bayer CFA which has been proposed over
several decades, exploration of Quad Bayer CFA is still very limited Yang et al. (2022).

A type of event camera design named Hybrid Event Vision Sensors (HybridEVS) Kodama et al.
(2023) involves utilizing a Quad Bayer CFA on a camera sensor and allocating certain pixels as
event pixels to capture motion data instead of RGB color information, as shown in Fig. 1. This
design introduces the camera with improved low-light imaging capabilities and the ability to capture
high-speed objects effectively. However, the non-conventional Quad Bayer arrangement and the
absence of color information at event pixel locations pose challenges for the demosaicing process,
traditional methods face difficulties in extracting patterns from such complex arrangements, resulting
in reduced imaging quality and poor performance in downstream applications such as deblurring and
object detection.

Specifically, several challenges for demosaicing in Quad Bayer HybridEVS cameras are encountered:
i) How to alleviate the decrease in reconstruction quality resulting from the absence of color informa-
tion at event pixels locations; ii) How to realize Quad Bayer demosaicing joint with denoising; iii)
How to reduce the model’s parameter to make it valuable for practical applications in edge computing.
Recent studies Zhou et al. (2018); Kim & Kim (2019) have proposed some end-to-end demosaicing
methods based on convolution neural networks (CNNs). However, these methods fail to produce the
desired results when directly applied to Non-Bayer images. Some methods have been proposed to
tackle the problem of joint demosaicing and denoising of Quad Bayer CFA. A Sharif et al. (2021)
proposed a method combining generative adversarial networks, utilizing depth and spatial attention
mechanisms and perceptual loss to improve the reconstruction quality of mosaic images. Zeng et
al. Zeng et al. (2023) proposed a dual-head network to transform noisy Quad Bayer into noise-free
Bayer for demosaicing tasks. However, these methods do not take into account the presence of event
pixels, causing color distortion and artifacts. At the same time, these networks are mostly limited
by their large parameters and computational complexity, making them difficult to apply to mobile
devices.

To address the above issues, we introduce TSANet, a novel lightweight two-stage model that
effectively combines the position information and color information of pixel arrangements, augmented
by the state space model to further explore long-range relationships inside HybridEVS RAW images.
Specifically, to improve computational efficiency while enhancing reconstruction quality, we divide
the complex task of joint demosaicing and denoising for HybridEVS into two stages as shown
in Fig. 2. The initial stage, termed Quad-to-Quad (Q2Q), is dedicated to inpainting event pixels
and denoising. Subsequently, the second stage is tailored for Quad Bayer demosaicing, called
Quad-to-RGB (Q2R). Both stages employ U-Net like networks, with extra position branch for each
sub-network. Considering the computational efficiency and task complexity, we utilize a network
with fewer parameters in the first stage and a network with a larger parameters in the second stage. A
two-step training strategy is additionally employed to effectively increase the stability and robustness.

For the design of specific models, inspired by Zheng et al. (2024); Sun et al. (2022), we use two
branches in the encoders of both sub-network, extend a extra position branch to utilize position
information compared to common U-Net structure. This design introduces an explicit position
encoding, enabling the network to have prior knowledge of positional relationships. Specifically,
for the fusion in Q2R stage, we introduce a Cross-Swin State Block (CSSB) (See Sec. 3.2), which
contains Quad Bayer Cross Swin Attention (QCSA) for local cross-modality attention within windows
and the Residual Vision State Space (RVSS) Zhu et al. (2024) Model in parallel for effective long-
range representation capture. The hybrid design fuses local window attention across position and
image, while efficiently incorporating global spatial information through RVSS with linear complexity.
The tailored two-branch block ensures a balance between local and global information, optimizes
both performance and efficiency. A variant of CSSB named Conv State Block (CSB) is designed for
Q2R decoder, focus on inner local-global relationship of the image. We also customized a simplified
dot-product-based attention called Spatial Position Attention (SPA)(See Sec. 3.3) to integrate Event
map and Quad Bayer pattern while significantly reducing computational load.

In summary, our contributions are as follows:

2
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• We propose TSANet, a lightweight Two-stage network via State space augmented cross-
Attention designed for Quad Bayer HybridEVS Demosaicing. By employing a designed sub-
tasks allocation and dual-branch encoders, TSANet achieves state-of-the-art performance
with fewer computational resources (See Fig. 1).

• We present two unique state space augmented cross-attention blocks, termed Cross-Swin
State Block (CSSB) and Conv State Block (CSB). The combined use of the Residual
Vision State Space (RVSS) module with local attention and convolution demonstrates
great effectiveness advantages, leading to outstanding capabilities in local-global feature
extraction in a linear format.

• We design two cross-modality attention mechanisms between position and image informa-
tion, named Quad Bayer Cross Swin Attention (QCSA) and Spatial Position Attention (SPA).
The two modules, based on local window attention and dot product, respectively, effectively
capture position features, facilitating information exchange and integration across different
modalities.

