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ABSTRACT

Characters do not convey meaning, but sequences of characters do. We propose
an unsupervised distributional method to learn the abstract meaning-bearing units
in a sequence of characters. Rather than segmenting the sequence, our Dynamic
Capacity Slot Attention model discovers continuous representations of the objects
in the sequence, extending an architecture for object discovery in images. We
train our model on different languages and evaluate the quality of the obtained
representations with forward and reverse probing classifiers. These experiments
show that our model succeeds in discovering units which are similar to those
proposed previously in form, content and level of abstraction, and which show
promise for capturing meaningful information at a higher level of abstraction.

1 INTRODUCTION

When we look at a complex scene, we perceive its constituent objects, and their properties such as
shape and material. Similarly, what we perceive when we read a piece of text builds on the word-like
units it is composed of, namely morphemes, the smallest meaningful units in a language. This paper
investigates deep learning models which discover such meaningful units from the distribution of
character sequences in natural text.

In recent years, there has been an emerging interest in unsupervised object discovery in vision (Eslami
et al., 2016; Greff et al., 2019; Engelcke et al., 2020). The goal is to segment the scene into its
objects without supervision and ideally obtain an object-centric representation of the scene. These
representations should lead to better generalization to unknown scenes, and additionally should
facilitate abstract reasoning over the image. Locatello et al. (2020) proposed a relatively simple and
generic algorithm for discovering objects called Slot Attention, which iteratively finds a set of feature
vectors (i.e., slots) which can bind to any object in the image through a form of attention.

Inspired by this line of work in vision, our goal is to learn a set of abstract continuous representations
of the objects in text. We adapt the Slot Attention module (Locatello et al., 2020) for this purpose,
extending it for discovering the meaningful units in natural language character sequences. This makes
our work closely related to unsupervised morphology learning (Creutz, 2003; Narasimhan et al., 2015;
Eskander et al., 2020). However, there are fundamental differences between our work and morphology
learning. First, we learn a set of vector representations of text which are not explicitly tied to the
text segments. Second, our model learns its representations by considering the entire input sentence,
rather than individual space-delimited words. These properties of our induced representations makes
our method more appropriate for inducing meaningful units as part of deep learning models.

In particular, we integrate our unit discovery method on top of the the encoder in a Transformer
auto-encoder (Vaswani et al., 2017), as depicted in Figure 1, and train it with an unsupervised sentence
reconstruction objective. This setting differs from previous work on Slot Attention, which has been
tested on synthetic image data with a limited number of objects (Locatello et al., 2020). We propose
several extentions to Slot Attention for the domain of real text data. We increase the capacity of the
model to learn to distinguish a large number of textual units, and add the ability to learn how many
units are needed to encode sequences with varying length and complexity. Thus, we refer to our
method as Dynamic Capacity Slot Attention. Additionally, as a hand-coded alternative, we propose
stride-based models and compare them empirically to our slot-attention based models.
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To evaluate the induced representations we both qualitatively inspect the model itself and quantita-
tively compare it to previously proposed representations. Visualisation of its attention patterns shows
that the model has learned representations similar to the contiguous segmentations of traditional
tokenization approaches. Trained probing classifiers show that the induced units capture similar
abstractions to the units previously proposed in morphological annotations (MorphoLex (Sánchez-
Gutiérrez et al., 2018; Mailhot et al., 2020)) and tokenization methods (Morfessor (Virpioja et al.,
2013), BPE (Sennrich et al., 2016)). We propose to do this probing evaluation in both directions, to
compare both informativeness and abstractness. These evaluations show promising results in the
ability of our models to discover units which capture meaningful information at a higher level of
abstraction than characters.

Transformer Encoder

Transformer Decoder

s h pe  l a dy e  b ka s e t lb a l

she play ed basket ball                 

s h pe  l a dy e  b ka s e t lb a l

L0 Drop

she play ed basket ball

Slot Attention

Figure 1: The sketch of our model. First, the Trans-
former encoder encodes the sequence and then,
Slot Attention computes the slot vectors (high-
lighted text). Next, the L0Drop layer dynamically
prunes out the unnecessary slots. Finally, the de-
coder reconstructs the original sequence.

To summarize, our contributions are as fol-
lows: (i) We propose a novel model for learning
meaning-bearing units from a sequence of char-
acters (Section 2). (ii) We propose simple stride-
based models which could serve as strong base-
lines for evaluating such unsupervised models
(Section 2.4). (iii) We analyze the induced units
by visualizing the attention maps of the decoder
over the slots and observe the desired sparse
and contiguous patterns (Section 4.2). (iv) We
show that the induced units capture meaningful
information at an appropriate level of abstrac-
tion by probing their equivalence to previously
proposed meaningful units (Section 4.4).

2 APPROACH

2.1 PROBLEM FORMULATION

Given a sequence of N characters X = x1x2 . . . xN , we want to find a set of meaning-bearing units
(slots) M = {m1, . . . ,mK}, which could best represent X in a higher level of abstraction. As an
example, consider the sequence ”she played basketball”, where we expect our slots to represent
something like the set of morphemes of the sequence, namely {she, play, -ed, basket, -ball}.

2.2 OVERVIEW

We learn our representations through encoding the input sequence into slots and then reconstructing
the original sequence from them. Particularly, we use an auto-encoder structure where slots act as the
bottleneck between the encoder and the decoder. Figure 1 shows an overview of our proposed model,
Dynamic Capacity Slot Attention. First, we encode the input character sequence by a Transformer
encoder (Vaswani et al., 2017), which gives us one vector per character. Then, we apply our higher-
capacity version of a Slot Attention module (Locatello et al., 2020) over the encoded sequence, to
learn the slots. Intuitively, Slot Attention will learn a soft clustering over the input where each cluster
(or respectively slot) corresponds to a candidate meaningful unit in the sequence. To select which
candidates are needed to represent the input, we integrate an L0 regularizing layer, i.e., L0Drop layer
(Zhang et al., 2021), on top of the slots. Although the maximum number of slots is fixed during
the course of training, this layer ensures that the model only uses as many slots as necessary for the
particular input. This stops the model from converging to trivial solutions for short inputs, such as
passing every character through a separate slot. Finally, the Transformer decoder reconstructs the
input sequence autoregressively using attention over the set of slots.

2.3 MODEL

Encoder. We use Transformer encoder architecture for encoding our sequence (Vaswani et al., 2017)
and obtain the representation X ′ = x′

1x
′
2 . . . x

′
N from our input sequence X .

Slot Attention for text. After encoding the character sequence, we use our extended version of
Slot Attention for discovering meaningful units of the input character sequence. Slot Attention is a
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Algorithm 1 Slot Attention module (Locatello et al., 2020). q, k, v map the slots and inputs to a
common dimension D and T denotes the number of iterations.
Require: inputs ∈ RN×Dinput , slots ∼ N (µ, diag(σ)) ∈ RK×Dslots

inputs = LayerNorm(inputs)
for i = 1 to T do

slots prev = slots
slots = LayerNorm(slots)
attn = Softmax( 1√

D
k(inputs).q(slots)T , axis = ’slots’)

updates = WeightedMean(weights = attn + δ , values = v(inputs))
slots = GRU(states = slots prev, input = updates )
slots += MLP(LayerNorm(slots))

end for
return slots

recent method for unsupervised object representation learning in vision (Locatello et al., 2020). It
learns a set of feature vectors (slots) by using an iterative attention based algorithm. Algorithm 1
shows the pseudo code of this method. Abstractly, in every iteration, it takes the following steps.
First, it computes an attention map between the slots and the inputs, by slots acting as queries and
inputs as keys. Then, it normalizes the attention map over slots, which makes the slots compete for
representing each token of the input. Afterwards, it computes the slots’ updates as the (normalized)
weighted mean over the attention weights and the input values. Finally, it updates the slots through a
Gated Recurrent Unit (GRU) (Cho et al., 2014) followed by a residual MLP. This process iterates a
fixed number of times.

