
RLEF: Grounding Code LLMs in Execution Feedback
with Reinforcement Learning

Jonas Gehring 1 Kunhao Zheng 1 Jade Copet 1 Vegard Mella 1 Taco Cohen 1 Gabriel Synnaeve 1

Abstract
Large language models (LLMs) deployed as
agents solve user-specified tasks over multiple
steps while keeping the required manual engage-
ment to a minimum. Crucially, such LLMs need
to ground their generations in any feedback ob-
tained to reliably achieve the desired outcomes.
We propose an end-to-end reinforcement learn-
ing method for teaching models to leverage ex-
ecution feedback in the realm of code synthesis,
where state-of-the-art LLMs struggle to improve
code iteratively compared to independent sam-
pling. We benchmark on competitive program-
ming tasks and achieve large performance gains
with both small (8B parameters) and large (70B)
models, outperforming previous work while re-
ducing the number of samples required by an or-
der of magnitude. Our analysis of inference-time
behavior demonstrates that our method produces
LLMs that effectively leverage automatic feed-
back over multiple steps.

1. Introduction
The consistent increase in capabilities of Large Language
Models (LLMs) has prompted researchers and develop-
ers to benchmark and deploy them in increasingly com-
plex environments (Brown et al., 2020; OpenAI, 2023;
AI @ Meta, 2024). An emerging research direction is to
employ LLMs as agents to solve tasks in multiple steps
with little to no human oversight, querying external compu-
tation or data sources when needed or as dictated by man-
ual scaffolding (Schick et al., 2023; Kapoor et al., 2024).
Such autonomous use of LLMs is of interest for ensuring
accurate answers to user queries with up-to-date informa-
tion (Mialon et al., 2024), interaction with websites (Yao
et al., 2022), or generating code to implement software fea-

1Meta FAIR. Correspondence to: Jonas Gehring
<jgehring@meta.com>, Gabriel Synnaeve <gab@meta.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

3 10 50 100 300
Sample Budget (k)

10

20

30

40

50

60

So
lv

e
Ra

te
 1

0@
k

 GPT-3.5

 GPT-4 AlphaCodium GPT-3.5

 AlphaCodium GPT-4

 AlphaCode 2 (est.)

Valid Set

3 10 50 100 300
Sample Budget (k)

10

20

30

40

50

 GPT-3.5
 GPT-4

 AlphaCodium GPT-3.5

 AlphaCodium GPT-4

 MapCoder GPT-3.5

 MapCoder GPT-4

Test Set

Llama 3.1 8B + RLEF
Llama 3.1 70B + RLEF

General Purpose
Prompt Engineering

Domain-Adapted

Figure 1: Solve rates of Llama 3.1 Models after RLEF
training on CodeContests, compared to previously reported
results across sampling budgets (log scale).

tures from high-level descriptions (Yang et al., 2024).

We posit that any decision-making agent offering a natural
language interface has to possess two skills: First, the
ability to accurately deduce a user’s intent when prompted;
for LLMs, this is typically achieved by fine-tuning to
follow instructions according to user preferences (Ouyang
et al., 2022; Rafailov et al., 2023). Second, feedback on
intermediate results of the agent’s actions has to be taken
into account to arrive at the desired outcome. For example,
a web page that contains a necessary bit of information
might have gone offline, requiring another search engine
query. In the context of code generation, feedback can
provide information about implementation bugs as well as
constraints that are inefficient or cumbersome to specify
in full detail, e.g., software and hardware platform details
or library dependencies. Intermediate feedback is there-
fore crucial to ground LLM generations in the concrete
situations encountered at inference time.

In this work, we aim to endow pre-trained LLMs with the
aforementioned skills – task alignment and grounding in
inference-time feedback – in the domain of code synthe-
sis from natural language descriptions (Chen et al., 2021;
Rozière et al., 2023). Here, feedback is naturally provided
as the result of the execution of generated code in the form
of error messages and unit test results. However, to date,

1

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Turn limit
reached?

Public Tests
Execution

Private Tests
Execution

Execution
feedback

Code Solution

Natural Language
Problem Description

LLM

PPO

Natural Language Problem Description

Code Solution (turn 1)

Execution feedback

Code Solution (turn 2)

Provide a Python solution for the following competitive
programming question: Let’s call the string beautiful if it
does not contain a substring of length at least 2 which is
a palindrome. Recall that a palindrome [...]

def min_cost_to_beautiful(substring):
 while True:
 found = False
 for length in range(len(substring), 1, -1):
 [...]

Your code failed the following tests:
- input ‘5A baacb 13 15 23‘ failed: Execution took too
long.
Give it another try. [...]

from functools import lru cache
def is_beautiful(s):
 for length in range(2. len(s) + 1):
 for i in range(len(s) - length + 1):
 [...]

Public Tests: FAIL

Public Tests: PASS
Submitting solution to Private Tests Execution

YES

NO

PASSFAIL

reward

update

…

…Inference-Time
Execution Feedback

Training-Time
Execution Feedback

Figure 2: Left: Overview of reinforcement learning with execution feedback (RLEF). The LLM is repeatedly prompted to
implement code according to a problem description. Each attempt is evaluated on a public test set; upon failure, feedback
is inserted into the conversation. If public tests are passing, or a specified turn limit is reached, execution on additional,
private tests determines the reward signal. The model is then updated to optimize the reward with PPO. Right: Example
dialogue with two model responses. Execution feedback hints at an inefficient first solution, to which the model responds
to utilizing a cache. The code passing the public test sets will be evaluated on the full test set.

utilizing such feedback for code generation with LLMs has
failed to yield substantial improvements when taking com-
putational demands into account; indeed, obtaining sam-
ples independently often results in higher accuracy for a
fixed inference budget (Kapoor et al., 2024; Xia et al.,
2024). As a test bed to investigate and improve ground-
ing in execution feedback, we frame code generation as an
iterative task, repeatedly asking an LLM to produce code
according to a provided natural language description (Fig-
ure 2). After each generation, code is evaluated on example
test cases, and the resulting feedback is provided as addi-
tional context for subsequent attempts. We thus obtain an
interactive environment where actions correspond to code
and observations correspond to execution feedback. Im-
portantly, such a framing permits end-to-end optimization
with reinforcement learning (RL) algorithms to maximize
a reward signal – here, a binary reward based on whether
the final code solution passes a set of held-out test cases.

We benchmark our training method incorporating repeated
code actions and execution feedback in a reinforcement
learning context (RLEF) on CodeContests (Li et al., 2022),
a challenging competitive programming benchmark. Start-
ing from Llama 3.1 models (AI @ Meta, 2024), we achieve
substantial performance improvements, surpassing previ-
ous state-of-the-art results while reducing the number of
generations required by an order of magnitude (Figure 1).
Our analysis shows that RLEF training unlocks the capabil-
ity to leverage inference-time machine feedback, rendering

LLMs effective in iterative, multi-turn scenarios. Our im-
provements from RLEF on CodeContests further general-
ize to HumanEval+ and MBPP+, two popular benchmarks
for code synthesis, and to increased sample budgets com-
pared to training time.

2. Method
2.1. Iterative Code Synthesis

We structure the code synthesis task as a multi-turn conver-
sation in which an LLM is repeatedly prompted to generate
a code solution to a natural language problem description.
After each solution, we provide an automatically generated
response with results obtained by executing the solution’s
code against test cases. This setup is applicable to language
models tuned for the use case of interacting with users in
a chat format and follows previous work on self-repair for
code generation (Shinn et al., 2023; Olausson et al., 2024).

Crucially, we utilize two different sets of test cases: a pub-
lic test yields execution feedback that can be accessed dur-
ing repeated attempts and forms the basis of selecting a
final solution, whereas a private test set ultimately deter-
mines the correctness of the final solution. Separate test
sets provide two main benefits. First, if test inputs and out-
puts are fixed, held-out tests guard against shortcuts dur-
ing the optimization procedure in which an LLM can copy
expected test outputs in subsequent answers, based on ex-

2

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

ecution feedback. Second, running a full test suite may
be computationally demanding, and a limited set of public
tests can accelerate the iterative code generation procedure.
It may, however, be desirable to maximize test coverage for
execution feedback at inference time, and we verify that
this can indeed improve performance (Appendix B.3).

Our conversation flow for code generation is depicted in
Figure 2. Concretely, we start the dialogue with the prob-
lem description and query the LLM for an initial solution.
The solution is verified against the public test set, which
yields results in the form of passed and failed test cases, as
well as potential syntax or runtime errors. If any public test
fails, this execution feedback is formatted and appended to
the dialogue. The LLM is then queried for an updated code
solution, with the original problem text, previous solutions,
and their respective feedback provided in the prompt. If
the solution passes all public tests, or a specified turn limit
is reached, it is considered final and will be submitted for
evaluation on the private test set. We refer to Appendix C
for prompt and execution feedback templates.

2.2. Reinforcement Learning with Execution Feedback

The iterative code synthesis described in the previous sec-
tion can be seen as a Markov Decision Process (MDP), and
the language model as a policy (Sutton & Barto, 2018). For
generality, we assume a partially observable MDP, as our
reward function utilizes a held-out, private test set that is
not accessible to the policy (unless an exact textual repre-
sentation of the desired program behavior is provided in the
problem description). Observations and actions are pro-
vided as tokenized text sequences. Concretely, the initial
observation o0 is the problem description, and actions at at
each step t are textual responses. Successive observations
ot consist of past observations and actions, including exe-
cution feedback obtained by evaluating the previous action
at−1 on public tests. Episodes end when public test eval-
uation succeeds or a specified step limit is reached. At the
end of an episode, a scalar reward is provided correspond-
ing to whether all public and private tests are passing. We
do not use reward discounting (i.e., γ = 1).

