
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SEEK-CAD: A SELF-REFINED GENERATIVE MODEL-
ING FOR 3D PARAMETRIC CAD USING LOCAL INFER-
ENCE VIA DEEPSEEK

Anonymous authors
Paper under double-blind review

ABSTRACT

The advent of Computer-Aided Design (CAD) generative modeling will signifi-
cantly transform the design of industrial products. The recent research endeavor
has extended into the realm of Large Language Models (LLMs). In contrast to
fine-tuning methods, training-free approaches typically utilize the advanced LLMs,
thereby offering enhanced flexibility and efficiency in the development of AI agents
for generating CAD parametric models. However, the lack of a mechanism to
harness Chain-of-Thought (CoT) limits the potential of LLMs in CAD applications.
The Seek-CAD is the pioneer exploration of locally deployed inference LLM
DeepSeek-R1 for CAD parametric model generation with a training-free methodol-
ogy. This study is the investigation to incorporate both visual and CoT feedback
within the self-refinement mechanism for generating CAD models. Specifically, the
initial generated parametric CAD model is rendered into a sequence of step-wise
perspective images, which are subsequently processed by a Vision Language Model
(VLM) alongside the corresponding CoTs derived from DeepSeek-R1 to assess the
CAD model generation. Then, the feedback is utilized by DeepSeek-R1 to refine
the initial generated model for the next round of generation. Moreover, we present
an innovative 3D CAD model dataset structured around the SSR (Sketch, Sketch-
based feature, and Refinements) triple design paradigm. This dataset encompasses
a wide range of CAD commands, thereby aligning effectively with industrial appli-
cation requirements and proving suitable for the generation of LLMs. Extensive
experiments validate the effectiveness of Seek-CAD under various metrics.

1 INTRODUCTION

The CAD parametric model (also called design history), as a crucial role in Computer-Aided Design
(CAD), indicates the design logic of 3D CAD models, where its command and parameter sequences
can be quickly edited to create or modify the shape of a 3D object Wu et al. (2021); Jones et al.
(2023). However, constructing a parametric CAD model from scratch is time-consuming and hinders
the development of automation in industrial manufacturing. Hence, it attracts much attention on
generative CAD modeling recently, including many interesting applications such as CAD parts
assembly Jones et al. (2021); Willis et al. (2022); Wu et al. (2023), shape parsing Li et al. (2022);
Ren et al. (2022), CAD parametric model generation Wu et al. (2021); Xu et al. (2023); Li et al.
(2025b), and cross-modal CAD generation (e.g., Point cloud-to-CAD, Text-to-CAD, and etc.) Khan
et al. (2024a); Li et al. (2024a); Dupont et al. (2024); Li et al. (2024c;b); Ma et al. (2024); Li et al.
(2025c); Zhang et al. (2025b); Khan et al. (2024b). Under the current trend of LLMs and VLMs
performing outstandingly in computer vision tasks Wang et al. (2023); Schumann et al. (2024); Wang
& Ke (2024); Huang et al. (2024); Zhu et al. (2024); Bensabath et al. (2024), integrating LLMs and
VLMs in generative CAD modeling will pave the way for future innovations in smart design systems.

Fine-tuning is a commonly used method for adapting general LLMs to domain-specific applications.
In contrast to fine-tuning approaches, training-free approaches typically utilize advanced LLMs i.e.
GPT-4o Achiam et al. (2023), thereby offering enhanced flexibility and efficiency in the creation
of AI agents for generating CAD parametric models Yuan et al. (2024); Alrashedy et al. (2025).
However, the primary drawback is the absence of a mechanism to harness Chain-of-Thought (CoT),
which limits the potential of LLMs in CAD applications. Inspired by DeepSeek-R1 Guo et al. (2025)

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

with advanced capability of reasoning, we deploy a DeepSeek-R1-32B-Q4 locally without training or
finetuning as the backbone of our approach to explore its capability for generative CAD modeling.

Specifically, we present Seek-CAD, a training-free generative framework for CAD modeling based
on DeepSeek-R1-32B-Q4. By employing a retrieval-augmented generation (RAG) strategy on a
local CAD code corpus, Seek-CAD produces Python-like CAD code for CAD parametric model
generation. To ensure that the generated code aligns with prompt descriptions and faithfully encodes
geometric features (e.g., fillet, chamfer) and constraints (e.g., tangency, orthogonality), we introduce
a step-wise visual feedback mechanism that guides and refines the modeling process. In particular,
we render step-wise perspective images that visually capture each stage of the CAD modeling process.
These images are then evaluated using Gemini-2.0 Team et al. (2024) to assess their alignment with
the chain-of-thought (CoT) from DeepSeek-R1-32B-Q4. The resulting feedback is incorporated to
iteratively refine the initial code and parameters.

Furthermore, we propose a novel CAD design paradigm called SSR (Sketch, Sketch-based feature,
and Refinements), where each model is represented as a sequence of SSR triples, each consisting
of a sketch, a sketch-based feature (e.g., extrude and revolve), and optionally, refinement features
(e.g., chamfer, fillet and shell). Complex shapes are constructed through boolean operations across
SSR units. To support refinement features, we introduce a simple yet effective reference mechanism,
termed CapType (Figure 3), which establishes explicit links between topological primitives in the
sketch and their resulting primitives generated during modeling. To evaluate our approach, we
construct a new CAD dataset of 40k samples following the SSR modeling paradigm. The dataset
covers diverse CAD features not included in existing datasets, and each sample is paired with a textual
description generated by GPT-4o Achiam et al. (2023). For further details, please see Section A.2.
We plan to release the dataset publicly in the future.

In summary, our key contributions are as follows: (i) We present Seek-CAD, a training-free framework
leveraging the locally deployed DeepSeek-R1. It incorporates a self-refinement capability through a
sequential visual and CoT feedback mechanism, which enhances the generative modeling of CAD
designs and significantly contributes to the effective generation of diverse CAD parametric models.
(ii) We present an innovative SSR design paradigm, which serves as an alternative to the conventional
SE paradigm and demonstrates enhanced suitability for the generation of complex CAD models.
(iii) Experimental results demonstrate that Seek-CAD can generate diverse and complex parametric
CAD models with high geometric fidelity, enabling precise parametric control while supporting the
generation of diverse CAD models.

2 RELATED WORK

2.1 GENERATIVE CAD MODELING

Generative CAD modeling has made a significant step recently Xu et al. (2022; 2024b); Jayaraman
et al. (2021); Dupont et al. (2024); Guo et al. (2022), notably with transformer-based models, which
treat CAD commands as parametric sequential data for learning and generation with a feed-forward
or an auto-regressive strategy Wu et al. (2021); Xu et al. (2022; 2023); Ganin et al. (2021). Besides,
diffusion-based Ho et al. (2020); Ma et al. (2024) methods have also been adopted to achieve the
controllable generation or reconstruction of parametric CAD sequences Ma et al. (2024); Zhang
et al. (2025a). Mamba-CAD Li et al. (2025b) makes a step forward to handle longer parametric
CAD sequences to generate complex CAD models. As a CAD model contains explicit parametric
commands, which implicitly indicate its design logic and shape geometry, it can be seen as a kind of
multi-modal data inherently, which also raises many applications of generating or reconstructing CAD
models from point clouds, images, and texts Li et al. (2024b); You et al. (2024); Dupont et al. (2024);
Khan et al. (2024a); Li et al. (2024c). These methods mainly focus on the SE (Sketch-Extrusion)
paradigm, which supports only a limited set of simple CAD operations, making it incapable of
generating diverse and complex CAD models that meet real-world design requirements. Instead,
Seek-CAD adopts the SSR paradigm, which enables the inclusion of diverse CAD commands such
as fillet, chamfer, and shell, supporting the creation of more complex CAD models, which is closer
to industrial requirements. From another perspective, Seek-CAD is a self-refined framework for
generative CAD modeling without any training or finetuning, which is also different from these
efforts under a training strategy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 LLMS FOR CAD

With the success of LLMs in Computer Vision (CV) tasks Tan et al. (2024); Naeem et al. (2023); Shao
et al. (2024); Ghosh et al. (2024), many interesting applications of leveraging LLMs for CAD-related
tasks have raised much attention recently.Text2CAD Khan et al. (2024b) generates parametric CAD
models from natural language instructions using a transformer-based network Vaswani et al. (2017)
with an annotation pipeline for CAD prompt using Mistral Chaplot (2023) and LLaVA-NeXT Liu et al.
(2024). CAD-MLLM Xu et al. (2024a), a unified system to utilize a LLM to align multimodal inputs
with parametric CAD sequences for generating CAD models. CAD-assistant Mallis et al. (2024)
uses a Vision-Large Language Model (VLLM) with tool-augmented planning to iteratively generate
and adapt CAD designs via Python API of FreeCAD. FI2CAD Ocker et al. (2025) introduces a
multi-agent system, a LLM-based MAS architecture for CAD development processes that mimics an
engineering team to automatically generate and refine parametric CAD models with human feedback.
CAD-Llama Li et al. (2025a) enables pretrained LLMs to generate parametric 3D CAD models
through the adaptive pretraining on Structured Parametric CAD Code (SPCC). Unlike these methods,
our approach mainly focuses on a training-free strategy with the self-refined capability for generative
CAD modeling.