In Locatello et al. (2020), the slots are initialized randomly by sampling from a Normal distribution
with shared learnable parameters µ and σ, i.e.,

sloti ∼ N (µshared, σshared). (1)
In other words, the initial value of slots are independent samples of a single Normal distribution with
learnable parameters. We found in our experiments that this initialization method does not lead to
good results in the text domain. In contrast with the experimental setting of Locatello et al. (2020),
which used artificially generated data with a small number and range of objects, real language requires
learning about a very large vocabulary of morphemes, and each example can have a large number of
morphemes. This suggests that a model for language needs a more informative initialization with
more trainable parameters, in order to have the capacity to learn about this large vocabulary and
distinguish all the objects in a long sentence.

To investigate this issue, we propose another initialization for adapting Slot Attention to text. We
consider a separate learnable µ per slot and we fix the σ to a predefined value for all the slots. Namely,
the slots are initialized as

sloti ∼ N (µi, σconstant). (2)
By assigning a separate µ for each slot, the initialization has many more trainable parameters. This
allows the model to learn about different kinds of units, such as ones that occur at different positions,
or ones that have different types of forms, but we do not make any assumptions about what those
differences might be. In addition, the intuition behind fixing the σ, is to prevent it from collapsing
to zero which would in turn, force the slots to compress the information in a meaningful way. In
particular, since the number of possible n-grams in text is finite but the slots can have any continuous
value in the space of RDslots , the slots tend to learn an arbitrary mapping from n-grams in the input
to the slots, while turning σ to zero. Thus, there is no need for the slots to learn the underlying
meaning-bearing units. In other words, by imposing a constant noise on slots through the constant σ,
we limit the information which can be passed through each slot, from the information theoretic point
of view. Experiments showing the greater effectiveness of Equation 2 over Equation 1 are given in
Appendix A.1. We then obtain the set of slots M = {m1 . . .mK} = SlotAttention(X ′).

Neural sparsification layer: L0Drop. The number of units needed to represent a sequence varies
among different sequences in the data. In contrast to the object discovery work where the data is
generated synthetically and thereby, the number of objects in the scene is known beforehand, we do
not make any assumptions about the number of units required. Therefore, we consider an upper-bound
over the number of required units and prune the extra ones per input sequence. We accomplish this
goal by using a neural sparsification layer called L0Drop (Zhang et al., 2021). It allows our model to
dynamically decide on the number of required units for every input sequence.
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This layer consists of stochastic binary-like gates g = g1 . . . gK that for every input mi works as
L0Drop(mi) = gimi. (3)

When gi is zero the gate is closed and when it is one the whole input is passed. Each gate is a
continuous random variable in the [0, 1] interval, sampled from a hard-concrete distribution (Louizos
et al., 2018). This distribution assigns most of its probability mass over its endpoints (i.e., 0 and
1) in favour of the sparsification goal. Specifically, gi ∼ HardConcrete(αi, β, ϵ) where β and ϵ are
hyperparameters. αi is predicted as a function of the encoder output mi, i.e., logαi = miw

T , where
w is a learnable vector. This allows the model to dynamically decide which inputs to pass and which
ones to prune. The L0 penalty, which yields the expected number of open gates, is computed as:

L0(M) =

k∑
i=1

1− p(gi = 0|αi, β, ϵ), (4)

where the probability of gi being exactly 0 is provided in closed form in Louizos et al. (2018). We
follow the same approach as Louizos et al. (2018) at evaluation time and consider the expectation
of each gate as its value. We refer to the pruned slots after applying the L0Drop layer as M ′ =
m′

1 . . .m
′
K .

Decoder. Lastly, we regenerate the input sequence from the set of slots by using a simple, shallow
decoder. To this end, we use a one-layer Transformer decoder (Vaswani et al., 2017) with a single
attention head over the slots. A simple decoder forces the slots to learn representations with a
straightforward relationship to the input, which we expect to be more meaningful. In other words, we
do not use a powerful decoder because it would be able to decode even low quality representations of
the input, which are less meaningful (Bowman et al., 2015).

Training objective. We train our model end-to-end by using Gumble trick for sampling HardConcrete
variables (Maddison et al., 2017; Jang et al., 2017). The training objective is

Lrec(X,M ′) + λ L0(M) = −log (Eg[p(X|M ′)]) + λ L0(M) (5)
≤ Eg[−log p(X|M ′)] + λ L0(M) = L(X),

which consists of the reconstruction loss from the decoder (Lrec) and the L0 penalty for the open
gates. Hyperparameter λ, the sparsification rate, controls the trade-off between the two losses. In
practice, we find that in order to impose enough sparsity in the slots, we should slightly increase λ
during the course of training using scheduling techniques.

2.4 STRIDE-BASED MODELS

We propose a simple hand-crafted alternative model to our induced units which can gain acceptable
results in terms of performance. We design this model by replacing our Dynamic Capacity Slot-
Attention module with a linear-size bottleneck. In particular, we take 1 out of every k encoder outputs
and down project them (RDinput → RDslots) to obtain the representations. In other words, we only
pass certain encoder outputs based on their position and drop the rest.

M = DownProject(x′
1x

′
k+1x

′
2k+1 . . . x

′
nk+1)

where n = ⌊N−1
k ⌋. We can get different alternative models by varying the stride k. The training

objective is the reconstruction loss Lrec(X,M) = −log p(X|M). The idea of using stride-based
models has also been used in Clark et al. (2022); Tay et al. (2022) in a different context and setup.

3 RELATED WORK

Unsupervised Object Discovery. There is a recent line of research in the image domain for discover-
ing objects in a scene without explicit supervision, and building an object-centric representation of
them. Most of this work is built around the idea of compositionality of the scenes. MONet (Burgess
et al., 2019) and GENESIS (Engelcke et al., 2020) similarly use a recurrent attention network for
learning the location masks of the objects. Greff et al. (2016; 2017; 2019); Van Steenkiste et al.
(2018); Emami et al. (2021) model the scene as a spatial Gaussian mixture model. Furthermore, AIR
network (Eslami et al., 2016) and its variants (Crawford & Pineau, 2019; Lin et al., 2020) model
objects from a geometric perspective by defining three specific latent variables. Lately, Locatello et al.
(2020) propose an attention-based algorithm (namely Slot Attention) to learn object representations
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(slots). In contrast to this line of work in vision, our approach is specifically designed for text. We
use additional components (e.g., L0Drop layer) in our architecture to resolve the requirements of
modeling textual data. Furthermore, our model is trained and evaluated on real text datasets, in
contrast to these previous models which have only been shown to be effective on synthetic scenes.

