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Abstract

Audio Question Answering (AQA) is a com-001
plex task in Multi-Modal Learning, where a sys-002
tem interprets audio inputs and associated ques-003
tions to produce appropriate answers. Previous004
AQA research has primarily focused on text-005
based queries, exploration into spoken ques-006
tions in languages like English has been lim-007
ited. Since speech is a primary mode of com-008
munication, integrating spoken queries could009
significantly enhance AQA system capabili-010
ties. To bridge this gap, this paper introduces011
a Spoken AQA system utilizing the Textless012
Multilingual Audio Question Answering (TM-013
AQA) dataset. This dataset comprises 107,514014
question-answer pairs in English, Hindi, and015
Bengali, derived from 1991 environmental au-016
dio recordings corresponding to various envi-017
ronmental scenes. The study establishes base-018
line performance metrics by evaluating several019
multimodal (MML) AQA frameworks that em-020
ploy diverse acoustic features and architectures.021
The experimental results demonstrate that the022
proposed Audio-MAMBA (A-MAMBA) based023
MML framework, incorporating a Continu-024
ous Scanning Mechanism (CSM), surpasses025
Transformer-based MML frameworks in per-026
formance and computational efficiency.027

1 Introduction028

AQA systems (Lipping et al., 2022; Behera029

et al., 2023; Anderson et al., 2018; Sun and030

Fu, 2019) are designed to respond to queries031

related to environmental sounds, functioning as032

multi-modal systems. These systems analyze033

audio signals containing sounds like footsteps, bird034

songs, rain, and wind, among others, alongside035

associated queries to generate suitable responses.036

However, current AQA systems primarily operate037

on text-based queries (Behera et al., 2023; Li et al.,038

2023; Sudarsanam and Virtanen, 2023; Fayek039

and Johnson, 2020), which can limit usability040

and prove cumbersome due to the manual input041

required for typing questions. To overcome these 042

limitations and enhance the user experience by 043

offering a more natural, hands-free interaction 044

mode (Alasmary and Al-Ahmadi, 2023; Patil et al., 045

2019; Alasmary and Al-Ahmadi, 2023; Chowdhury 046

et al., 2017) that supports multitasking, this work 047

proposes the development of a speech-based 048

AQA system. Responses generated by the system 049

can still be presented in textual form for better 050

comprehension, as humans often find it easier to 051

comprehend information through reading rather 052

than writing. This initiative is motivated by the 053

potential to pioneer advancements in speech-based 054

AQA technology. 055

056

Audio Question Answering (AQA) is a rapidly 057

emerging research field facilitated by the introduc- 058

tion of datasets such as CLEAR (Abdelnour et al., 059

2019), DAQA (Fayek and Johnson, 2020), and 060

ClothoAQA (Lipping et al., 2022) in the English 061

language. Implementing a speech-based AQA 062

system necessitates training on datasets containing 063

triplets of environmental sounds, corresponding 064

spoken queries, and their responses. Without such 065

a dataset, the Clotho-AQA (Lipping et al., 2022) 066

dataset was expanded. Text-based questions were 067

converted into spoken form using Text-to-Speech 068

Synthesis (TTS) systems (Indurthi et al., 2019; 069

Duquenne et al., 2022; Zhang et al., 2022; Xue 070

et al., 2024; Chen et al., 2021). To create a 071

multilingual system, these text-based questions 072

were translated into Hindi and Bengali, popular 073

Indian languages, using Machine Translation (MT) 074

systems. The translated texts were then synthesized 075

to generate spoken questions. This effort led to 076

developing the first-ever Textless Multilingual 077

Audio Question Answering (TM-AQA) dataset, 078

featuring spoken questions in English, Hindi, and 079

Bengali. Significantly, this work also implements 080

and evaluates the first multilingual speech-based 081

AQA systems using a Transformer-based (Vaswani 082
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et al., 2017) Multi-Modal Learning (MML) frame-083

