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Abstract

Causality can be described in terms of a structural causal model (SCM) that carries in-
formation on the variables of interest and their mechanistic relations. For most processes
of interest the underlying SCM will only be partially observable, thus causal inference tries
leveraging the exposed. Graph neural networks (GNN) as universal approximators on struc-
tured input pose a viable candidate for causal learning, suggesting a tighter integration with
SCM. To this effect we present a theoretical analysis from first principles that establishes
a more general view on neural-causal models, revealing several novel connections between
GNN and SCM. We establish a new model class for GNN-based causal inference that is nec-
essary and sufficient for causal effect identification. Our empirical illustration on simulations
and standard benchmarks validate our theoretical proofs.

1 Introduction: Causality + Machine Learning = Understanding?

If we take causality and somehow sensibly combine it with modern machine learning like deep learning, will
it lead to (deep) understanding?1 With this work we intend on moving one step closer to a conclusive answer.

Understanding causal interactions is central to human cognition and thereby of high value to science, en-
gineering, business, and law (Penn & Povinelli, 2007). Developmental psychology has shown how children
explore similar to the manner of scientist, all by asking “What if?” and “Why?” type of questions (Gop-
nik, 2012; Buchsbaum et al., 2012; Pearl & Mackenzie, 2018), while artificial intelligence research dreams of
automating the scientist’s manner (McCarthy, 1998; McCarthy & Hayes, 1981; Steinruecken et al., 2019).
Deep learning has brought optimizable universality in approximation which refers to the fact that for any
function there will exist a neural network that is close in approximation to arbitrary precision (Cybenko,
1989; Hornik, 1991). This capability has been corroborated by tremendous success in various applications
(Krizhevsky et al., 2012; Mnih et al., 2013; Vaswani et al., 2017) and most recently with the advent of
large-scale models like GPT-3 (Brown et al., 2020) or DALL-E 2 (Ramesh et al., 2022). Thereby, combining
causality with deep learning is of critical importance for research on the verge to a human-level intelligence.
Preliminary attempts on a tight integration for so-called Neural Causal Model (NCM; Zečević et al. (2021);
Xia et al. (2021); Pawlowski et al. (2020)) exist and shows to be promising towards the dream of a system
that performs causal inferences at the same scale of effectiveness as modern-day neural modules in their most
impressive applications. Any of the previously listed references present an original interpretation or account
of what the word ‘NCM’ should refer to specifically. In this work, without stating a formal definition, we
simply adopt the view that any Structural Causal Model that is being parameterized by neural models (e.g.
Multi-Layer Perceptron [MLP], Recurrent Neural Network, Sum-Product Networks, etc.), in some systematic
manner, is a NCM. While this informal definition is rather loose as we do not define ‘systematic’, we argue
it to be intuitive and sensible since any of the listed references would still be considered NCM as desired.
For instance, it is systematic to use MLPs to model each structural equation.

While causality has been thoroughly formalized within the last decade (Pearl, 2009; Hernán & Robins, 2010;
Peters et al., 2017), deep learning on the other hand saw its success in practical applications with theoretical

1Note how this phrase is taken as a visionary account by Pearl himself in several of his public appearances. It is the
foundational question of whether causal models are indeed what is needed for the “next-generation of learning systems.”
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breakthroughs remaining in the few. Bronstein et al. (2017) pioneer the notion of geometric deep learning and
an important class of neural networks that follows from the geometric viewpoint and generalize to modern
architectures is the Graph Neural Network (GNN; Veličković et al. (2017); Gilmer et al. (2017)). Similar
to other specialized neural networks, the GNN has resulted in state-of-the-art performance in specialized
applications like drug discovery (Stokes et al., 2020), biological networks (Lecca, 2021), ETA prediction in
google maps (Derrow-Pinion et al., 2021), roads networks (Jepsen et al., 2020) or general density estimation
in the form of variational graph auto-encoder (VGAE; Kipf & Welling (2016a)). These specialities, to which
we refer to as inductive biases, can leverage otherwise provably impossible inferences (Gondal et al., 2019).
As the name suggests, the GNN places an inductive bias on the structure of the input i.e., the input’s
dimensions are related such that they form a graph structure. To link back to causality, at its core lies a
Structural Causal Model (SCM) which is considered to be the model of reality responsible for data-generation.
The SCM implies a graph structure over its modelled variables, and since GNN work on graphs, a closer
inspection on the relation between the two models seems reasonable towards progressing research in the
emerging field centered around neuro-causal-symbolic AI (Zečević et al., 2022).