The most related to our Seek-CAD are other two training-free frameworks, 3D-PreMise Yuan et al.
(2024) and CADCodeVerify Alrashedy et al. (2025). 3D-Premise enhances CAD code refinement by
supplying GPT-4 Achiam et al. (2023) with an image of a whole object and its initial description,
allowing it to identify and correct discrepancies between the intended design and the generated CAD
code. Unlike 3D-Premise, CADCodeVerify prompts GPT-4 Achiam et al. (2023) to generate and
answer a set of questions based on the initially provided description of a 3D CAD object, to adjust any
discrepancies between the generated CAD model and the description. Compared to them, Seek-CAD
differs in the following aspects: (i) Seek-CAD uses DeepSeek-R1-32B-Q4 (open-source reasoning
model) for local deployment, integrated with a CAD code corpus via a retrieval-augmented generation
framework, instead of relying on GPT-4. (ii) Previous research evaluates object renderings in VLMs
by focusing only on final CAD forms, overlooking intermediate phases, which limits feedback for
complex models. Seek-CAD addresses this with a step-wise feedback mechanism, showing both final
and intermediate shapes to enhance VLM feedback. (iii) Previous methods use predefined question
templates to evaluate VLM alignment with descriptions and images. Seek-CAD, however, guides
VLMs to assess alignment between DeepSeek-R1’s chain-of-thought (CoT) and step-wise images, as
CoT effectively illustrates the design logic, enabling clearer VLM understanding (Sec 3.2).

3 SEEK-CAD FRAMEWORK

In this section, we introduce the Seek-CAD pipeline, which integrates a local inference process
(Sec 3.1) and a step-wise visual feedback strategy (Sec 3.2) to generate and progressively refine CAD
models, based on visual alignment signals derived from step-wise renderings. The framework of
Seek-CAD is illustrated in Figure 1.

3.1 LOCAL INFERENCE PIPELINE

LLMs are widely applied across various domains through training or finetuning, both of which
require substantial computational resources. In contrast, performing local inference with LLMs can
significantly reduce the requirement for computational resources. Inspired by the advancements in
reasoning capabilities of DeepSeek-R1, we make a step forward to explore its potential for CAD
generative modeling without additional training or finetuning.
(1) Pipeline Definition. This pipeline takes the text T as the input. It is a statement of how to design
a CAD model step by step, or it can also be a description of the geometric appearance of objects. The
goal can be defined as: I0 ∼ P (I0 | T ;H) that maps the input text T to an initial set of CAD code I0
represented in the SSR paradigm (Sec 4), where H denotes our Seek-CAD.
(2) Knowledge Constraint. Similar to other LLMs, DeepSeek-R1 may exhibit hallucinations Srira-
manan et al. (2024); Huang et al. (2025); Jiang et al. (2024), occasionally generating CAD parametric
models that deviate from the SSR paradigm. To address it, we propose the knowledge constraint
Cons = (Φ,D, E) as the system prompt to make DeepSeek-R1 generate CAD code following the
SSR paradigm, with the constraint Cons consisting of three parts: Φ specifies its functionality, D
documents the SSR schema, and E provides an example pairing a textual description with SSR-based

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Local CAD CorpusKnowledge Constraint
#Functionality-You are a CAD-Assistant to help
user create CAD models…#
#CAD Code Documentation based on the SSR#
#Example#

⋯

Retrieved Candidates
Top-3

DeepSeek-R1

Generated CAD Code 𝑰𝟎
sk0 = Sketch(plane={
"normal": [0.0, -1.0, 0.0],
"origin": [0.0, 0.0, 0.0],
"x": [1.0, 0.0, 0.0]})
p0_0 = Profile()
p0_0.addLoop(Loop()
 .lineTo(-0.1016,-0.108)
…

Initial CAD Code Generation

Chain-of-Thought
(CoT)

Let’s break down this in
following step:
(1) First, draw…sketch
(2) Next, …
…
Finally,…

−

Step-wise Visual Feedback

R(S1) R(S1⊕S2) R(S1⊕S2 ⊕S3)− −

Intermediate Shape 𝑴𝑰

Gemini-2.0

CAD Code Refinement (Max iterations k=2)

😑

😊

DeepSeek-R1

𝑰 = 𝑰𝟎

They are not
well aligned.
#Reason#

Final Code

𝑰𝟎

Knowledge Constraint
#Functionality-You are a CAD-Assistant to help
user create CAD models…#
#CAD Code Documentation based on the SSR#
#Example#

Ultimate Shape 𝑴𝑼

R(S1⊕S2 ⊕S3 ⊕S4)

Generated CAD Code 𝑰𝒌

A solid cylindrical shape with a circular base
profile that extends uniformly along a
perpendicular axis, forming a consistent and
smooth side surface with flat top and bottom
faces. The top surface now features an expanded
circular groove with a concentric toroidal cutout
surrounding the central cylindrical void,
resulting in a ring-like recessed area.

Rendering script

sk0 = Sketch(plane={
"normal": [0.0, 0.0, 1.0],
"origin": [0.0, 0.0, 0.0],
"x": [1.0, 0.0, 0.0]})
p0_0 = Profile()
p0_0.addLoop(Loop()
 .moveTo(0.0,0.0)
 .circle(0.009905)
…

Step-wise visual feedback

😑😊
Final Code ⋯
𝑰 = 𝑰𝒌

⨁

Figure 1: The overview of our Seek-CAD framework. The whole pipeline can be divided into
two parts consisting of "Initial CAD Code Generation" and "CAD Code Refinement", which are
both embedded with a knowledge constraint depicted in Sec. 3.1 to guide DeepSeek-R1 to generate
CAD code following the SSR paradigm (Sec. 4). For the first part, a given query T is enhanced by
conducting RAG on a local CAD corpus that consisting 10, 000 CAD models. Next, Top-3 retrieved
candidates would be concatenated with T to trigger DeepSeek-R1 to generate an initial CAD code
I0. For the second part, I0 would go through the Step-wise Visual Feedback with CoT to have the
iteration refinement. To achieve this, we first utilize a rendering script R(∗) to obtain step-wise
images of I0, which can represents the intermediate and ultimate shape of the object (MI , MU)
simultaneously. ⊕ denotes the concatenation of SSR triplets, where each triplet, represented by Si

(Sec. 4), is rendered along with all its preceding triplets to preserve the correlations between object
entities. (More details in Sec. 3.2). Next, the step-wise images are fed into Gemini-2.0 to assess their
alignment with the CoT from DeepSeek-R1. This feedback determines whether the current code Ik
is reasonable. In practice, we set k = 2 as the maximize iterations of code refinement.

CAD code, as shown in Figure 6 of Appendix A.1.
(3) Retrieval Augment Generation (RAG). In order to augment the recognition of Seek-CAD
within the SSR paradigm, we construct a SSR-based CAD corpus CSSR = {(di, ci)}Ni=1 to equip
Seek-CAD with the capability to perform RAG. di is the textual description and ci its corresponding
CAD code, with N = 10,000 CAD models. As usual settings of conducting RAG, we select a hybrid
search combining a vector-based and full-text strategy. Specifically, for a given T , the similarity
score is computed by:

gfinal
i = λ · gvec

i + (1− λ) · gfull
i , λ ∈ [0, 1], (1)

where gvec
i = cos(zT , zi), zT = evec(T), zi = evec(di). evec denotes an embedding model,

bge-m3 Chen et al. (2024). gfull
i = Uindex(T, di) is calculated with a traditional inverted index

without vectorization. The top-k candidates are selected as RT = TopK(gfinal
i). Practically, we set

λ = 0.3, top-k = 3.
(4) Initial CAD Code Generation. To incorporate the retrieved content into the input context,
we make each retrieved pair (dj , cj) ∈ RT concatenated with T . By integrating the knowledge
constraints Cons, the initial CAD code I0 can be obtained as follows:

I0 ∼ P (I0 | T ⊕ (dj , cj), Cons). (2)

The initially generated CAD code I0 is occasionally subject to compilation failures with the geometry
kernel (e.g., PythonOCC Paviot (2022) utilized in this study), which are attributed to syntax errors
E. For remediation, a pattern template Q is employed to automatically rectify E in I0, addressing
issues such as mismatched parentheses and incorrect capitalization of variable names, depicted as:
I0 ∼ P (I0 | Q).
(5) CAD Code Refinement. Upon addressing the aforementioned syntax errors, we employ the geom-
etry kernel to directly render I0, thereby acquiring its sequential perspective images (Sec 3.2). Subse-
quently, the sequential perspective images, in conjunction with the CoT obtained from DeepSeek-R1,
are input into Gemini-2.0 for the purpose of evaluating their alignment. Finally, the step-wise visual
feedback (Sec 3.2), Fcall, would be delivered back to DeepSeek-R1 again to refine I0 to get final
CAD code I. This process may iterate N times based on whether Fcall is positive or negative, To
make it clear, we denote F as an indicator to represent the statement of Fcall. For example, if L = 1,
it means Fcall is positive, that is, the CoT and step-wise perspective images are well matched and do
not require any further modification, which can be defined with:

I =

{
{Im}km=0 L = 1

Ik ∼ {P (Ik | Ik−1, Fcall, Cons)}Nk=1 L = 0
. (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Analogous to the initial CAD code I0, which bears the potential for syntax errors, a syntax check
shall also be executed on Ik during each iterative step, as delineated in: Ik ∼ P (Ik | Q). In practice,
the maximum iteration step N = 2 is established in our work to avert superfluous adjustments, which
may arise from the hallucinations of Gemini-2.0. Further elaboration on the iteration step within the
refinement stage can be found in the "Refinement" section of Sec 5.2.