For optimizing a policy in the above environment, we
employ Proximal Policy Optimization (PPO), a common
choice for fine-tuning large language models (Schulman
et al., 2017; Ziegler et al., 2020; Ouyang et al., 2022).
Following previous work, we include a KL penalty in our
reward signal, acting both as an entropy bonus and as
regularization towards the distribution of the LLMs we
start from. In initial experiments, we found that a possi-
ble failure mode concerns the generation of invalid code
in non-final responses, which we address by providing a
small penalty for invalid responses. Denoting the pol-
icy to be optimized with π and the initial policy with ρ,

and abbreviating previous observations and actions with
ct = o0, a0, o1, a1, . . . , ot, our rule-based reward function
at step t is:

R(st, at) = r(st, at)− β log
π(at|ct)
ρ(at|ct)

, where

r(st, at) =

1, if end of episode and all tests pass
−1, if end of episode and any test fails
−0.2, if at does not contain valid code

with a constant β trading off between task reward and KL
maximization. For PPO, we compute policy gradients by
incorporating a concurrently learned value function as a
baseline, i.e., we train the policy to maximize the advan-
tage At = −V (ct) +

∑T
i=tR(si, ai); see Appendix A.1.

We note that while the above MDP considers full responses
as actions, the underlying policy and value functions are
implemented as language models outputting single tokens.
Selecting a suitable action space for optimization hence re-
quires consideration in our setup, and a suitable choice may
depend on the concrete task at hand. We propose to model
the policy at the token level while learning a value func-
tion for whole turns; compared to optimizing both mod-
els at either the turn or token level, this hybrid approach
worked best in our early experiments. Hence, we predict
the value of a response at from the last token of its respec-
tive prompt, and we use a single advantage value for each
token action within a response. Our response-based value
estimation is closely related to Zhou et al. (2024); how-
ever, we do not train an additional Q-function. For the KL
penalty, we found it beneficial to compute the probabilities
of responses π(at|ct) as the geometric mean rather than the
product of token probabilities. This counteracts a possibly
detrimental bias towards shorter generations, in particular
for non-final responses.

3. Experimental Results
3.1. Setup

We perform experiments on the CodeContests benchmark
(Li et al., 2022), which requires generating a code solution
to a problem specified in natural language along with a tex-
tual description of public test cases. Problems are of high
difficulty and used in human competitive programming
with a focus on algorithms, data structures, and runtime
efficiency. The correctness of solutions is evaluated with
private tests that are hidden from contestants; hence, we
present feedback from public tests only. CodeContests
consists of a training set and two evaluation sets, “valid”
and “test”, with 117 and 165 problems, respectively; we
use the former for model and hyperparameter selection.
We optimize our models on the training set, from which
we discard 669 of the 13,328 problems due to missing

3

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Table 1: Results on CodeContests of our initial and RLEF-trained models compared to prior work. The sample budget k
in n@k refers to the number of LLM responses, e.g., 1@3 for our results corresponds to a single rollout with up to three
model responses. The 70B model obtains state-of-the-art results after RLEF, and significantly outperforms AlphaCodium
and MapCoder generally, and on the test set with a fraction of the samples. The RLEF-trained 8B model outperforms
AlphaCodium with 100 samples and MapCoder (gpt-3.5-turbo) with 3 samples.

Model Source n@k Valid Set Test Set

AlphaCode 9B Li et al. (2022) 10@1000 16.9 13.3
AlphaCode 41B + clustering Li et al. (2022) 10@1000 21.0 16.4
Code Llama 34B + PPO Xu et al. (2024) 10@1000 19.7 22.4
AlphaCodium gpt-3.5-turbo-16k Ridnik et al. (2024) 5@100 25 17
AlphaCodium gpt-4-0613 Ridnik et al. (2024) 5@100 44 29
AlphaCodium Llama 3.1 70B Instruct Ours 5@100 34.2 27.8
MapCoder gpt-3.5-turbo-1106 Islam et al. (2024) 1@23 - 12.7
MapCoder gpt-4-1106-preview Islam et al. (2024) 1@19 - 28.5

Llama 3.0 8B Instruct Ours 1@3 4.1 3.2
+ RLEF Ours 1@3 12.5 12.1

Llama 3.1 8B Instruct Ours 1@3 8.9 10.5
+ RLEF Ours 1@3 17.2 16.1

Llama 3.1 70B Instruct Ours 1@3 25.9 27.5
+ RLEF Ours 1@3 37.5 40.1

Llama 3.1 8B Instruct Ours 10@100 21.7 24.8
+ RLEF Ours 10@100 29.8 28.7

Llama 3.1 70B Instruct Ours 10@100 50.2 50.3
+ RLEF Ours 10@100 54.5 54.5

public or private test cases. We train all models to output
Python code solutions.

The Llama 3 family of models (AI @ Meta, 2024) com-
prises our initial policies, specifically the Instruct 8B and
70B parameter models of the 3.0 and 3.1 release. These
models exhibit strong code generation performance out of
the box and are able to follow instructions in the prompt, al-
leviating the need for an initial fine-tuning stage prior to RL
training. During training and for evaluations, unless noted,
we set the turn limit to allow for 3 LLM attempts at solving
each problem. We perform 12,000 and 8,000 updates to the
8B and 70B models, respectively, and select checkpoints
based on valid set performance. Hyperparameters and
further experimental details are provided in Appendix A.

We follow Li et al. (2022) in reporting results as n@k aver-
age solve rates. The n@k metric represents the expectation
that any of n solutions, selected from k samples in total, is
correct, i.e., passes all tests. In our multi-turn setup, each
turn counts as a sample. This allows for fair comparisons
with respect to sample budgets, which is particularly rele-
vant when employing large LLMs with high inference cost
in agentic scaffoldings (Kapoor et al., 2024)1.

1For simplicity, we consider a full LLM response as a single
sample in our evaluations. Note that for iterative code generation,
the allocated sample budget may not be fully utilized as a success-

3.2. Main Results

In Table 1, we list solve rates on the CodeContests valid
and test sets for iterative code generation with up to three
turns, along with previously reported results. When sam-
pling from our models, we use temperatures 0.2 for 1@3
and 1.0 for 10@100, and nucleus sampling with top-p 0.95
in all cases (Holtzman et al., 2020). Each solve rate is
estimated on 200 rollouts, using the estimator described
by Li et al. (2022). We compare against AlphaCode (Li
et al., 2022) and PPO with rewards from test execution on
the Code Llama 34B model from Xu et al. (2024), both
of which report results with a large number of samples.
AlphaCodium (Ridnik et al., 2024) and MapCoder (Islam
et al., 2024) are high-performing agentic frameworks built
on top of the proprietary GPT models and combine chain-
of-thought prompting, code execution, program repair, and,
in the case of AlphaCodium, automatic test generation.

With RLEF training, we improve markedly on the original
Llama 3.1 models. Notably, on the test set, the 70B model
beats AlphaCodium with GPT-4 with a single rollout
compared to 5 solutions from 100 samples (38.0 and 29).
Likewise, the 8B model after RLEF is slightly ahead
compared to the similar-sized AlphaCode 9B model (16.1
and 13.3), but with a sample budget of 3 in our case and

ful public test run will result in early termination of a dialogue.

4

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

0 1000 2000 3000

OUTPUT

EXCEPTION

TIMEOUT

OOMEr
ro

r T
yp

e
(8

B)
Errors: Turn 1

0 100 200

Errors Fixed: Turn 2

0 20 40 60 80

Errors Fixed: Turn 3

0.00 0.25 0.50 0.75 1.00 0

2500

5000

7500

Co
un

t

Code Changes

0 1000 2000 3000
Count

OUTPUT

EXCEPTION

TIMEOUT

OOMEr
ro

r T
yp

e
(7

0B
)

0 200 400 600 800
Count

0 100 200 300
Count

0.00 0.25 0.50 0.75 1.00
1 - chrF

0

2000

4000

6000

Co
un

t

Llama 3.1 Instruct + RLEF + RLEF (random feedback)

Figure 3: Behavior analysis of initial and RLEF-trained models with respect to public test results for 8B (top) and 70B
(bottom) models. Within 20 rollouts per problem (5640 in total), we count errors in the initial solution (turn 1); errors
turned into correct code in turns 2 and 3; and code changes across successive solutions according to the chrF metric.
RLEF-trained models make fewer errors initially, can fix errors more reliably, and perform larger code edits; initial models
frequently repeat previous solutions. With random execution feedback, error recovery is severely impaired.

1,000 for AlphaCode. While we cannot compare directly
to the more recent AlphaCode 2, a performance estimate
of 34.2 on the valid set for 10@100 puts our 70B model
ahead (37.5) with just 3 samples2. When considering a
larger budget of 100 samples, corresponding to 33 rollouts,
the 70B Instruct model beats previously reported results,
including AlphaCodium on the valid set. Evaluating
AlphaCodium with the 70B model results in lower scores
under a similar budget. With RLEF, we obtain further
improvements to 54.5 on the valid and test set. The relative
gains over the initial models, while still significant, are
reduced in the 10@100 setting as compared to the 1@3
setting. Kirk et al. (2024) observe that RL training of
LLMs can reduce the diversity of outputs, and we interpret
our results as further evidence of their hypothesis.

