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Abstract

Audio Question Answering (AQA) is a com-
plex task in Multi-Modal Learning, where a sys-
tem interprets audio inputs and associated ques-
tions to produce appropriate answers. Previous
AQA research has primarily focused on text-
based queries, exploration into spoken ques-
tions in languages like English has been lim-
ited. Since speech is a primary mode of com-
munication, integrating spoken queries could
significantly enhance AQA system capabili-
ties. To bridge this gap, this paper introduces
a Spoken AQA system utilizing the Textless
Multilingual Audio Question Answering (TM-
AQA) dataset. This dataset comprises 107,514
question-answer pairs in English, Hindi, and
Bengali, derived from 1991 environmental au-
dio recordings corresponding to various envi-
ronmental scenes. The study establishes base-
line performance metrics by evaluating several
multimodal (MML) AQA frameworks that em-
ploy diverse acoustic features and architectures.
The experimental results demonstrate that the
proposed Audio-MAMBA (A-MAMBA) based
MML framework, incorporating a Continu-
ous Scanning Mechanism (CSM), surpasses
Transformer-based MML frameworks in per-
formance and computational efficiency.

1 Introduction

AQA systems (Lipping et al., 2022; Behera
et al,, 2023; Anderson et al., 2018; Sun and
Fu, 2019) are designed to respond to queries
related to environmental sounds, functioning as
multi-modal systems. These systems analyze
audio signals containing sounds like footsteps, bird
songs, rain, and wind, among others, alongside
associated queries to generate suitable responses.
However, current AQA systems primarily operate
on text-based queries (Behera et al., 2023; Li et al.,
2023; Sudarsanam and Virtanen, 2023; Fayek
and Johnson, 2020), which can limit usability
and prove cumbersome due to the manual input

required for typing questions. To overcome these
limitations and enhance the user experience by
offering a more natural, hands-free interaction
mode (Alasmary and Al-Ahmadi, 2023; Patil et al.,
2019; Alasmary and Al-Ahmadi, 2023; Chowdhury
et al., 2017) that supports multitasking, this work
proposes the development of a speech-based
AQA system. Responses generated by the system
can still be presented in textual form for better
comprehension, as humans often find it easier to
comprehend information through reading rather
than writing. This initiative is motivated by the
potential to pioneer advancements in speech-based
AQA technology.

Audio Question Answering (AQA) is a rapidly
emerging research field facilitated by the introduc-
tion of datasets such as CLEAR (Abdelnour et al.,
2019), DAQA (Fayek and Johnson, 2020), and
ClothoAQA (Lipping et al., 2022) in the English
language. Implementing a speech-based AQA
system necessitates training on datasets containing
triplets of environmental sounds, corresponding
spoken queries, and their responses. Without such
a dataset, the Clotho-AQA (Lipping et al., 2022)
dataset was expanded. Text-based questions were
converted into spoken form using Text-to-Speech
Synthesis (TTS) systems (Indurthi et al., 2019;
Duquenne et al., 2022; Zhang et al., 2022; Xue
et al.,, 2024; Chen et al.,, 2021). To create a
multilingual system, these text-based questions
were translated into Hindi and Bengali, popular
Indian languages, using Machine Translation (MT)
systems. The translated texts were then synthesized
to generate spoken questions. This effort led to
developing the first-ever Textless Multilingual
Audio Question Answering (TM-AQA) dataset,
featuring spoken questions in English, Hindi, and
Bengali. Significantly, this work also implements
and evaluates the first multilingual speech-based
AQA systems using a Transformer-based (Vaswani



et al., 2017) Multi-Modal Learning (MML) frame-
work on two different types of questions. The first
type involves binary "Yes/No" questions, while
the second type consists of open-ended questions
with multi-class answers. To the best of our
knowledge, this dataset represents a pioneering ef-
fort in facilitating research into speech-based AQA.