Unsupervised morphology learning. This subject has been of interest for many years in the NLP
field (Elman, 1990; Creutz & Lagus, 2002; Baroni et al., 2002). Morphemes have strong linguistic
motivations, and are practically important in many downstream tasks because they are the smallest
meaning-bearing units in a language (Can & Manandhar, 2014). Many approaches have been proposed
for discovering the underlying morphemes or morpheme segmentations. Morfessor variants are based
on probabilistic machine learning methods (MDL, ML, MAP) for morphological segmentation
(Creutz, 2003; Creutz & Lagus, 2002; 2005; 2007; Virpioja et al., 2013). Some researchers take
a Bayesian approach for modeling word formation (Poon et al., 2009; Narasimhan et al., 2015;
Bergmanis & Goldwater, 2017; Luo et al., 2017). Adaptor Grammars are another approach for
modeling morphological inflections (Sirts & Goldwater, 2013; Eskander et al., 2016; 2019; 2020). In
addition, Xu et al. (2018; 2020) built their models upon the notion of paradigms, set of morphological
categories that can be applied to a set of words. Moreover, Soricut & Och (2015); Üstün & Can (2016)
extract morphemes by considering the semantic relations between words in the continuous embedding
space. Cao & Rei (2016) propose to learn word embeddings by applying a bi-directional RNN with
attention over the character sequence. Furthermore, Ataman et al. (2020) model word formation as
latent variables which mimic morphological inflections in the task of machine translation.

Our work differs from the previous work in classical morphology learning in two ways. First, instead
of explicitly discovering morphemes, we learn a set of continuous vector representations of the input,
which would then need to be processed to extract the morphemes. The model itself has no explicit
relation between these unit representations and segments of the input. Second, our model learns
representations of an entire input sentence, rather than individual space-delimited words. This makes
fewer assumptions about morphemes, and considers the context of the words in a sentence. Our work
is similar to Ataman et al. (2020) in modeling morphology implicitly in the latent space. However,
we employ a self-supervised objective for our purpose which is more general compared to their
supervised loss, as we do not need labeled data.

Unsupervised character segmentation. Learning to segment a character sequence in unsupervised
fashion is another relevant area to our work. Chung et al. (2017) propose Hierarchical Multi-scale
RNNs for modeling different levels of abstractions in the input sequence. In the language modeling
task, they observe that the first layer is roughly segmenting the sequence into words, namely at
space boundaries. Sun & Deng (2018) propose Segmental Language Models for Chinese word
segmentation. Moreover, in (Kawakami et al., 2019), the authors design a model to learn the latent
word segments in a whitespace-removed character sequence with a language modeling objective.
As we mentioned earlier, we learn continuous vector representations of text which is different from
explicitly detecting discrete character segments.

Subword discovery algorithms. This set of algorithms have become a standard component of
NLP models in recent years. Byte-Pair-Encoding (BPE) (Sennrich et al., 2016) iteratively merges
the two consecutive tokens with the highest frequency. Word-piece (Schuster & Nakajima, 2012),
sentence-piece (Kudo & Richardson, 2018) and unigram LM (Kudo, 2018) are other similar subword
tokenization algorithms. In contrast to these methods, which mostly use local statistical information of
the data, our model is trained over complete sentences to learn an abstract sophisticated representation.

4 EXPERIMENTS

We evaluate our unsupervised model both by visualizing attention maps (4.2), and by probing the slot
vectors (4.4).

4.1 EXPERIMENTAL SETUP

We apply our model to languages from different morphological typologies. We select English (EN),
German (DE), French (FR), Spanish (ES) and Czech (CS) from the fusional family and Finnish (FI)
from the agglutinative typology. For English we use the raw Wikitext2 dataset (Merity et al., 2017).
For the rest we use Multilingual Wikipedia Corpus (MWC) (Kawakami et al., 2017).
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Figure 2: Attention of the decoder over slots (x-axis) for generating every target character (y-axis)
after different training epochs, for target sequence “the red colour associated with lobsters only
appears after cooking.”.

As for the models, we use a standard Transformer architecture (Vaswani et al., 2017) with model
dimension 256. The encoder consists of 2 layers with 4 self-attention heads and the decoder consists
of 1 layer with 1 self-attention head and 1 attention head over the slots. We feed in the sentences with
less than 128 characters to our model and consider the number of slots as 64 (half of the maximum
input length). In addition, we take the dimension of slots as 128. We scheduled the λ parameter in the
training loss to start with a low value and exponentially increase it every 10 epochs until it reaches
a certain limit. We obtain this limit manually in a way that the final number of open gates roughly
equals the average number of BPE tokens in a sequence. More details of the settings are available in
the Appendix B.

4.2 VISUALIZATION

In order to show some qualitative results of our model, we visualize the attention maps for generating
every output, shown in Figure 2. In particular, we show the attention of the decoder over slots
when generating every output character. Interestingly, although we do not impose any sparsity in
the decoder’s attention weights, the attention maps are quite sparse. Namely, at each generation
step only a few slots are attended, and each slot is attended while generating only a few characters.
In addition, although we do not impose any bias towards discovering segments of the input, the
characters which are generated while attending to a given slot are contiguous in the string (the vertical
bands in Figure 2). We believe that the emergence of contiguous spans is a result of the bottleneck
we create with our Dynamic Capacity Slot Attention. This means that the model is trying to put
correlated information about the input in the same vector, so that it can represent the string more
efficiently. The strongest correlations in the character string are local in the input, so each slot tends
to represent characters which are next to each other in the input.

In early steps of training, when the sparsity ratio (λ) is small, each slot tends to represent a bigram of
characters (2a) and later on, trigrams (2b). These observations confirm the necessity of the L0Drop
layer for converging to better units. In particular, as the ratio increases, the number of active slots
reduces and they become more specialized in representing contiguous meaning-bearing units of input.
For instance, the word cooking in 2c is represented by two slots cook and ing. That these segments
roughly correspond to the morphemes which we want the model to discover, is verified quantitatively
in the probing experiments in Section 4.4.

4.3 PROBING METHOD

Since our model is unsupervised and does not use artificially generated data, there is no obvious gold
standard for what units it should have learned. To quantitatively evaluate how well it performs, we
freeze the trained model and train probing classifiers to measure to what extent the discovered units
capture the same information as previously proposed meaningful units. We use multiple previously
proposed representations which have been shown to be good levels of abstraction for a range of NLP
applications. If the induced units provide a similar level of abstraction, separated into units in a
similar way, then we can expect that they will also be effective in NLP applications.

We assume that two representations provide the same level of abstraction if there is a one-to-one
mapping between their respective units such that two aligned units contain the same information,
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meaning that each unit can be predicted from the other. Predicting the previously proposed unit
from our induced unit is a probing task, as used in previous work (Belinkov & Glass, 2019), which
we specify as forward probing. We refer to the prediction of our induced unit from the previously
proposed unit as a reverse probing task, which we believe is a novel form of evaluation. We compare
various models on their trade-off between forward and reverse probing.

Probing data. We consider three target representations which either have linguistic or practical
evidence of being effective in NLP applications. For the languages for which an in-depth linguistic
morphological analysis is available, we compare to these morphemes (i.e., EN and FR) (Žabokrtský
et al., 2022; Sánchez-Gutiérrez et al., 2018; Mailhot et al., 2020). Alternatively, as linguistically
inspired units, we have the Morfessor (Virpioja et al., 2013) outputs, and BPEs (Sennrich et al., 2016)
as frequency-based subwords.