2 RELATED WORK

Bayer Demosaicing Traditional approaches for Bayer demosaicing primarily rely on interpolation
techniques Hirakawa & Parks (2006), utilizing methods like adaptive algorithm Hirakawa & Parks
(2005) and spatial-spectral correlations Li et al. (2008) to reconstruct full-color images. Recently,
the success of convolutional networks (CNNs) used in deep learning has led to great progress
in demosaicing Syu et al. (2018); Tan et al. (2017b;a; 2018); Liu et al. (2020). These methods
replace traditional interpolation techniques with deep neural networks, leveraging the powerful fitting
capabilities of neural networks to achieve excellent results. Some researchers Liu et al. (2020);
Guo et al. (2021); Zhang et al. (2022b) proposed a demosacing network to utilize internal image
information like color prior and CFA arrangement. However, most of these methods can’t be extended
to non-Bayer CFA formats, facing limitations like artifacts and aliasing when dealing with more
challenging non-Bayer formats like Quad Bayer.

Quad Bayer Demosaicing In recent years, Quad Bayer has become a popular CFA pattern widely
used in mobile photography, such as smartphone cameras Yang et al. (2022). Different from traditional
Bayer CFA, exploration of the Quad Bayer CFA is limited. The larger gaps between pixels of the same
color make the task more challenging compared to Bayer CFA. Some two-stage networks Jia et al.
(2022); Zeng et al. (2023) are proposed for progress learning to enhance Quad Bayer demosaicing.
Zheng et al. (2024) proposed a dual-encoder structure to achieve better joint demosaicing and
denoising tasks. GAN-based networks A Sharif et al. (2021); Sharif et al. (2021) are also used to
strengthen the restoration of RGB images for Non-Bayer CFA sensors. The sensor’s CFA offers
a strong positional prior, yet most methods overlook the valuable color arrangement information,
resulting in significant color distortion in Quad Bayer HybridEVS demosaicing.

Event Camera Imaging As a novel type of sensor that has emerged in recent years Gallego et al.
(2020); Son et al. (2017), the imaging research of event cameras is an active topic. Recent studies
have mainly focused on imaging or downstream applications like object detection Zhang et al. (2022a)
based on event information. Munda et al. (2018) try to reconstruct intensity images with direct event
integration. Scheerlinck et al. (2020) introduced a fast image restoration method with deep neural
networks. These methods have demonstrated excellent performance in visual tasks based on event
information. However, for the latest proposed hybrid event-based vision sensor Kodama et al. (2023),
the field is almost blank in advanced methods for its Image Sensor Pipelines (ISPs). A crucial step in
ISPs is the demosaicing process, which converts Quad Bayer data into the RGB domain and directly
impacts the imaging quality for downstream applications.

State Space Models In recent years, State Space Models (SSMs) Gu et al. (2021a;b) have
emerged as competitive rivals to traditional deep learning architectures like Convolution Neural
Networks(CNNs) and Transformers. Pioneering works like S4 Gu et al. (2021a) and S5 Smith et al.
(2022) introduced advancements on deep-state models with efficient parallel scan, modeling long-
range dependency. Recently proposed Mamba Gu & Dao (2023), featuring a data-dependent SSM
layer, has shown remarkable performance, surpassing Transformers in natural language tasks and
demonstrating linear scalability in sequence length. Additionally, some works have applied Mamba to
various vision tasks, including image classification Zhu et al. (2024), video understanding Wang et al.
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Figure 2: Overview of the TSANet approach. We adopt a two-stage structure that breaks down
complex tasks into manageable subtasks, while leveraging additional branches to utilize position prior.
Section 3.2 introduces the Spatial Position Attention (SPA) and Cross-Swin State Block (CSSB).

(2023), image restoration Guo et al. (2024), and image segmentation Liao et al. (2024), demonstrates
the potential in visual tasks for lightweight models.

3 PROPOSED METHOD

Initially, we present the overall pipeline of our two-stage model in Sec. 3.1. Then we introduce the
proposed state space augmented-cross attention block and its variants in Sec. 3.2. Finally, we discuss
details of our proposed attention mechanisms across position and image in Sec. 3.3.

3.1 TWO-STAGE NETWORK STRCTURE

For the task of Quad Bayer HybridEVS demosaicing, our goal is to recover a three-channel RGB
image IR ∈ RH×W×3 from a degraded Quad Bayer image IQ ∈ RH×W×1, where the degradation
includes color channel loss Dq due to the Quad Bayer CFA, pixel absence De due to the design of
event pixels in the sensor, and noise Dn introduced during the image capture process, respectively.
Most previous methods aim to directly learn the entire process through an all-in-one deep model M
that restores image IR from IQ, which can be expressed as:

IR = M(IQ). (1)