The TM-AQA dataset undergoes evaluation
through a detailed comparative analysis of systems
utilizing MML frameworks based on Transformer
architectures as described in Transformer (Vaswani
et al., 2017). These systems employ a variety of
features extracted from different Large Acoustic
Models (LAMs), including Wav2Vec2.0 (Baevski
et al., 2020), Whisper (Radford et al., 2023), and
Hu-BERT (Hsu et al., 2021), alongside traditional
mel filterbanks and raw audio. To address the
computational complexities associated with
Transformer-based architectures (Pau and Aymone,
2024; Katharopoulos et al., 2020), this study
proposes a new architecture based on Structures
State Space Sequence using Selective Sequence
(S6) models (Smith et al., 2022; Gu et al., 2021).
S6 models have demonstrated effective solutions
for Transformer challenges and have exhibited
strong capabilities in modeling long sequences
across various tasks (Liu et al., 2024). This
research introduces a novel MML framework,
A-MAMBA, based on the S6 model, tailored
for AQA implementation. A-MAMBA accepts
raw audio inputs from speech-based queries and
environmental sound clips, generating appropriate
responses. Moreover, A-MAMBA integrates
a novel continuous scanning mechanism to
efficiently capture contextual relationships among
adjacent audio sequences divided into patches.

In summary, this paper presents three primary
contributions: (i) a Speech-based TM-AQA dataset,
(ii) comprehensive baseline evaluations of the TM-
AQA dataset using Transformer and A-MAMBA-
based MML frameworks, and (iii) the introduction
of a novel Continuous Scan Mechanism (CSM).
The structure of this paper is organized as fol-
lows: Section 2 provides a detailed description
of the TM-AQA dataset. Section 3 outlines the
proposed methodologies. Experimental settings
are discussed in Section 4, followed by results and
discussions in Section 5. Finally, conclusions are
drawn in Section 6, with limitations discussed in
Section 7.

2 TM-AQA Dataset

2.1 Overview

TM-AQA includes spoken questions in English,
Hindi, and Bengali, extending from the ClothoAQA
dataset chosen for its diverse content and real-world
challenges. Figure 1 illustrates spectrogram repre-
sentations generated for raw environmental signals
and corresponding questions in these languages.
Each audio clip is associated with 18 question-
answer (QA) pairs across all three languages, result-
ing in 107,514 (1991 x 18 x 3) QA pairs based on
1991 audio clips containing numerous environmen-
tal sounds. Figure 2 presents word-cloud represen-
tations of the answers in their respective languages.
The distribution of the first five words across all
questions in the training set of TM-AQA is visual-
ized in Figure 3, where the innermost ring repre-
sents the first word and subsequent rings represent
subsequent words. The arc lengths are proportional
to the frequency of each word in the questions,
with words occurring less than 30 times omitted
for clarity.

2.2 Spoken Question Generation

The SeamlessM4T (Barrault et al., 2023) is an Al
model designed for translation and transcription
tasks, capable of performing speech-to-text (S2T),
speech-to-speech (S2S), text-to-speech (T2S), and
text-to-text (T2T) translations across 100 lan-
guages. This model has demonstrated more re-
alistic translations than similar ones, assessed man-
ually on a subset of translated texts. In this work,
SeamlessM4T is employed to translate textual ques-
tions from English to Hindi and Bengali. Native
speakers and linguists proficient in Hindi and Ben-
gali evaluate these translations to ensure higher
quality. Subsequently, the final translations are con-
verted from T2S using the SeamlessM4T model,
generating spoken questions in Hindi, Bengali, and
English.

2.3 Statistical Overview of TM-AQA

Table 1 provides an overview of the specifications
of the TM-AQA dataset. It details the distribution
of the dataset across training, validation, and test
sets, along with the duration of audio and speech
files categorized by the three languages in hours.



Figure 1: Spectrogram visualization of a raw environmental signal(leftmost) and the corresponding speech-based
question in English, Hindi, and Bengali (from right to left)
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Figure 2: Word clouds representation of answers for all question types in the TM-AQA training set in English,
Hindi & Bengali (from left to right).

Table 1: Overview of TM-AQA dataset including the number and duration of sound files (in hours) containing
environmental sounds, Question and Answer pairs related to the sound files along with duration of spoken questions
(in hours) generated in four languages viz. English, German, French and Spanish for train, validation and test sets.