Forward probing. This is the common way of probing where we want to measure if our induced
units include the information about the target representation. We train a 2 layer MLP as our probing
classifier f for this purpose. We apply the classifier with shared parameters to each of our slots
individually and obtain a set of predictions {f(m′

1), f(m
′
2), . . . , f(m

′
K)}, one per slot. As we are

dealing with a set, during training we need to find a one-to-one matching between the classifier’s
predictions and the target tokens. Therefore, we follow Locatello et al. (2020) to use the Hungarian
matching algorithm (Kuhn, 1955) for finding the match which minimizes the classification loss.

We consider the complete set of slots after applying the L0Drop layer as the inputs to our classifier.
Slots whose L0Drop gate is closed are simply input as zero vectors. This gives us a fixed number of
vectors. The two sides of matching should have the same size to obtain a one-to-one match, therefore,
we add an extra target label (i.e., empty) for representing the pruned slots. Due to the fact that many
slots are pruned out, considering a measure like accuracy could be misleading, since a classifier
which outputs empty label will achieve very high accuracy. Therefore, we build a confusion matrix as
follows. We consider all non-empty labels as positive and the empty ones as negative, and we report
precision (P), recall (R) and F1 measure, to better reflect what the slots have learned.

Reverse probing. To evaluate whether the induced units capture the same level of abstraction, we also
need to evaluate whether the induced units abstract away from the same information as the previously
proposed units. We propose to measure this by training reverse probing classifiers, which predict each
induced unit from its aligned target unit. Because the induced unit is a continuous vector, we predict
the parameters of a d-dimensional Gaussian distribution with diagonal covariance, and measure the
probability of the induced vector in this distribution. We first pass the tokens into an Embedding layer
and then apply a 2 layer MLP on top of each embedding individually to predict the parameters of the
distribution. We take the mappings between the tokens and slots from the trained (forward) probing
classifier described previously. As the objective, we maximize the log-probability of representations
under the predicted distributions. We consider the loss on the test set as our evaluation measure.

4.4 PROBING RESULTS

Given a target set of units and a trained model for finding units, we align the two sets of units and
use forward probing to see if the induced units contain as much information as the target units and
reverse probing to see if the induced units contain more information than the target units.

Optimizing both measures requires having the same information as each target unit in the associated
induced vector, and hence having the same level of abstraction.

The primary mechanism we have to control the amount of information in an induced representation is
to control the number of units. More units means that there are more opportunities for the alignment
to find a unit which correctly predicts each target unit, but makes it harder to predict all the units from
the available target units. We take two approaches to controlling the number of induced units. First,
we fix the number of units to a target number, which allows an efficient comparison of models with
only forward probing. Second, we vary the number of units, which allows us to evaluate how well
different models can match the informativeness trade-off of the target representation.

Targeted informativeness. As a less computationally expensive initial evaluation, we use hyper-
parameters to set the number of induced units to approximately the same as the number of target BPE
tokens. For the stride-based models, we simply set the stride according to the average target number
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baselines base 2 base 3 base 4 base 6 base 5
number of units 1024 682 512 341
F1 0.8647 0.7965 0.8065 0.7678
Acc 0.9114 0.8923 0.8811 0.8596
Loss (1e+5) 1.318 1.7084 2.2163 3.4569
P 0.9376 0.9125 0.9236 0.9514
R 0.8106 0.7335 0.732 0.6667
Reverse 15.14 -30.44 -49.04 -105.1

models n_slot/1 n_slot/1.5 n_slot/2 n_slot/2.5 n_slot/3 n_slot/4
number of units 1024 682.6666667
F1 0.8067 0.8636 0.8457 0.809 0.7878 0.7677
Acc 0.8845 0.9139 0.9058 0.8934 0.8865 0.8798
Loss 1.5364 1.2951 1.5757 2.0522 2.3737 2.8781
P 0.8634 0.924 0.9394 0.9555 0.9635 0.9763
R 0.7687 0.8213 0.7819 0.7196 0.6863 0.6517
Reverse -10.56 -58.98 -84.32 -129 -150.1 -204.4

(a) EN-BPE

baselines base 2 base 3 base 4 base 5 base 6
number of units 1024 682 512 341
Reverse 15.28 -24.36 -48.84 -107.9
F1 0.8435 0.8126 0.8087 0.7622
Acc 0.9026 0.8872 0.8842 0.8595
Loss (1e+5) 2.7637 4.3381 2.6835 3.7541
P 0.9175 0.9012 0.9162 0.9458
R 0.7905 0.7529 0.7388 0.6606

models n_slot/1 n_slot/1.5 n_slot/2 n_slot/2.5 n_slot/3
number of units
F1 0.7662 0.8318 0.7892 0.7735 0.7451
Acc 0.8636 0.8975 0.8777 0.8763 0.8668
Loss 2.7095 1.9951 2.7874 2.728 3.1524
P 0.8533 0.9089 0.9128 0.9323 0.9367
R 0.7091 0.7787 0.7087 0.6793 0.6383
reconstruction -8.193 -57.02 -89.83 -122.8 -140

(b) EN-Morfessor

baseline base 2 base 3 base 4 base 5 base 6
F1 0.8108 0.8086 0.7835 0.792 0.7461
Reconstruction 21.26 -51.9 -60.54 -151 -116
Loss 2.6374 2.5115 2.6292 2.7607 3.5556
P 0.8971 0.883 0.8812 0.9083 0.9155
R 0.7479 0.7567 0.7179 0.7179 0.6498
Accuracy 0.8973 0.8964 0.8833 0.8897 0.8688

our model nslot1 n1.5 n2 n2.5 n3 n4
F1 0.7821 0.8394 0.8136 0.8022 0.7814 0.7705
Reconstruction 5.975 -43.17 -84.65 -90.6 -123.7 -122.7
Loss 2.0958 1.7118 2.1506 1.9883 2.3083 2.4825
P 0.8353 0.8844 0.8952 0.9083 0.9157 0.9331
R 0.7482 0.8101 0.7577 0.7383 0.7039 0.6789
Accuracy 0.884 0.9116 0.9017 0.9025 0.896 0.8949

(c) EN-Morphemes

baseline base 2 base 3 base 4 base 5 base 6
F1 0.4895 0.7896 0.7763 0.7469 0.7204
Reconstruction -10.18 -62.13 -97.58 -123.7 -152.4
Loss
P
R
Accuracy

our model nslot1 n1.5 n2 n2.5 n3
F1 0.6951 0.7647 0.7327 0.7112 0.6968
Reconstruction -18.98 -69.63 -86.87 -104.7 -199.8
Loss
P
R
Accuracy

our model nslot1 n1.5 n2 n2.5 n3
F1 0.6951 0.7647 0.737 0.7112 0.6933
Reconstruction -18.98 -69.63 -79.85 -104.7 -188.4
Loss
P
R
Accuracy