work on two different types of questions. The first084

type involves binary "Yes/No" questions, while085

the second type consists of open-ended questions086

with multi-class answers. To the best of our087

knowledge, this dataset represents a pioneering ef-088

fort in facilitating research into speech-based AQA.089

090

The TM-AQA dataset undergoes evaluation091

through a detailed comparative analysis of systems092

utilizing MML frameworks based on Transformer093

architectures as described in Transformer (Vaswani094

et al., 2017). These systems employ a variety of095

features extracted from different Large Acoustic096

Models (LAMs), including Wav2Vec2.0 (Baevski097

et al., 2020), Whisper (Radford et al., 2023), and098

Hu-BERT (Hsu et al., 2021), alongside traditional099

mel filterbanks and raw audio. To address the100

computational complexities associated with101

Transformer-based architectures (Pau and Aymone,102

2024; Katharopoulos et al., 2020), this study103

proposes a new architecture based on Structures104

State Space Sequence using Selective Sequence105

(S6) models (Smith et al., 2022; Gu et al., 2021).106

S6 models have demonstrated effective solutions107

for Transformer challenges and have exhibited108

strong capabilities in modeling long sequences109

across various tasks (Liu et al., 2024). This110

research introduces a novel MML framework,111

A-MAMBA, based on the S6 model, tailored112

for AQA implementation. A-MAMBA accepts113

raw audio inputs from speech-based queries and114

environmental sound clips, generating appropriate115

responses. Moreover, A-MAMBA integrates116

a novel continuous scanning mechanism to117

efficiently capture contextual relationships among118

adjacent audio sequences divided into patches.119

120

In summary, this paper presents three primary121

contributions: (i) a Speech-based TM-AQA dataset,122

(ii) comprehensive baseline evaluations of the TM-123

AQA dataset using Transformer and A-MAMBA-124

based MML frameworks, and (iii) the introduction125

of a novel Continuous Scan Mechanism (CSM).126

The structure of this paper is organized as fol-127

lows: Section 2 provides a detailed description128

of the TM-AQA dataset. Section 3 outlines the129

proposed methodologies. Experimental settings130

are discussed in Section 4, followed by results and131

discussions in Section 5. Finally, conclusions are132

drawn in Section 6, with limitations discussed in133

Section 7.134

2 TM-AQA Dataset 135

2.1 Overview 136

TM-AQA includes spoken questions in English, 137

Hindi, and Bengali, extending from the ClothoAQA 138

dataset chosen for its diverse content and real-world 139

challenges. Figure 1 illustrates spectrogram repre- 140

sentations generated for raw environmental signals 141

and corresponding questions in these languages. 142

Each audio clip is associated with 18 question- 143

answer (QA) pairs across all three languages, result- 144

ing in 107,514 (1991 ˆ 18 ˆ 3) QA pairs based on 145

1991 audio clips containing numerous environmen- 146

tal sounds. Figure 2 presents word-cloud represen- 147

tations of the answers in their respective languages. 148

The distribution of the first five words across all 149

questions in the training set of TM-AQA is visual- 150

ized in Figure 3, where the innermost ring repre- 151

sents the first word and subsequent rings represent 152

subsequent words. The arc lengths are proportional 153

to the frequency of each word in the questions, 154

with words occurring less than 30 times omitted 155

for clarity. 156

2.2 Spoken Question Generation 157

The SeamlessM4T (Barrault et al., 2023) is an AI 158

model designed for translation and transcription 159

tasks, capable of performing speech-to-text (S2T), 160

speech-to-speech (S2S), text-to-speech (T2S), and 161

text-to-text (T2T) translations across 100 lan- 162

guages. This model has demonstrated more re- 163

alistic translations than similar ones, assessed man- 164

ually on a subset of translated texts. In this work, 165

SeamlessM4T is employed to translate textual ques- 166

tions from English to Hindi and Bengali. Native 167

speakers and linguists proficient in Hindi and Ben- 168

gali evaluate these translations to ensure higher 169

quality. Subsequently, the final translations are con- 170

verted from T2S using the SeamlessM4T model, 171

generating spoken questions in Hindi, Bengali, and 172

English. 173

2.3 Statistical Overview of TM-AQA 174

Table 1 provides an overview of the specifications 175

of the TM-AQA dataset. It details the distribution 176

of the dataset across training, validation, and test 177

sets, along with the duration of audio and speech 178

files categorized by the three languages in hours. 179

2



Time0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

0 50 100 150 200 250

Time0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

0 50 100 150 200 250

Time0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

0 50 100 150 200 250

Time0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

0 50 100 150 200 250

Figure 1: Spectrogram visualization of a raw environmental signal(leftmost) and the corresponding speech-based
question in English, Hindi, and Bengali (from right to left)

Figure 2: Word clouds representation of answers for all question types in the TM-AQA training set in English,
Hindi & Bengali (from left to right).

Table 1: Overview of TM-AQA dataset including the number and duration of sound files (in hours) containing
environmental sounds, Question and Answer pairs related to the sound files along with duration of spoken questions
(in hours) generated in four languages viz. English, German, French and Spanish for train, validation and test sets.