SI. No. Set # of Sound files | Sound duration | # QA pairs Isﬂlr)leg(;icslildu;?izglil (H;;;zg;lsi)
1 Train 1174 7.35 21132 10.28 11.92 24.55
2 Validation 344 2.13 6192 3.05 3.53 6.99
3 Test 473 2.98 8515 4.15 4.81 8.78
4 Total 1991 12.46 35839 17.48 | 20.26 40.32
\ cies without significantly increasing computational
\\ o, cost. MAMBA, specifically, is a linear-time S6
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Figure 3: Chart representing the distribution of the first
four words for all questions in the training set of the
TM-AQA dataset

3 Proposed Methodology

3.1 A-MAMBA: A Structured State Space
Sequence Using Selective Scan (S6) Model

S6 models (Gu et al., 2021) are neural network ar-
chitectures designed to handle long data sequences
efficiently. Unlike Transformers, which use self-
attention for capturing long-range dependencies
but suffer from quadratic complexity, S6 models
like MAMBA (Gu and Dao, 2023) offer effective
management of sequential long-range dependen-

model (Gu and Dao, 2023) known for faster infer-
ence and state-of-the-art performance across vari-
ous modalities. It maps input sequences through
an implicit latent state and applies the Zero-Order
Hold rule for output discretization. To this end,
this work introduces A-MAMBA, an audio-specific
adaptation of MAMBA tailored for MML tasks.
A-MAMBA integrates a continuous scan mecha-
nism and processes raw signals by grouping similar
features. This approach capitalizes on MAMBA’s
efficient management of sequential data, enhancing
its suitability for audio-related applications.
MAMBA maps the input sequences z(t) € R
through implicit latent state () € RY to y(t) € R.
It uses evolution parameter A and projection param-
eters B & C. Mathematically, they are represented
as follows:

B (t) = Ah(t) + Bx(t) (1)

y(t) = Ch(t) 2)



The Equations 1 & 2 represents continuous sys-
tems and the continuous paremeters (A & B) were
transformed to discrete parameters (A & B) using
a Zero-Order Hold discretization rule utilizing an
additional timescale parameter A. Mathematically,
it is given as:

A = exp(AA) 3)
B = (AA) !(exp(AA) —I).AB (4

Finally, the discretized form of Equations 1 & 2
are given as:

hy = Ahy—1 + Bhy 5)

yr = Chy (6)

The resultant State Space Model (SSM) is the
global convolution between the input sequences
and kernel K € R* and is represented as:

K = (CB,CAB, .., CA"B) (7)

y=xxK (8)

3.2 Continuous Scan Mechanism

The original Mamba architecture (Gu and Dao,
2023) utilized a selective scan mechanism (SSM),
which may not effectively capture contextual re-
lationships between adjacent tokens. To this end,
this work employs a continuous scan mechanism
(CSM) to overcome the limitation above while
ensuring spatial continuity within each region.
For instance, consider a zone with four regions:
(1,1),(1,2),(2,1),(2,2), corresponding to top-
left, top-right, bottom-left, and bottom-right, re-
spectively. In the SSM (Gu and Dao, 2023), the
scanning order is (1,1) — (1,2) — (2,1) —
(2,2), whereas with the CSM, the scanning order
is(1,1) - (1,2) — (2,2) — (2,1). The CSM ap-
proach efficiently organizes input tokens based on
proximity and aligns them accordingly, enabling
the model to capture intricate temporal relation-
ships within audio sequences. This work proposes
an A-MAMBA model that utilizes the CSM to tra-
verse through patches of audio sequences, enhanc-
ing its ability to model complex temporal depen-
dencies.

3.3 A-MAMBA-Based MML Frawework

Figure 4 illustrates the entire workflow of the pro-
posed MML framework. The proposed MML
framework utilizing A-MAMBA can be segmented
into four components: (i) a shallow feature ex-
tractor, (ii) a deep feature extractor, (iii) a fusion-
MAMBA module, and (iv) a classification module.
The proposed MML architecture utilizes two dis-
tinct modalities related to audio: (i) speech-based
questions (A1) and (ii) environmental sounds (A2).
These modalities are combined using a MAMBA-
based fusion module to produce responses.

Shallow Feature Extractor: This module
comprises a sequence of one-dimensional Convo-
lution (Conv-1D) layers stacked one after another.
Convolutional networks excel in capturing local
features and mapping them to a higher-dimensional
feature space. The input audio sequences (A1) and
(A2) were processed through multiple Conv-1D
layers with LeakyReL.U activation functions. Each
layer employed a 3 x 3 kernel size and a stride of
1. The resulting output feature from the Conv-1D
block has dimensions B x M x D, where B
represents the batch size, M signifies the sequence
length of the audio, and D denotes the embedding
dimension.