Table 1 also highlights that the released Llama 3.1 models
offer competitive performance on CodeContests from the
start, which we attribute to a focus on coding capabilities
during instruction tuning (AI @ Meta, 2024). However,
our method is also highly effective on the previously
released 3.0 8B model, improving 1@3 solve rates on
both the valid (4.1 → 12.5) and test (3.2 → 12.1) set.
Thus, RLEF may be useful as a partial substitute for
instruction tuning for tasks where ground-truth rewards
from automatic evaluation are available.

2AlphaCode Team (2023) train and evaluate on non-disclosed
competition problems but report a sample efficiency increase of
10,000x over AlphaCode, which achieves a 10@1M solve rate of
34.2 on the valid set.

3.3. Inference-time Behavior

In Table 2, we first take a closer look at single- and multi-
turn performance with a fixed budget of 3 LLM genera-
tions (1@3). This corresponds to our iterative setup with
up to three model responses, or three independent re-
sponses for single-turn results. We further consider gen-
eralization to two popular code generation benchmarks,
HumanEval+ and MBPP+ (Liu et al., 2023a), which we
modify to match our iterative code generation setup with
“base” tests for inference-time execution feedback and
“plus” tests for solve rate estimation (see Appendix C.4
for details). Our results demonstrate that, when consid-
ering a fixed sample budget, base models rarely benefit
from access to faulty solutions and execution feedback in
the multi-turn code generation setup. This also applies
to gpt-4o-2024-05-13, which shows stronger performance
when sampling solutions independently on CodeContests
and HumanEval+. After RLEF training, the 8B and
70B Llama 3.1 models both benefit from execution feed-
back and can therefore achieve larger gains on top of im-
proved single-turn scores, with the exception of the 8B
model on CodeContests and MBPP+ where single-turn per-
formance drops. While multi-turn gains from RLEF are
most pronounced on CodeContests, the training domain of
our models, we also observe notable improvements on Hu-
manEval+ and MBPP+. For confidence bounds that con-
firm the robustness of our results, as well as evaluation on
LiveCodeBench, see Appendix B.1.

Next, we seek to determine where the gains of RLEF train-
ing stem from. Based on the improved single-turn results
in Table 2, we hypothesize that, for the 70B model, these
are partly due to training on the specific domain of com-
petitive programming questions. More importantly, higher

5

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Table 2: 1@3 solve rates in single-turn (ST) and multi-turn
(MT) setups for base and RLEF models from the Llama 3.1
(L3.1) series. On CodeContests, iterative code generation
yields modest gains at best and drops in performance at
worst, unless RLEF training is employed. Improvements
from RLEF on CodeContests in the multi-turn setting carry
over to HumanEval+ and MBPP+, which require slightly
different execution feedback formatting.

Model CC. Test HE+ MBPP+
ST MT ST MT ST MT

GPT-4o 25.3 24.3 82.8 80.7 68.8 71.7

L3.1 8B Inst. 11.8 10.5 65.3 63.9 58.3 60.5
+ RLEF 9.7 16.1 67.5 69.5 57.0 63.1

L3.1 70B Inst. 26.2 27.4 73.2 75.0 66.9 70.2
+ RLEF 30.1 40.1 78.6 80.4 67.6 72.2

scores in the iterative setting for both the 8B and 70B model
could be attributed to either an increased capability of sam-
pling diverse solutions within a rollout or more targeted
self-repair based on execution feedback. For probing the
sensitivity of our models to the observed feedback, we per-
form inference-time ablations with random execution feed-
back by executing a faulty solution to an unrelated problem,
but still end the dialogue if the current solution passes pub-
lic tests (details in Appendix C.2).

In Figure 3, we consider errors on public tests (to which
the execution feedback relates) over 20 rollouts on the valid
and test set combined. After RLEF, both the 8B (top row)
and 70B (bottom row) models produce fewer wrong out-
puts in their initial response but are more prone to exceed-
ing the allocated time limit. In subsequent responses, re-
covery from all error categories is significantly improved.
With random feedback, however, we see a clear impairment
of self-repairs, demonstrating that RLEF allows LLMs to
effectively leverage the provided feedback. We further
gauge changes from one response to the next by comput-
ing the character n-gram F-Score (Popović, 2015, chrF)
among successive codes (Figure 3, right). This underscores
a shortcoming of the Instruct models without RLEF in that
they perform only minimal code edits; indeed, we observe
that they frequently output the same code solution despite
inline feedback pointing out errors.

The analysis above in Figure 3 reveals two key findings
about RLEF. 1. Samples within a rollout are of higher
diversity (less similar codes). 2. Edits are also targeted,
resulting in fewer successful repairs with random execu-
tion feedback. This finding is echoed in Figure 4a, in
which we compare models with true and random feedback
across different turn limits. Here, we compare pass@1
and pass@10 metrics, irrespective of different sample bud-
gets due to varying turn limits (Chen et al., 2021). While
pass@1 captures the precision with which we arrive at a

Table 3: 1@3 solve rates starting from Llama 3.1 mod-
els. Comparison of different methods for acquiring itera-
tive code synthesis capabilities. RLEF is the most effective
training method, followed by supervised fine-tuning (SFT).
We find few-shot prompting detrimental to Instruct models.

Method 8B Instruct 70B Instruct

Valid Test Valid Test

– 8.9 10.5 25.9 27.5
Few-Shot Prompting 8.5 8.5 22.5 20.3
SFT 10.3 10.0 27.7 27.2
RLEF 17.2 16.1 37.5 40.1

correct final solution, pass@10 reflects the ability to recall
a correct solution (i.e., whether any of 10 solutions passes
the private tests). On both valid and test sets, random feed-
back results in a drop in pass@1, which is further amplified
as the turn limit increases. This provides further evidence
for less targeted repair capabilities with random feedback,
as programs can be repaired less reliably. Notably, with
ground truth feedback, the pass rate keeps increasing with
higher turn limits. For pass@10, the difference between
true and random execution feedback is less pronounced.
As pass@10 can be optimized by sampling many diverse
candidate solutions within a dialogue, these results indicate
that with random feedback, our models resort to sampling
a succession of diverse, potentially correct solutions.

Finally, we evaluate the generalization across turn limits
with respect to a given sample budget. In Figure 4b, we
perform rollouts with temperature 1.0 to emphasize perfor-
mance at higher sample budgets by increasing the diversity
of generations. We compute 10@k solve rates by distribut-
ing k samples equally across rollouts with different turn
limits. For the 8B model (top row), prior to RLEF train-
ing, best performance can be obtained with independent
samples (1 turn), with the exception of the test set above
30 samples. The initial 70B model performs better with
3 or 5 turns; although, for small budgets, single-turn per-
formance is competitive. After RLEF, we observe that 3,
5, and 10 turns yield a consistent improvement over inde-
pendent sampling, with best performance obtained with 5
turns. In all cases, increasing the turn limit to 10 provides
no benefits under a fixed sample budget.

3.4. Ablation Studies

3.4.1. LEARNING ITERATIVE CODE SYNTHESIS

We investigate whether LLMs can, apart from our RL train-
ing, be effective in multi-turn code generation using few-
shot prompting (Brown et al., 2020) and supervised fine-
tuning (SFT). Lacking suitable ground truth training exam-
ples for SFT, we mine rollouts on the CodeContests train-
ing set with Llama 3.1 70B Instruct and filter them based on

6

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

2 4 6 8 10
15

20

25

30

35

40

pa
ss

@
1

Valid Set

2 4 6 8 10
10

20

30

40

pa
ss

@
1

Test Set

2 4 6 8 10
Model Turns

20

30

40

50

pa
ss

@
10

2 4 6 8 10
Model Turns

10

20

30

40

50

pa
ss

@
10

8B + RLEF 70B + RLEF True Feedback Random Feedback

(a)

10 20 50 100
10

15

20

25

30

So
lv

e
Ra

te
 (1

0@
k)

 8
B

Valid Set

10 20 50 100
10

15

20

25

30 Test Set

10 20 50 100
Sample Budget (k)

30

35

40

45

50

55

So
lv

e
Ra

te
 (1

0@
k)

 7
0B

10 20 50 100
Sample Budget (k)

30
35
40
45
50
55

Turn Limit
Model

1
Llama 3.1 Instruct

3
+ RLEF

5 10

(b)

Figure 4: (a) Pass@1 and pass@10 across turn limits with
RLEF-trained models, providing either true or random exe-
cution feedback (temperature 0.2). With random feedback
pass@1 is reduced while pass@10 suffers only slightly, in-
dicating that programs can be repaired less consistently. (b)
Impact of turn limits on 10@k solve rates per sample bud-
get (top: 8B model, bottom: 70B model) with temperature
1.0. With RLEF, iterative code generation can leverage up
to 5 turns to achieve compute-optimal performance.

the correctness of final solutions. We then fine-tune Base
and Instruct versions of the Llama 3.1 8B and 70B param-
eter models on the mined corpus and also source it for few-
shot examples (Appendix A.3). The results in Table 3 show
that few-shot prompting is detrimental to the instruction-
tuned models. In Appendix B.2, we report few-shot 1@3
solve rates for pre-trained models and find that they achieve
lower performance compared to zero-shot prompting for
instruction models (1.2 and 1.8 for 8B, 4.6 and 5.8 for 70B
on valid and test set, respectively). SFT improves Instruct

Table 4: 1@3 solve rates starting from Llama 3.1 models,
temperature 0.2. Conventional single-turn (ST) compared
to our multi-turn (MT) training method. MT training yields
larger improvements compared to ST.