However, these all-in-one models often struggle to extract the inner connection between position
and color, causing unbearable aliasing and artifacts (See Fig. 6), or require a large number of
parameters and computation load to achieve ideal restoration results, make it barely impossible
to deploy on limited-resource mobile devices. Unlike past single-model solutions, we define the
composite task as two controllable sub-tasks: the former sub-task is to restore the degradation of De

and Dn from the original Quad Bayer image, inpainting absent pixels and reducing noise, producing
a clean Quad Bayer image, defined as MQ2Q; the later one is to restore the clean Quad Bayer image
into IR, defined as MQ2R. The overall pipeline progressively restore the RGB image from the
degraded Quad Bayer image. Notably, we introduce a distinctive encoder branch designed to integrate
position information as a dedicated prior knowledge into the network, using position information
Pe ∈ RH×W×1 from De and Pq ∈ RH×W×3 from Dq to achieve better image reconstruction, the
process can be expressed as:

IR = MQ2R(MQ2Q(IQ, (Pq,Pe)),Pq). (2)

Our proposed two-stage network architecture is depicted in Fig. 2. Such a design not only assigns
specific tasks to sub-networks but also benefits from a two-step training strategy. Prior studies have
demonstrated that pretraining on sub-networks can lead to improved performance and inference
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stability. Our designed two-stage architecture facilitates directional pretraining for the two sub-
networks by synthesizing a dummy clean Quad Bayer.

Besides, we believe fully utilizing position information is crucial for the demosaicing problem
of Quad Bayer, especially in the task with event pixels. Therefore, we propose an additional
positional encoding branch in both networks, explicitly integrating position information into the
network. To further enhance the model’s ability to extract high-frequency texture information,
we designed a Fourier Feature Module (FFM) based on Fourier encoding, as shown in Fig. 2,
which maps the position information to a series of high-frequency features based on sine and cosine
functions Tancik et al. (2020), enabling the model to capture refine details and patterns in position
dimension, strengthening the restoration results of complex textures. At the Q2Q stage, specially,
before putting the Quad Bayer image into the network, we apply a coarse inpainting by averaging
nearby pixels around event pixels, which aims to mitigate color loss resulting from event pixels.

3.2 STATE SPACE AUGMENTED BLOCKS

In this section, we propose two lightweight modules augmented by State Space Models for the
encoder and decoder of the Q2R stage, respectively. We begin with a dual-branch structure named
Cross-Swin State Block (CSSB), concurrently modeling local cross-modality attention and long-range
dependencies with linear complexity. Then, we present its variant Conv State Block (CSB) in the
decoder, enhancing local feature restoration while further reducing computation by convolutions.

Cross-Swin State Block Fig. 3a illustrated our proposed Cross-Swin State Block (CSSB). This
block is designed to capture long-range dependencies and cross-modality local attention in parallel.
It integrates Residual Vision State Space (RVSS) and Quad Bayer Cross Swin Attention (QCSA)
mentioned in Sec. 3.3. Fig. 4c shows RVSS, a simplified version of Residual State Space Block
of MambaIR Guo et al. (2024), preserving its core component VSSM for efficient extraction of
long-range dependencies, followed by a residual connection. To further reduce computational
complexity while capturing local positional attention intersections and global long-range dependencies
simultaneously, we follow SCUNet Zhang et al. (2023) and propose a parallel network module. First,
the image feature projected through 1x1 convolution is split and separately inputted into QCSA and
RVSS modules. The outputs are then concatenated and utilized for out projection through a 1× 1
convolution, which is followed by a residual connection. For a image input FI and a position input
FP, the process can be expressed as follows:

X1, X2 = Split(Conv1×1(FI)),

Y1, Y2 = QCSA(X1,FP), RVSS(X2),

F̂I = Conv1×1(Concat(Y1, Y2)) + FI.

(3)

The QCSA primarily extracts representations with position information, models spatial information
through the two modalities of position and image while RVSS is used to effectively capture global
information, which parallel address cross-modality local attention and long-range dependencies.
Moreover, the dual-brunch structure is similar to group convolution, reducing the number of channels
within the module through splitting operations, effectively reducing the computational complexity
and parameters of the block.

1
x1

 C
o

n
v

Cross-Swin State Block (CSSB)

1
x1

C
o

n
v

Sp
lit

QCSA

RVSS

C

(a) Cross-Swin State Block

1
x1

 C
o

n
v

Conv State Block (CSB)

1
x1

C
o

n
v

Sp
lit

RVSS

C

RConv

(b) Conv State Block

Figure 3: Proposed state space augmented blocks. The two blocks
are modified from Transformer and Convolution for the Q2R en-
coder and decoder, respectively. The dual-branch design parallel
extracts feature with local-global dependencies while reducing
computation load.

Conv State Block We also pro-
pose a variant of CSSB for the
decoder of the Q2R stage, as
shown in Fig. 3b. Instead of em-
ploying QCSA to capture atten-
tion features across position in-
formation, we replace this mod-
ule with Residual Convolution
(RConv) Zhang et al. (2021),
which focuses on restoring in-
ternal local feature of the im-
age, parallel with an RVSS to en-
hance long-range feature extrac-
tion capability, thereby forming
a lightweight decoder block with
local-global dependencies.
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Figure 4: Illustration of designed modules. We propose two cross-attention modules and one state
space model. Attentions focus on fusing position information into network and RVSS captures
long-range dependencies.