3.2 STEP-WISE VISUAL FEEDBACK WITH COT FOR REFINEMENT

A significant capability of reasoning LLMs lies in their ability to refine and optimize initial outputs
in response to feedback. The self-refined strategy has been adopted in CAD parametric model
generation Yuan et al. (2024); Alrashedy et al. (2025). As CAD command sequences can be easily
rendered into the perspective image of an object by using geometry kernel tools like PythonOCC, this
can shift the aligned judgment from "Command-Description" to "Image-Description", which can be
well handled by VLMs. In this study, we propose a novel step-wise visual feedback (SVF) strategy,
which leverages not only the imagery of the object’s final form but also retains visuals depicting the
intermediate configurations throughout the entire construction process. Additionally, it incorporates
the CoTs from DeepSeek-R1 to guide the VLM during its evaluation.
(1) Obtain Step-wise Images. Specifically, the initial generated CAD code I0 is converted into a
sequence (Sseq) of n SSR triplets, Si (Recall Sec 4), as defined with I0 −→ Sseq = [S1, S2, · · ·, Sn].
Next, we leverage the rendering script R(∗) (based on PythonOCC) to subsequently compile this
sequence S to generate their corresponding perspective images. To better illustrate the construction
process from a visual perspective, we capture both the intermediate object shapes, MI , and the
ultimate object shape, MU . To capture MI , for each step k ∈ {1, . . . , n} in the construction sequence
S1⊕S2⊕· · ·⊕Sk, the corresponding image in MI is rendered by R(∗). To maintain the correlations
between entities of the object and make them visualized clearly, this rendering process would highlight
the entity from the current SSR triplet Sk while entities from all prior SSR triplets Sj (where j < k)
are hidden as S̄i. To achieve this, we adjust the transparency in R(∗) to ensure that the current shape
of Sk to the Sj intermediate shape is emphasized. To capture the ultimate shape of the object, MU ,
the complete sequence Sseq would be directly rendered without hiding any entities. The rendering
process can be found in the "CAD Code Refinement" of Figure 1. Finally, each I0 can be defined
with a set of perspective images M consisting of MI and MU :

MI = [R(S1), R(S̄1 ⊕ S2), · · ·, R(S̄1 ⊕ S̄2 ⊕ · · · ⊕ Sn)], (4)

MU = R(S1 ⊕ S2 ⊕ · · · ⊕ Sn), (5)
M = [MI ,MU], (6)

where ⊕ represents the concatenation of SSR triplets. In practice, only a single image is rendered for
each SK . Benefiting from the highlight of each entity in the step-wise images, this effectively avoids
occlusion issues encountered in the single-view rendering.
(2) Query for Calling Feedback. Instead of using VLMs to judge the alignment between the initial
description T and M , Seek-CAD directly make it judge the alignment between the thought from
DeepSeek-R1, CoT = [t1, t2, . . . , tm], and M . ti ∈ CoT depicts a clear design logic of the current
step according to the initial description T , which is highly compatible with current step-wise image
SK . This would help VLMs understand clearly how the object is constructed. Next, we feed M
along with its corresponding thought CoT into Gemini (VLM) and prompt it to judge the alignment
between M and CoT to generate feedback Fcall, this process can be defined as:

Fcall ∼ P (Fcall | G,M,CoT), (7)

where G is our prompt query designed with two rules for generating Fcall: (i) If M and CoT are well
aligned, Fcall should be a positive feedback to return. (ii) If M and CoT are mismatched, Fcall would
outline a clear statement to point out discrepancies between M and CoT, which would be delivered
back to DeepSeek-R1 to again refine the generated CAD code (Recall Equation 3).

4 SSR TRIPLE DESIGN PARADIGM

(1) SSR Triple Design definition. The Sketch and Extrude (SE) paradigm persists as the predominant
approach in contemporary feature-based CAD modeling Khan et al. (2024a); Xu et al. (2023); Zhang
et al. (2025b); Wang et al. (2024); Yavartanoo et al. (2024), attributed to its versatility and facilitation

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: The SSR Design Paradigm. Each CAD model is constructed as a sequence of SSR triplets,
where each triplet consists of a sketch, a sketch-based feature (e.g., extrude, revolve), and optional
refinement features (e.g., shell, chamfer, fillet). Topological primitives is traced using the CapType
reference system (START, SWEPT, END) during modeling operations. Final shapes are formed by
applying boolean operations (e.g., Union, Cut, Intersect) between the outputs of SSR triplets.

of parametric editing. Current large-scale datasets for parametric sequence modeling Wu et al. (2021);
Willis et al. (2021) also adopt this paradigm. Nevertheless, the command sets provided by preceding
datasets are constrained to basic operations such as sketch and extrude, and the curves incorporated
within sketches are predominantly confined to elementary types. Consequently, contemporary
research endeavours leveraging these datasets tend to yield simpler and less diverse geometric
forms, failing to adequately address the complexities inherent in real-world design requirements. To
address this, we introduce a novel modeling paradigm called SSR (Sketch, Sketch-based feature, and
Refinements), in which each modeling step is represented as a SSR triplet S:

S = (s, f, ⟨r1, r2, . . . , rk⟩ or ∅), (8)

where k ≥ 0, s denotes a 2D sketch feature, f ∈ F is a sketch-based feature such as extrude or
revolve, and ⟨r1, r2, . . . , rk⟩ is an ordered sequence of zero or more refinement features, where each
ri ∈ R and R includes features such as fillet and chamfer. Each SSR triplet Si is compiled into a 3D
geometry Si = CAD_Kernel(Si) via a CAD kernel like PythonOCC, and a complete CAD model
M, composed of n SSR triples, is represented as a sequence of geometry units joined by boolean
operations:

M = ⟨S1,op1,S2,op2, . . . ,Sn⟩, (9)

where opi ∈ {Union,Cut,Intersect} denotes a boolean operation applied between adjacent
geometry units. An example of this process is shown in Figure 2.

(2) CapType Reference Mechanism. In the context of complex geometric modeling, the inte-
gration of refinement features requires referencing particular topological primitives generated dur-
ing intermediate modeling phases, which are not retained within the design history (parametric
model). Consequently, we introduce the CapType reference mechanism to address this issue.

Figure 3: Illustration of the
proposed CapType reference
mechanism.

Given an SSR triplet S = (s, f, ⟨r1, r2, . . . , rk⟩), where s is the
2D sketch containing a set of primitives A = {a1, a2, . . . , am}, we
define the intermediate geometry S ′ = CAD_Kernel(S′), where
S′ = (s, f) omits the refinement operations. The resulting geometry
S ′ contains a set of primitives B = {b1, b2, . . . , bn}. The CapType
reference mechanism defines a mapping A → B as:

ϕ(a, C) → b, a ∈ A, b ∈ B, C ∈ {START,END,SWEPT},
(10)

where C denotes the CapType category: START and END refer to
the primitives at the start and end of the 3D operation f , respectively, while SWEPT refers to the
primitives generated along the trajectory of the operation, as illustrated in Figure 3. This mechanism
allows each refinement operation ri ∈ R to reference a specific primitive b ∈ B via ϕ(a,C), enabling
precise and reliable identification. As illustrated in Figure 5(c) and Figure 7, the method enables the
generation of complex and diverse CAD models that align well with real-world design requirements.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

(1) Metrics. To evaluate how precisely the generated CAD commands depict the 3D object, we
sample 2000 points separately from CAD models in Ground Truth GT and generated CAD models D.
We use Chamfer Distance (CD), Hausdorff Distance (HD), and Intersection over the Ground
Truth (IoGT) Alrashedy et al. (2025) to measure the differences between GT and D. Besides, we
utilize G-Score (score from 1 to 5, allowing decimals by Gemini-2.0) to judge the alignment between
the description and the perspective image of its corresponding generated CAD model. To prove that
the generative model is not a mere replication of the local CAD corpus, we also compute a Novel
metric as: 1

n

∑n
i=1 I[s(IA, IBi

) < τ] ≥ ρ, where IA is a rendering image of the generated CAD
model by SeekCAD and IBi

is a rendering image of each CAD model in the local CAD corpus, and
s(∗) is a similarity function (τ = 0.8, ρ = 0.8). In practice, we use ResNet-50 He et al. (2016) to
encode IA and IBi

before calculating their similarity. Note that cases failed to compile would be
excluded when calculating these metrics. Given the generated CAD commands could be failed to
compile, we further add Pass@k to better understand the mechanism of components in Seek-CAD.
Pass@k denotes for each description, the probability of at least one set of generated CAD commands
being compiled successfully in k times generation. We report mean values under all metrics.

(2) Comparison Methods. We have witnessed two training-free efforts of generative CAD modeling
with the self-refined strategy: 3D-PreMise Yuan et al. (2024) and CADCodeVerify Alrashedy et al.
(2025). To compare with them fairly, only the refined strategy in Seek-CAD (SVF) is separately
replaced with refined strategies in 3D-PreMise and CADCodeVerify, while the rest of the components
in Seek-CAD are all consistent. Besides, we choose the latest finetune strategy (CAD-Llama Li et al.
(2025a)) as a competitor to show the capability of Seek-CAD.

(3) Implementation Details. We deploy DeepSeek-R1:32B in Q4 quantization version as a backbone
of Seek-CAD on one NVIDIA RTX 3090 GPU with Ollama Ollama. The context length is set
to 15,000 to endow inference speed of 21.78 tokens per second. For the inference stage, we set
temperature T = 0.7, top-p as 0.8 to make it capable of generating diverse CAD models in different
trials. For RAG settings, we employ Dify Dify and bge-m3 Chen et al. (2024), details refer to
Appendix A.4. For the refinement stage, we adopt the Gemini-2.0 API Team et al. (2024) from
Google AI to judge the discrepancies between step-wise perspective images and their corresponding
thoughts (DeepSeek-R1:32B-Q4).

5.2 EXPERIMENTAL RESULTS

(1) Generation. To avoid data overlapping, we construct a test set consisting of an additional 500
CAD models which are completely different from 10, 000 CAD models in the local CAD corpus.

Table 1: The quantitative results of generation abil-
ity tested on 500 CAD models.