Model RLEF
Training

Valid Test

ST MT ST MT

8B Instruct – 9.4 8.9 11.6 10.5
ST 10.3 10.2 9.9 10.9
MT 16.2 17.2 9.5 16.1

70B Instruct – 25.6 25.9 25.9 27.5
ST 28.3 31.1 27.3 32.9
MT 25.8 37.5 30.1 40.1

model performance on the validation set only; we do not
see improvements on the test set. For pre-trained models,
we see improvements from SFT but lower scores compared
to instruction-tuned models (Appendix B.2). With RLEF,
we obtain significantly higher solve rates compared to SFT
models, underscoring the efficacy of our RL training loop.

3.4.2. SINGLE-TURN TRAINING

In Table 4, we compare our iterative code generation
setup to traditional, single-turn generation where the
model is not presented with inference-time feedback. We
use the same training loop for single generations, albeit
without the penalty for invalid code (Section 2.2), as this
is subsumed by the reward signal for incorrect solutions.
For Llama 3.1 8B Instruct, single-turn training (ST) hurts
performance on the test set. The 70B model benefits
from single-turn training and improves over multi-turn
SFT results in Table 3. Moreover, we observe transfer
in that applying the single-turn model in a multi-turn
setting improves 1@3 solve rates. We attribute this to the
existent but comparably weak multi-turn capabilities of
the vanilla 70B Instruct model. Overall, we see strongest
performance with the RLEF method employing multiple
turns at training and inference time.

Further ablations are in the appendix. In Appendix B.4
we evaluate the effect of training a dedicated repair model
on outputs of the single-turn 8B training run in Table 4,
similar to Le et al. (2022). Together, the single-turn and
repair model obtain 1@3 solve rates of 14.8 on the valid
set and 12.6 on the test set; an improvement over the
single-turn model alone (10.2 and 10.9) but significantly
below the corresponding multi-turn model (17.2 and 16.1).
In Appendix B.5, we show that withholding public test
execution feedback during training results in significantly
worse performance. Finally, in Appendix B.6, we exper-
imentally validate the design choice of a turn-level value
function (Section 2.2).

7

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

4. Related Work
Code Generation from Natural Language A large body
of work explores code synthesis from natural language de-
scriptions, often leveraging large quantities of source code
for pre-training and instruction fine-tuning (Clement et al.,
2020; Chen et al., 2021; Austin et al., 2021; Li et al., 2023;
Gunasekar et al., 2023; Rozière et al., 2023; AI @ Meta,
2024). This approach has led to notable performance gains
on popular benchmarks.

Inference-Time Repair and Scaffolding Recent research
shows that techniques such as prompt scaffolding and
flow engineering (Ridnik et al., 2024; Islam et al., 2024;
Zhang et al., 2024) can improve performance on challeng-
ing benchmarks but incur high inference costs by chaining
multiple LLM calls. Other work focuses on re-prompting
and verifying code through execution (Shinn et al., 2023;
Chen et al., 2024b; Zhong et al., 2024). However, re-
cent studies suggest that independent sampling of solu-
tions is competitive and more efficient (Olausson et al.,
2024; Kapoor et al., 2024) when considering equal sam-
pling budgets. With our method, the self-repair capabilities
of LLMs can be dramatically enhanced, resulting in supe-
rior performance of iterative code generation for both small
and large sample budgets. At the same time, we propose
to trade complex, domain-specific prompt engineering and
scaffolding for domain-specific reinforcement fine-tuning.

Fine-Tuning/RL with Execution Feedback Fine-tuning
LLMs with reinforcement learning has become a widely
adopted strategy for aligning outputs to desired targets,
relying on specialized reward models or automatic sig-
nals (Ziegler et al., 2020; Touvron et al., 2023; OpenAI,
2023; DeepSeek-AI et al., 2024; AI @ Meta, 2024). For
code synthesis, this reward signal can be derived from
executing generated solutions against test cases (Shojaee
et al., 2023; Dou et al., 2024; Yu et al., 2024). Specifically,
Le et al. (2022) fine-tune an LLM with policy gradients
and next-token loss on execution rewards. To improve
performance at test time, they train dedicated models
for outcome prediction and program repair (“critic sam-
pling”), albeit without incorporating execution outputs in
the prompt. Liu et al. (2023b) extend this work with a
fine-grained reward function. Xu et al. (2024) fine-tune
a stronger, code-specific LLM in a simpler setup with
a binary reward from unit tests and observe substantial
improvements from RL on CodeContests. In contrast,
we expand the natural-language-to-code setting to an
iterative environment where execution feedback is not only
provided as a scalar reward but also in textual form. This
allows a single model to learn both code synthesis and
code repair capabilities without relying on ground-truth
solutions or extra inference scaffolding.

Concurrent Approaches and Longer-Horizon RL Con-

currently, Kumar et al. (2024) propose a two-stage RL
method (SCoRe) to improve self-correction by generating
two successive solutions. In contrast to our method, SCoRe
does not leverage execution feedback at inference time and
instead asks the model to reconsider its initial solution.
While this approach suits domains lacking automatic feed-
back, it cannot benefit from grounding via execution in-
formation. Furthermore, inference-time feedback can help
the model generalize to new environments after training.
Chen et al. (2024a) address code generation with human
feedback and develop an appropriate SFT strategy by train-
ing a separate code repair model. In our work, we effec-
tively leverage automatically generated feedback, format-
ted in natural language, with a single model only. More
recently, DeepSeek-AI et al. (2025) observe emerging rea-
soning capabilities with a large-scale application of GRPO
(Shao et al., 2024) to math and code problems and achieve
high performance on competitive programming tasks. We
thus consider the training of reasoning models with pro-
gram execution feedback and, likewise, the introduction of
execution feedback to math domains, a promising avenue
for future research.

Past work on applying reinforcement learning to LLMs on
longer-horizon decision-making tasks placed an emphasis
on the necessary grounding in the environment, such as
text-based navigation games (Carta et al., 2023), text games
(versus an oracle LLM) and web-shopping (Zhou et al.,
2024), and visual observations (Zhai et al., 2024). While
our work follows similar motivations, we address a funda-
mentally different domain, code synthesis, which features
a significantly larger action space compared to previous
work, i.e., the space of valid Python programs.

5. Conclusion
Limitations. While our results demonstrate effective us-
age of inference-time feedback, the code synthesis task we
consider is limited to improving a single solution to a given
problem. Generalizing our method to environments with
larger tasks that require decomposition, either via man-
ual scaffolding or, eventually, in a self-directed manner,
remains the subject of further research. Iterating on the
execution results of unit tests naturally requires test cases,
which may not be readily available. We regard a potential
combination with automatic unit test generation (Watson
et al., 2020; Jain et al., 2024a) as an interesting avenue for
further experiments.

In this work, we proposed reinforcement learning from ex-
ecution feedback (RLEF), a fine-tuning method for LLMs
that endows them with a crucial capability for autonomous
operation: grounding future generations in environment
feedback. We applied RLEF to iterative code synthesis
and obtained substantial improvements in solve rates on the

8

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

CodeContests competitive programming benchmark while
reducing the required sample budget for inference. The
RLEF-trained models further generalize to increased turn
limits and to HumanEval+ and MBPP+, two popular code
generation benchmarks that exhibit simpler programming
questions and different execution feedback formatting. Our
in-depth analysis revealed that, while an increase in cor-
rect first-turn generations and in the diversity of successive
generations offers a major contribution to performance, our
models also meaningfully take execution feedback into ac-
count and resolve errors over multiple turns.

Acknowledgements. We thank Quentin Carbonneaux
for significant contributions to this work, as well as Chris
Cummins, Olivier Duchenne, Fabian Gloeckle, Baptiste
Roziere, Sten Sootla, Nicolas Usunier, and Sida Wang for
helpful technical contributions, suggestions, and insightful
discussions.

Impact Statement
Successful grounding of LLMs for code generation execu-
tion feedback will amplify their utility when applied to im-
pactful tasks such as assisting software development and
performing quality control. In general, however, increas-
ing the capabilities of LLMs, now widely deployed in a
range of applications, requires quality control and guard-
railing to promote safety and minimize potentially harmful
output. We limit our study to the generation of source code,
where we confine the execution of model-generated output
to local sandboxes. We believe the framework of Shavit
et al. (2023) regarding the governance of AI agents to be a
useful resource for practitioners.

9

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

References
AI @ Meta, L. T. The Llama 3 Herd of Models. Technical

report, 2024.

AlphaCode Team, G. D. AlphaCode 2 Technical Report.
Technical report, 2023.

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,
H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q.,
and Sutton, C. Program Synthesis with Large Language
Models. arXiv:2108.07732 [cs], Aug 2021.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language Models are Few-Shot Learners. In NeurIPS,
2020.