Instead of taking inspiration from causality’s principles for improving machine learning (Mitrovic et al.,
2020; Magliacane et al., 2018), we instead show the reverse direction by investigating to which extend and
under which conditions machine learning is capable of causal reasoning. Specifically, we show how GNN
can be used to perform causal computations i.e., how causality can emerge within graph-structured neural
models. The term of “causal computation” is simply to be understood as an implementation of a causal
model that can be queried. To be more precise on the term causal inference: we refer to the modelling of
Pearl’s Causal Hierarchy (PCH). That is, we are given partial knowledge on the SCM in the form of e.g. the
(partial) causal graph and/or data from the different PCH-levels. To this end, we establish a new model
class, partial causal models (PCM as we will call them from here on out), for GNN-based causal inference
that is necessary and sufficient for causal effect identification and propose interventional variational graph
autoencoders (iVGAE), the first GNN based PCM. When referring to “necessary and sufficient conditions”
we mean our effort of identifying and characterizing the criteria upon which we can indeed claim to have
performed a valid causal inference with GNN models. Therefore, this work is concerned with foundational
questions of the abstraction level of models opposed to specific effect identification in any particular data
set. To introduce this notion of PCM, we first establish a novel theoretical connection between graph neural
networks and structural causal models. It is important to note that since we consider parital knowledge,
this work is not concerned with other popular forms of causal inference like for example causal discovery
(inferring the graph structure to begin with). However, this does not imply that the presented results can’t
be used for these other types of inferences, quite to the contrary, we are hopeful that our paper lays ground
work for such investigations since initial links between structure learning (not necessarily causal) and GNNs
have already been uncovered (Yu et al., 2019).

Overall, we make a number of key contributions:

C1. To further complete the existing views on neural-causal models, we show to which extent but also
under which conditions GNN become representable as SCM and vice versa.

C2. We discover three new neural-causal models that emerge naturally out of C1. being: (i) the first
partially causal model based on GNN, called interventional VGAE (iVGAE), (ii) a maximally pa-
rameterized NCM which employs neural models for each causal relation pair separately, and (iii)
a minimally parameterized NCM that hides away the structural equations in its implicit message-
passing reminiscent of a single GNN.

C3. For the iVGAE from C2.(a) we provide theoretical results on the feasibility, expressivity, and iden-
tifiability alongside an extensive illustration in different empirical settings.

While we consider our theoritical investigation the key contribution, we also corroborate those with empirical
validation. For reproduction of the latter, we make our code repository publicly available: https://anonym
ous.4open.science/r/TMLR-Submission-Causality-and-Graph-Neural-Networks-5D52.

The paper is further structured into four sections in the following way:
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Figure 1: Variational Inference. A schematic overview. Left, shows the variational family set Q where
n-step optimization reveals qθn with parameters θn that best models the target p in terms of KL-divergence.
Right, illustrates the example if Q were the set of Gaussian distributions trying to fit a complicated posterior
p. Eventually, we find the best possible approximation to p when using Q. (Best viewed in color.)

S1 Since this work makes use of concepts and works from Variational Inference, Geometric Deep Learn-
ing and Causality literature, we will start by discussing essential notions and related work first.

S2 We explore the relations between GNN and (parameterized) SCM in a systematic manner, discov-
ering and discussing the models from C2.

S3 We then analyze iVGAE specifically in more detail since it poses a first partially causal model, a
notion that we introduce and whose properties we try to capture formally.