3.3 ATTENTION MODULES FOR POSITION FUSION

As illustrated in Fig. 4a and Fig. 4b, we propose two spatial attention modules designed for fusing
position information and image feature. We utilize the position representations as extra information
and explore spatial relationship of position and image.

Quad Bayer Cross Swin Attention As shown in Fig. 4a, we designed a sufficient feature fusion
mechanism for Q2R sub-network. It first employs an efficient Window Multi-head Cross Atten-
tion (WMCA) inspired by Swin Transformer Liu et al. (2021). Specifically, given image feature
FI ∈ RH×W×d and position feature FP ∈ RH×W×d, both features are first partitioned into non-
overlapping M ×M local windows, getting HW

M2 ×M2 × d features. Different from conventional
attention acquiring all query(Q), key(K), value(V ) from FI, we produce Q from FP. The Q, K
and V for window feature X ∈ RM2×d from FI and Y ∈ RM2×d from FP are computed as:

Q = Y PQ, K = XPK , V = XPV . (4)

where PQ, PK and PV are shared project matrices among each window. Then we have Q,K, V ∈
RM2×d to compute in-window cross attention as:

Attention (Q,K, V ) = SoftMax

(
QKT

√
d

+B

)
. (5)

where B represents relative positional encoding within the window, complementing the global
positional encoding introduced by FP. This attention mechanism operates across all windows and
is executed in parallel h times Vaswani et al. (2017). After WMCA, the features are then fed into a
two-layer multi-layer perceptron (MLP) with GELU Hendrycks & Gimpel (2016) activation function
for further feature extraction. Both steps utilize residual connections and LayerNorm Ba et al. (2016),
the process can be expressed as:

F̂I = WMCA(LN(FI),LN(FP)) + FI,

F̂I = MLP(F̂I) + F̂I.
(6)

Then, through the shifted window mechanism Liu et al. (2021), this module achieves cross-window
information exchange. It incorporates global information of Quad Bayer CFA pattern into the network,
offering a spatial attention mechanism based on position information. Additionally, the window
mechanism maintains the computational complexity of the network linearly, effectively controlling
computational and parameter overhead compared to conventional attention methods.

Spatial Position Attention As shown in Fig. 4b, we designed another cross-modality attention
mechanism, aimed at building the relationship between position and image sufficiently in the Q2Q
stage. Specifically, the position branch introduces an explicit representation of the spatial dimension.
Firstly, the position feature FP ∈ RH×W×d and the image feature FI ∈ RH×W×d pass through their
respective convolutional projection layers. Subsequently, the position branch is activated by ReLU,
after which they demonstrate element-wise product with each other. The process can be expressed as:

F̂I = Conv1×1 (LN (FI))⊙ ReLU(Conv1×1(LN (FP)) + FI. (7)

6
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0833, Test Set, MIPI

Reference
PSNR/Parameters

DemosaicFormer
26.97dB/30.28M

NAFNet
26.41dB/63.16M

SAGAN
18.89dB/22.56M

PIPNet
22.78dB/3.46M

Restormer
25.74dB/26.11M

CycleISP
10.25dB/3.23M

TSANet-l (Ours)
27.04dB/16.26M

0801, Test Set, MIPI

Reference

DemosaicFormer

NAFNet

SAGAN

PIPNet

Restormer

CycleISP

TSANet-l (Ours)

Figure 5: Visualized results of all compared methods for Quad Bayer HybridEVS Demosaicing
on MIPI dataset. The proposed TSANet demonstrates the best visual results among all methods,
producing more vivid colors on scenes with complex coloration, better than the previous state-of-the-
art approach Restormer.

The position information is calculated to a weights map of image feature, determining the importance
of each feature pixel. It is similar to a Gate Mechanism Zamir et al. (2022), which can control the
flow of information but by position information rather than itself. Additionally, this method exhibits
faster computational performance when compared to convolution or attention mechanisms.

4 EXPERIMENTS

In this section, we first introduce experimental settings including implementation details and datasets.
Then we compared our proposed TSANet with other state-of-the-art methods on seven diverse
datasets. Finally, we demonstrate an ablation study to prove the effectiveness of our methods.

4.1 EXPERIMENTAL SETTINGS

Implementation details In all experiments, we use the following hyperparameters, unless men-
tioned otherwise. During the training, we randomly crop the original Quad Bayer input and RGB
ground truth into 128× 128 patches, with batch size = 32. We use Adam as the optimizer and the
learning rate starts from 2× 10−4 and is gradually reduced to 1× 10−7 with the cosine annealing
scheme. The total iteration is set to 1× 106. Specifically, to fully utilize the two-stage structure of
our TSANet, we apply a pretraining step on the sub-network before end-to-end joint training. In
particular, we employ published pretrained weights of DemosaicFormer for testing.