Deep Feature Extractor: Considering CNNs’
potential limitations in effectively capturing tem-
poral audio patterns and the quadratic complex-
ity issues encountered by Transformers, this mod-
ule opted for Mamba blocks. These blocks have
been recognized for efficiently extracting advanced
specific features, as evidenced in previous re-
search (Xie et al., 2024; Peng et al., 2024; He
et al., 2024). Consequently, the outputs from the
CNN blocks (A;) and (A3") underwent process-
ing through multiple Bi-Mamba blocks (Zhu et al.,
2024), resulting in (A;”) and (A3") . This process
can be expressed mathematically as follows:

A" = Bi-Mamba(A;") )

Ay" = Bi-Mamba(As') (10)

The Bi-Mamba block (Zhu et al., 2024) introduces
a 2-way feature extraction and scanning (forward
& backward) of the input sequences, which enables
multi-directional spatial-aware processing. The
input feature sequence with dimension B x M x D
is normalized by passing it through a LayerNorm
block. The output is then projected into two
branches, x and z, using two MLP layers. In
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Figure 4: Block diagram of the proposed A-MAMBA-based MML framework.

the first branch, x is again fed into two separate
branches consisting of Conv-1D layers and the
State Space Models to compute Z,.;...q and
x’forward. The z is initially passed through a
SiLU activation function on the other branch.
Further, z passed through SiLU is multiplied
with @ and T, 4, o get the resulting
features 4.0 A4 Ypuckarg- The final input to
the next MLP layer is the summation of ¥,,.,,4,4
and ygackwm‘d (ylforward ® ygackward)' After
completing the above steps, the final output of the
Bi-Mamba block is processed through an MLP
layer and residual connection to obtain the ultimate
features. These final features are denoted as A/
and A%, corresponding to the input features from
modalities A; and As, respectively. Algorithm
1 comprehensively illustrates the operational
principles of the Bi-Mamba block.

Fusion-MAMBA Module: To facilitate the
cross-modal interaction and fusion, a Mamba-
based fusion module is introduced. This fusion
module takes the output from both the Bi-Mamba
blocks and uses a gating mechanism to learn fea-
tures from each other. Through this block, the
fused features O from features A>” and A;” were
obtained. Mathematically, it can be represented as
follows:

Of = FM([A", A2"]) (11)

The algorithm for the MAMBA fusion module is
depicted in Algorithm 2:

Classification: The final fused output O under-
goes processing through a sequence of linear layers

Algorithm 1 Bi-Mamba Block

1: Input: token sequence 771 : (B, M, D)
2: Output: token sequence T; : (B, M, D)
3: /* normalize the input sequence T} _ 1 */
4: 17/ | : (B, M, D) « Norm(T};_1)

5: x: (B, M, E) « MLP*(T}_,)
6
7
8

: z: (B, M, E) « MLP*(T]_,)
. for o in {forward, backward} do
z! : (B, M, E) « SiLU(Convld, (z))
9: B, :(B,M,N) < MLPZ(2))

10:  C,: (B, M,N) < MLPS (z)

11: /* softplus ensures positive A, */

12: Ao i (B, M, E) « log(1 + exp(Linear5' (z,) + Parameter?'))
13: /* shape of Parameter is (E, N') */

14: A, : (B,M,E,N) <« A, ® Parametergl

15: B,:(B,M,E,N) < A,® B,

16: /* SSM denoted by Eq (7) & Eq (8) */

17 yo: (B, M, E) <« SSM(A,, B,, C,)(a")

18: end for

19: /# get gated y,, */

208 Yforwara © (By M, E) < Ysorwara © SiLU(2)

212 yyociana 2 (B2 M, E) = Yraciowara @ SILU(2)

22: /* residual connection */

230 1y 1 (B, M. D) = MLPT (g + Hacgons) + Tit
24: return T

before being fed into the MLP classification head.
In the case of multiclass classification, the classifi-
cation layer accommodates 829 classes, whereas,
for binary classification, it reduces to two classes:
"Yes" or "No." The predicted answer is ultimately
represented as:

Ypred = Softmax(Conv-1d(MLP([O¢]))) (12)