Strategy Method CD↓ HD↓ IoGT↑ G-Score↑ Novel↑
Finetune CAD-Llama 0.2147 0.5864 0.7023 3.3385 77.64%

Training-free
3D-PreMise 0.2203 0.6137 0.6315 3.2022 49.57%
CADCodeVerify 0.2164 0.5917 0.6562 3.3927 55.38%
Seek-CAD (Ours) 0.1979 0.5566 0.7226 3.5185 64.04%

Based on our framework, we compare our SVF
with two other visual feedback strategies in one-
step refinement. As shown in Table 1, the SVF
strategy employed in Seek-CAD significantly
outperforms the feedback methods used in 3D-
Premise and CADCodeVerify across all metrics.
This demonstrates that the CoT and step-wise
images utilized in the SVF strategy are indeed
well-aligned, and the object design logic con-
tained within the CoT empowers the VLM (Gemini-2.0) to provide clearer feedback, enabling the
more precise refinement. Besides, all feedback methods based on our framework achieve close to
or over 50% under the Novel metric. This indicates that while the local CAD corpus serves as a
constraint on CAD command generation, it does not fully limit the creative ability of our framework
to generate novel CAD models. Figure 4(a) gives comparable showcases of Ground Truth GT and the
generated CAD models from Seek-CAD with different refined strategies. Compared to 3D-PreMise
and CADCodeVerify, the SVF embedded in Seek-CAD makes the generated CAD model closer to
GT, which again proves that SVF (Sec 3.2) is reasonable and effective to integrate step-wise images
and the thought from DeepSeek-R1. Besides, Seek-CAD shows superior performance across CD,
HD, IoGT, and G-Score metrics compared to CAD-Llama. This highlights its ability to prioritize
geometric accuracy and achieve higher text-matching fidelity, proving a stronger semantic understand-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ground TruthSeek-CADCADCodeVerify3D-PreMise

By revolving the right triangle with a vertical leg, a horizontal base, and an

angled hypotenuse around the horizontal base axis, a 3D conical shape with

a rounded base edge is formed. The axis is along the horizontal base of the

triangle, resulting in a cone with the apex at the intersection of the vertical

leg and hypotenuse. An elliptical cylinder with rounded edges extends from

the side of the cone, where the original base circle of the cone is located, with

an additional uniformly extruded elliptical cylinder extending horizontally

from this conjunction, creating a combined conical and elliptical cylindrical

volume with smooth transitions at the connection, accompanied by the newly

added elliptical extrusion.

A prismatic shape extending longitudinally, featuring a vertical

rectangular side transitioning into a sloped trapezoidal top with a

straightforward rectangular notch evident on one side. Additionally,

four symmetrical cylindrical notches are present on the sloped

trapezoidal top, corresponding to the removed cylindrical shapes.

(a)

A single rectangular prism with a rectangular

cutout through its center, creating a frame-

like 3D shape. This gives the appearance of a

solid outer boundary with an empty space

running the height of the prism.

No, the object does not resemble the description.

The current images show a cube with a smaller

cube cut out from the top, resulting in a "C" shape

when viewed from above, not a frame-like structure

with a central rectangular cutout. The images

provided do not follow the user's request of creating

a rectangular prism with a central rectangular

cutout, resulting in a frame-like structure.

A rectangular prism with a large cylindrical

hole through the top surface and four

smaller cylindrical holes near each corner.

No, the object does not resemble the

description. The design creates

protrusions on top of the rectangular

prism instead of drilling holes. The

initial shape has fillets as well, which

were not described in the design logic.

To correct it, the extrudes should be

performed with a negative depth to

create holes instead of protrusions.

(b)

A cylindrical shape extending vertically with a uniform

diameter throughout its height, now featuring an inner

cavity created by a cylindrical shape with a hollow interior,

while retaining the rectangular prism at the base, enhancing

both structure and functionality.

CAD-Llama

Figure 4: (a) Visual illustrations of CAD generative comparison. (b) The visualizations of refinement
capability through the SVF strategy (Recall Sec 3.2). Please enlarge to 225% to see the text clearly.

ing. Although it scores lower on novelty than CAD-Llama, this trade-off results in models that are
geometrically closer to the ground truth (Figure 4(a)). Crucially, Seek-CAD’s ability to completely
bypass the training phase shows it can rival the overall performance of fine-tuned models, presenting
a significant advantage when training resources are limited.

(2) Refinement Step. To better understand the impact of visual feedback on CAD model
generations, we explore the effects of performing 0, 1, and 2 rounds of SVF within Seek-
CAD, which can be found in Table 2. Compared to Round 0, the generated CAD mod-
els show significant improvements across four metrics (CD, HD, IoGT, G-Score) after un-
dergoing corrections in Round 1 and Round 2, which proves the effectiveness of SVF.

Table 2: The quantitative results of com-
paring refinement rounds tested on 500
CAD models.

Refine Round Pass@2↑ CD↓ HD↓ IoGT↑ G-Score↑
0 0.77 0.2275 0.6194 0.6183 3.1401
1 0.72 0.1979 0.5566 0.7226 3.5185
2 0.55 0.1966 0.5548 0.7347 3.5314

Additionally, we found that the gains diminish signifi-
cantly with an increasing round of SVF iterations. For
instance, compared to Round 1, Round 2 shows only
marginal improvements on the four metrics (e.g., IoGT
from 0.7226 to 0.7347), but it increases the probability
of code compilation failures (Pass@2 from 0.72 to 0.55).
There are two main reasons for this: (i) Limited by the
inherent reasoning ability of the base model (DeepSeek-
R1:32B-Q4) in Seek-CAD, it is difficult for the model
to make perfectly precise corrections based on SVF feed-
back. (ii) There is a certain probability that the generated CAD commands will fail to compile
during each generation process. Each additional round of refinement would increase its proba-
bility. Hence, we set the maximum iteration step of 2 for the refinement stage to avoid exces-
sive and potentially unnecessary modifications. Two cases are depicted in Figure 4(b). In the
right-hand instance, the initially generated CAD model exhibits a reversed extrusion direction,
resulting in the failure to form holes in the corners and the middle of the object, which is re-
solved after one round of refinement. It again demonstrates the effectiveness of the SVF strategy.

Table 3: Ablation Studies on 200 CAD
models.

Pass@1↑ Pass@2↑ CD↓ HD↓ IoGT↑ G-Score↑
A - - - - - -
B 0.44 0.64 0.2295 0.6307 0.6287 3.5896
C 0.67 0.79 0.2114 0.5914 0.6713 3.7254
D 0.67 0.80 0.1961 0.5573 0.7036 3.7761
E 0.56 0.77 0.2178 0.5947 0.6563 3.6642
F 0.47 0.68 0.2235 0.6188 0.6464 3.6315
G 0.65 0.76 0.2247 0.6254 0.6373 3.6120
H 0.68 0.81 0.1923 0.5382 0.7451 3.8409

(3) Ablation Study. To figure out the mechanism of
Seek-CAD, we conduct ablation studies on 200 CAD
models by removing some components in Seek-CAD
to achieve an additional 7 frameworks tagged from A to
G, which separately denote: A (w/o local CAD corpus),
B (w/o knowledge constraint), C (w/o inter images in
SVF), D (w/o ultimage image in SVF), E (w/o vector
search in local CAD corpus), F (w/o text search in local
CAD corpus), and G (w/o CoT in SVF). For the complete
version of Seek-CAD, we denote it as H. Note that
all comparisons in the ablation study are based on the
one-time refinement. As shown in Table 3, model A
completely fails to generate compilable CAD commands, indicating that within a training-free
framework, the local CAD corpus indeed imposes constraints to guide model to generate CAD
commands based on the SSR format. This is highly effective for the Seek-CAD model, which
lacks prior knowledge of SSR, providing a technical approach for quickly achieving CAD model
generations without any training. Compared to model H, the impact of models B, E, and F is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

A CAD object, which starts from a main cylinder (2.0 diameter)

with the extrusion length of 3.0, and then Extrudes a cylinder on

each side of the main cylinder, with extrusion lengths of 1.75 and

1.45, respectively. Please note that the left cylinder (1.0 diameter)

and right cylinder (1.35 diameter) have the same normal direction.

At the same time, both of them are tangent to the main cylinder.

Finally, All cylinders have a hole at the top.

Try to modify the hole in

main cylinder into two holes

that are tangent.

Add chamfered edges

on both top and bottom

edges of all cylinders.

Remove holes in main

cylinder, and place a cone

(1.6 diameter) with height of

1.0 on a top of main cylinder.

Remove the hole from left cylinder and

cutout an triangle block on its top face

and a rectangular block on its bottom

face, the length of cutout is 0.357234.

Adjust the proper position for the

right cylinder to be orthogonal to

the left cylinder and make a part of

it pass through the main cylinder.

(a) The demo of CAD editing

(c) The gallery of generated CAD models(b) The showcases of similar generations

A cup is fundamentally an open-topped vessel

designed to hold liquid for drinking. Its body rests

on a base, which is typically flat or has a small

foot ring for stability. The top terminates in a

defined rim, providing a smooth edge for sipping.

The overall shape varies from short and wide to

tall and slender, influencing its capacity and feel.

A fire hydrant is a robust, utilitarian outdoor structure designed

for accessing water. This main body is typically topped with a

cap or finial, which might be domed or feature other functional

shapes. Protruding from the sides are several cylindrical nozzles

or outlets, capped when not in use. The entire assembly sits

firmly on a wider base for stability and connection underground.

Smaller geometric elements like hexagonal nuts, bolts, and

operational stems add functional detail.