Sl. No. Set # of Sound files Sound duration # QA pairs Speech duration (in hours)
English Hindi Bengali

1 Train 1174 7.35 21132 10.28 11.92 24.55
2 Validation 344 2.13 6192 3.05 3.53 6.99
3 Test 473 2.98 8515 4.15 4.81 8.78
4 Total 1991 12.46 35839 17.48 20.26 40.32

Figure 3: Chart representing the distribution of the first
four words for all questions in the training set of the

TM-AQA dataset

3 Proposed Methodology180

3.1 A-MAMBA: A Structured State Space181

Sequence Using Selective Scan (S6) Model182

S6 models (Gu et al., 2021) are neural network ar-183

chitectures designed to handle long data sequences184

efficiently. Unlike Transformers, which use self-185

attention for capturing long-range dependencies186

but suffer from quadratic complexity, S6 models187

like MAMBA (Gu and Dao, 2023) offer effective188

management of sequential long-range dependen-189

cies without significantly increasing computational 190

cost. MAMBA, specifically, is a linear-time S6 191

model (Gu and Dao, 2023) known for faster infer- 192

ence and state-of-the-art performance across vari- 193

ous modalities. It maps input sequences through 194

an implicit latent state and applies the Zero-Order 195

Hold rule for output discretization. To this end, 196

this work introduces A-MAMBA, an audio-specific 197

adaptation of MAMBA tailored for MML tasks. 198

A-MAMBA integrates a continuous scan mecha- 199

nism and processes raw signals by grouping similar 200

features. This approach capitalizes on MAMBA’s 201

efficient management of sequential data, enhancing 202

its suitability for audio-related applications. 203

MAMBA maps the input sequences xptq P R 204

through implicit latent state hptq P RN to yptq P R. 205

It uses evolution parameter A and projection param- 206

eters B & C. Mathematically, they are represented 207

as follows: 208

h
1

ptq “ Ahptq ` Bxptq (1) 209

210

yptq “ Chptq (2) 211
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The Equations 1 & 2 represents continuous sys-212