4 [Experimental Settings

4.1 Representation of Different Modalities

Speech Representation: To expand the compar-
ative analysis, audio features were extracted from
both speech-based questions and raw environmen-
tal sounds (both resampled at 16 kHz) using ad-
vanced Large Acoustic Models (LAMs) including



Algorithm 2 The Fusion-Mamba Module

1: Input: T2 : (B, M, D), T2 : (B, M, D)
2: Output: Oy : (B, W, D)
3: foroin {Al, A2} do

/* Normalize both the input sequence */

4
5: T2 ,: (B, M, D) « Norm(Ty_ ;)
6: ! :(B,M,E) « SiLU(Convld,(z))
7: By :(B,M,N) <« MLP(z))

8 C, : (B, M,N) < MLP(z))

9: /* softplus ensures positive A, */

10: A, i (B, M, E) « log(1 + exp(Linear(z’,) + Parameter?'))
11: /* shape of Parameter is (E, N) */

12: 4, :(B,M,E,N) < A, ® Parameter”

13: B,:(B,M,E,N) < A,® B,

14: /% SSM denoted by Eq (7) & Eq (8) */

15:  Y°:(B,M,E) « SSM(A,, B,, C,)(z)

16: end for

17: 21 : (B, M, E) « MLP(T/*})

18: 23 : (B, M, E) «— MLP(T}*2

19: /* get output Y'© */

20: YAY . (B, M, E) « YA @ SiLU(22)

21: YA%': (B, M, E) « Y*2 ®SiLU(z1)

22: vAY . (B, M, 0) < MLP(Y41)

23: v42" . (B, M, 0) < MLP(Y42)

24: /* Concatenate the final output ¥/

25: 0y : (B, W, D) « Cat(y 1" yAz")

26: return O

Wav2Vec?2 (Baevski et al., 2020), Hu-BERT (Hsu
et al., 2021), and Whisper (Radford et al., 2023).
Here’s how each LAM was utilized:

* Wav2Vec2: Features were extracted using the
XLS-R 128 pre-trained model (Babu et al.,
2021), renowned for its training across 128
languages. Features were derived from the
L2-normalization layer following the encoder.

* Hu-BERT: Features were obtained from the
11*" layer of the encoder of the multilingual
Hu-BERT model. Before input into the TM-
AQA system, these features underwent nor-
malization.

* Whisper: Utilizing its large-V3 pre-trained
model with 1.5 billion parameters, Whisper
extracted audio features from the final encoder
layer.

Across all the models, 80-dimensional Mel filter-
banks were computed with a frame length of 400
and a hop length of 160. Feature extraction was
conducted from the frozen encoders of the LAMs,
ensuring consistency in utilizing the specified lay-
ers or endpoints for a fair comparison within the
TM-AQA system.

Sound Representation: Due to the absence
of pre-trained models specific to environmental
sounds, the LAMs mentioned above (Learnable
Audio Models) underwent fine-tuning to perform
Environmental Scene Classification (ESC) on a

combined dataset. This combined dataset includes
signals from widely-used ESC or acoustic scene
classification (ASC) datasets: ESC-50 (Piczak,
2015), DCASE-2019-task-1(A) (Mesaros et al.,
2019), and FSC22 (Bandara et al., 2023). After
fine-tuning using this combined dataset, these mod-
els were then utilized to extract features from raw
environmental sounds.

4.2 Implementation Details

The TM-AQA systems were trained and evalu-
ated according to the dataset split specified in Ta-
ble 1 across all the languages. For transformers-
based models, various combinations of audio fea-
tures were employed for evaluation, whereas A-
MAMBA utilized raw audio inputs. Both Trans-
former and A-MAMBA-based MML frameworks
were optimized using the Adam optimizer. A
learning rate of 1 x 10~* was used for all the
baseline models, while A-MAMBA used a fixed
learning rate of 2 x 10~* without weight decay.
The 3 values for the Adam optimizer were set to
B1 = 0.9 and B2 = 0.999. Training procedures in-
cluded early stopping criteria, using cross-entropy
loss for multi-class classification and binary cross-
entropy loss for binary classification tasks. Typi-
cally, convergence was achieved well before com-
pleting 100 epochs for Transformer-based models,
whereas A-MAMBA models were trained for 500
epochs. Both models employed a batch size of 128
during training. The AST-MAMBA network (A-
MAMBA using spectrogram inputs) was trained
using spectrogram features extracted from the au-
dio signal. These spectrograms have dimensions of
128 x 100 x ¢, where ¢ and 100 x ¢ represent the
length of the signal in seconds and the total number
of frames, respectively. The total number of Mel
filters used was 128, and the signal length ¢ was set
to 5 seconds.