Figure 5: Various Showcases by Seek-CAD. Please enlarge to 180% to see the text clearly.

primarily focused on the compilability of generated CAD commands. In particular, the substantial
decline in Pass@1 for model B (from 0.68 to 0.44) highlights the critical role of the system prompt
as an effective constraint during CAD command generation. Besides, models E and F also exhibit a
significant decrease in four other metrics (e.g., from 0.7451 to 0.6464 in IoGT, 3.8409 to 3.6315
in G-Score). This proves conducting hybrid research in the local CAD corpus is more effective.
Furthermore, we found that the image utilization strategy within SVF mainly impacts the precision of
the refinement, as evidenced by model C achieving worse scores across all metrics (e.g., 0.2295
vs 0.2114 in CD) compared to model D. This validates that inter-images can provide more visual
information than the ultimate-image, thereby enabling the VLM to better understand the construction
process of objects and generate clear feedback to enhance further modifications. Model G shows a
decline in generation quality (e.g., G-Score from 3.8409 to 3.6120) compared to model H. It indicates
CoT helps Gemini-2.0 better understand the step-wise images and improve the quality of feedback.
Finally, the complete model H surpasses other comparable versions across all metrics (e.g., highest
score 0.7451 in IoGT), proving the design components in Seek-CAD are all effective and reasonable.

(4) Various Showcases by Seek-CAD. We showcase more capabilities of our Seek-CAD,including
CAD editing, Similar generations, and Gallery of generated CAD models. (i) CAD editing is
an applicative sought in a wide range of industrial sectors. As Seek-CAD is a framework built on
DeepSeek-R1, it supports multiple rounds of dialogue to achieve substantial editing that includes
but is not limited to "Add", "Remove", and "Scale" modification. Figure 5(a) shows a demo to
edit the vanilla generated CAD model based on the user’s description iteratively. (ii) Similar
generations. For the same textual descriptions, Seek-CAD can generate similar CAD models as
shown in Figure 5(b), which offers useful suggestions for initial CAD design. Besides, the description
in Figure 5(b) contains only functional specifications of the objects, in contrast to that in Figure 5(a)
which includes specific dimensional parameters. It indicates Seek-CAD is capable of interpreting
functional descriptions to produce valid CAD models without relying on explicit parameter guidance.
(iii) The gallery of generated CAD models. Figure 5(c) provides some generated CAD models
from Seek-CAD with feeding textual descriptions from the test set. This shows that Seek-CAD is
capable of generating relatively complex models, which was not demonstrated by previous methods
based on SE paradigms or CadQuery.

(5) Limitations and Discussions. Seek-CAD has several limitations. First, the step-wise visual
feedback contains biases from VLMs due to two main issues: (i) VLMs, confined to their training,
struggle to accurately describe object geometries without specific-domain training, and (ii) complex
models can’t be easily summarized. Second, using DeepSeek-R1 for visual feedback introduces
redundant information, as full CoTs are fed to VLMs. Third, DeepSeek-R1-32B-Q4’s computational
ability for geometric constraints is weaker compared to DeepSeek-R1-671B, needing more refinement
for accurate CAD commands. Fourth, the CapType system struggles with selecting certain topological
primitives, like intersection-generated edges, which need intermediate B-Rep modeling data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Haider Zaidi, Megan Langwasser, Wei Xu, and
Matthew Gombolay. Generating cad code with vision-language models for 3d designs. In The
Thirteenth International Conference on Learning Representations, 2025.

Léore Bensabath, Mathis Petrovich, and Gul Varol. A cross-dataset study for text-based 3d human
motion retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1932–1940, 2024.

Devendra Singh Chaplot. Albert q. jiang, alexandre sablayrolles, arthur mensch, chris bamford,
devendra singh chaplot, diego de las casas, florian bressand, gianna lengyel, guillaume lample,
lucile saulnier, lélio renard lavaud, marie-anne lachaux, pierre stock, teven le scao, thibaut lavril,
thomas wang, timothée lacroix, william el sayed. arXiv preprint arXiv:2310.06825, 2023.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu Lian, and Zheng Liu. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity text embeddings through self-knowledge
distillation. arXiv preprint arXiv:2402.03216, 2024.

Dify. Dify. https://dify.ai/.

Docker. Docker. https://www.docker.com/.

Elona Dupont, Kseniya Cherenkova, Dimitrios Mallis, Gleb Gusev, Anis Kacem, and Djamila Aouada.
Transcad: A hierarchical transformer for cad sequence inference from point clouds. In European
Conference on Computer Vision, pp. 19–36. Springer, 2024.

FreeCAD. Freecad. https://www.freecad.org/.

Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and Stefano Saliceti. Computer-aided
design as language. Advances in Neural Information Processing Systems, 34:5885–5897, 2021.

Akash Ghosh, Arkadeep Acharya, Raghav Jain, Sriparna Saha, Aman Chadha, and Setu Sinha. Clip-
syntel: clip and llm synergy for multimodal question summarization in healthcare. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pp. 22031–22039, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Complexgen: Cad
reconstruction by b-rep chain complex generation. ACM Transactions on Graphics (TOG), 41(4):
1–18, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Bin Huang, Xin Wang, Hong Chen, Zihan Song, and Wenwu Zhu. Vtimellm: Empower llm to grasp
video moments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14271–14280, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

10

https://dify.ai/
https://www.docker.com/
https://www.freecad.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G Lambourne, Karl DD Willis, Thomas Davies,
Hooman Shayani, and Nigel Morris. Uv-net: Learning from boundary representations. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11703–
11712, 2021.

Ling Jiang, Keer Jiang, Xiaoyu Chu, Saaransh Gulati, and Pulkit Garg. Hallucination detection in
llm-enriched product listings. In Proceedings of the Seventh Workshop on e-Commerce and NLP@
LREC-COLING 2024, pp. 29–39, 2024.

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G Kim, and Adriana Schulz.
Automate: A dataset and learning approach for automatic mating of cad assemblies. ACM
Transactions on Graphics (TOG), 40(6):1–18, 2021.

Benjamin T Jones, Michael Hu, Milin Kodnongbua, Vladimir G Kim, and Adriana Schulz. Self-
supervised representation learning for cad. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21327–21336, 2023.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch instance
guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4713–4722, 2024a.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muham-
mad Zeshan Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level text
prompts. Advances in Neural Information Processing Systems, 37:7552–7579, 2024b.

Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J Mitra. Free2cad: Parsing freehand drawings
into cad commands. ACM Transactions on Graphics (TOG), 41(4):1–16, 2022.

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-llama:
Leveraging large language models for computer-aided design parametric 3d model generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025a.
URL https://arxiv.org/abs/2505.04481.

Pu Li, Jianwei Guo, Huibin Li, Bedrich Benes, and Dong-Ming Yan. Sfmcad: Unsupervised cad
reconstruction by learning sketch-based feature modeling operations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4671–4680, June
2024a.

Xueyang Li, Haotian Chen, Yunzhong Lou, and Xiangdong Zhou. Cf-cad: A contrastive fusion
network for 3d computer-aided design generative modeling. In International Conference on
Database Systems for Advanced Applications, pp. 435–450. Springer, 2024b.

Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Cad translator: An effective drive for
text to 3d parametric computer-aided design generative modeling. In Proceedings of the 32nd
ACM International Conference on Multimedia, pp. 8461–8470, 2024c.

Xueyang Li, Yunzhong Lou, Yu Song, and Xiangdong Zhou. Mamba-cad: State space model for 3d
computer-aided design generative modeling. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2025b.

Yuan Li, Cheng Lin, Yuan Liu, Xiaoxiao Long, Chenxu Zhang, Ningna Wang, Xin Li, Wenping Wang,
and Xiaohu Guo. Caddreamer: Cad object generation from single-view images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2025c.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llavanext: Improved reasoning, ocr, and world knowledge, 2024.

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. Draw step by
step: Reconstructing cad construction sequences from point clouds via multimodal diffusion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
27154–27163, 2024.

11

https://arxiv.org/abs/2505.04481

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dimitrios Mallis, Ahmet Serdar Karadeniz, Sebastian Cavada, Danila Rukhovich, Niki Foteinopoulou,
Kseniya Cherenkova, Anis Kacem, and Djamila Aouada. Cad-assistant: Tool-augmented vllms as
generic cad task solvers? arXiv preprint arXiv:2412.13810, 2024.

Muhammad Ferjad Naeem, Muhammad Gul Zain Ali Khan, Yongqin Xian, Muhammad Zeshan
Afzal, Didier Stricker, Luc Van Gool, and Federico Tombari. I2mvformer: Large language model
generated multi-view document supervision for zero-shot image classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15169–15179, 2023.

Felix Ocker, Stefan Menzel, Ahmed Sadik, and Thiago Rios. From idea to cad: A language model-
driven multi-agent system for collaborative design. arXiv preprint arXiv:2503.04417, 2025.

Ollama. Ollama. https://ollama.com/.

Thomas Paviot. "pythonocc". zenodo. https://doi.org/10.5281/zenodo.3605364,
2022.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and Junzhe Zhang. Extrudenet: Unsupervised
inverse sketch-and-extrude for shape parsing. In European Conference on Computer Vision, pp.
482–498. Springer, 2022.

Raphael Schumann, Wanrong Zhu, Weixi Feng, Tsu-Jui Fu, Stefan Riezler, and William Yang Wang.
Velma: Verbalization embodiment of llm agents for vision and language navigation in street view.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18924–18933,
2024.

Hao Shao, Yuxuan Hu, Letian Wang, Guanglu Song, Steven L. Waslander, Yu Liu, and Hongsheng
Li. Lmdrive: Closed-loop end-to-end driving with large language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15120–15130,
June 2024.

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda,
and Soheil Feizi. Llm-check: Investigating detection of hallucinations in large language models.
Advances in Neural Information Processing Systems, 37:34188–34216, 2024.

Reuben Tan, Ximeng Sun, Ping Hu, Jui-hsien Wang, Hanieh Deilamsalehy, Bryan A Plummer, Bryan
Russell, and Kate Saenko. Koala: Key frame-conditioned long video-llm. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13581–13591, 2024.

Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Junchi Wang and Lei Ke. Llm-seg: Bridging image segmentation and large language model reasoning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1765–1774, 2024.

Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-gpt:
Synthesising cad construction sequence with spatial reasoning-enhanced multimodal llms. 2024.
URL https://arxiv.org/abs/2412.19663.

Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong
Lu, Jie Zhou, Yu Qiao, et al. Visionllm: Large language model is also an open-ended decoder for
vision-centric tasks. Advances in Neural Information Processing Systems, 36:61501–61513, 2023.

Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando Solar-
Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic
cad construction from human design sequences. ACM Transactions on Graphics (TOG), 40(4):
1–24, 2021.

12

https://ollama.com/
https://doi.org/10.5281/zenodo.3605364
https://arxiv.org/abs/2412.19663

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Karl DD Willis, Pradeep Kumar Jayaraman, Hang Chu, Yunsheng Tian, Yifei Li, Daniele Grandi,
Aditya Sanghi, Linh Tran, Joseph G Lambourne, Armando Solar-Lezama, et al. Joinable: Learning
bottom-up assembly of parametric cad joints. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 15849–15860, 2022.

Ruihai Wu, Chenrui Tie, Yushi Du, Yan Zhao, and Hao Dong. Leveraging se (3) equivariance for
learning 3d geometric shape assembly. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 14311–14320, 2023.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 6772–6782, 2021.

Jingwei Xu, Chenyu Wang, Zibo Zhao, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
multimodality-conditioned cad generation with mllm. arXiv preprint arXiv:2411.04954, 2024a.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. Skexgen: Autoregressive generation of cad construction sequences with
disentangled codebooks. arXiv preprint arXiv:2207.04632, 2022.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph George Lambourne, Karl DD Willis, and Yasutaka
Furukawa. Hierarchical neural coding for controllable cad model generation. In International
Conference on Machine Learning, pp. 38443–38461. PMLR, 2023.

Xiang Xu, Joseph Lambourne, Pradeep Jayaraman, Zhengqing Wang, Karl Willis, and Yasutaka
Furukawa. Brepgen: A b-rep generative diffusion model with structured latent geometry. ACM
Transactions on Graphics (TOG), 43(4):1–14, 2024b.

Mohsen Yavartanoo, Sangmin Hong, Reyhaneh Neshatavar, and Kyoung Mu Lee. Text2cad: Text
to 3d cad generation via technical drawings. 2024. URL https://arxiv.org/abs/2411.
06206.

Yang You, Mikaela Angelina Uy, Jiaqi Han, Rahul Thomas, Haotong Zhang, Suya You, and Leonidas
Guibas. Img2cad: Reverse engineering 3d cad models from images through vlm-assisted condi-
tional factorization. arXiv preprint arXiv:2408.01437, 2024.

Zeqing Yuan, Haoxuan Lan, Qiang Zou, and Junbo Zhao. 3d-premise: Can large language models
generate 3d shapes with sharp features and parametric control? arXiv preprint arXiv:2401.06437,
2024.

Aijia Zhang, Weiqiang Jia, Qiang Zou, Yixiong Feng, Xiaoxiang Wei, and Ye Zhang. Diffusion-cad:
Controllable diffusion model for generating computer-aided design models. IEEE Transactions on
Visualization and Computer Graphics, 2025a.

Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and
versatile controllable cad generation with fine-tuned large language models. In International
Conference on Learning Representations, 2025b.

Yong Zhu, Zhenyu Wen, Xiong Li, Xiufang Shi, Xiang Wu, Hui Dong, and Jiming Chen. Chatnav:
Leveraging llm to zero-shot semantic reasoning in object navigation. IEEE Transactions on
Circuits and Systems for Video Technology, 2024.

13

https://arxiv.org/abs/2411.06206
https://arxiv.org/abs/2411.06206

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 KNOWLEDGE CONSTRAINT

We design a knowledge constraint as the system prompt to guide Seek-CAD in generating CAD code
that conforms to the SSR paradigm, which helps reduce hallucination to some extent. It consists of
three parts including State of functionality, CAD Code Documentation, and an Example as following:

#Statement of functionality#
You are a role of CAD-assitant to help user create CAD models. You will be given a description of the shape geometry of 3D objects (e.g.,
triangle, square, rectangle, and prism), and may contain key parameters (e.g., length, height, width, and radius) and some constraints on the
entities (e.g., tangent, parallel, and orthogonal). Your job is to help users complete a whole CAD design logic and show the summary of total
CAD commands based on their descriptions. You must follow the rule and definition of each CAD command and its parameter from the #CAD
Code Documentation# when you give the total CAD commands code. I will give you a # CAD Code d# to show how it works.
#Tips_1# Please give specific and reasonable parameter values to ensure the geometric constraints (e.g., Tangent, Intersect, Orthogonal)
between entities when there are multiple sketches.
#Tips_2# You cannot ignore any parameter filled with corresponding CAD commands
#Tips_3# Finally, please use the most effective and simple CAD command to answer. For example, when the user make a query to construct a
chamfer edge, please use "Chamfer" command directly instead of using other CAD commands to replace it.
#CAD Code Documentation#
Methods: - `moveTo(x, y)`: Set the starting point of the loop. - `lineTo(x, y)`: Draw a straight line from the current point to `(x, y)`.
- `threePointArc(p1, p2)`: Draw a circular arc from the current point through `p1` to `p2`.
- `circle(radius)`: Draw a full circle centered at the current point with the given `radius`.
- `splineTo(*points)`: Create a smooth spline curve through the given sequence of points from the current point.
- `pointTag(tag)`: Assign a tag to the current point (used after curve method).
- `curveTag(tag)`: Assign a tag to the most recent curve (used after curve method).
Profile Class: Represents a closed shape made up of one or more loops.
Constructor: - `Profile(tag=None)`: Optionally provide a `tag` to identify the profile.
Method: - `addLoop(*loops)`: Add one or more `Loop` objects to the profile.
Sketch Class: Defines a 2D sketch on a given plane.
Constructor:- `Sketch(plane)`: Must provide a `plane` dictionary with:
 - `normal`: A 3D vector `[x, y, z]` indicating the plane's normal direction.
 - `origin`: A 3D point `[x, y, z]` specifying the sketch's origin.
 - `x`: A 3D vector `[x, y, z]` defining the X-axis direction in the plane.
Method: - `addProfile(*profiles)`: Add one or more `Profile` objects to the sketch.
Shape Creation
`Extrude(sketch, distance=(a, b)) → Shape`: Create a 3D solid by extruding the profiles in a sketch.
- `a`: Extrusion distance in the sketch's normal direction. - `b`: Extrusion distance in the opposite direction.
`Revolve(sketch, axis={point, direction}, angle=(a, b)) → Shape`: Create a 3D solid by revolving a profile around a given axis.
- `point`: A 3D point `[x, y, z]` on the axis. - `direction`: A 3D vector `[x, y, z]` indicating the axis direction.
- `a`: Angle in the normal direction.- `b`: Angle in the opposite direction.
Shape Class: Represents a solid body. Supports Boolean and modification operations.
Boolean Operations: - `shape.union(s: Shape) → Shape`: Merge the current shape with shape `s`.
- `shape.cut(s: Shape) → Shape`: Subtract shape `s` from the current shape.
- `shape.intersect(s: Shape) → Shape`: Keep only the intersecting volume between the current shape and shape `s`.
Modifiers: - `shape.Chamfer(width, entities)`: Apply a chamfer to tagged edges or curves.
- `shape.Fillet(radius, entities)`: Round corners with a fillet radius. - `shape.Shell(thickness, entities)`: Hollow out the shape with specified
wall thickness.
#Example#
Description # The resulting model is an L-shaped prismatic solid with two perpendicular rectangular arms, one extending vertically and the
other horizontally, forming the characteristic L shape in 3D space. Additionally, there are four vertical rectangular pillar-like prisms
extending downward from each corner of the virtual bounding rectangle.

Generated Answers # Based on your description, I can help you create the CAD command summary for generating the described shape.
Here is the complete CAD code command design with valid parameters:
sk0 = Sketch(plane={"normal": [0.0, 0.0, 1.0], "origin": [0.0, 0.0, 0.0], "x": [1.0, 0.0, 0.0]})
p0_0 = Profile()
p0_0.addLoop(Loop().moveTo(0.0,-2.667).lineTo(0.254,-2.667).lineTo(0.254,-0.254)
 .lineTo(1.8288,-0.254).lineTo(1.8288,0.0)
 .lineTo(0.0,0.0)
 .lineTo(0.0,-2.667))
sk0.addProfile(p0_0)
shape0 = Extrude(sk0, distance=0.9144)
sk1 = Sketch(plane={"normal": [0.0, 0.0, 1.0], "origin": [0.0, 0.0, 0.0], "x": [1.0, 0.0, 0.0]})
p1_0 = Profile()
p1_0.addLoop(Loop()
…
sk1.addProfile(p1_0,p1_1,p1_2,p1_3)
shape1 = Extrude(sk1, distance=0.8636)
shape0 = shape0.union(shape1)

Figure 6: The knowledge constraint adopted in Seek-CAD.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 CAD DATASET BASED ON SSR PARADIGM

We extend the data parsing methodology of DeepCAD by utilizing Onshape’s Developer API and
FeatureScript to parse CAD models based on the ABC dataset. Our method supports core modeling
commands including sketch, extrude, revolve, fillet, chamfer, and shell. During the parsing process,
models containing unsupported operations (such as mirror) are not immediately discarded. Instead, we
filter them only if the proportion of unsupported commands exceeds a threshold of 0.2. Unsupported
commands are ignored, and only supported operations are retained for further processing.