Datasets We train all the models with the dataset from Mobile Intelligent Photography & Imaging
(MIPI) Workshop 2024 Demosaic for Hybridevs Camera challenge trackWu et al. (2024), which
contains 800 pairs of Quad Bayer and RGB images with 2K resolution. The official public test set
of MIPI dataset contains 26 pairs. Both the training and testing data includes real world noise. we
simulate HybridEVS pattern test cases from five image datasets, including Kodak Loui et al. (2007),
Urban100 Cordts et al. (2016), BSD100 Martin et al. (2001), and Wed Ma et al. (2017) (first 100
images). Additionally, we assess dynamic performance using two video datasets: REDS Nah et al.
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Methods
Params

(M)
FLOPs

(G)

Image Datasets Video Datasets AverageKodak BSD100 Urban100 Wed MIPI REDS Vid4
PSNR/SSIM

DemosaicFormer 30.28 491.1 39.32/0.982 37.65/0.982 37.64/0.980 34.86/0.968 39.35/0.981 42.45/0.991 36.01/0.979 38.18/0.980
TSANet-l (Ours) 16.26 149.4 39.40/0.986 37.34/0.986 37.07/0.983 35.76/0.977 39.07/0.980 43.00/0.996 35.64/0.982 38.18/0.984

NAFNet 63.16 126.7 39.14/0.985 37.51/0.986 36.64/0.982 35.73/0.969 38.89/0.979 42.76/0.996 35.48/0.981 38.02/0.983
Restormer 26.11 282.2 39.16/0.986 37.11/0.985 36.36/0.977 35.00/0.971 38.42/0.978 41.91/0.990 35.08/0.980 37.58/0.981
SAGAN 22.56 341.6 36.14/0.974 30.53/0.931 29.89/0.946 28.22/0.917 34.25/0.959 38.13/0.984 32.16/0.963 32.76/0.953
TSANet-m (Ours) 8.74 81.94 39.24/0.986 37.25/0.986 36.75/0.982 35.60/0.976 38.93/0.979 42.87/0.996 35.53/0.982 38.02/0.984

PIPNet 3.46 68.8 32.20/0.960 31.97/0.950 28.92/0.942 29.19/0.929 33.73/0.950 36.19/0.981 32.20/0.964 32.06/0.954
CycleISP 3.23 104.9 33.09/0.970 32.18/0.969 29.78/0.942 30.22/0.944 30.04/0.934 32.96/0.975 30.46/0.964 31.25/0.957
TSANet-s (Ours) 4.00 37.4 38.73/0.984 36.56/0.984 36.15/0.980 35.19/0.973 38.47/0.978 41.94/0.989 35.15/0.980 37.46/0.981

Table 1: Quantitative evaluation of TSANet compared to other methods across seven diverse datasets.
Methods with an orange background are Transformer-based, while those with a blue background
are Convolution-based. Our TSANet provides three model sizes and consistently achieves the
best average PSNR and SSIM across various computational complexity levels, while significantly
reducing both parameters and FLOPs. Specifically, Our TSANet-l achieves the best average PSNR
and SSIM scores across seven datasets, surpassing DemosaicFormer with 0.004 on SSIM while
reducing parameter and computation costs by 1.86× and 3.29×.

(a) Reference (b) Restormer (c) NAFNet (d) DFormer (e) PIPNet (f) SAGAN (g) CycleISP (h) TSANet

Figure 6: Visualized results of all compared methods for Quad Bayer HybridEVS Demosaicing
on synthesized image datasets. "Demosaicformer" is abbreviated as "DFormer". The comparison
provides further validation of TSANet across various scenarios and confirms its effectiveness in
restoring fine details, colors, and textures.

(2019) and Vid4 Liu & Sun (2011). We re-sample Quad Bayer image from RGB images and simulate
event pixels to synthesize the input.

4.2 COMPARISON TO STATE-OF-THE-ARTS

Quantitative Comparison. We compare our proposed TSANet with several state-of-the-art meth-
ods, including two joint demosaicing and denoising methods PIPNet A Sharif et al. (2021) and
SAGAN Sharif et al. (2021), four image restoration methods, Restormer Zamir et al. (2022) and
DemosaicFormer Xu et al. (2024) based on Transformer, NAFNet Chen et al. (2022) and CycleISP Za-
mir et al. (2020) based on Convolution. We choose PSNR/SSIM scores as restoration quality metrics,
parameters and FLOPs as computational complexity metrics, to illustrate models’ performance. Table
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Frame 014, Clip calendar, Vid4

Reference

DemosaicFormer

NAFNet

SAGAN

PIPNet

Restormer

CycleISP

TSANet (Ours)

Figure 7: Visualized results of various methods for Quad Bayer HybridEVS Camera demosaicing on
video datasets. The proposed TSANet exhibits finer details, showing its advantages in high-speed
and dynamic scenes essential for event cameras.