S4 Finally, we provide an empirical illustration on available data sets corroborating the main theoretical
analysis. The empirical part is divided into two subsections (1) a discussion of general probabilistic
density estimation and (2) of causal effect estimation.

2 Background and Related Work: VI, GNN, Causality

Before presenting our main theoretical findings, we briefly review the background on (i) variational methods
for generative modelling, on (ii) graph neural networks as non-parametric function approximator that leverage
structural information as inductive bias, and conclusively on (iii) causal inference through the process of
intervention/mutilation in Pearl’s theory.

Notation. We generally follow standard notation forms from (Goodfellow et al., 2016; Pearl, 2009). We
denote indices by lower-case letters, functions by the general form g(·), scalars or random variables inter-
changeably by upper-case letters, vectors, matrices and tensors with different boldface font v,V,V respec-
tively, and probabilities (both discrete/continuous) of a set of random variables (RV) X as p(X). In slight
abuse of notation parameters θ,θθθ might be dropped or used interchangeably if clear from context. PCH
levels (or languages) are denoted with Li, i ∈ {1, 2, 3}, the potential outcome or counterfactual is denoted as
Yx where x ∈ Val(X) is the instance of RV X and a pure intervention (only L2 quantity) of any type: soft,
perfect, atomic via the do-operator like do(X = x).

Variational Inference. Similar to the notions of disentanglement and causality, latent variable models
propose the existence of a-priori unknown, essential variables Z to jointly model them with the phenomenon
of interest for which we have some observed data, that is, p(X,Z). Put slightly differently, the meaning of
latent variables in latent variable models lies in them being some sort of “underlying, generative factors”
for our data. This is the interpretation of SCMs from causality (to be discussed in the paragraph following
GNNs) and similarly in disentanglement we usually try the same, that is, find factors that are separate and
explanatory of our data. The Variational Inference (VI) technique makes use of optimization, as an alternative
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to Markov Chain Monte Carlo sampling (MCMC) approaches, for overcoming the “curse of dimensionality”2

when estimating probability distributions (Jordan et al., 1999; Blei et al., 2017). To provide clarification on
how VI might achieve overcoming the cure: on an intuitive level we make intractable queries tractable (or at
least approximative) by using optimization. In reality, we really just re-formulate the problem to something
that is just more practical for downstream tasks. Since we are in a Bayesian context, the inference problem
amounts to estimating the latent variable conditional p(Z | X) (posterior). This is done through finding the
closest density of a pre-specified family Q, that is:

q∗(Z) = arg min
q∈Q

KL(q(Z) || p(Z | X)), (1)

where the distance measure is set to be the Kullback-Leibler (KL) divergence. The model family Q is usually
chosen to be ‘neat’ in that it is satisfying desirable computational properties. For instance we might choose
Q to be the family of Gaussian Mixture Models (Marin et al., 2005). Fig.1 illustrates the idea schematically
by showing visually how such an optimization might come about. It is worthwhile noting that the overall
problem described in Eq.1 is intractable in the average setting, since inspecting Bayes Rule exposes that
p(Z | X) = p(X,Z)

p(X) where the so-called evidence in the denominator is an exponential term in Z, that is,
p(X) =

∫
p(X,Z) dZ. Luckily, using Jensen’s inequality, we can derive a tractable lower bound. Originally

derived in (Jordan et al., 1999), said bound is placed on the evidence and is revealed to be

log p(X)−KL(q(Z) || p(Z | X)) = Eq[log p(X | Z)]−KL(q(Z) || p(Z)), (2)

where the first term (of the r.h.s.) expresses likelihood (or reconstruction) of the data under the given
parameters while the divergence terms counteracts such parameterization to adjust for the assumed prior
distribution. Choosing pϕϕϕ(X | Z) and q(Z) := qθθθ(Z | X) to be parameterized as neural networks leads to the
well-known family of variational auto-encoder (VAE) (Kingma & Welling, 2019). For such VAE, importance
sampling (Rubinstein & Kroese, 2016) brings about sampling techniques for performing marginal inference
with probabilistic models i.e., since we have the equality in the limit that

p(X) ≈ 1
n

n∑
i=1

pϕϕϕ(X | zi)p(zi)
qθθθ(zi | X) . (3)