4.3 Evaluation Metrics

The TM-AQA systems were evaluated based on
Top-1, Top-5, and Top-10 accuracy metrics. Top-k
(where k=1, 5, 10) accuracy measures indicate the
percentage of instances where the correct answer
is included among the top "k" predicted answers.
These metrics offer a flexible evaluation by con-
sidering a range of potentially correct answers, not
just the top-ranked ones. In the context of AQA,
where questions may have multiple plausible an-
swers, Top-5 and Top-10 accuracy metrics are par-
ticularly relevant. They acknowledge the ambiguity



by recognizing acceptable answers within the top
5 and 10 predictions. This approach aligns with
real-world scenarios where users expect systems
to present a set of potential answers rather than
a single definitive answer. Therefore, Top-5 and
Top-10 accuracy metrics reflect the complexity of
understanding and responding to questions involv-
ing visual contexts more comprehensively. While
Top-1 accuracy is suitable for binary classification
tasks, Top-1, Top-5, and Top-10 accuracy metrics
were employed for multi-class classification eval-
uations to provide a broader assessment of model
performance across varying degrees of correctness
in prediction.

5 Results & Discussions

Table 2 provides a performance comparison across
the Transformer-based MML framework using dif-
ferent audio features for the three languages in
the TM-AQA dataset. The table highlights that
the optimal performance across all languages was
consistently achieved when utilizing features ex-
tracted from the Whisper pre-trained model. This
model benefits from extensive training on diverse
audio data across multiple languages, allowing for
nuanced feature capture. Table 3 compares the per-
formance of architectures employing Transformer

Table 2: Performance comparison between baseline
benchmark systems utilizing Transformer architecture
and distinct features extracted from speech-based
questions and environmental sounds. The performances
are presented in percentages. In the given table RA:
Raw Audio, MLB: Mel filter bank, W2V: Wav2Vec, HuB:

HuBERT
ENGLISH
Features | Features Top-1 Top-5 Top-10
(Questions) | (Sounds) | Binary | Multiclass | Multiclass | Multiclass
RA RA 50.08 38.8 60.47 64.76
MLB MLB 50.23 36.09 60.22 65.45
w2v W2V 50.46 37.81 61.64 66.15
HuB HuB 50.7 38.12 61.87 66.45
Whisper Whisper | 51.82 38.66 62.15 66.7
HINDI
Features | Features Top-1 Top-5 Top-10
(Questions) | (Sounds) | Binary | Multiclass | Multiclass | Multiclass
RA RA 49.67 37.1 60.21 64.54
MLB MLB 49.1 37.81 59.81 63.87
w2v w2v 50.32 38.16 62.67 66.21
HuB HuB 50.32 38.43 62.32 66.45
Whisper Whisper | 50.78 38.81 63.65 67.32
BENGALI
Features Features Top-1 Top-5 Top-10
(Questions) | (Sounds) | Binary | Multiclass | Multiclass | Multiclass
RA RA 49.22 37.36 59.38 64.56
MLB MLB 49.45 38.09 60.5 62.78
w2v w2v 49.89 38.23 62.64 64.64
HuB HuB 50.21 38.2 62.78 66.95
Whisper | Whisper | 51.34 | 38.93 63.62 66.1

and A-MAMBA with MLP classifiers. All models
described in this table utilize raw audio inputs to
minimize architectural complexity. Notably, the
small variant of A-MAMBA utilizing CSM across
all languages consistently achieved the best per-
formance across all classification tasks. Table 4
provides detailed information regarding the differ-
ent variants of A-MAMBA employed in this work.

Transformers vs. MAMBA: From Table
3, it is clear that AQA systems employing A-
MAMBA outperformed Transformer-based MML
frameworks. Effective modeling of contextual in-
formation from questions, sounds, or other modal-
ities is crucial for generating accurate answers in
question-answering systems. The Continuous Scan
Mechanism (CSM) inherent in A-MAMBA en-
hances its ability to capture this contextual infor-
mation more effectively than Transformers.