0

14

Reference
PSNR/SSIM

Case 1
34.59/0.9776

Case 2
34.62/0.9779

Case 3
34.65/0.9780

Case 4
34.90/0.9789

Case 5
34.71/0.9780

Case 6
34.96/0.9792

Figure 8: Visualization of ablation study. We displayed the visual comparison results with a difference
map of our ablation studies, which separately validate various components, thus proving the efficacy
of our module design.

1 shows the quantitative comparison results on all test datasets. It is worth noting that due to its
large model size, Restormer and DemosaicFormer couldn’t be tested on the 2k MIPI dataset, so we
partitioned input images into 700x700 patches for inference and recombined the results. In particular,
the proposed TSANet achieves state-of-the-art performance in different complexity levels across
seven diverse test datasets, surpassing the previous SOTA method DemosaicFormer by 0.004 in
SSIM, while reducing parameters and computations by 1.86x and 3.29x respectively. Additionally,
on seven synthetic datasets, TSANet-l achieves the best PSNR/SSIM results in three and second-best
results in four. Furthermore, smaller versions of TSANet-s and TSANet-m also achieve the best
results on corresponding complexity ranges. Experimental comparisons validate the effectiveness of
our approach, ensuring restoration performance while drastically reducing computational resources,
introducing a model friendly to edge devices with limited computational resources.

Visualization Comparison. Fig. 5 and Fig. 6 respectively depict the visual comparison results
of TSANet compared with other models on the MIPI dataset and other synthesized image datasets.
Benefiting from our local-global feature extraction structure, our model exhibits closer visual sim-
ilarity to ground truth in image details, particularly in subtle color variations, resulting in more
vivid colors compared to other methods. While others suffer from color loss due to the Quad Bayer
pattern and event pixels, leading to further degradation of color information in fine textures and even
causing severe pixel errors (see Fig. 5). Further comparison on video datasets is demonstrated in
Fig.7, the finer details of our TSANet demonstrate strong competitiveness in handling high-speed
dynamic range scenes captured by event cameras. Overall, the perceptual visual results confirm the
effectiveness of our approach.

4.3 ABLATION STUDY

As shown in Table 2, we present ablation experiments to validate the effectiveness of the proposed
QCSA, SPA, RVSS modules and pretraining strategy in TSANet. Models are evaluated on the MIPI
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dataset. First, we remove both the QCSA and SPA cross-attention modules, then add each module
separately to assess their impact on network performance. As shown in Fig. 9, their combined
inclusion improves PSNR by 0.06dB with only an 8% increase in parameters. Additionally, we
evaluate the improvements introduced by RVSS and the two-step training strategy independently. The
pretraining step can effectively improve model performance by 0.13dB. RVSS reduces parameters
by 38% with just a 0.02dB drop in PSNR, highlighting the effectiveness of incorporating state
space models. Visual comparison is demonstrated in Fig. 8. Results showed that attention modules
effectively enhance model performance without notably increasing the number of parameters or
computational load. Despite the introduction of RVSS leading to a slight performance decrease, the
reduction in parameters and computational load is significant. Our final model achieves a balance
between computational resources and effectiveness.

Case1
 (No Position Prior)

Case2
 (No SPA)

Case3
 (No QCSA)

Case6
 (Adopted)

Case5
 (No Pretraining)

Case4
 (No RVSS)

0

2

4

6

Pa
ra

m
s (

M
)

3.7 3.64
4.06 4.0 4.0
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 (d
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38.45

38.47

38.34

38.49

+8%

-38%

+0.06dB

-0.02dB

  
  

→→

Figure 9: Quantitative visualization of the ablation study. The position prior branch we adopted
significantly improves performance in PSNR by 0.06dB with only an 8% increase in parameters,
while the state space modules reduce parameters by 38%, resulting in just a 0.02dB drop in PSNR.

Table 2: Quantitative results of ablation study. We validated the impact of the QCSA, SPA, RVSS
modules and the two-step training strategy on TSANet-s, demonstrating the effectiveness of our
proposed cross-attentions and training recipe while validating that employing RVSS can significantly
reduce computational resources and maintain performance.

Case Modules/Strategy PARAMs
(M)

FLOPs
(G)

MIPI

QCSA SPA RVSS Two-step Training PSNR/SSIM

1 ✓ ✓ 3.70 32.0 38.41/0.9773
2 ✓ ✓ ✓ 3.64 32.5 38.42/0.9773
3 ✓ ✓ ✓ 4.06 36.9 38.45/0.9775