(d) FI-BPEbaseline base 2 base 3 base 4 base 5 base 6
F1 0.6239 0.8365 0.8219 0.7911 0.754
Reconstruction -10.51 -58.4 -93.31 -129 -160.7
Loss 5.3584 2.1264 2.669 3.6093 4.5231
P 0.8814 0.921 0.9356 0.9485 0.9584
R 0.4916 0.7756 0.7454 0.6939 0.6399
Accuracy 0.7767 0.885 0.8769 0.8603 0.8392

our model nslot1 n1.5 n2 n2.5 n3
F1 0.7941 0.8422 0.8238 0.8082 0.7829
Reconstruction -26.5 -68.98 -105.4 -164.2 -204.7
Loss 2.0313 1.8495 2.3189 3.0405 3.7684
P 0.8694 0.9247 0.934 0.964 0.9786
R 0.7403 0.7826 0.7488 0.7087 0.665
Accuracy 0.8594 0.8876 0.8789 0.8725 0.8593

(e) FR-BPE

baseline base 2 base 3 base 4 base 5 base 6
F1 0.6794 0.7919 0.7902 0.7632 0.704
Reconstruction -10.33 -56.74 -90.33 -120.3 -150.1
Loss 5.5356 3.6372 3.7099 4.5012 5.8283
P 0.9041 0.9086 0.9189 0.9368 0.9454
R 0.5533 0.7117 0.7045 0.6578 0.5738
Accuracy 0.8078 0.8615 0.8619 0.8481 0.821

our model nslot1 n1.5 n2 n2.5 n3
F1 0.7383 0.7979 0.7877 0.7833 0.7621
Reconstruction -22.51 -66.06 -107.5 -160.8 -205
Loss 4.2044 3.1744 3.4661 3.4707 4.229
P 0.867 0.9016 0.9117 0.9466 0.963
R 0.6474 0.7256 0.7044 0.681 0.6425
Accuracy 0.8302 0.8646 0.8602 0.8619 0.8521

(f) FR-Morfessor

baseline base 2 base 3 base 4 base 5 base 6
F1 0.6409 0.7872 0.7922 0.7772 0.7184
Reconstruction -5.61 -85.57 -207.7 -204.3 -168.5
Loss 5.5099 3.1225 3.0613 3.6183 4.8101
P 0.9014 0.8906 0.8936 0.914 0.9281
R 0.5051 0.714 0.722 0.6885 0.5989
Accuracy 0.8107 0.872 0.8746 0.8682 0.8438

our model nslot1 n1.5 n2 n2.5 n3
F1 0.7277 0.7845 0.7976 0.8048 0.7896
Reconstruction -8.35 -69.87 -148.4 -190.2 -181.9
Loss 3.5534 2.9845 2.835 2.565 3.0282
P 0.8403 0.876 0.8889 0.9195 94.05
R 65.26 0.7195 0.7329 0.7269 0.6921
Accuracy 0.8406 0.8679 0.8762 0.8829 0.8777

(g) FR-Morphemes

baseline base 2 base 3 base 4 base 5 base 6
F1 0.5074 0.691 0.6129 0.5735 0.665
Reconstruction -9.125 -33.39 -89.89 -112.6 -142
Loss
P
R
Accuracy

c nslot1 n1.5 n2 n2.5 n3
F1 0.6354 0.6692 0.6895 0.6387 0.6256
Reconstruction -16.37 -60.01 -79.62 -80.62 -149.7
Loss
P
R
Accuracy

our model nslot1 n1.5 n2 n2.5 n3
F1 0.6951 0.7647 0.6862 0.6387 0.5974
Reconstruction -18.98 -69.63 -89.24 -80.62 -148.1
Loss
P
R
Accuracy

(h) FI-Morfessor

Figure 3: 2D graphs showing the informativeness trade-off for slot-attention models (blue points) and
the stride-based models (red points). The x-axis shows the F1 measure for the forward probe and the
y-axis shows the negative log-probability loss for the reverse probe, so better models are lower and
further to the right.

of tokens (i.e., stride= 6). For the slot-attention models, we empirically set hyperparameters so that
the number of open gates in the L0Drop layer is approximately the same as the target number.

Table 1: Forward probing results on different languages. Note that
human-annotated morphemes are only available for En and FR.

BPE Morfessor Morphemes

lang Model P R F1 P R F1 P R F1

EN untrained 0.74 0.10 0.17 0.72 0.14 0.23 - - -
stride=6 0.95 0.66 0.76 0.94 0.66 0.76 0.91 0.64 0.74
slot-attn 0.97 0.64 0.76 0.98 0.64 0.76 0.91 0.70 0.78

FI untrained 0.94 0.09 0.17 0.90 0.06 0.11 - - -
stride=6 0.95 0.59 0.72 0.91 0.53 0.66 - - -
slot-attn 0.95 0.65 0.76 0.92 0.64 0.74 - - -

FR untrained 0.75 0.08 0.14 0.72 0.11 0.19 - - -
stride=6 0.95 0.63 0.75 0.94 0.57 0.70 0.92 0.59 0.71
slot-attn 0.98 0.65 0.77 0.96 0.63 0.76 0.94 0.69 0.78

ES untrained 0.71 0.09 0.17 0.71 0.11 0.19 - - -
stride=6 0.95 0.61 0.73 0.94 0.60 0.72 - - -
slot-attn 0.96 0.73 0.82 0.95 0.74 0.83 - - -

DE untrained 0.91 0.08 0.16 0.76 0.08 0.15 - - -
stride=6 0.96 0.61 0.74 0.94 0.59 0.71 - - -
slot-attn 0.99 0.66 0.78 0.96 0.70 0.80 - - -

CS untrained 0.94 0.08 0.16 0.86 0.05 0.10 - - -
stride=6 0.95 0.58 0.70 0.91 0.47 0.61 - - -
slot-attn 0.98 0.63 0.75 0.96 0.57 0.71 - - -

Given that all models output ap-
proximately the same number
of units, we can simply com-
pare them with standard (for-
ward) probing. We use prob-
ing to compare slot attention and
stride-based models to an un-
informative baseline representa-
tion (untrained), thereby control-
ling for the power of the prob-
ing classifier to learn arbitrary
mappings (Conneau et al., 2018;
Oord et al., 2018). This baseline
is the set of slot vectors output by
a randomly-initialized slot atten-
tion model without any training.

Table 1 shows the results of the
forward probing tasks on differ-
ent languages. As the results
show, the trained slots achieve
much higher performance in both
tasks in comparison to the ran-
dom baselines. Our model
achieves very high precision in
predicting the non-empty labels.
Its performance is weaker on the
recall side, but here the improvement over the untrained model is even more pronounced. This seems
to be due to the imbalance between empty and non-empty labels in the training set, where the empty
labels comprise around 66% of the data for the probing classifier. For this reason, below we will use
F1 as our overall performance measure for forward probing. The comparable stride-based model
performs similarly to our slot attention model, but generally not as well. The performance gain of
our slot-attention models to the stride-based models is more noticable on Morfessor targets (+0.07
average F1), and for the two languages where we have real morpheme annotations, which implies
that our slot-attention based method is more effective in discovering linguistically meaningful units.

There is no clear difference in our model’s performance on different targets, and it performs equally
well on both the agglutinative language (Finnish) and the fusional languages. We further show some
examples from the predictions of the classifiers in the Appendix A.4.
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Informativeness trade-off. To vary the number of induced units, we use hyper-parameters. For
the stride-based models, this simply implies varying the length of the stride. For the slot-attention
models, to be able to more easily control the number of units we slightly change the objective of
slot-attention models to explicitly control the number of open slots. Thus, we replace the L0 term in
Eq 5 with max(L0, r), where r indicates the desired number of open slots. In this setup, the model
will close L0 gates until it reaches the limit r.