Fortunately, the number of samples n is usually being kept moderate through the likelihood ratio induced by
q, therefore, offering a tractable and practical method for marginal inference. While in our empirical part we
do not run into the issue of scaling it should be noted that scaling with this technique is not recommended,
in that sense it can be considered less practical (for further references see (Kingma & Welling, 2019)). This
consistent (for n→∞), empirical approximation of the marginal p(X) will be used in the empirical section
of this paper.

Graph Neural Networks. In geometric deep learning, as portrayed by (Bronstein et al., 2021), graph
neural networks (GNN) constitute a fundamental class of function approximator that place an inductive bias
on the structural relations of the input. A GNN layer f(D,AG) over some data which we consider to be
vector-valued samples of our endogenous variables {di}n

i=1 =: D ∈ Rd×n and some adjacency representation
AG ∈ {0, 1}d×d of a directed acyclic3 graph G over our variables is generally considered to be a permutation-
equivariant4 application of permutation-invariant functions ϕ(dX ,DN G

X
) on each of the variables (features)

di and their respective neighborhoods within the graph NG
i . The most general form of a GNN layer (also

known as the message-passing GNN) is specified by

hi = ϕ

(
di,

⊕
j∈N G

i

ψ(di,dj)
)
, (4)

2Uniformly covering a unit hypercube of n dimensions with k samples scales exponentially, that is, O(kn).
3Note that for computation purposes it is common practice to allow each node a self-loop to keep its own representation

during computation. Other than that, the graphs used are acyclic. Still, as Bongers et al. (2021) have shown, causal models
might not necessarily need to be considered acyclic as has been long-standing tradition in the causality literature since having
acyclic graphs allows for a great deal of mathematical proofs to become easier and classes beyond so-called ‘simple’ SCM need
to be studied more.

4That is, for some permutation matrix P ∈ {0, 1}d×d, it holds that f(PD, PAGPT) = Pf(D, AG).
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Figure 2: Graph Neural Networks. A schematic overview. Left, shows the computation of a single
vector-valued node (red) as an aggregation of its neighborhood’s (blue) and own information (cycle) through
messages (green). Right, illustrates the special cases: GAT (top) with implicit attention-based weights for
node computation, and the simplest case GCN (bottom) with constant weights. Note that ‘simple’ does not
directly equate to any performance measure, all three flavors pose trade-offs. (Best viewed in color.)

where hi represents the updated information of node i aggregated (
⊕

) over its neighborhood in the form
of messages ψ. The functions ϕ, ψ are usually learnable. To give an example, ϕ could be a ReLU activated
linear combination (ϕ(x) = σ(Wx + b) with learnable parameters W ∈ Rn×|x|,b ∈ Rn) function whereas ψ
could be a plain linear combination of feature vectors and

⊕
i∈A i :=

∑
i∈A i simply summation (but it could

also be mean, maximum or a more sophisticated algorithmic operation schemes). This general ‘flavour’
of GNN presented in Eq.4 is being referred to as message-passing (MP-GNN; Gilmer et al. (2017)) and
constitutes the most general class of GNN that supersets both convolutional (Kipf & Welling, 2016a) and
attentional (Veličković et al., 2017) flavours of GNN. Note how the message type (ψ) is being shared for all
the variables (∀i), whereas the message itself will depend on the values of the variable i and its neighbors.
This aspect of the computation rule might be considered the key defining property of a GNN. We illustrate
the computation rule in Eq.4 and the hierarchy of the three flavors alongside their pioneering models Graph
Attention Networks (GAT) and Graph Convolutional Networks (GCN) schematically in Fig.2. In the context
of representation learning on graphs, GCN (Fig.2 right bottom) were previously used within a VAE pipeline
as means of parameterization to the latent variable posterior p(Z | X) (Kipf & Welling, 2016b). The authors
combined VI with GNN, forming the VGAE, to perform inference on graph structured data effectively. A
similar techique was recently deployed in learning dynamical systems from purely observational data (Kipf
et al., 2018). Note that the three flavors of GNN, that is MP-GNN, GAT and GNN, pose different dis-
/advantages for different applications. E.g. while MP-GNN allows for the highest representational capacity,
as it is subsuming the other two, GCN might still outperform MP-GNN in an application due to various
other factors such as for instance the cost of optimization. While in our theoretical discussion we consider
any flavor type of GNN, for our empirical part we will mostly resort to simple GCN because of their lower
representational complexity which in turn shrinks the room of interpretation possibility when discussing
evidence.