tems and the continuous paremeters (A & B) were213

transformed to discrete parameters (A & B) using214

a Zero-Order Hold discretization rule utilizing an215

additional timescale parameter ∆. Mathematically,216

it is given as:217

A “ expp∆Aq (3)218
219

B “ p∆Aq´1pexpp∆Aq ´ Iq.∆B (4)220

Finally, the discretized form of Equations 1 & 2221

are given as:222

ht “ Aht´1 ` Bht (5)223

yt “ Cht (6)224

The resultant State Space Model (SSM) is the225

global convolution between the input sequences x226

and kernel K P Rk and is represented as:227

K “ pCB,CAB, ...,CAkBq (7)228

y “ x ˚ K (8)229

3.2 Continuous Scan Mechanism230

The original Mamba architecture (Gu and Dao,231

2023) utilized a selective scan mechanism (SSM),232

which may not effectively capture contextual re-233

lationships between adjacent tokens. To this end,234

this work employs a continuous scan mechanism235

(CSM) to overcome the limitation above while236

ensuring spatial continuity within each region.237

For instance, consider a zone with four regions:238

p1, 1q, p1, 2q, p2, 1q, p2, 2q, corresponding to top-239

left, top-right, bottom-left, and bottom-right, re-240

spectively. In the SSM (Gu and Dao, 2023), the241

scanning order is p1, 1q Ñ p1, 2q Ñ p2, 1q Ñ242

p2, 2q, whereas with the CSM, the scanning order243

is p1, 1q Ñ p1, 2q Ñ p2, 2q Ñ p2, 1q. The CSM ap-244

proach efficiently organizes input tokens based on245

proximity and aligns them accordingly, enabling246

the model to capture intricate temporal relation-247

ships within audio sequences. This work proposes248

an A-MAMBA model that utilizes the CSM to tra-249

verse through patches of audio sequences, enhanc-250

ing its ability to model complex temporal depen-251

dencies.252

3.3 A-MAMBA-Based MML Frawework 253

Figure 4 illustrates the entire workflow of the pro- 254

posed MML framework. The proposed MML 255

framework utilizing A-MAMBA can be segmented 256

into four components: (i) a shallow feature ex- 257

tractor, (ii) a deep feature extractor, (iii) a fusion- 258

MAMBA module, and (iv) a classification module. 259

The proposed MML architecture utilizes two dis- 260

tinct modalities related to audio: (i) speech-based 261

questions pA1q and (ii) environmental sounds pA2q. 262

These modalities are combined using a MAMBA- 263

based fusion module to produce responses. 264

Shallow Feature Extractor: This module 265

comprises a sequence of one-dimensional Convo- 266

lution (Conv-1D) layers stacked one after another. 267

Convolutional networks excel in capturing local 268

features and mapping them to a higher-dimensional 269

feature space. The input audio sequences pA1q and 270

pA2q were processed through multiple Conv-1D 271

layers with LeakyReLU activation functions. Each 272

layer employed a 3 ˆ 3 kernel size and a stride of 273

1. The resulting output feature from the Conv-1D 274

block has dimensions B ˆ M ˆ D, where B 275

represents the batch size, M signifies the sequence 276

length of the audio, and D denotes the embedding 277

dimension. 278

279

Deep Feature Extractor: Considering CNNs’ 280

potential limitations in effectively capturing tem- 281

poral audio patterns and the quadratic complex- 282

ity issues encountered by Transformers, this mod- 283

ule opted for Mamba blocks. These blocks have 284

been recognized for efficiently extracting advanced 285

specific features, as evidenced in previous re- 286

search (Xie et al., 2024; Peng et al., 2024; He 287

et al., 2024). Consequently, the outputs from the 288

CNN blocks pA1
1q and pA2

1q underwent process- 289

ing through multiple Bi-Mamba blocks (Zhu et al., 290

2024), resulting in pA1
2q and pA2

2q . This process 291

can be expressed mathematically as follows: 292

A1
2 “ Bi-MambapA1

1q (9) 293
294

A2
2 “ Bi-MambapA2

1q (10) 295