For commands like fillet, chamfer, and shell, we first extract the primitives they operate on (e.g., edges
for chamfer or faces for shell), and then use PythonOCC APIs to match these primitives to specific
sketch elements through their CapType designation. We note that the proposed CapType reference
system cannot identify certain edges or faces that are not directly associated with sketch-defined
primitives such as those generated by the intersection of solid bodies. Therefore, when refinement
commands (chamfer, fillet or shell) involve such primitives that cannot be identified via CapType
schema, we exclude those primitives from the commands. Finally, all parsed data is converted into a
unified JSON format compatible with DeepCAD, which can be directly rendered using PythonOCC
for visualization.

To further illustrate the characteristics of our dataset, Figure 7 presents a qualitative comparison
between our dataset and DeepCAD. The statistical distributions of command sequence lengths and
the number of curves per CAD model are shown in Figure 8.

Figure 7: Qualitative comparison between our dataset and the DeepCAD Wu et al. (2021) dataset.
Compared to DeepCAD, our dataset captures more realistic and structurally complex industrial
designs, supporting a broader range of modeling operations such as spline, revolve, chamfer, fillet,
and shell. Our extended dataset also features richer geometric details and greater diversity in modeling
strategies.

Figure 8: Statistical comparison between our complete dataset and the DeepCAD Wu et al. (2021)
dataset, which also is a subset of our dataset. The left plot illustrates the distribution of feature lengths,
while the right plot shows the distribution of average curve lengths.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 CAD CODE REPRESENTATION

Since existing CAD scripting tools such as CADQuery do not directly support CapType reference
mechanism and SSR design paradigm, we define a concise and effective Python-based representation
tailored for SSR-driven CAD modeling. As shown in Listing 1, the CADShape class encapsulates an
SSR triplet and supports boolean operations—such as union, cut, and intersect—with other
SSR triplets. The final CAD model is represented by a CADShape instance, which can either be a
single SSR triplet or the result of boolean operations among multiple SSR triplets.

For refinement features (e.g., chamfer, fillet, and shell), the target edge or face primitives are
determined using the CapType introduced in Section 4. In particular, applying a chamfer or fillet to
a face affects all edges on that face. Finally, we convert the code into the JSON format similar to
DeepCAD, which is then rendered using PythonOCC.

Listing 1: Python interface for SSR-based CAD modeling. The CADShape class provides a concise
and extensible representation that supports structured modeling under the SSR design paradigm.

class Loop:
def __init__(self) -> None: ...
Define start point of this loop
def moveTo(self, x: float, y: float) -> Self: ...
Draw straight line to point
def lineTo(self, x: float, y: float) -> Self: ...
Arc to p2 via p1
def threePointArc(self, p1: Tuple[float, float], p2: Tuple[float,

float]) -> Self: ...
Spline through given points
def splineTo(self, *p: Tuple[float, float]) -> Self: ...
Close loop (make a line back to start point)
def close(self) -> Self: ...
Draw circle with center at current point
def circle(self, radius: float) -> Self: ...
assign tag to the current point
def pointTag(self, tag: str) -> Self: ...
assign tag to the current curve
def curveTag(self, tag: str) -> Self: ...

class Profile:
Create a face with a optional tag for reference
def __init__(self, tag: Optional[str] = None) -> None: ...
Add one or more loops to the face
def addLoop(self, *loops: Loop) -> None: ...

class Sketch:
plane format: {"origin": [x, y, z], "x_axis": [x, y, z], "normal":

[x, y, z]}
def __init__(self, plane: Dict) -> None: ...
def addProfile(self, *profiles: Profile) -> None: ...

class CADShape(ABC):
def __init__(self) -> None: ...
entities: list of dicts, each with {"capType": "START"|"END"|"SWEEP

", ’referenceId’: str},
specifying referenced entities

def Chamfer(self, width: float, entities: List[Dict]) -> Self: ...
def Fillet(self, radius: float, entities: List[Dict]) -> Self: ...
def Shell(self, thickness: float, entities: List[Dict]) -> Self: ...
def union(self, shape: CADShape) -> Self: ...
def cut(self, shape: CADShape) -> Self: ...
def intersect(self, shape: CADShape) -> Self: ...

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

class Extrude(CADShape):
def __init__(self, sketch: Sketch, distance: Union[float, Tuple[float

, float]]) -> None: ...

class Revolve(CADShape):
axis format: {"point": [x, y, z], "direction": [x, y, z]}, axis is

defined by a point and a
direction

def __init__(self, sketch: Sketch, axis: Dict, angle: Union[float,
Tuple[float, float]]) -> None:
...

A.4 RAG SETTINGS

To equip the SSR-based CAD corpus locally for the retrieval-augmented generation of Seek-CAD,
we use Dify Dify in 0.15.3 version, which is a docker-based Docker platform. For each query, we
use bge-m3 Chen et al. (2024) to embed it into a vector that is used to calculate similarity score with
CAD models stored in the local SSR-based corpus. Practically, we select Top-3 samples based on
a hybrid searching strategy (Sec 3.1) for the augmentation retrieval. To incorporate the retrieved
content into the input for Seek-CAD, we apply a chunk-based prompt construction strategy. Each
retrieved pair (dj , sj) ∈ RT is formatted as:

[Chunkj] := "Description: "dj ∥ "CAD code: "sj , (11)

where ⊕ denotes string concatenation. The final prompt for Seek-CAD becomes:

T ⊕ (dj , sj) = "Query: "T ⊕ Chunk1 ⊕ . . . ⊕ Chunkk. (12)

A.5 NOVEL VISUALIZATIONS

Benefiting from the prior knowledge of DeepSeek-R1, Seek-CAD is capable of generating not only
industry-oriented CAD models but also non-industrial ones that differ in style from those in our local
CAD corpus. As shown in Figure 9, this demonstrates that Seek-CAD does not rely entirely on our
local CAD corpus and is able to generate models with a certain degree of novelty.

Figure 9: Novel showcases generated by Seek-CAD, which are different from the style of CAD
models in the local CAD corpus.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.6 ENLARGED VERSION OF SHOWCASES IN FIGURE 5(C) OF THE MAIN MANUSCRIPT

We provide an enlarged version of showcases in Figure 5(c) for a clear view as shown in Figure 10.

Figure 10: The enlarged version of showcases in Figure 5(c) of the main manuscript.

A.7 MORE SHOWCASES OF CAD EDITING

A flange is a connecting component primarily used to join

pipes, valves, pumps, and other equipment, enabling the

assembly and disassembly of piping systems for

maintenance or sealing, often utilizing a gasket between

mating surfaces. For instance, a common pipe flange

might feature an outer diameter of 100mm, an inner bore

diameter of 50mm, and a thickness of 15mm. Such a flange

would typically incorporate 4 bolt holes, suitable for M10

bolts, arranged on a 75mm bolt circle diameter.

Geometrically, it is a flat, disc-like ring

Try to make the four

bolt holes larger.

Add one more bolt

hole in the center.
Remove two bolt

holes randomly.

The 3D model is characterized by a long rectangular prism

with a cylindrical hole extending through its width at the

center, accompanied by two additional parallel cylinders

extending from the base of the prism. Additionally, a slanted

rectangular prism is connected to the top edge of the original

rectangular prism, creating an upward extending solid block.

Remove two extending

cylinders from base prism.

Add one cylinder in the center-

bottom of base prism.

A prismatic shape is formed by extruding the octagonal sketch

with a recessed circular area and its attached rectangular base,

resulting in an octagonal prism with a circular indentation and the

original rectangular extrusion now features a central rectangular

cut-out. Three cylindrical protrusions are added, positioned in a

triangular arrangement on the top face, with one cylinder at the

top-center and two at the bottom corners of the circular

indentation. The circular indentation is now deeper due to the

removal of the central section using the ring-shaped cut.

The resulting shape is a 3D model resembling a rectangular block

with an inner cutout, defined by a vertical U-shaped channel that

emerges from the base and extends uniformly along the height of

the block, creating a uniform profile throughout. The block now

features two hexagonal holes near the top and bottom, replacing the

original cylindrical holes. Additionally, two rectangular prisms

remain on the back side of the block, extending vertically and

aligned with the vertical channel.

(a) The extended showcases of Figure 5(a)

(b) The extended showcases of Figure 5(b)

Six vertical cylinders positioned in a pattern that mirrors their

arrangement in the 2D sketch, with three cylinders on the top row

and three on the bottom row, each with a chamfer applied to their

top faces. The whole assembly is mounted on a cylindrical base

resembling a washer, now featuring a central circular hollow

cylindrical ring and chamfers on its outer and inner edges.

Figure 11: The showcases of similar generations.

A.8 MORE SHOWCASES OF SIMILAR GENERATIONS

A flange is a connecting component primarily used to join

pipes, valves, pumps, and other equipment, enabling the

assembly and disassembly of piping systems for

maintenance or sealing, often utilizing a gasket between

mating surfaces. For instance, a common pipe flange

might feature an outer diameter of 100mm, an inner bore

diameter of 50mm, and a thickness of 15mm. Such a flange

would typically incorporate 4 bolt holes, suitable for M10

bolts, arranged on a 75mm bolt circle diameter.

Geometrically, it is a flat, disc-like ring

Try to make the four

bolt holes larger.

Add one more bolt

hole in the center.
Remove two bolt

holes randomly.

The 3D model is characterized by a long rectangular prism

with a cylindrical hole extending through its width at the

center, accompanied by two additional parallel cylinders

extending from the base of the prism. Additionally, a slanted

rectangular prism is connected to the top edge of the original

rectangular prism, creating an upward extending solid block.

Remove two extending

cylinders from base prism.

Add one cylinder in the center-

bottom of base prism.

A prismatic shape is formed by extruding the octagonal sketch

with a recessed circular area and its attached rectangular base,

resulting in an octagonal prism with a circular indentation and the

original rectangular extrusion now features a central rectangular

cut-out. Three cylindrical protrusions are added, positioned in a

triangular arrangement on the top face, with one cylinder at the

top-center and two at the bottom corners of the circular

indentation. The circular indentation is now deeper due to the

removal of the central section using the ring-shaped cut.