4 ✓ ✓ ✓ 6.42 59.1 38.49/0.9776
5 ✓ ✓ ✓ 4.00 37.4 38.34/0.9772

6 ✓ ✓ ✓ ✓ 4.00 37.4 38.47/0.9775

5 CONCLUSION

We have presented a novel lightweight two-stage structure network tailored for the HybridEVS
architecture, which introduces task-specific sub-networks and a corresponding two-step training
strategy. Specifically, we introduce Cross-Swin State Block (CSSB) and Conv State Block (CSB)
strengthened by Residual Vision State Space (RVSS) to maintain low computational complexity while
simultaneously addressing local position features and long-range dependencies. We further propose
the Quad Bayer Cross Swin Attention (QCSA) and Spatial Position Attention (SPA) mechanisms to
effectively couple the arrangement information of Quad Bayer pattern and event points in the network,
providing explicit prior encoding for global position information. To the best of our knowledge,
this is the first work employing SSMs in a hybrid model for demosaicing tasks. Our approach is
validated across multiple datasets, offering a lightweight and mobile-friendly model for Quad Bayer
HybridEVS Demosaicing.
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A MODEL DETAILS IN PYTORCH STYLE PSEUDO-CODE

In this section, we provide a detailed explanation of the modules we designed, including Cross-Swin
State Block, Conv State Block, Quad Bayer Cross Swin Attention and Spatial Position Attention using
PyTorch style pseudo-code. The specific runnable model code is provided in the supplementary
material.

Algorithm 1 Pseudo-code of Cross-Swin State Block

## Cross-Swin State Block (CSSB)
class CSSB(nn.Module):

def __init__(self, rvss_dim, trans_dim, head_dim, window_size,\
drop_path, type='W', input_resolution=None):

super(CSSB, self).__init__()
self.rvss_dim = rvss_dim
self.trans_dim = trans_dim
self.head_dim = head_dim
# size of local window
self.window_size = window_size
# drop out
self.drop_path = drop_path
# type: 'W' (Window) or 'SW' (Shifted Window)
self.type = type
self.input_resolution = input_resolution
assert self.type in ['W', 'SW']
if self.input_resolution <= self.window_size:

self.type = 'W'
# input projection
self.conv1_1 = nn.Conv2d(self.rvss_dim+self.trans_dim, \
self.rvss_dim+self.trans_dim, 1, 1, 0, bias=True)
self.conv1_2 = nn.Conv2d(self.rvss_dim+self.trans_dim, \
self.rvss_dim+self.trans_dim, 1, 1, 0, bias=True)
# employ Quad Bayer Cross Swin Attention
self.trans_block = QCSA(self.trans_dim, self.trans_dim, self.head_dim, \
self.window_size, self.drop_path, self.type, self.input_resolution)
# Visual State Space Model
self.rvss = VSSBlock(

hidden_dim=self.rvss_dim,
drop_path=0,
norm_layer=nn.LayerNorm,
attn_drop_rate=0,
d_state=16,
expand=2)

def forward(self, image, position):
# input projection and split
rvss_x, trans_x = torch.split(self.conv1_1(image),\
(self.rvss_dim, self.trans_dim), dim=1)
# Residual Visual State Space Module
rvss_x = self.rvss(rvss_x) + rvss_x
# Rearrange inputs into 'b h w c'
trans_x = Rearrange('b c h w -> b h w c')(trans_x)
position = Rearrange('b c h w -> b h w c')(position)
# Quad Bayer Cross Swin Attention
trans_x = self.trans_block(trans_x, position)
# Rearrange ouput back
trans_x = Rearrange('b h w c -> b c h w')(trans_x)
# concatenate and output projection
res = self.conv1_2(torch.cat((rvss_x, trans_x), dim=1))
# residual connection
image = image + res
return image
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Algorithm 2 Pseudo-code of Cross-Swin State Block

## Conv State Block (CSB)
class CSB(nn.Module):

def __init__(self, conv_dim, rvss_dim, head_dim, window_size,\
drop_path, type='W', input_resolution=None):

super(CSB, self).__init__()
self.conv_dim = conv_dim
self.rvss_dim = rvss_dim
self.head_dim = head_dim

# input projection
self.conv1_1 = nn.Conv2d(self.conv_dim+self.rvss_dim, \
self.conv_dim+self.rvss_dim, 1, 1, 0, bias=True)
self.conv1_2 = nn.Conv2d(self.conv_dim+self.rvss_dim, \
self.conv_dim+self.rvss_dim, 1, 1, 0, bias=True)

# Visual State Space Model
self.rvss = VSSBlock(

hidden_dim=self.rvss_dim,
drop_path=0,
norm_layer=nn.LayerNorm,
attn_drop_rate=0,
d_state=16,
expand=2)

# Convolution Block
self.conv_block = nn.Sequential(

nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
nn.ReLU(True),
nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
)

def forward(self, x):
# input projection and split
conv_x, rvss_x = torch.split(self.conv1_1(x), \
(self.conv_dim, self.rvss_dim), dim=1)
# Residual Convolution
conv_x = self.conv_block(conv_x) + conv_x
# Residual Visual State Space Model
rvss_x = self.rvss(rvss_x) + rvss_x
# concatenate and output projection
res = self.conv1_2(torch.cat((conv_x, rvss_x), dim=1))
# residual connection
x = x + res
return x

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 3 Pseudo-code of Quad Bayer Cross Swin Attention