With the results of the probings in the two directions, we can plot two-dimensional graphs to compare
different models. We train stride-based models with strides={2, 3, 4, 5, 6} and slot-attention based
models with r = input length

stride , which would lead both models to have the same number of valid units.

Figure 3 plots this informativeness trade-off for English, French and Finnish with different target
representations. Overall, the slot-attention based models provide better representations in comparison
to the stride-based models, since these models are nearer to the lower right corner of the plot. This
is clearer for English and French, with the results for Finnish being more mixed. We believe the
stride-based models contain extra information which degrade the performance of the reverse probe
and causes them to have higher evaluation loss. These results justify our design choices for the
slot-attention based models to achieve the goal of discovering meaningful units which have the same
level of abstraction as the previously proposed units. In addition, although our stride-based models
fall behind the slot-attention based models, they can be utilized as strong baselines for evaluating such
unsupervised models and to find acceptable abstract units which can omit the need for tokenizing text
as a preprocessing step.

5 CONCLUSIONS

In this paper, we propose Dynamic Capacity Slot Attention for discovering meaningful units in text in
an unsupervised fashion. We use an auto-encoder architecture for encoding a character sequence into
a set of continuous slot vectors and decoding them to reconstruct the original sequence. We enforced
the set of slots to act as a bottleneck in transferring information between the encoder and the decoder
by adding a constant noise to their vectors and integrating an L0 regularizing layer on top of the slots
which only retains the necessary vectors. In addition, we propose a set of stride-based models which
could serve as an alternative to our main model. We evaluate our model by probing the equivalence
between the pruned slots and predefined tokens. In particular, we propose to do reverse probing as
well as the normal way of probing. Our experiments show that our representations effectively capture
meaningful information at a higher level of abstraction.

Limitations We learn a set of abstract continuous vector representations of the input and we do
not explicitly discover morphemes or morpheme segments. Although the visualized attention maps
show interesting patterns of input segmentation (see Figure 2), the vertical bands are fading near the
end-points. More specifically, it is not straight-forward to determine boundaries between the bands as
the transition is done smoothly due the continuous nature of the attention function. For this reason,
we could not obtain good segmentations by employing simple heuristics on the attention maps.

Moreover, the purpose of our work is the novel adaptation of an object discovery method to text and
developing an intrinsic evaluation framework for this line of work. Therefore, evaluating the obtained
representations on downstream tasks, is not in the scope of our paper. However, since previous work
has shown that the target representations used for our probing analysis are effective ways to capture
meaning for downstream tasks, and since these results show that the information captured by our
induced units are similar to the information in these representations, there is every reason to believe
that the units discovered by the proposed model will also be effective meaning-bearing units for
downstream tasks. We leave the empirical verification of this effectiveness to future work. As an
initial experiment, we take our pretrained slot vectors and use them as text representations on the
challenge set released by Hofmann et al. (2022). The details of this experiment is provided in the
Appendix B.5. For the ArXiv-L, on average we get 0.396, 0.409, 0.2732 F1 for slot-attn, stride=6,
and character-based models, respectively, on Dev set, and 0.393, 0.394, 0.271 on Test set. These
numbers indicate that our proposed models work much better than a character-based model on this
challenging task and therefore, could be a useful replacement for tokenisation methods in some
downstream tasks.
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Reproducibility Statement We have completely explained the details of our experiments in
Appendix B. It includes the data we have used and how we have processed it, in addition to the
models’ parameters and training details. We will release our code upon acceptance.
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A SUPPLEMENTARY RESULTS

A.1 SLOT INITIALIZATION ANALYSIS

Table 2: Probing results of different slot initializations for Spanish language.

BPE Morfessor

Init. Model P R F1 P R F1

Eq 2 untrained 0.71 0.09 0.17 0.71 0.11 0.19
(ours) slot-attn 0.96 0.73 0.82 0.95 0.74 0.83

Eq 1 untrained 0.80 0.10 0.18 0.78 0.12 0.20
slot-attn 0.97 0.51 0.66 0.96 0.51 0.66

We compare our proposed initialization with the original definition of Slot Attention, where slots are
randomly initialized from a single shared distribution Table 2 shows the probing results of our model
under different slot initializations. Having a separate µ for each slot (Eq 2) increases the capacity of
the model and thus yields better results in comparison to sharing µ between the slots. The model
especially achieves higher recall in this case, which implies better recovery of the BPE and Morfessor
tokens.

A.2 RECONSTRUCTION RESULTS

In Table 3, we report the reconstruction error among different languages. We compare the slot
attention based model with modified objective, i.e., max(L0, r = 6), with the stride-based models
(stride=6) to ensure that both models have the same average number of units. In all languages, slot
attention based models are better capable of reconstructing the sequence. This indicates that the
slot-attention vectors are better in capturing information about the structure and meaning of the input
than the stride-based ones and therefore, providing better signals to the decoder to reconstruct the
sequence.

A.3 VISUALIZATION OF THE ATTENTION MAPS

A.3.1 ATTENTION OF SLOTS OVER THE INPUT

In Figures 4 and 5, we illustrate the attention of slots over the input as well as the attention of decoder
over the slots for the same input. The two attentions show similar patterns, but on the decoder side
the attention weights are higher and therefore the patters are more visible. For this reason, we used
the attention of decoder over the slots in section 4.2. Interestingly, in Figure 5b, there are some slots
which are only attending to the space boundaries (the horizontal bands).

A.3.2 DECODER ATTENTION FOR THE STRIDE-BASED MODELS

Figure 6 visualizes the attention of decoder over the vectors of different stride-based models. As
expected, the vertical bands are often of the same length and too much overlapping for larger strides.
As a result, the bands do not correspond to meaningful units in the input in contrast to the slot-attention
based model (see Figure 2c).

A.4 FORWARD PROBING EXAMPLES

Table 4 shows two examples of the probing classifiers’ predictions given the learned slots. As
explained in 4.4, the model is quite precise in predicting non-empty labels.

A.5 PROBING RESULTS’ TABLES

Tables 5 to 15 show the detailed results of the performance of forward and reverse probing tasks
visualized in Figure 3 (Reverse reconstruction vs F1). n input denotes the input length which is 128
in our experiments.
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Table 3: Reconstruction error on training and test set among different languages.

slot attention(r=6) stride=6

language train test train test

DE 0.0022 0.0039 0.0174 0.0213
EN 0.0014 0.0033 0.0120 0.0154
CS 0.0021 0.0035 0.0089 0.0137
FI 0.0028 0.0045 0.0097 0.0135
FR 0.0043 0.0075 0.0182 0.0229
ES 0.0014 0.0036 0.010 0.0149

(a) Attention of decoder (y-axis) over slots (x-axis). (b) Attention of slots (x-axis) over the input (y-
axis) before the L0Drop.

Figure 4: Illustration of the Attention of Slots over the input vs the Attention of decoder over the
slots for Finnish language.

B SETTINGS

B.1 DATA

As for the datasets, we lowercased the text and retained the characters which occur more than 25
times in the corpus, following Kawakami et al. (2017). We replace the low-frequent characters with
an unknown placeholder. Table 17 shows the licenses of each dataset that we used in our experiments.
We used the same train/validation/test splits as provided in the mentioned datasets.