The resulting shape is a 3D model resembling a rectangular block

with an inner cutout, defined by a vertical U-shaped channel that

emerges from the base and extends uniformly along the height of

the block, creating a uniform profile throughout. The block now

features two hexagonal holes near the top and bottom, replacing the

original cylindrical holes. Additionally, two rectangular prisms

remain on the back side of the block, extending vertically and

aligned with the vertical channel.

(a) The extended showcases of Figure 5(a)

(b) The extended showcases of Figure 5(b)

Six vertical cylinders positioned in a pattern that mirrors their

arrangement in the 2D sketch, with three cylinders on the top row

and three on the bottom row, each with a chamfer applied to their

top faces. The whole assembly is mounted on a cylindrical base

resembling a washer, now featuring a central circular hollow

cylindrical ring and chamfers on its outer and inner edges.

Figure 12: The showcases of similar generations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

This CAD model features a block-

like geometry with a combination of

prismatic and curved surfaces.

showing a quarter cylindrical edge

on one side and a linear transition

to a right angle along the plane,

featuring a distinct concave notch

on the top face.

Query T Initial CAD model

Okay, I need to help the user create a CAD command code. Let's break down

what they're asking for.

First, the shape should have a quarter cylindrical edge on one side. That means

I'll probably use an extrude operation starting from a sketch that includes a

quarter-circle. The linear transition to a right angle suggests a fillet or chamfer

might be needed, but since it's a transition, maybe just a straight line.

They also mentioned a distinct concave notch on the top face. So I need to create

a recess in the design. This could be achieved by using another extrude with

subtraction (cut command).

I should start by creating a sketch for the main profile. The quarter-circle can

be part of this initial sketch. After extruding, adding a fillet might help smooth

out any edges.

Next, I'll need to create the concave notch. This will involve another sketch,

possibly on the same plane but positioned appropriately. Then, using the cut

command with an extruded shape should subtract this notch from the main

object.

Assigning dimensions is crucial. The user didn't specify exact values, so I'll

choose reasonable ones, like 0.01 for radius and 0.02 for extrusion distance, but

these can be adjusted based on the desired scale.

Finally, after constructing the main object with the notch, I should verify that all

operations (extrude, cut) are correctly chained using union or cut commands to

build up the final shape.

I think that covers the main points. Now, putting this into code step by step.

Chain-of-Thought (CoT)

Finalized CAD model

Feedback

No, the object does not resemble the description as there

is no notch on the top face. Please try to correct it and

provide a refined total CAD command summary again!

A composite shape consisting of three

rectangular prisms with uniform height,

forming a more complex L-shaped

structure with parallel vertical and

horizontal faces. The original L-shaped

box-like structure retains its elevated

section at the back but now features a

removed section creating a recessed area

in the taller vertical prism.

(1) Demo

(2) Demo

Query T

Finalized CAD model

Initial CAD model

Chain-of-Thought (CoT)

Okay, so I need to create a CAD model based on the user's

description. Let me break down what they're asking for.

They want a composite shape made of three rectangular prisms with

uniform height forming an L-shape. The original structure has an

elevated section at the back but now has a recessed area in the taller

vertical prism.

First, I'll start by sketching the base profile. Since it's an L-shape, I

need to create two rectangles connected at a right angle. I'll assign

curve tags to each edge so I can reference them later for fillets or

chamfers.

Next, I'll extrude this sketch to give it height. After that, I'll add

fillets to the corners where the vertical and horizontal prisms meet.

This will smooth out those edges as per the design.

Now, the user mentioned a recessed area in the taller prism. To

achieve this, I need another profile that defines the cut-out. I'll

sketch a smaller rectangle within the larger one, tag the necessary

curves, extrude it, and then subtract this shape from the main

structure using the cut() method.

I should ensure each loop has only one closed path. For the

recessed area, I can create a separate loop in the same sketch or use

another sketch entirely. Since they want uniform height, all prisms

will have the same extrusion distance.

Finally, I'll structure the code sequentially, starting from the base

sketch, extruding, modifying with fillets, adding the recessed area

through subtraction, and ensuring all boolean operations are

correctly applied.

No, the object does not resemble the description because the initial shape

is a simple rectangular prism with rounded corners, not an L-shape

formed by three rectangular prisms. Additionally, there's no elevated

section or recessed area present as described. The object should begin

with constructing an L-shaped base using three rectangular prisms, then

add the recessed area on the top vertical prism. please try to correct it and

provide a refined total CAD command summary again!

Feedback

DeepSeek-R1

Gemini-2.0

(Output the SSR Code)

DeepSeek-R1

Rendering Step-wise images

(Output the SSR Code)

"You are a role of judging the alignment

between a design logic of how to create the

object or CAD model and its corresponding

step-wise images, which includes both the

intermediate shape and ultimate shape of the

object. If your answer is negative, you should

give the reason why they are unmatched and

try to give some detail suggestions about how

to modify it.”

Instruction for Gemini-2.0

DeepSeek-R1

(Output the SSR Code)

Gemini-2.0

Rendering Step-wise images

DeepSeek-R1

(Output the SSR Code)

"You are a role of judging the alignment

between a design logic of how to create the

object or CAD model and its corresponding

step-wise images, which includes both the

intermediate shape and ultimate shape of the

object. If your answer is negative, you should

give the reason why they are unmatched and

try to give some detail suggestions about how

to modify it.”

Instruction for Gemini-2.0

Figure 13: The showcases of complete generation process.

A.9 THE DETAIL SHOWCASE OF COMPLETE GENERATION PROCESS

Here we provide two demo showcases of complete generation process by Seek-CAD, including
the input query T , CoT from DeepSeek-R1, initial generated CAD models, feedback content, and
finalized CAD model (Figure 13).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.10 MORE SHOWCASES BY SEEK-CAD

The rectangular box with rounded

vertical edges now features an internal

hollow passage with an octagonal

cross-section running through its

length. On top of the box, two

symmetrically placed wedge-shaped

additions each have a flat circular hole

in the center, enhancing the overall

form with these new elements.

A long rectangular prism is formed by

extruding the narrow rectangle, resulting in

a shape with height, width, and significant

length. The top section now features concave

semicircular cut on the vertical face.

Additionally, there is a series of five parallel

rectangular prisms with quarter-cylinder

ends and smoothly rounded edges integrated

along its length, creating a segmented and

patterned 3D appearance.

A rectangular 3D plate with eight

through holes, arranged in two

rows of four, evenly spaced across

the flat face of the plate. Each

through hole is now surrounded

by two cylindrical ring-shaped

objects, forming a raised double

circular ring on top of the plate.

A cylindrical shape with a hollow center and three elongated

rectangular prisms arranged radially inside it. The height of the

cylinder remains the same as the original cylinder, featuring an

additional concentric cylindrical cavity removed from its core,

creating a double-walled tube-like structure with the outer radius

remaining equal to the original cylinder's radius and an inner radius

forming the new cavity. Additionally, a diagonally oriented cylindrical

extension features an angled circular face parallel to the top cut of

the core cylinder, intersecting through the hollow center. The model

now includes a thin and long rectangular cuboid block extending

vertically from the cylinder's base, as well as three elongated

rectangular prisms arranged radially inside the hollow center.

A 3D form resembling a bowling pin is

created. The concave base becomes a

small circular bottom, the convex lower

body forms the bulbous main body, the

narrow neck creates a slender central

section, and the rounded top-end

translates into a smoothly rounded top.

A rectangular prism with parallel and perpendicular faces

extending from the sketch, resulting in a solid block-like shape

with rounded edges on the top, bottom, and the vertical edges

on the sides. A new rectangular extension with rounded vertical

edges projects outward from one side of the original block,

creating a distinctive protruding feature. Additionally, another

rectangular prism with rounded edges extends from the

protruding feature, forming an integrated and symmetrical

connection with the original block.

A flat 3D shape featuring three cylindrical holes in

a triangular arrangement, complemented by a

central cylindrical cavity. The perimeter includes

three small, semicircular protrusions corresponding

to each cylindrical hole.

The resulting model consists of four

identical cylindrical shapes of uniform

height that are parallel to each other,

integrated with an array of trapezoidal

beams and angled bars forming a

symmetrical open frame structure.

Centrally added is a T-shaped 3D solid

formed by two orthogonal rectangular

prisms intersecting perpendicularly

within the open frame.

A solid 3D S-shaped object, maintaining the

complex curvature of the original sketch,

with uniform thickness throughout and

featuring eight holes that pass completely

through the body, corresponding to the

sketch's positions and the positions of the

removed cylindrical rods.

A solid 3D shape with a flat top and

bottom surface, defined by

extruding the asymmetrical outline

to form a ring-like structure with an

open section, resulting in a three-

dimensional partial arch. The model

now includes an added semi-

cylindrical shape across the open

section, making the overall structure

appear as a more complete arch.

Figure 14: The more generated showcases by Seek-CAD.

A.11 THE USE OF LARGE LANGUAGE MODELS (LLMS)
The LLM is used to check for grammar errors in this manuscript.

20

	Introduction
	Related Work
	Generative CAD Modeling
	LLMs For CAD

	Seek-CAD Framework
	Local Inference Pipeline
	Step-wise Visual Feedback with CoT for Refinement

	SSR Triple Design Paradigm
	Experiments
	Experimental Settings
	Experimental Results

	Appendix
	Knowledge Constraint
	CAD dataset Based on SSR Paradigm
	CAD Code Representation
	RAG Settings
	Novel Visualizations
	Enlarged Version of Showcases in Figure 5(c) of the Main Manuscript
	More showcases of CAD Editing
	More Showcases of Similar Generations
	The Detail Showcase of Complete Generation Process
	More showcases by Seek-CAD
	The use of large language models (LLMs)