## Quad Bayer Cross Swin Attention (QCSA)
class QCSA(nn.Module):

def __init__(self, input_dim, output_dim, head_dim, window_size,\
drop_path, type='W', input_resolution=None):

super(QCSA, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
# Swin type
assert type in ['W', 'SW']
self.type = type
if input_resolution <= window_size:

self.type = 'W'
# Layer Norm
self.ln1 = nn.LayerNorm(input_dim)
self.ln2 = nn.LayerNorm(input_dim)
self.ln3 = nn.LayerNorm(input_dim)

# Window Mulit Head Cross Attention
self.msa = WMCA(input_dim, input_dim, head_dim, window_size, self.type)

# drop out
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

# Multi Layer Perceptron
self.mlp = nn.Sequential(

nn.Linear(input_dim, 4 * input_dim),
nn.GELU(),
nn.Linear(4 * input_dim, output_dim),

)

def forward(self, image, position):
# Cross Swin Layer + residual connection
image = image + self.drop_path(self.msa(self.ln1(image), self.ln3(position)))

# MLP for out projection
fused = image + self.drop_path(self.mlp(self.ln2(image)))
return fused
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Algorithm 4 Pseudo-code of Window Multi Head Cross Attention

## Window Multi Head Cross-attention module in Quad Bayer Cross Swin Attention
class WMCA(nn.Module):

def __init__(self, input_dim, output_dim, head_dim, window_size, type):
super(WMCA, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.head_dim = head_dim
self.n_heads = input_dim//head_dim
# scale factor
self.scale = self.head_dim ** -0.5
# size of local window
self.window_size = window_size
# Swin type: 'W' (Window) or 'SW' (Shifted Window)
self.type=type
# positional encoding inside the window
self.relative_position_params = nn.Parameter(torch.zeros((2 *\
window_size - 1)*(2 * window_size -1), self.n_heads))
trunc_normal_(self.relative_position_params, std=.02)
self.relative_position_params = torch.nn.Parameter(self.relative_position_params.view(2*\
window_size-1, 2*window_size-1, self.n_heads).transpose(1,2).transpose(0,1))
# input projection
self.embedding_layer = nn.Linear(self.input_dim, 2*self.input_dim, bias=True)
self.embedding_layer_qb = nn.Linear(self.input_dim, self.input_dim, bias=True)
# output projection
self.linear = nn.Linear(self.input_dim, self.output_dim)

def forward(self, x, y):
# x: input image tensor with shape of [b h w c];
# y: input Quad Bayer tensor with shape of [b h w c];
# shift window when type = 'SW'
if self.type!='W':

x = torch.roll(x, shifts=(-(self.window_size//2), -(self.window_size//2)), dims=(1,2))
y = torch.roll(y, shifts=(-(self.window_size//2), -(self.window_size//2)), dims=(1,2))

# patrition to windows
x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c',\

p1=self.window_size, p2=self.window_size)
h_windows = x.size(1)
w_windows = x.size(2)
x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c',\

p1=self.window_size, p2=self.window_size)
y = rearrange(y, 'b (w1 p1) (w2 p2) c -> b (w1 w2) (p1 p2) c',\

p1=self.window_size, p2=self.window_size)
# input projection
kv = self.embedding_layer(x)
k, v = rearrange(kv, 'b nw np (threeh c) -> threeh b nw np c',\

c=self.head_dim).chunk(2, dim=0)
q = self.embedding_layer_qb(y)
q = rearrange(q, 'b nw np (h c) -> h b nw np c', c=self.head_dim)
# cross window attention
sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
# masks when shifted window
if self.type != 'W':

attn_mask = generate_mask(h_windows, w_windows,\
self.window_size, shift=self.window_size//2)

sim = sim.masked_fill_(attn_mask, float("-inf"))
# attention map
probs = nn.functional.softmax(sim, dim=-1)
# attention to value
output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
output = rearrange(output, 'h b w p c -> b w p (h c)')
# output projection
output = self.linear(output)
output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c',\

w1=h_windows, p1=self.window_size)

# shift back when type = 'SW'
if self.type!='W': output = torch.roll(output, shifts=\

(self.window_size//2, self.window_size//2), dims=(1,2))
return output
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Algorithm 5 Pseudo-code of Spatial Position Attention

## Spatial Position Attention (SPA)
class SPA(nn.Module):

def __init__(self, dim, num_heads, bias=False, LayerNorm_type='WithBias'):
super(SPA, self).__init__()
# Layer Norm
self.norm1_image = LayerNorm(dim, LayerNorm_type)
self.norm1_position = LayerNorm(dim, LayerNorm_type)
# Attention
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(dim, 1, 1))
self.q = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
self.v = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)

def forward(self, image, position):
# image: b, c, h, w
# position: b, c, h, w
# return: b, c, h, w

# projection
q = self.q(self.norm1_image(image)) # qb
v = self.v(self.norm1_position(position)) # image

# position attention
x_spatial = F.relu(q) * v * self.temperature

# residual connection
fused = image + x_spatial

return fused
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