The Bi-Mamba block (Zhu et al., 2024) introduces 296

a 2-way feature extraction and scanning (forward 297

& backward) of the input sequences, which enables 298

multi-directional spatial-aware processing. The 299

input feature sequence with dimension BˆM ˆD 300

is normalized by passing it through a LayerNorm 301

block. The output is then projected into two 302

branches, x and z, using two MLP layers. In 303
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Figure 4: Block diagram of the proposed A-MAMBA-based MML framework.

the first branch, x is again fed into two separate304

branches consisting of Conv-1D layers and the305

State Space Models to compute x1
backward and306

x1
forward. The z is initially passed through a307

SiLU activation function on the other branch.308

Further, z passed through SiLU is multiplied309

with x1
forward and x1

backward to get the resulting310

features y1
forward and y1

backward. The final input to311

the next MLP layer is the summation of y1
forward312

and y1
backward py1

forward ‘ y1
backwardq. After313

completing the above steps, the final output of the314

Bi-Mamba block is processed through an MLP315

layer and residual connection to obtain the ultimate316

features. These final features are denoted as A2
1317

and A2
2, corresponding to the input features from318

modalities A1 and A2, respectively. Algorithm319

1 comprehensively illustrates the operational320

principles of the Bi-Mamba block.321

322

Fusion-MAMBA Module: To facilitate the323

cross-modal interaction and fusion, a Mamba-324

based fusion module is introduced. This fusion325

module takes the output from both the Bi-Mamba326

blocks and uses a gating mechanism to learn fea-327

tures from each other. Through this block, the328

fused features Of from features A2
2 and A1

2 were329

obtained. Mathematically, it can be represented as330

follows:331

Of “ FMprA1
2, A2

2sq (11)332

The algorithm for the MAMBA fusion module is333

depicted in Algorithm 2:334

Classification: The final fused output Of under-335

goes processing through a sequence of linear layers336

Algorithm 1 Bi-Mamba Block
1: Input: token sequence Tl´1 : pB,M,Dq

2: Output: token sequence Tl : pB,M,Dq

3: /* normalize the input sequence Tl´1 */
4: T 1

l´1 : pB,M,Dq Ð NormpTl´1q

5: x : pB,M,Eq Ð MLPx
pT 1

l´1q

6: z : pB,M,Eq Ð MLPz
pT 1

l´1q

7: for o in {forward, backward} do
8: x1

o : pB,M,Eq Ð SiLUpConv1dopxqq

9: Bo : pB,M,Nq Ð MLPB
o px1

oq

10: Co : pB,M,Nq Ð MLPC
o px1

oq

11: /* softplus ensures positive ∆o */
12: ∆o : pB,M,Eq Ð logp1` exppLinear∆o px1

oq ` Parameter∆o qq

13: /* shape of Parameter is pE,Nq */
14: Ao : pB,M,E,Nq Ð ∆o b ParameterAo
15: Bo : pB,M,E,Nq Ð ∆o b Bo

16: /* SSM denoted by Eq (7) & Eq (8) */
17: yo : pB,M,Eq Ð SSMpAo, Bo, Coqpx1

oq

18: end for
19: /* get gated yo */
20: y1

forward : pB,M,Eq Ð yforward d SiLUpzq

21: y1
backward : pB,M,Eq Ð ybackward d SiLUpzq

22: /* residual connection */
23: Tl : pB,M,Dq Ð MLPT

py1
forward ` y1

backwardq ` Tl´1

24: return Tl

before being fed into the MLP classification head. 337

In the case of multiclass classification, the classifi- 338

cation layer accommodates 829 classes, whereas, 339

for binary classification, it reduces to two classes: 340

"Yes" or "No." The predicted answer is ultimately 341

represented as: 342

ypred “ SoftmaxpConv-1dpMLPprOf sqqq (12) 343

4 Experimental Settings 344

4.1 Representation of Different Modalities 345

Speech Representation: To expand the compar- 346

ative analysis, audio features were extracted from 347

both speech-based questions and raw environmen- 348

tal sounds (both resampled at 16 kHz) using ad- 349

vanced Large Acoustic Models (LAMs) including 350
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Algorithm 2 The Fusion-Mamba Module
1: Input: TA1