Carta, T., Romac, C., Wolf, T., Lamprier, S., Sigaud, O.,
and Oudeyer, P.-Y. Grounding Large Language Models
in Interactive Environments with Online Reinforcement
Learning. arXiv:2302.02662 [cs], Sep 2023.

Chen, A., Scheurer, J., Korbak, T., Campos, J. A., Chan,
J. S., Bowman, S. R., Cho, K., and Perez, E. Improv-
ing Code Generation by Training with Natural Language
Feedback. arXiv:2303.16749, Feb 2024a.

Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto,
H. P., Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., Ryder, N., Pavlov, M., Power, A., Kaiser, L., Bavar-
ian, M., Winter, C., Tillet, P., Such, F. P., Cummings,
D., Plappert, M., Chantzis, F., Barnes, E., Herbert-Voss,
A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang,
J., Babuschkin, I., Balaji, S., Jain, S., Saunders, W.,
Hesse, C., Carr, A. N., Leike, J., Achiam, J., Misra,
V., Morikawa, E., Radford, A., Knight, M., Brundage,
M., Murati, M., Mayer, K., Welinder, P., McGrew, B.,
Amodei, D., McCandlish, S., Sutskever, I., and Zaremba,
W. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs], Jul 2021.

Chen, X., Lin, M., Schärli, N., and Zhou, D. Teaching
Large Language Models to Self-Debug. In ICLR, 2024b.

Clement, C. B., Drain, D., Timcheck, J., Svyatkovskiy, A.,
and Sundaresan, N. PyMT5: Multi-mode translation of
natural language and Python code with transformers. In
EMNLP, 2020.

DeepSeek-AI, Zhu, Q., Guo, D., Shao, Z., Yang, D., Wang,
P., Xu, R., Wu, Y., Li, Y., Gao, H., Ma, S., Zeng, W., Bi,
X., Gu, Z., Xu, H., Dai, D., Dong, K., Zhang, L., Piao,
Y., Gou, Z., Xie, Z., Hao, Z., Wang, B., Song, J., Chen,
D., Xie, X., Guan, K., You, Y., Liu, A., Du, Q., Gao, W.,
Lu, X., Chen, Q., Wang, Y., Deng, C., Li, J., Zhao, C.,
Ruan, C., Luo, F., and Liang, W. DeepSeek-Coder-V2:
Breaking the Barrier of Closed-Source Models in Code
Intelligence. arXiv:2406.11931 [cs], Jun 2024.

DeepSeek-AI, Guo, D., Yang, D., Zhang, H., Song, J.,
Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X.,
Zhang, X., Yu, X., Wu, Y., Wu, Z. F., Gou, Z., Shao,
Z., Li, Z., Gao, Z., Liu, A., Xue, B., Wang, B., Wu, B.,
Feng, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan,
C., Dai, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., Luo,
F., Hao, G., Chen, G., Li, G., Zhang, H., Bao, H., Xu,
H., Wang, H., Ding, H., Xin, H., Gao, H., Qu, H., Li,
H., Guo, J., Li, J., Wang, J., Chen, J., Yuan, J., Qiu, J.,
Li, J., Cai, J. L., Ni, J., Liang, J., Chen, J., Dong, K.,
Hu, K., Gao, K., Guan, K., Huang, K., Yu, K., Wang,
L., Zhang, L., Zhao, L., Wang, L., Zhang, L., Xu, L.,
Xia, L., Zhang, M., Zhang, M., Tang, M., Li, M., Wang,
M., Li, M., Tian, N., Huang, P., Zhang, P., Wang, Q.,
Chen, Q., Du, Q., Ge, R., Zhang, R., Pan, R., Wang, R.,
Chen, R. J., Jin, R. L., Chen, R., Lu, S., Zhou, S., Chen,
S., Ye, S., Wang, S., Yu, S., Zhou, S., Pan, S., Li, S. S.,
Zhou, S., Wu, S., Ye, S., Yun, T., Pei, T., Sun, T., Wang,
T., Zeng, W., Zhao, W., Liu, W., Liang, W., Gao, W.,
Yu, W., Zhang, W., Xiao, W. L., An, W., Liu, X., Wang,
X., Chen, X., Nie, X., Cheng, X., Liu, X., Xie, X., Liu,
X., Yang, X., Li, X., Su, X., Lin, X., Li, X. Q., Jin, X.,
Shen, X., Chen, X., Sun, X., Wang, X., Song, X., Zhou,
X., Wang, X., Shan, X., Li, Y. K., Wang, Y. Q., Wei,
Y. X., Zhang, Y., Xu, Y., Li, Y., Zhao, Y., Sun, Y., Wang,
Y., Yu, Y., Zhang, Y., Shi, Y., Xiong, Y., He, Y., Piao,
Y., Wang, Y., Tan, Y., Ma, Y., Liu, Y., Guo, Y., Ou, Y.,
Wang, Y., Gong, Y., Zou, Y., He, Y., Xiong, Y., Luo, Y.,
You, Y., Liu, Y., Zhou, Y., Zhu, Y. X., Xu, Y., Huang, Y.,
Li, Y., Zheng, Y., Zhu, Y., Ma, Y., Tang, Y., Zha, Y., Yan,
Y., Ren, Z. Z., Ren, Z., Sha, Z., Fu, Z., Xu, Z., Xie, Z.,
Zhang, Z., Hao, Z., Ma, Z., Yan, Z., Wu, Z., Gu, Z., Zhu,
Z., Liu, Z., Li, Z., Xie, Z., Song, Z., Pan, Z., Huang, Z.,
Xu, Z., Zhang, Z., and Zhang, Z. DeepSeek-R1: Incen-
tivizing Reasoning Capability in LLMs via Reinforce-
ment Learning. arXiv:2501.12948 [cs], Jan 2025.

Dou, S., Liu, Y., Jia, H., Xiong, L., Zhou, E., Shan, J.,
Huang, C., Shen, W., Fan, X., Xi, Z., Zhou, Y., Ji, T.,
Zheng, R., Zhang, Q., Huang, X., and Gui, T. StepCoder:
Improve Code Generation with Reinforcement Learning
from Compiler Feedback. arXiv:2402.01391 [cs], Feb
2024.

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T.,

10

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Del Giorno, A., Gopi, S., Javaheripi, M., Kauffmann,
P., de Rosa, G., Saarikivi, O., Salim, A., Shah, S., Behl,
H. S., Wang, X., Bubeck, S., Eldan, R., Kalai, A. T.,
Lee, Y. T., and Li, Y. Textbooks Are All You Need.
arXiv:2306.11644 [cs], Jun 2023.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y.
The Curious Case of Neural Text Degeneration. In ICLR,
2020.

Islam, M. A., Ali, M. E., and Parvez, M. R. MapCoder:
Multi-Agent Code Generation for Competitive Problem
Solving. arXiv:2405.11403 [cs], May 2024.

Jain, K., Synnaeve, G., and Rozière, B. TestGenEval: A
Real World Unit Test Generation and Test Completion
Benchmark. arXiv:2410.00752 [cs], Oct 2024a.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang,
T., Wang, S., Solar-Lezama, A., Sen, K., and Sto-
ica, I. LiveCodeBench: Holistic and Contamination
Free Evaluation of Large Language Models for Code.
arXiv:2403.07974 [cs], Mar 2024b.

Kapoor, S., Stroebl, B., Siegel, Z. S., Nadgir, N.,
and Narayanan, A. AI Agents That Matter.
arXiv:2407.01502 [cs], Jul 2024.

Kirk, R., Mediratta, I., Nalmpantis, C., Luketina, J., Ham-
bro, E., Grefenstette, E., and Raileanu, R. Understanding
the Effects of RLHF on LLM Generalisation and Diver-
sity. In ICLR, 2024.

Kumar, A., Zhuang, V., Agarwal, R., Su, Y., Co-Reyes,
J. D., Singh, A., Baumli, K., Iqbal, S., Bishop, C.,
Roelofs, R., Zhang, L. M., McKinney, K., Shrivastava,
D., Paduraru, C., Tucker, G., Precup, D., Behbahani,
F., and Faust, A. Training Language Models to Self-
Correct via Reinforcement Learning. arXiv:2409.12917
[cs], Sep 2024.

Le, H., Wang, Y., Gotmare, A. D., Savarese, S., and Hoi,
S. C. H. CodeRL: Mastering Code Generation through
Pretrained Models and Deep Reinforcement Learning. In
NeurIPS, 2022.

Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D.,
Mou, C., Marone, M., Akiki, C., Li, J., Chim, J., Liu,
Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T., Dehaene,
O., Lamy-Poirier, J., Monteiro, J., Gontier, N., Yee, M.-
H., Umapathi, L. K., Zhu, J., Lipkin, B., Oblokulov,
M., Wang, Z., Murthy, R., Stillerman, J. T., Patel, S. S.,
Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Bhat-
tacharyya, U., Yu, W., Luccioni, S., Villegas, P., Zh-
danov, F., Lee, T., Timor, N., Ding, J., Schlesinger,
C. S., Schoelkopf, H., Ebert, J., Dao, T., Mishra, M.,
Gu, A., Anderson, C. J., Dolan-Gavitt, B., Contractor,

D., Reddy, S., Fried, D., Bahdanau, D., Jernite, Y., Fer-
randis, C. M., Hughes, S., Wolf, T., Guha, A., Werra,
L. V., and de Vries, H. StarCoder: May the source be
with you! Transactions on Machine Learning Research,
2023.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser,
J., Leblond, R., Eccles, T., Keeling, J., Gimeno, F.,
Lago, A. D., Hubert, T., Choy, P., d’Autume, C. d. M.,
Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J., Gowal,
S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Rob-
son, E. S., Kohli, P., de Freitas, N., Kavukcuoglu, K., and
Vinyals, O. Competition-Level Code Generation with
AlphaCode. arXiv:2203.07814 [cs], 378:1092–1097,
Dec 2022.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is Your Code
Generated by ChatGPT Really Correct? Rigorous Eval-
uation of Large Language Models for Code Generation.
In NeurIPS, 2023a.