Spectrogram vs. Raw Audio Features: The
A-MAMBA-based AQA systems incorporating raw
audio demonstrated superior performance com-
pared to spectrograms, as illustrated by Table 3.
Raw audio signals retain amplitude and phase in-
formation, preserving temporal dynamics and fine-
grained details of speech signals often lost in spec-
trograms. This temporal information is crucial for
the AQA system to enhance its contextual under-
standing of spoken questions paired with environ-
mental sounds. The Raw audio also maintains full
resolution without distortions introduced by meth-
ods like Short-Time Fourier Transform (STFT),
Mel Frequency Cepstrum Coefficients (MFCCs),
Mel filterbanks, or spectrograms. This capability
likely contributes to better performance using raw
audio instead of spectrograms in MAMBA-based
architectures.

SSM vs CSM: As observed in Table 3, systems
utilizing CSM performed better than SSM for all
variants of MAMBA across the three languages.
This may be attributed to better contextual under-
standing between adjacent tokens by maintaining
spatial continuity throughout the scanning phase.
This improved the decision-making ability and is
reflected in the performance.

6 Conclusion

This study aims to develop a multilingual speech-
based Audio Question Answering (AQA) system
using a state-space model-based Meta-Learning
(MML) framework. To achieve this objective, the
study introduces the TM-AQA dataset, which in-



Table 3: Performance comparison (expressed in %) between Transformer, AST-MAMBA (Spectrogram), and
A-MAMBA(Raw Audio) MML frameworks using MLP classifier for binary and multi-class classification task.

(Performance differences with the best model are represented in blue.)