l´1 : pB,M,Dq, TA2
l´1 : pB,M,Dq

2: Output: Of : pB,W,Dq

3: for o in {A1, A2} do
4: /* Normalize both the input sequence */
5: T o

l´1 : pB,M,Dq Ð NormpT o
l´1q

6: x1
o : pB,M,Eq Ð SiLUpConv1dopxqq

7: Bo : pB,M,Nq Ð MLPpx1
oq

8: Co : pB,M,Nq Ð MLPpx1
oq

9: /* softplus ensures positive ∆o */
10: ∆o : pB,M,Eq Ð logp1 ` exppLinearpx1

oq ` Parameter∆o qq

11: /* shape of Parameter is pE,Nq */
12: Ao : pB,M,E,Nq Ð ∆o b ParameterAo
13: Bo : pB,M,E,Nq Ð ∆o b Bo

14: /* SSM denoted by Eq (7) & Eq (8) */
15: Y o : pB,M,Eq Ð SSMpAo, Bo, Coqpx1

oq

16: end for
17: z1 : pB,M,Eq Ð MLPpT

A1
l´1q

18: z2 : pB,M,Eq Ð MLPpT
A2
l´1q

19: /* get output Y o */
20: Y A11 : pB,M,Eq Ð Y A1

d SiLUpz2q

21: Y A21 : pB,M,Eq Ð Y A2
d SiLUpz1q

22: Y A12
: pB,M,Oq Ð MLPpY A1

q

23: Y A22
: pB,M,Oq Ð MLPpY A2

q

24: /* Concatenate the final output */
25: Of : pB,W,Dq Ð CatpY A1

2
, Y A2

2
q

26: return Of

Wav2Vec2 (Baevski et al., 2020), Hu-BERT (Hsu351

et al., 2021), and Whisper (Radford et al., 2023).352

Here’s how each LAM was utilized:353

• Wav2Vec2: Features were extracted using the354

XLS-R 128 pre-trained model (Babu et al.,355

2021), renowned for its training across 128356

languages. Features were derived from the357

L2-normalization layer following the encoder.358

• Hu-BERT: Features were obtained from the359

11th layer of the encoder of the multilingual360

Hu-BERT model. Before input into the TM-361

AQA system, these features underwent nor-362

malization.363

• Whisper: Utilizing its large-V3 pre-trained364

model with 1.5 billion parameters, Whisper365

extracted audio features from the final encoder366

layer.367

Across all the models, 80-dimensional Mel filter-368

banks were computed with a frame length of 400369

and a hop length of 160. Feature extraction was370

conducted from the frozen encoders of the LAMs,371

ensuring consistency in utilizing the specified lay-372

ers or endpoints for a fair comparison within the373

TM-AQA system.374

Sound Representation: Due to the absence375

of pre-trained models specific to environmental376

sounds, the LAMs mentioned above (Learnable377

Audio Models) underwent fine-tuning to perform378

Environmental Scene Classification (ESC) on a379

combined dataset. This combined dataset includes 380

signals from widely-used ESC or acoustic scene 381

classification (ASC) datasets: ESC-50 (Piczak, 382

2015), DCASE-2019-task-1(A) (Mesaros et al., 383

2019), and FSC22 (Bandara et al., 2023). After 384

fine-tuning using this combined dataset, these mod- 385

els were then utilized to extract features from raw 386

environmental sounds. 387

4.2 Implementation Details 388

The TM-AQA systems were trained and evalu- 389

ated according to the dataset split specified in Ta- 390

ble 1 across all the languages. For transformers- 391

based models, various combinations of audio fea- 392

tures were employed for evaluation, whereas A- 393

MAMBA utilized raw audio inputs. Both Trans- 394

former and A-MAMBA-based MML frameworks 395

were optimized using the Adam optimizer. A 396

learning rate of 1 ˆ 10´4 was used for all the 397

baseline models, while A-MAMBA used a fixed 398

learning rate of 2 ˆ 10´4 without weight decay. 399

The β values for the Adam optimizer were set to 400

β1 “ 0.9 and β2 “ 0.999. Training procedures in- 401

cluded early stopping criteria, using cross-entropy 402

loss for multi-class classification and binary cross- 403

entropy loss for binary classification tasks. Typi- 404

cally, convergence was achieved well before com- 405

pleting 100 epochs for Transformer-based models, 406

whereas A-MAMBA models were trained for 500 407

epochs. Both models employed a batch size of 128 408

during training. The AST-MAMBA network (A- 409

MAMBA using spectrogram inputs) was trained 410

using spectrogram features extracted from the au- 411

dio signal. These spectrograms have dimensions of 412

128 ˆ 100 ˆ t, where t and 100 ˆ t represent the 413

length of the signal in seconds and the total number 414

of frames, respectively. The total number of Mel 415

filters used was 128, and the signal length t was set 416

to 5 seconds. 417

4.3 Evaluation Metrics 418

The TM-AQA systems were evaluated based on 419

Top-1, Top-5, and Top-10 accuracy metrics. Top-k 420

(where k=1, 5, 10) accuracy measures indicate the 421

percentage of instances where the correct answer 422

is included among the top "k" predicted answers. 423

These metrics offer a flexible evaluation by con- 424

sidering a range of potentially correct answers, not 425

just the top-ranked ones. In the context of AQA, 426

where questions may have multiple plausible an- 427

swers, Top-5 and Top-10 accuracy metrics are par- 428

ticularly relevant. They acknowledge the ambiguity 429
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by recognizing acceptable answers within the top430

5 and 10 predictions. This approach aligns with431

real-world scenarios where users expect systems432

to present a set of potential answers rather than433

a single definitive answer. Therefore, Top-5 and434

Top-10 accuracy metrics reflect the complexity of435

understanding and responding to questions involv-436

ing visual contexts more comprehensively. While437

Top-1 accuracy is suitable for binary classification438

tasks, Top-1, Top-5, and Top-10 accuracy metrics439

were employed for multi-class classification eval-440

uations to provide a broader assessment of model441

performance across varying degrees of correctness442

in prediction.443

5 Results & Discussions444

Table 2 provides a performance comparison across445

the Transformer-based MML framework using dif-446

ferent audio features for the three languages in447

the TM-AQA dataset. The table highlights that448

the optimal performance across all languages was449

consistently achieved when utilizing features ex-450

tracted from the Whisper pre-trained model. This451

model benefits from extensive training on diverse452

audio data across multiple languages, allowing for453

nuanced feature capture. Table 3 compares the per-454

formance of architectures employing Transformer455

Table 2: Performance comparison between baseline
benchmark systems utilizing Transformer architecture

and distinct features extracted from speech-based
questions and environmental sounds. The performances

are presented in percentages. In the given table RA:
Raw Audio, MLB: Mel filter bank, W2V: Wav2Vec, HuB:

HuBERT

ENGLISH
Features

(Questions)
Features
(Sounds)

Top-1 Top-5 Top-10
Binary Multiclass Multiclass Multiclass

RA RA 50.08 38.8 60.47 64.76
MLB MLB 50.23 36.09 60.22 65.45
W2V W2V 50.46 37.81 61.64 66.15
HuB HuB 50.7 38.12 61.87 66.45

Whisper Whisper 51.82 38.66 62.15 66.7
HINDI

Features
(Questions)

Features
(Sounds)

Top-1 Top-5 Top-10
Binary Multiclass Multiclass Multiclass

RA RA 49.67 37.1 60.21 64.54
MLB MLB 49.1 37.81 59.81 63.87
W2V W2V 50.32 38.16 62.67 66.21
HuB HuB 50.32 38.43 62.32 66.45

Whisper Whisper 50.78 38.81 63.65 67.32
BENGALI

Features
(Questions)

Features
(Sounds)

Top-1 Top-5 Top-10
Binary Multiclass Multiclass Multiclass

RA RA 49.22 37.36 59.38 64.56
MLB MLB 49.45 38.09 60.5 62.78
W2V W2V 49.89 38.23 62.64 64.64
HuB HuB 50.21 38.2 62.78 66.95