Liu, J., Zhu, Y., Xiao, K., Fu, Q., Han, X., Yang, W., and
Ye, D. RLTF: Reinforcement Learning from Unit Test
Feedback. TMLR, 11/2023, 2023b.

Loshchilov, I. and Hutter, F. Decoupled Weight Decay Reg-
ularization. In ICLR, 2019.

Mialon, G., Fourrier, C., Swift, C., Wolf, T., LeCun, Y.,
and Scialom, T. GAIA: A benchmark for General AI
Assistants. In ICLR, 2024.

Olausson, T. X., Inala, J. P., Wang, C., Gao, J., and Solar-
Lezama, A. Is Self-Repair a Silver Bullet for Code Gen-
eration? In ICLR, 2024.

OpenAI. GPT-4 technical report. arXiv:2303.08774, 2023.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training Language Models to
Follow Instructions with Human Feedback. In NeurIPS,
2022.

Popović, M. chrF: Character n-Gram F-score for automatic
MT evaluation. In WMT 2015, pp. 392–395, Lisbon,
Portugal, 2015. Association for Computational Linguis-
tics.

Rafailov, R., Sharma, A., Mitchell, E., Ermon, S., Man-
ning, C. D., and Finn, C. Direct Preference Optimiza-
tion: Your Language Model is Secretly a Reward Model.
In NeurIPS, 2023.

Ridnik, T., Kredo, D., and Friedman, I. Code Generation
with AlphaCodium: From Prompt Engineering to Flow
Engineering. arXiv:2401.08500 [cs], Jan 2024.

11

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat,
I., Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J.,
Kozhevnikov, A., Evtimov, I., Bitton, J., Bhatt, M., Fer-
rer, C. C., Grattafiori, A., Xiong, W., Défossez, A.,
Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier,
N., Scialom, T., and Synnaeve, G. Code Llama: Open
Foundation Models for Code. arXiv:2308.12950 [cs],
Aug 2023.

Schick, T., Dwivedi-Yu, J., Dessı̀, R., Raileanu, R., Lomeli,
M., Zettlemoyer, L., Cancedda, N., and Scialom, T.
Toolformer: Language Models Can Teach Themselves
to Use Tools. In NeurIPS, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal Policy Optimization Algorithms.
arXiv:1707.06347 [cs], Aug 2017.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Zhang, M.,
Li, Y. K., Wu, Y., and Guo, D. DeepSeekMath: Push-
ing the Limits of Mathematical Reasoning in Open Lan-
guage Models. arXiv:2402.03300 [cs], Feb 2024.

Shavit, Y., O’Keefe, C., Eloundou, T., McMillan, P., Agar-
wal, S., Brundage, M., Adler, S., Campbell, R., Lee, T.,
Mishkin, P., Hickey, A., Slama, K., Ahmad, L., Beutel,
A., Passos, A., and Robinson, D. G. Practices for Gov-
erning Agentic AI Systems. 2023.

Shinn, N., Cassano, F., Berman, E., Gopinath, A.,
Narasimhan, K., and Yao, S. Reflexion: Lan-
guage Agents with Verbal Reinforcement Learning. In
NeurIPS, 2023.

Shojaee, P., Jain, A., Tipirneni, S., and Reddy, C. K.
Execution-based Code Generation using Deep Rein-
forcement Learning. TMLR, 07/2023, 2023.

Sutton, R. S. and Barto, A. G. Reinforcement Learn-
ing: An Introduction. Adaptive Computation and Ma-
chine Learning Series. The MIT Press, Cambridge, Mas-
sachusetts, second edition edition, 2018. ISBN 978-0-
262-03924-6.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev,
A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J.,
Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov,
T., Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizen-
stein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R.,
Smith, E. M., Subramanian, R., Tan, X. E., Tang, B.,
Taylor, R., Williams, A., Kuan, J. X., Xu, P., Yan, Z.,

Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S.,
Rodriguez, A., Stojnic, R., Edunov, S., and Scialom, T.
Llama 2: Open foundation and fine-tuned chat models.
arXiv:2307.09288, 2023.

Watson, C., Tufano, M., Moran, K., Bavota, G., and Poshy-
vanyk, D. On Learning Meaningful Assert Statements
for Unit Test Cases. In ICSE, pp. 1398–1409, 2020.

Xia, C. S., Deng, Y., Dunn, S., and Zhang, L. Agent-
less: Demystifying LLM-based Software Engineering
Agents. arXiv:2407.01489 [cs], Jul 2024.

Xu, S., Fu, W., Gao, J., Ye, W., Liu, W., Mei, Z., Wang, G.,
Yu, C., and Wu, Y. Is DPO Superior to PPO for LLM
Alignment? A Comprehensive Study. In ICML, 2024.

Yang, J., Jimenez, C. E., Wettig, A., Lieret, K., Yao, S.,
Narasimhan, K., and Press, O. SWE-agent: Agent-
Computer Interfaces Enable Automated Software Engi-
neering. arXiv:2405.15793 [cs], May 2024.

Yao, S., Chen, H., Yang, J., and Narasimhan, K. Web-
Shop: Towards Scalable Real-World Web Interaction
with Grounded Language Agents. In NeurIPS, 2022.

Yu, Z., Tao, Y., Chen, L., Sun, T., and Yang, H. B-Coder:
Value-Based Deep Reinforcement Learning for Program
Synthesis. arXiv:2310.03173, Mar 2024.

Zhai, Y., Bai, H., Lin, Z., Pan, J., Tong, S., Zhou, Y.,
Suhr, A., Xie, S., LeCun, Y., Ma, Y., and Levine,
S. Fine-Tuning Large Vision-Language Models as
Decision-Making Agents via Reinforcement Learning.
arXiv:2405.10292 [cs], May 2024.

Zhang, Y., Ruan, H., Fan, Z., and Roychoudhury, A. Au-
toCodeRover: Autonomous Program Improvement. In
Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2024.

Zhong, L., Wang, Z., and Shang, J. Debug like a Human:
A Large Language Model Debugger via Verifying Run-
time Execution Step-by-step. arXiv:2402.16906 [cs],
Jun 2024.

Zhou, Y., Zanette, A., Pan, J., Levine, S., and Kumar, A.
ArCHer: Training Language Model Agents via Hierar-
chical Multi-Turn RL. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents, 2024.

Ziegler, D. M., Stiennon, N., Wu, J., Brown, T. B.,
Radford, A., Amodei, D., Christiano, P., and Irving,
G. Fine-Tuning Language Models from Human Pref-
erences. arXiv:1909.08593 [cs, stat], Jan 2020.

12

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

A. Experimental Details
A.1. RLEF

We initialize separate policy and value function networks from pre-trained and instruction-tuned LLMs as indicated in the
respective experiments; for the value function, we replace the output layer with a randomly initialized linear projection.
For PPO, we use AdamW (Loshchilov & Hutter, 2019) with a learning rate of 2e−7, weight decay of 0.1, and a linear
warm-up over 50 steps. We set the KL regularization factor β of the reward term to 0.05 (Section 2.2). All models are
trained with an online, asynchronous training infrastructure that decouples inference and optimization. We incorporate
importance sampling in PPO’s clipped surrogate objective (Schulman et al., 2017, Eq.7):

rt(θ) =
πθ(at|ct)
πθold(at|ct)

stop grad

(
min

(
πθ(at|ct)
πb(at|ct)

, 1

))
,

Lπ(θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
for model parameters θ, normalized advantage Ât, and the behavior policy πb. We set ϵ = 0.2.

For optimizing the value function, we use a clipped value loss. With value model parameters ψ and reward function
R(st, at) (see Section 2.2) we have

Rt =

T∑
i=t

γi−tR(si, ai),

LV (ψ) = Êt
[
1

2
max

(
(Vψ(ct)−Rt)

2
, (clip (Vψ(ct), Vψold(ct)− α, Vψold(ct) + α)−Rt)

2
)]

where we set the discount factor γ to 1 and the value clipping threshold α to 0.2.

During training, we perform inference with a temperature of 1.0; we use neither nucleus (top-p) nor top-k sampling. We
collect 1024 rollouts and perform 4 updates on 256 sequences each. Models are evaluated every 800 updates, and we select
the final model based on validation set performance. We train our models on NVidia H100 GPUs; a training run takes
approx. 20 wall time hours. With the above parameters we use 288 (128 for training, 160 for inference) and 2304 (1024
for training, 1280 for inference) GPUs for 8B and 70B models, respectively.