B.2 MAIN MODEL SETTINGS

Table 18 shows the remaining list of hyperparameters in training the main model. We scheduled the λ
parameter in the training loss to start with a low value of 2× 10−5 and exponentially increase it every
10 epochs until it reaches a certain limit. In particular, we schedule the λ to exponentially increase
with ratio 2 for English until reaching 6.4e− 4 and 1.5 for the rest of languages. More specifically,
we stop the exponential increase after reaching 3e− 4 for German and Spanish and 5e− 4 for Finnish
and Czech. We tried the stopping thresholds ranging from 3× 10−4 to 6× 10−4. These scheduling
values lead to having roughly as many slots as the average number BPE units per sentence. We also
tried our model with statistic λ in the {10−4, [1, 3, 5, 6, 7, 8] × 10−5} which did not lead to stable
results at training time. We tried 16, 32 and 64 slots in our experiments. We chose the number of
slots to be half of the maximum sequence length (128) as this is a reasonable upperbound which also
matches the maximum number of BPE or Morfessor units. We tried the transformer encoder with 4
and 6 layers but qualitatively did not find any improvements. We run the Slot Attention algorithm for
T=1 iterations. We choose T=1 iterations for simplicity and efficiency, and because preliminary
experiments showed no improvements with more iterations. We leave the investigation of how to get
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(a) Attention of decoder (y-axis) over slots (x-axis). (b) Attention of slots (x-axis) over the input (y-
axis) before the L0Drop.

Figure 5: Illustration of the Attention of Slots over the input vs the Attention of decoder over the
slots for French language.

(a) stride=2 (b) stride=4 (c) stride=6

Figure 6: Attention of decoder over the stride-based model vectors (x-axis) while generating every
character (y-axis). The target sentence is “the red colour associated with lobsters only appears after
cooking.”.

improvements from more iterations to future work. Finally, we used Adam optimizer (Kingma &
Welling, 2013) for training our models with learning rate 10−4 and train our models for 200 epochs.

B.3 FORWARD PROBE SETTINGS

Our probing classifier consists of two fully connected layers with ReLU activation function in between
the two layers. The hidden dimension of the classifier is the same as the slots’ dimension, which is
128.

We use the same datasets as our main model for training and testing the probes. We train BPE with
vocabulary size of 5000 for all languages. For Morfessor, we use the pretrained model and consider
the set of its outputs on the training data as our target representation. As for the morpheme targets,
we take the morphemes for the words which were available in the linguistically annotated data (i.e.,
MorphoLex (Sánchez-Gutiérrez et al., 2018; Mailhot et al., 2020)) and for the rest of the words we
take Morfessor outputs as approximation of morphemes.

For training the probing classifiers we take a batch size of 4, since the Hungarian matching algorithm
requires a huge amount of memory. We train our classifiers for 200 epochs with Adam optimizer
with learning rate of 1× 10−3.
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Table 4: Input and output pairs from Spanish and German datasets. The predictions are sorted based
on their matching target. The empty label is shown as ’#’ and wrong predictions are shown in red.

input output

una razón de su auge fue su aparente éxito en tratar
enfermos por epidemias infecciosas .

[BPE] una razón de su auge fue su aparente éxito en
tratar enfermos por epi#as# inf#ocosasón
[Morfessor] una razón de su auge fue su aparente
éxito en tratar enfermcio por epidemias#s .rs

außerdem wurde er zum besten spieler des turniers
gewählt .

[BPE] außerdem wurde er zum sten spieler des
#ur#ierers gewähl# .
[Morfessor] außerdem wurde er zutur besten spieler
des turniers gewählt #

Table 5: Stride-based models for English with BPE targets

stride stride=2 stride=3 stride=4 stride=6

F1 0.8647 0.7965 0.8065 0.7678
Loss(1e+5) 1.318 1.7084 2.2163 3.4569
P 0.9376 0.9125 0.9236 0.9514
R 0.8106 0.7335 0.732 0.6667
Acc 0.9114 0.8923 0.8811 0.8596

Reverse reconstruction 15.14 -30.44 -49.04 -105.1

Table 6: Slot Attention based models for English with BPE targets

limit (r) n input/2 n input/3 n input/4 n input/5 n input/6 n input/8

F1 0.8067 0.8636 0.8457 0.809 0.7878 0.7677
Loss(1e+5) 1.5364 1.2951 1.5757 2.0522 2.3737 2.8781
P 0.8634 0.924 0.9394 0.9555 0.9635 0.9763
R 0.7687 0.8213 0.7819 0.7196 0.6863 0.6517
Acc 0.8845 0.9139 0.9058 0.8934 0.8865 0.8798

Reverse reconstruction -10.56 -58.98 -84.32 -129 -150.1 -204.4

Table 7: Stride-based models for English with Morpheme targets

stride stride=2 stride=3 stride=4 stride=5 stride=6

F1 0.8108 0.8086 0.7835 0.792 0.7461
Loss(1e+5) 2.6374 2.5115 2.6292 2.7607 3.5556
P 0.8971 0.883 0.8812 0.9083 0.9155
R 0.7479 0.7567 0.7179 0.7179 0.6498
Acc 0.8973 0.8964 0.8833 0.8897 0.8688

Reverse reconstruction 21.26 -51.9 -60.54 -151 -116

Table 8: Slot attention based models for English with Morpheme targets

limit (r) n input/2 n input/3 n input/4 n input/5 n input/6 n input/8

F1 0.7821 0.8394 0.8136 0.8022 0.7814 0.7705
Loss(1e+5) 2.0958 1.7118 2.1506 1.9883 2.3083 2.4825
P 0.8353 0.8844 0.8952 0.9083 0.9157 0.9331
R 0.7482 0.8101 0.7577 0.7383 0.7039 0.6789
Acc 0.884 0.9116 0.9017 0.9025 0.896 0.8949

Reverse reconstruction 5.975 -43.17 -84.65 -90.6 -123.7 -122.7

18



Under review as a conference paper at ICLR 2023

Table 9: Stride-based models for English with Morfessor targets

stride stride=2 stride=3 stride=4 stride=6

F1 0.8435 0.8126 0.8087 0.7622
Loss(1e+5) 2.7637 4.3381 2.6835 3.7541
P 0.9175 0.9012 0.9162 0.9458
R 0.7905 0.7529 0.7388 0.6606
Acc 0.9026 0.8872 0.8842 0.8595

Reverse reconstruction 15.28 -24.36 -48.84 -107.9

Table 10: Slot attention-based models for English with Morfessor targets

limit (r) n input/2 n input/3 n input/4 n input/5 n input/6

F1 0.7662 0.8318 0.7892 0.7735 0.7451
Loss(1e+5) 2.7095 1.9951 2.7874 2.728 3.1524
P 0.8533 0.9089 0.9128 0.9323 0.9367
R 0.7091 0.7787 0.7087 0.6793 0.6383
Acc 0.8636 0.8975 0.8777 0.8763 0.8668

Reverse reconstruction -8.193 -57.02 -89.83 -122.8 -140

Table 11: Stride-based models for French with BPE targets

stride stride=2 stride=3 stride=4 stride=5 stride=6

F1 0.6239 0.8365 0.8219 0.7911 0.754
Loss(1e+5) 5.3584 2.1264 2.669 3.6093 4.5231
P 0.8814 0.921 0.9356 0.9485 0.9584
R 0.4916 0.7756 0.7454 0.6939 0.6399
Acc 0.7767 0.885 0.8769 0.8603 0.8392