Whisper Whisper 51.34 38.93 63.62 66.1

and A-MAMBA with MLP classifiers. All models 456

described in this table utilize raw audio inputs to 457

minimize architectural complexity. Notably, the 458

small variant of A-MAMBA utilizing CSM across 459

all languages consistently achieved the best per- 460

formance across all classification tasks. Table 4 461

provides detailed information regarding the differ- 462

ent variants of A-MAMBA employed in this work. 463

Transformers vs. MAMBA: From Table 464

3, it is clear that AQA systems employing A- 465

MAMBA outperformed Transformer-based MML 466

frameworks. Effective modeling of contextual in- 467

formation from questions, sounds, or other modal- 468

ities is crucial for generating accurate answers in 469

question-answering systems. The Continuous Scan 470

Mechanism (CSM) inherent in A-MAMBA en- 471

hances its ability to capture this contextual infor- 472

mation more effectively than Transformers. 473

Spectrogram vs. Raw Audio Features: The 474

A-MAMBA-based AQA systems incorporating raw 475

audio demonstrated superior performance com- 476

pared to spectrograms, as illustrated by Table 3. 477

Raw audio signals retain amplitude and phase in- 478

formation, preserving temporal dynamics and fine- 479

grained details of speech signals often lost in spec- 480

trograms. This temporal information is crucial for 481

the AQA system to enhance its contextual under- 482

standing of spoken questions paired with environ- 483

mental sounds. The Raw audio also maintains full 484

resolution without distortions introduced by meth- 485

ods like Short-Time Fourier Transform (STFT), 486

Mel Frequency Cepstrum Coefficients (MFCCs), 487

Mel filterbanks, or spectrograms. This capability 488

likely contributes to better performance using raw 489

audio instead of spectrograms in MAMBA-based 490

architectures. 491

SSM vs CSM: As observed in Table 3, systems 492

utilizing CSM performed better than SSM for all 493

variants of MAMBA across the three languages. 494

This may be attributed to better contextual under- 495

standing between adjacent tokens by maintaining 496

spatial continuity throughout the scanning phase. 497

This improved the decision-making ability and is 498

reflected in the performance. 499

6 Conclusion 500

This study aims to develop a multilingual speech- 501

based Audio Question Answering (AQA) system 502

using a state-space model-based Meta-Learning 503

(MML) framework. To achieve this objective, the 504

study introduces the TM-AQA dataset, which in- 505

7



Table 3: Performance comparison (expressed in %) between Transformer, AST-MAMBA (Spectrogram), and
A-MAMBA(Raw Audio) MML frameworks using MLP classifier for binary and multi-class classification task.

(Performance differences with the best model are represented in blue.)

ENGLISH

MODEL VARIANT Top-1 Top-5 Top-10
Binary Multiclass Multiclass Multiclass

Transformer (Vaswani et al., 2017) Base 50.08 Ó (5.48) 38.8 Ó (4.46) 60.47Ó (8.47) 64.76 Ó (10.01)

AST-MAMBA + SSM
Small 50.67Ó (4.89) 38.79Ó (4.47) 66.45Ó (2.66) 67.89Ó (6.88)

Medium 48.67Ó (6.89) 36.54Ó (6.72) 64.31Ó (4.8) 66.13 Ó (8.64)
Large 42.35 Ó (13.21) 32.31Ó (9.95) 60.48Ó (8.63) 61.53 Ó (13.24)

AST-MAMBA + CSM
Small 50.70 Ó (4.86) 38.56Ó (4.7) 66.87Ó (2.24) 68.97 Ó (5.8)

Medium 48.6Ó (6.96) 37.37Ó (5.89) 65.23Ó (3.88) 66.77 Ó (8)
Large 42.22 Ó (13.34) 33.11Ó (10.15) 60.85Ó (8.26) 61.89 Ó (12.88)

A-MAMBA + SSM
Small 52Ó (3.56) 40.59Ó (2.67) 68.34Ó (0.77) 74.4Ó (0.37)

Medium 51.62Ó (3.94) 37.26Ó (6) 65.47Ó (3.64) 68.54 Ó (6.23)
Large 44.62Ó (10.94) 33.48Ó (9.78) 62.3Ó (6.81) 65.31Ó (9.46)

A-MAMBA + CSM
Small 55.56 43.26 69.11 74.77

Medium 51.98Ó (3.58) 41.42Ó (1.84) 68.44Ó (0.67) 71.21Ó (3.56)
Large 45.86Ó (9.7) 35.94Ó (7.32) 63.8Ó (5.31) 66.48Ó (8.29)

HINDI

MODEL VARIANT Top-1 Top-5 Top-10
Binary Multiclass Multiclass Multiclass

Transformer (Vaswani et al., 2017) Base 49.67 Ó (3.97) 37.1 Ó (5.46) 60.21 Ó (12.46) 64.54 Ó (12.06)

AST-MAMBA + SSM
Small 50.35 Ó (3.29) 38.53 Ó (4.03) 66.67 Ó (6.00 ) 68.12 Ó (8.48)

Medium 48.74 Ó (4.90) 35.14 Ó (7.42) 63.1 Ó (9.57) 65.12 Ó (11.48)
Large 41.35 Ó (12.29) 31.42 Ó (11.14) 60.85 Ó (11.82) 62.95 Ó (13.65)

AST-MAMBA + CSM
Small 50.44 Ó (3.20) 38.56 Ó (4.00) 66.68 Ó (5.99) 68.65 Ó (7.95)