A.2. Code Execution

We evaluate candidate solutions with the accompanying code-base of Li et al. (2022)3 using Python 3.10. All problems
in the validation and test set specify a memory limit, and only a few problems define a time limit. If specified, we apply
these limits for RLEF training and evaluations; otherwise, we use a 1GB memory limit and maximum wall clock time of
10 seconds per test case.

A.3. Supervised Fine-Tuning

We perform supervised fine-tuning (SFT) for the ablations in Section 3.4.1. In order to assemble a training dataset, we
perform iterative code generation with our proposed setup on the CodeContests training set with the Llama 3.1 70B Instruct
model. We set top-p to 0.95 and sample a temperature for each response in U(0.1, 1.0). For each problem in the training
set we collect 100 multi-turn rollouts and obtain 313,639 successful trajectories.

We fine-tune models for next-token prediction, computing losses on the last response only (i.e., on responses passing
both public and private tests); this produced slightly better models compared to training on all responses. We sweep over
learning rates 5e−6 and 2e−6, and 2 and 3 epochs with a batch size of 64 and sequence length 8192. A linear warmup is
performed over 10 steps, and learning rates are annealed according to a cosine schedule. Weight decay is set to 0.1. Models
are evaluated after 200 optimizer steps with AdamW and we select final parameters based on validation set performance.

3https://github.com/google-deepmind/code_contests

13

https://github.com/google-deepmind/code_contests

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Table 5: 1@3 solve rates with 95% confidence intervals on tasks from Table 2 as well as LiveCodeBench up to 10/2024.

Model Setting CC. Test HumanEval+ MBPP+ LiveCodeBench

GPT-4o single-turn 25.3 (23.2-26.3) 82.8 (81.8-83.2) 68.8 (68.1-69.2) 49.9 (48.7-50.0)
multi-turn 24.3 (23.2-25.4) 80.7 (79.8-81.7) 71.7 (71.4-72.2) 48.4 (48.0-49.0)

Llama 3.1 8B Instruct single-turn 11.6 (11.3-12.0) 65.3 (63.8-66.2) 58.3 (57.5-58.7) 22.5 (21.6-22.7)
multi-turn 10.5 (10.1-10.8) 63.9 (62.8-65.1) 60.4 (59.7-60.9) 23.1 (22.6-23.5)

+ RLEF single-turn 9.7 (9.5-10.0) 67.5 (66.7-68.0) 57.0 (56.4-57.2) 22.7 (22.4-22.9)
multi-turn 16.1 (15.8-16.4) 69.5 (68.6-70.5) 63.1 (62.7-63.5) 27.8 (27.4-28.1)

Llama 3.1 70B Instruct single-turn 26.2 (25.6-26.6) 73.2 (72.5-73-9) 66.9 (66.1-67.4) 38.1 (37.3-38.4)
multi-turn 27.4 (27.0-27.8) 75.0 (74.3-76.0) 70.2 (69.7-70.8) 40.9 (40.4-41.3)

+ RLEF single-turn 30.1 (29.7-30.4) 78.7 (78.1-79.0) 67.6 (67.2-67.8) 36.9 (36.5-37.0)
multi-turn 40.1 (39.7-40.4) 80.4 (79.7-81.0) 72.2 (71.9-72.5) 42.4 (42.2-42.7)

Table 6: (a) 1@3 solve rates for few-shot prompting and supervised fine-tuning (SFT) with Llama 3.1 Base models on
CodeContests. (b) Further results from Llama 3.1 Instruct 8B (1@3): withholding execution feedback from public training
during RL; learning a value function on the token level; training a dedicated code repair model and applying it to outputs
of the single-turn RL model.

Model Method Valid Test

8B Base Few-Shot 1.2 1.8
SFT 6.9 3.5

70B Base Few-Shot 4.6 5.8
SFT 11.1 10.9

(a)

Method (8B) Valid Test

RLEF 17.2 16.1
No Execution Feedback 12.2 10.9
Token-level Value Function 13.1 13.7

Single-turn RL 10.2 10.9
Single-turn w/ Repair 14.8 12.6

(b)

B. Additional Experimental Results
B.1. Extended Results on Generalization

Table 2 lists performance of RLEF-trained models and GPT-4o on benchmarks that are not strictly within the competitive
programming domain. We report confidence intervals for all results, along with results on LiveCodeBench (Jain et al.,
2024b), in Table 5. We select LiveCodeBench questions up to October 2024.

We follow Li et al. (2022) in computing 95% confidence intervals for n@k results: given an evaluation with N samples, we
draw N results with replacement and estimate 1@3 solve rates, repeat this 200 times, and select the 2.5 and 97.5 percentiles
as lower and upper bounds of the confidence interval.

Table 5 shows that gains from RLEF-training on CodeContests on other tasks are statistically significant in our evaluation
setting, where we draw 20 multi-turn samples per model and task combination. For single-turn results, we consider the first
generation of each sample only. For consistency, we use 200 samples on CodeContests (except for GPT-4o) as in Table 1.
Confidence intervals for GPT-4o on CodeContests are therefore wider.

B.2. Pre-trained Models

In Table 6a we list solve rates for few-shot prompting and supervised fine-tuning from pre-trained Llama 3.1 models. We
observe significantly lower performance compared to the Instruct models in all cases (Table 3).

14

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

B.3. Feedback from Private Tests

Our main evaluations on CodeContests match our training setting, i.e., we provide inference-time feedback on public
test cases and estimate solve rates on private (and the dataset’s generated) tests. The number of public test cases in the
CodeContests validation and test sets vary between 1-7, with a median of 1; typically, a higher number of private tests and
a large number of generated tests are available per problem.

We verify whether our RLEF-trained models can benefit from larger test sets during inference by including feedback from
private and generated tests. Specifically, we test each model response against 20 available test cases, including private
tests, and provide execution feedback for up to 8 failed test cases. Comparing 1@3 solve rates (temperature 0.2) with a
turn limit of 3, the 8B RLEF model can improve from 17.2 to 18.1 on the valid set, whereas on the test set we see a drop
from 16.1 to 14.4. For the 70B RLEF model, validation set performance improves from 37.5 to 40.4, and on the test set we
obtain 41.2 compared to 40.1 with feedback limited to public tests.

B.4. Extra Repair Model

Le et al. (2022) implement program repair on top of an RL-trained LLM with two extra models: a “critic” predicts the
joint outcome of all unit tests (e.g., success, failure, runtime error) and can be used for ranking and determining promising
prefixes, and a “repair” model maps wrong solutions to ground truth solutions. In this spirit, we evaluate the effect of a
dedicated repair model to improve the single-turn 8B model from Section 3.4.2 as follows.

During the RL training procedure, we collect all generations that do not pass the public unit tests. For the training duration
of 12,000 gradient steps, this amounts to 1.48M samples. Next we construct training dialogues with the original prompt (as
described in Appendix C.1), the wrong generation, and a random correct generation for the respective problem from the
CodeContests training set. We apply additional processing to the CodeContests solutions by making sure they do indeed
pass the provided unit tests and unifying their indentation. We then train repair models via supervised fine-tuning of Llama
3.1 8B Instruct, sweeping over learning rates 5e−6, 2e−6, and 1e−6, and 1 or 2 epochs with a batch size of 64 and a
sequence length of 8192.

For evaluations, we estimate 1@3 solve rates by generating an initial program with the RL-trained model followed by up to
two independent samples from the repair model. Similar to our main RLEF setting, we refrain from (further) repair if the
latest solution passes the public tests. We evaluate all models from the sweep in intervals of 400 gradient steps and select
the best checkpoint based on validation set performance. This checkpoint achieves, in combination with the single-turn
RL model, a 1@3 solve rate of 14.8 on the validation set and 12.6 on the test set, which is a significant increase over the
single-turn RL model alone (10.2 and 10.9, respectively; Table 4) but falls short of the corresponding RLEF-trained model
which combines code synthesis and code repair (17.2 and 16.1, respectively; Table 1)

B.5. RL Training Without Public Test Execution Feedback

We validate our setup consisting of inline execution feedback and early stopping based on public tests (Section 2.1) with
an ablation where we withhold information from public tests. Concretely, we remove execution feedback from the prompt
for subsequent solutions (Appendix C.1), starting directly with “Give it another try”. We always ask the model for two
follow-up solutions this way (i.e., for a total of three solutions). We do keep our reward definition from Section 2.2 but do
not end episodes when public tests are passing.

The resulting model, starting from Llama 3.1 8B Instruct, obtains a 1@3 solve rate of 12.2 on the validation and 10.9 on
the test set (Table 6b). This is better than the initial instruct model (8.9 and 10.2, respectively) but significantly below the
corresponding RLEF-trained model (17.2 and 16.1, respectively).

B.6. Token-Level Value Function

Here we do not train a value function the level of responses (Section 2.2, Appendix A.1) but rather predict a value for
each token of a response. Our reward formulation remains unchanged; consequently, due to the discount factor being set
to 1, the value function target (reward-to-go) for each token of a response is the same. However, we now compute separate
per-token advantages.

With this approach and otherwise identical settings, we achieve a 1@3 solve rate of 13.1 on the validation and 13.7 on the
test set, starting from Llama 3.1 8B Instruct (Table 6b). This is below the 17.2 and 16.1 results with the turn-level value

15

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

function (Table 1).

C. Prompts
C.1. CodeContests

In the initial prompt, we substitute ${problem} by the original problem description as-is.