ENGLISH
Top-1 Top-5 Top-10
MODEL VARIANT Binary Multiclass Multiclass Multiclass
Transformer (Vaswani et al., 2017) Base 50.08 | (5.48) 38.8 | (4.46) 60.47] (8.47) | 64.76 | (10.01)
Small 50.67] (4.89) 38.79] (4.47) 66.45] (2.66) 67.89] (6.88)
AST-MAMBA + SSM Medium 48.67] (6.89) 36.54] (6.72) 64.31] (4.8) 66.13 | (8.64)
Large 4235 ] (13.21) | 32.31] (9.95) 60.48] (8.63) | 61.53 | (13.24)
Small 50.70 | (4.86) 38.56] (4.7) 66.87] (2.24) 68.97 | (5.8)
AST-MAMBA + CSM Medium 48.6] (6.96) 37.37] (5.89) 65.23] (3.88) 66.77 | (8)
Large 4222 | (13.34) | 33.11] (10.15) | 60.85] (8.26) | 61.89 | (12.88)
Small 52| (3.56) 40.59] (2.67) 68.34] (0.77) 74.4] (0.37)
A-MAMBA + SSM Medium 51.62] (3.94) 37.26] (6) 65.47] (3.64) | 68.54 | (6.23)
Large 44.62| (10.94) | 33.48] (9.78) 62.3] (6.81) 65.31] (9.46)
Small 55.56 43.26 69.11 74.77
A-MAMBA + CSM Medium 51.98] (3.58) | 41.42] (1.84) 68.44] (0.67) 71.21] (3.56)
Large 45.86] (9.7) 35.94] (7.32) 63.8] (5.31) 66.48] (8.29)
HINDI
Top-1 Top-5 Top-10
MODEL VARIANT Binary Multiclass Multiclass Multiclass
Transformer (Vaswani et al., 2017) Base 49.67 | (3.97) 37.1 | (5.46) | 60.21 | (12.46) | 64.54 | (12.06)
Small 50.35 ] (3.29) | 38.53 ] (4.03) | 66.67 | (6.00) | 68.12 ] (8.48)
AST-MAMBA + SSM Medium 48.74 | (4.90) | 35.14 | (7.42) 63.1](9.57) | 65.12 | (11.48)
Large 41.35 | (12.29) | 31.42 | (11.14) | 60.85 | (11.82) | 62.95 | (13.65)
Small 50.44 | (3.20) | 38.56 | (4.00) | 66.68 | (5.99) | 68.65] (7.95)
AST-MAMBA + CSM Medium 49.08 | (4.56) | 35.43 | (7.13) | 63.66 | (9.01) | 6543 | (11.17)
Large 41.23 | (12.41) | 31.52 | (11.04) | 61.33 | (11.34) | 63.17 | (13.43)
Small 51.98 | (1.66) | 40.44 | (2.12) | 69.18 | (3.49) | 73.61 | (2.99)
A-MAMBA + SSM Medium 4942 | (4.22) | 37.59 ] (497) | 65.72 | (6.95) | 67.09 | (9.51)
Large 4498 | (8.66) | 33.77 | (8.79) | 61.18 | (11.49) | 65.19 | (11.41)
Small 53.64 42.56 72.67 76.6
A-MAMBA + CSM Medium 51.8 | (1.84) | 40.55 | (2.01) | 66.35| (6.32) | 68.65 ] (7.95)
Large 45.64 | (8.00) | 35.71 ] (6.85) | 62.69 | (9.98) | 66.86 | (9.74)
BENGALI
Top-1 Top-5 Top-10
MODEL VARIANT Binary Multiclass Multiclass Multiclass
Transformer (Vaswani et al., 2017) Base 49.22 | (3.56) | 37.36 ] (2.08) | 59.38] (10.73) | 64.56] (11.2)
Small 49.84| (2.94) 37.31] (2.13) 66.31] (3.8) 69.83] (5.93)
AST-MAMBA + SSM Medium 48.84] (3.94) 36.45] (2.99 64.11| (6) 67.41] (8.35)
Large 41.8] (10.98) 32.34] (7.1) 59.31] (10.8) | 62.23] (13.53
Small 49.88| (10.9) 37.36] (2.08) 66.67] (3.44) 68.88] (6.88)
AST-MAMBA + CSM Medium 48.8] (3.98) 36.57] (2.87) 64.17] (5.94) 67.56] (8.2)
Large 41.89] (10.89) | 33.11] (6.33) 60.61] (9.5) 62.34] (13.42)
Small 51.21] (1.57) 38.42] (1.02) 68.75] (1.36) 74.32] (1.44)
A-MAMBA + SSM Medium 50.34 | (2.44) | 36.43 | (3.01) | 65.87 ] (4.24) 68.76] (7)
Large 44.89] (7.89) | 33.37 | (6.07) | 62.75 | (7.36) 66.76] (9)
Small 52.78 39.44 70.11 75.76
A-MAMBA + CSM Medium 50.79 | (1.99) 382 (1.24) 65.78 | (4.33) | 70.87 | (4.89)
Large 4578 | (7.00) | 34.61 | (4.83) | 63.11 | (7.00) | 66.88 | (8.88)

Table 4: Computational Complexity of A-MAMBA and its variants (M=Millions, G=Giga)

Model Type Layers | Hidden Size | Expand | d_state | Params (M) Flops MACS
A-MAMBA-small 1 192 1 8 11.0065M | 1.6548 G | 8202 M
A-MAMBA-medium 2 256 1 8 184939M | 28176 G | 1.3991 G
A-MAMBA-large 4 384 2 16 45.2617M | 6.3927G | 3.1815G

cludes spoken questions in English, Hindi, and
Bengali. Additionally, the study proposes a novel
state-space model-based MML framework called
A-MAMBA, which incorporates the Continuous
Scan Mechanism. The performance of A-MAMBA
is compared with transformer-based MML frame-

works to establish rigorous baseline benchmarks
for the TM-AQA task. Experimental results demon-
strate that the proposed A-MAMBA-based MML
framework outperforms transformer-based MML
frameworks in the context of TM-AQA.



7 Limitations

The TM-AQA dataset includes synthesized spoken
questions generated by the T2S system. However,
it is crucial to incorporate real voice recordings
for spoken questions to develop a robust system.
This work focuses solely on using raw audio as
input features for the proposed A-MAMBA model,
aiming to minimize computational demands since
features derived from pre-trained models necessi-
tate additional computations. These constraints are
anticipated to guide future research directions in
the speech-based AQA domain.

8 Ethical Statement

Native speakers of Hindi and Bengali, proficient
in both languages and English, were employed to
check the manual quality of translated texts. They
were compensated on a pre-sentence basis. Addi-
tionally, the authors ensured proper documentation
of their employment.
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