Causal Inference. Following the Pearlian notion of Causality (Pearl, 2009), an SCM is defined as a 4-tuple
M := ⟨U,V,F , P (U)⟩ where the so-called structural equations

vi = fi(pai, ui) ∈ F (5)

assign values (denoted by lowercase letters) to the respective endogenous or system variables Vi ∈ V based on
the values of their parents Pai ⊆ V \Vi and the values of their respective exogenous5 variables Ui ⊆ U, and

5These variables are sometimes also referred to as ‘unmodelled’, ‘nature’ or ‘noise’ variables. In essence, they describe
everything that we cannot (or don’t want to) model explicitly. Note that the probability measure is defined on these exogenous
terms, which implies a distribution over the endogenous variables. The mechanistic, structural equations are deterministic.
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P (U) denotes the probability function defined over U. For readers more familiar with the ML literature:
endogenous (‘inside’ system variables) are typically what we call features, whereas exogenous (‘outside’
system variables) could be considered as anything that is latent. However, the latter distinction is not
as simple, since we cannot equate exogenous variables to, say, hidden units in a neural net since they
have well-defined semantics. On an intuitive level, however, this is how the distinction in variable type
can be understood from a ML perspective. An intervention on an SCM occurs when (multiple) structural
equations are being replaced through new non-parametric functions thus effectively creating an alternate
SCM. Before introducing interventions formally, we note that we will refer to our base distribution, the
“observational distribution w.r.t. SCM M,” as pM. Interventions are referred to as perfect if the parental
relation is cut, as soft if not but the relation itself is changed, and even atomic when additionally to being
perfect the intervened values are being kept to some constant. Hard intervention and atomic intervention
are terms used synonymously and they refer to the act of putting the value of an endogenous variable to
some scalar. Mathematically denoted do(X = a) with a ∈ R. It is important to realize that interventions are
of fundamentally local nature, and the structural equations (variables and their causes) dictate this locality.
This further suggests that mechanisms remain invariant to changes in other mechanisms. An important
consequence of said autonomic principles is the truncated factorization

pMdo(w)(v) = pM(v | do(w)) =
∏

Vi /∈W=w
pM(vi | pai) (6)