Initial Prompt

Provide a Python solution for the following competitive programming question: \${
problem}.

Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE
‘‘‘. Use the backticks for your code only.

In the execution feedback prompt below, we show templates for the four different error types we consider: wrong answer,
exception, timeout, and out of memory. We then show the respective feedback for each failing test.

Execution Feedback

Your code failed the following tests:

- input ‘${input}‘ failed:
Expected output ‘${expected_output}‘ but got ‘${observed_output}‘
- input ‘${input}‘ failed:
${stacktrace}
- input ‘${input}‘ failed: Execution took too long.
- input ‘${input}‘ failed: Out of memory.

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE
‘‘‘. Use the backticks for your code only.

C.2. Random Feedback Ablation

In Section 3.3 we test RLEF-trained models with random execution feedback. For each problem, we sample a different
problem from the respective test set that contains incorrect solutions. We obtain unrelated feedback by evaluating one of
these incorrect solutions, chosen at random, against the corresponding public tests and present the resulting feedback to the
model. If none of the incorrect solutions fail the public tests, we evaluate raise NotImplementedError(). In this
case, the feedback will contain backtraces pointing to this error. Otherwise our dialog proceeds as usual, i.e., if the code
solution produced by the LLM passes the true public tests of the problem in questions we stop and evaluate the solution on
all test cases.

C.3. Few-Shot Prompting

For the few-shot ablations in Section 3.4, we select successful trajectories from the Llama 3.1 70B Instruct model on prob-
lems from the CodeContests training set. We select trajectories with both 2 and 3 successful attempts to as demonstrations
for successful multi-turn code generation. For instruction models, we initialize the dialog with the few-shot examples,
separating them with an empty assistant message. For few-shot experiments with pre-trained models (Appendix B.2), we
use a dialog format in which each message is either prefixed by [USER] or [ASSISTANT]. The token for ||, an invalid
symbol in Python, is used as a message delimiter.

C.4. HumanEval+

HumanEval problem prompts consist of starter code, with a docstring and example tests following the function declaration.

16

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Initial Prompt

Write a solution to the following problem and make sure that it passes the tests:
${problem}

We then provide the problem prompt again at the start of each model response for completion.

The tests in HumanEval+ consist of a single function with several assert statements. In order to obtain execution
feedback for individual tests, we extract them from original test function (for computing pass rates, we use the original test
code). We further transform assert statements into matching function calls of Python’s built-in unittest.TestCase
class. This way, test failures will result in more informative AssertionError exceptions with run-time values; these
are provided as assertion error to the template. We also show successful test cases.

Execution Feedback

Your code failed some test cases:

- Failure: ‘${test}‘:
‘${assertion_error}‘
- Failure: ‘${test}‘:
${stacktrace}
- Failure: ‘${test}‘:
Execution took too long.
- Success: ‘${test}‘

Give it another try.

C.5. MBPP+

Each MBPP prompt consists of a problem description and a single example test.

Initial Prompt

Provide a Python solution for the following problem: ${problem}
Your code should pass these tests:

${test}

Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE
‘‘‘. Use the backticks for your code only.

Execution feedback follows the HumanEval+ format from Appendix C.4 with additional formatting guidelines.

17

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Execution Feedback

Your code failed some test cases:

- Failure: ‘${test}‘:
‘${error}‘
- Failure: ‘${test}‘:
${stacktrace}
- Failure: ‘${test}‘:
Execution took too long.
- Success: ‘${test}‘

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE
‘‘‘. Use the backticks for your code only.

D. Examples
The following examples are selected from the valid set of CodeContests with the RLEF-trained 70B model, using temper-
ature 0.2 and top-p 0.95. We apply some light re-formatting of the initial prompts for better readability.

In the first example, the first model response is on the right track, but the first print() statement outputs a wrong value.
The second response implements the requested algorithm naively, but the code is inefficient due to the loop from l to r;
it would take about two minutes for the last line in the public test. Finally, the third response contains code that is both
correct and fast.

Initial Prompt

Provide a Python solution for the following competitive programming question: You are given two integers l and r, l ≤ r. Find
the largest possible value of a mod b over all pairs (a, b) of integers for which r ≥ a ≥ b ≥ l.
As a reminder, a mod b is a remainder we get when dividing a by b. For example, 26 mod 8 = 2.

Input

Each test contains multiple test cases.
The first line contains one positive integer t (1 ≤ t ≤ 10ˆ4), denoting the number of test cases. Description of the test
cases follows.
The only line of each test case contains two integers l, r (1 ≤ l ≤ r ≤ 10ˆ9).

Output

For every test case, output the largest possible value of a mod b over all pairs (a, b) of integers for which r ≥ a ≥ b ≥ l.

Example

Input

4
1 1
999999999 1000000000
8 26
1 999999999

Output

0
1
12
499999999

Note

In the first test case, the only allowed pair is (a, b) = (1, 1), for which a mod b = 1 mod 1 = 0.
In the second test case, the optimal choice is pair (a, b) = (1000000000, 999999999), for which a mod b = 1..
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the backticks for your code only.

18

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Model Response

‘‘‘python
t = int(input())

for _ in range(t):
l, r = map(int, input().split())

if r // 2 + 1 >= l:
print((r // 2))

else:
print(r % l)

‘‘‘

Execution Feedback

Your code failed the following tests:

- input ‘4
1 1
999999999 1000000000
8 26
1 999999999
‘ failed:
Expected output ‘0
1
12
499999999
‘ but got ‘0
1
13
499999999
‘

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the backticks for your code only.

Model Response

‘‘‘python
t = int(input())

for _ in range(t):
l, r = map(int, input().split())

max_mod = 0
for b in range(l, r + 1):

a = r
mod = a % b
max_mod = max(max_mod, mod)

print(max_mod)
‘‘‘

Execution Feedback

Your code failed the following tests:

- input ‘4
1 1
999999999 1000000000
8 26
1 999999999
‘ failed:
Execution took too long

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the backticks for your code only.

19

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Model Response

‘‘‘python
t = int(input())

for _ in range(t):
l, r = map(int, input().split())

if r == l:
print(0)

else:
b = (r // 2) + 1
if b >= l:

print(r % (b))
else:

print(r % l)
‘‘‘

Result

Passes public and private tests.

20

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

In the second example, the first code solution does not reset the value for pk. The second and correct attempt fixes this. Note
that both solutions contain an unused variable, curr in the first and curr a in the second response. For this question, an
approach with dynamic programming that starts initializes pk from pk−1 would be preferred; however, the second solution
passes all test cases, too.

Initial Prompt

Provide a Python solution for the following competitive programming question: You have an array a consisting of n distinct
positive integers, numbered from 1 to n. Define p_k as $$$p_k =

∑
_{1 ≤ i, j ≤ k} a_i mod a_j, where x \bmod y denotes the

remainder when x is divided by y. You have to find and print p_1, p_2, \ldots, p_n$$$.

Input

The first line contains n - the length of the array (2 ≤ n ≤ 2 · 10ˆ5).
The second line contains n space-separated distinct integers a_1, ..., a_n (1 ≤ a_i ≤ 3 · 10ˆ5, a_i ̸= a_j if i ̸= j).

Output

Print n integers p_1, p_2, ..., p_n.

Examples

Input

4
6 2 7 3

Output

0 2 12 22

Input

3
3 2 1

Output

0 3 5.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the backticks for your code only.

Model Response

‘‘‘python
n = int(input())
a = list(map(int, input().split()))

p = 0
result = []
for k in range(n):

curr = a[k]
for i in range(k + 1):

for j in range(k + 1):
p += a[i] % a[j]

result.append(p)

for num in result:
print(num, end=" ")

‘‘‘

Execution Feedback

Your code failed the following tests:

- input ‘4
6 2 7 3
‘ failed:
Expected output ‘0 2 12 22
‘ but got ‘0 2 14 36 ‘
- input ‘3
3 2 1
‘ failed:
Expected output ‘0 3 5
‘ but got ‘0 3 8 ‘

Give it another try.
Your code should be enclosed in triple backticks like so: ‘‘‘python YOUR CODE HERE ‘‘‘. Use the backticks for your code only.

21

RLEF: Grounding Code LLMs in Execution Feedback with Reinforcement Learning

Model Response

‘‘‘python
n = int(input())
a = list(map(int, input().split()))

result = []
total = 0
for k in range(n):

curr_total = 0
curr_a = a[:k+1]
for i in range(k+1):

for j in range(k+1):
if i != j:

curr_total += a[i] % a[j]
result.append(curr_total)

for num in result:
print(num, end=" ")

‘‘‘

Result

Passes public and private tests.

22

	Introduction
	Method
	Iterative Code Synthesis
	Reinforcement Learning with Execution Feedback

	Experimental Results
	Setup
	Main Results
	Inference-time Behavior
	Ablation Studies
	Learning Iterative Code Synthesis
	Single-turn Training

	Related Work
	Conclusion
	Experimental Details
	RLEF
	Code Execution
	Supervised Fine-Tuning

	Additional Experimental Results
	Extended Results on Generalization
	Pre-trained Models
	Feedback from Private Tests
	Extra Repair Model
	RL Training Without Public Test Execution Feedback
	Token-Level Value Function

	Prompts
	CodeContests
	Random Feedback Ablation
	Few-Shot Prompting
	HumanEval+
	MBPP+

	Examples