Reverse reconstruction -10.51 -58.4 -93.31 -129 -160.7

Table 12: Slot attention-based models for French with BPE targets

limit (r) n input/2 n input/3 n input/4 n input/5 n input/6

F1 0.7941 0.8422 0.8238 0.8082 0.7829
Loss(1e+5) 2.0313 1.8495 2.3189 3.0405 3.7684
P 0.8694 0.9247 0.934 0.964 0.9786
R 0.7403 0.7826 0.7488 0.7087 0.665
Acc 0.8594 0.8876 0.8789 0.8725 0.8593

Reverse reconstruction -26.5 -68.98 -105.4 -164.2 -204.7

Table 13: Stride-based models for French with Morpheme targets

stride stride=2 stride=3 stride=4 stride=5 stride=6

F1 0.6409 0.7872 0.7922 0.7772 0.7184
Loss(1e+5) 5.5099 3.1225 3.0613 3.6183 4.8101
P 0.9014 0.8906 0.8936 0.914 0.9281
R 0.5051 0.714 0.722 0.6885 0.5989
Acc 0.8107 0.872 0.8746 0.8682 0.8438

Reverse reconstruction -5.61 -85.57 -207.7 -204.3 -168.5

B.4 REVERSE PROBE SETTINGS

We illustrate how forward and reverse probing are related to each other in Figure 7. We first assign a
one-hot vector to the tokens in the target set of units (i.e., RS , where S is the target set size). Then,
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Table 14: Slot attention-based models for French with Morpheme targets

limit (r) n input/2 n input/3 n input/4 n input/5 n input/6

F1 0.7277 0.7845 0.7976 0.8048 0.7896
Loss(1e+5) 3.5534 2.9845 2.835 2.565 3.0282
P 0.8403 0.876 0.8889 0.9195 94.05
R 65.26 0.7195 0.7329 0.7269 0.6921
Acc 0.8406 0.8679 0.8762 0.8829 0.8777

Reverse reconstruction -8.35 -69.87 -148.4 -190.2 -181.9

Table 15: Stride-based models for French with Morfessor targets

stride stride=2 stride=3 stride=4 stride=5 stride=6

F1 0.6794 0.7919 0.7902 0.7632 0.704
Loss(1e+5) 5.5356 3.6372 3.7099 4.5012 5.8283
P 0.9041 0.9086 0.9189 0.9368 0.9454
R 0.5533 0.7117 0.7045 0.6578 0.5738
Acc 0.8078 0.8615 0.8619 0.8481 0.821

Reverse reconstruction -10.33 -56.74 -90.33 -120.3 -150.1

Table 16: Slot attention-based models for French with Morfessor targets

limit (r) n input/2 n input/3 n input/4 n input/5 n input/6

F1 0.7383 0.7979 0.7877 0.7833 0.7621
Loss(1e+5) 4.2044 3.1744 3.4661 3.4707 4.229
P 0.867 0.9016 0.9117 0.9466 0.963
R 0.6474 0.7256 0.7044 0.681 0.6425
Acc 0.8302 0.8646 0.8602 0.8619 0.8521

Reverse reconstruction -22.51 -66.06 -107.5 -160.8 -205

we learn an embedding layer to map every one-hot vector into a continuous vector with dimension
128. Afterwards, we pass the embedded token into two fully connected layers with ReLU activations
in between with the hidden dimension 128. We then predict the mean and the standard deviation of a
Gaussian distribution. The dimension of the Gaussian distribution d is Dslots = 128. We use the
same matching between the target units as slots as in the forward probing. Namely, we do not run
the matching algorithm for this experiment. As for the training objective we minimize the negative
log-likelihood of the slot vector given this distribution, i.e., −log(p(mi|µpredicted, σpredicted)) which
is equivalant to minimizing

∑
1

2σ2
predicted

(mi − µpredicted)
2 − log(σpredicted). We train this model with

Adam optimizer and the learning rate 1× 10−4 for 200 epochs. We report the best evaluation loss on
test set.

B.5 ARXIV CHALLENGE SETTINGS

We used the challenge set released by Hofmann et al. (2022) which is supposed to serve as a
benchmark for PLM tokenizers. The task is to classify each ArXiv title into its corresponding
sub-area (within a category of 20) in the three subjects of CS, Maths, Physics. The dataset requires
a challenging generalization from a small number of short training examples with highly complex
language (Hofmann et al., 2022). For this reason, we believe it would be a good benchmark for
evaluating our models.

Since our models output a set of vectors as the high-level representation of the character sequence, we
design an attention-based classifier to perform the task. In particular, we learn a vector which acts as
the query where the sequence representations are the keys and values. After applying attention over
the sequence representations, we apply a 2 layer MLP with ReLU non-linearity to compute the scores
for each sub-area. We freeze the representations we get from our trained models and only train the
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Table 17: Data licenses

dataset license

WikiText2 (Merity et al., 2017) Creative Commons Attribution-
ShareAlike 3.0 Unported License (link
to dataset)

Multilingual Wikipedia Corpus (MWC) (Kawakami et al., 2017) https://aclanthology.org/
P17-1137/

MorphoLex (Sánchez-Gutiérrez et al., 2018; Mailhot et al., 2020) Creative Commons Attribution-
NonCommercial-ShareAlike
4.0 License (CC BY-NC-SA
4.0) (https://lindat.mff.
cuni.cz/repository/xmlui/
handle/11234/1-4629#)

Table 18: Hyperparameters of the main model.

module parameter value

batch size 16
learning rate 1e− 4

transformer model dimension 256
transformer feedforward layer dimension 4× 256
transformer dropout rate 0.1
L0Drop β 0.66
L0Drop ϵ 0.1
Slot Attention Slot dimension (Dslots) 128
Slot Attention MLP hidden dimension 2×Dslots

Slot Attention GRU hidden dimension Dslots

Slot Attention δ 1e− 8
Slot Attention T 1

classifier in order to evaluate the quality of induced units. Following Hofmann et al. (2022) we use F1
as our evaluation metric and average across the subjects. We compare our Slot-Attention model with
Stride-based model with stride 6 and a character-based model (stride=1). Note that our numbers are
not comparable to the ones reported in Hofmann et al. (2022) because we use a completely different
setup (in terms of both data and architecture), and we could not directly compare our models to BPE
and Morfessor because these units are discrete instead of vector-based.

C INFRASTRUCTURE

We use PyTorch version 1.2.0 framework and Python version 3.6.9 for implementing our code. Table
19 shows the rest of the libraries we use. We run our code on a single GPU with model GTX1080ti and
the operating system Debian10 (Buster) 64-bit. We use the same compute for all of our experiments
including training the models and probes. The training time for the main model is five hours and for
the probings is around 2 days. For reporting each of the results we run our algorithm once, since it
would be too computationally expensive.
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Probing in the reverse direction
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Figure 7: An illustration of forward and reverse probing.

Table 19: List of packages and their versions.

package version use

NLTK 3.5 sentence and word tokenization
youtokentome 1.0.5 BPE implementaion
polyglot 16.7.4 morfessor implementation
matplotlib 3.3.2 attention maps visualization
scipy 1.2.2 hungarian algorithm implementation
numpy 1.19.1
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