Medium 49.08 Ó (4.56) 35.43 Ó (7.13) 63.66 Ó (9.01) 65.43 Ó (11.17)
Large 41.23 Ó (12.41) 31.52 Ó (11.04) 61.33 Ó (11.34) 63.17 Ó (13.43)

A-MAMBA + SSM
Small 51.98 Ó (1.66) 40.44 Ó (2.12) 69.18 Ó (3.49) 73.61 Ó (2.99)

Medium 49.42 Ó (4.22) 37.59 Ó (4.97) 65.72 Ó (6.95) 67.09 Ó (9.51)
Large 44.98 Ó (8.66) 33.77 Ó (8.79) 61.18 Ó (11.49) 65.19 Ó (11.41)

A-MAMBA + CSM
Small 53.64 42.56 72.67 76.6

Medium 51.8 Ó (1.84) 40.55 Ó (2.01) 66.35 Ó (6.32) 68.65 Ó (7.95)
Large 45.64 Ó (8.00) 35.71 Ó (6.85) 62.69 Ó (9.98) 66.86 Ó (9.74)

BENGALI

MODEL VARIANT Top-1 Top-5 Top-10
Binary Multiclass Multiclass Multiclass

Transformer (Vaswani et al., 2017) Base 49.22 Ó (3.56) 37.36 Ó (2.08) 59.38Ó (10.73) 64.56Ó (11.2)

AST-MAMBA + SSM
Small 49.84Ó (2.94) 37.31Ó (2.13) 66.31Ó (3.8) 69.83Ó (5.93)

Medium 48.84Ó (3.94) 36.45Ó (2.99 64.11Ó (6) 67.41Ó (8.35)
Large 41.8Ó (10.98) 32.34Ó (7.1) 59.31Ó (10.8) 62.23Ó (13.53

AST-MAMBA + CSM
Small 49.88Ó (10.9) 37.36Ó (2.08) 66.67Ó (3.44) 68.88Ó (6.88)

Medium 48.8Ó (3.98) 36.57Ó (2.87) 64.17Ó (5.94) 67.56Ó (8.2)
Large 41.89Ó (10.89) 33.11Ó (6.33) 60.61Ó (9.5) 62.34Ó (13.42)

A-MAMBA + SSM
Small 51.21Ó (1.57) 38.42Ó (1.02) 68.75Ó (1.36) 74.32Ó (1.44)

Medium 50.34 Ó (2.44) 36.43 Ó (3.01) 65.87 Ó (4.24) 68.76Ó (7)
Large 44.89Ó (7.89) 33.37 Ó (6.07) 62.75 Ó (7.36) 66.76Ó (9)

A-MAMBA + CSM
Small 52.78 39.44 70.11 75.76

Medium 50.79 Ó (1.99) 38.2 Ó (1.24) 65.78 Ó (4.33) 70.87 Ó (4.89)
Large 45.78 Ó (7.00) 34.61 Ó (4.83) 63.11 Ó (7.00) 66.88 Ó (8.88)

Table 4: Computational Complexity of A-MAMBA and its variants (M=Millions, G=Giga)

Model Type Layers Hidden Size Expand d_state Params (M) Flops MACS
A-MAMBA-small 1 192 1 8 11.0065 M 1.6548 G 820.2 M

A-MAMBA-medium 2 256 1 8 18.4939 M 2.8176 G 1.3991 G
A-MAMBA-large 4 384 2 16 45.2617 M 6.3927 G 3.1815 G

cludes spoken questions in English, Hindi, and506

Bengali. Additionally, the study proposes a novel507

state-space model-based MML framework called508

A-MAMBA, which incorporates the Continuous509

Scan Mechanism. The performance of A-MAMBA510

is compared with transformer-based MML frame-511

works to establish rigorous baseline benchmarks 512

for the TM-AQA task. Experimental results demon- 513

strate that the proposed A-MAMBA-based MML 514

framework outperforms transformer-based MML 515

frameworks in the context of TM-AQA. 516
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7 Limitations517

The TM-AQA dataset includes synthesized spoken518

questions generated by the T2S system. However,519

it is crucial to incorporate real voice recordings520

for spoken questions to develop a robust system.521

This work focuses solely on using raw audio as522

input features for the proposed A-MAMBA model,523

aiming to minimize computational demands since524

features derived from pre-trained models necessi-525

tate additional computations. These constraints are526

anticipated to guide future research directions in527

the speech-based AQA domain.528

8 Ethical Statement529

Native speakers of Hindi and Bengali, proficient530

in both languages and English, were employed to531

check the manual quality of translated texts. They532

were compensated on a pre-sentence basis. Addi-533

tionally, the authors ensured proper documentation534

of their employment.535
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