derived by Pearl (2009), which suggests that an intervention do(w) introduces an independence of a set of
intervened nodes W to its causal parents. We use pM and p interchangeably if clear from context. For
completion we mention more interesting properties of any SCM: (a) they induce a causal graph G typically
but not necessarily as directed acyclic graph (DAG), (b) they induce an observational also called associa-
tional distribution denoted pM, and (c) they can generate infinitely many interventional and counterfactual
distributions. Note that, opposed to the Markovian SCM discussed in for instance (Peters et al., 2017), the
definition of M in the presented setting is semi-Markovian (or non-Markovian) thus allowing for shared U
between the different Vi. Put in different words, non-Markovian SCM simply refers to an SCM where endoge-
nous variables can share their exogenous variables. I.e., we have hidden confounders. Markovian SCM then
means that there are no hidden confounders. Such a U is also called hidden confounder since it is a common
cause of at least two Vi, Vj(i ̸= j). Opposite to that, a ‘common’ confounder would be a common cause
from within V. In this sense, the SCM extends the (Causal) Bayesian Network (CBN; Pearl (2011)) since
it allows beyond interventions for both counterfactuals and reasoning about hidden confounders (Bongers
et al., 2021). Because of that, SCM are sometimes referred to as Functional Bayesian Networks. The SCM’s
applicability to machine learning has been shown in marketing (Hair Jr & Sarstedt, 2021), healthcare (Bica
et al., 2020) and education (Hoiles & Schaar, 2016) to name just a select few applications. As suggested by
the Causal Hierarchy Theorem (CHT; Bareinboim et al. (2020)), the properties of an SCM form the Pearl
Causal Hierarchy (PCH) consisting of different levels of distributions being L1 associational, L2 interven-
tional and L3 counterfactual. The PCH suggests that causal quantities (Li, i ∈ {2, 3}) are in fact richer
in information than statistical quantities (L1), and the there exists a necessity of causal information (e.g.
structural knowledge, essentially ‘outside’ model knowledge) for inference based on lower rungs e.g. L1 ̸⇒ L2
and therefore to reason about L2 or to identify such causal quantities we need more than only observational
data from L1. These levels or languages6 differ in that L1 is common statistics p(A), L2 are expressed
through interventions p(Ab) (this notation of a potential outcome denotes “the value of A had B been b”
and is used subsequently to represent different worlds for the counterfactual case, the relation to the regular
do-operator is described at the paragraph’s end) and L3 are conjunctions of the former p(Ab, . . . ,Cb). Fi-
nally, a last note regarding simulating SCM to acquire actual data: to query for samples of a given SCM, the
structural equations are being simulated sequentially following the underlying causal structure starting from
independent, exogenous variables Ui and then moving along the causal hierarchy of endogenous variables Vi.
To conclude this paragraph on causality, consider the formal definition of valuations for the highest layer
(L3) since it subsumes the other two layers as previously pointed out:

p(ab, . . . , cd) =
∑

U
p(u) where U = {u | Ab(u) = a, . . . ,Cd(u) = c}, (7)

6Language as in logic, see Def.8 “Symbolic Languges” in (Bareinboim et al., 2020).
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Figure 3: SCM and PCH. A schematic overview. Left, shows the generally hidden SCM underlying the
phenomenon of interest. Middle, the implied PCH. Right, the implied graph and data distributions upon
evaluating ‘nature’ terms Ui and subsequently structural equations. (Best viewed in color.)

for instantiations a,b, c,d of the node sets A,B,C,D ⊆ V and they represent different ‘worlds.’ E.g. for
L1 we might only consider A = A∅ and whereas for L2 a single alternate world Ab. Note that the do(x)
notation and the counterfactual subscript notation (·)x only coincide as p(ab | cb) = p(a | do(b), c) which is
related to whether the condition c is pre- or post-treatment (Pearl, 2009).

Causal assumptions for parts of this work: since this work is the first to study the relation of GNNs and SCMs
mathematically, we choose to generally consider the classical causal inference setting of Markovian SCMs.
This assumption implies that the structure is acyclic, there is no latent confounding and so the observational
distribution is unique. We will also mostly focus on the classical notion of hard intervention where values are
set to constants. Both assumptions are common practice in causality literature when providing a theoretical
analysis on bounds, identifiability and similar. Our main reason to pledge to those is similarly simplicity in
presentation and proofs. However, we do foresee that we need not be strict with several discussions we raise
in this work e.g., when discussing interventions with iVGAE we can safely ignore the second assumption for
a lot of cases.

A Remark on Similarities to Bayesian Deep Learning. In the past there have also been efforts on
the foundational front regarding the integration of Bayesian approaches with Deep Learning, specifically
Bayesian Networks. Since BNs are the ancestor to SCMs in that SCMs extend them (a) to have causal
semantics i.e., the edges in the graph implied by an SCM, opposed to a BN, are causal and (b) we can
compute counterfactuals and talk about hidden confounders, we can therefore see our discussion as an
integration of causality with deep learning, being Causal Deep Learning.

Further Related Work. While this work is neither concerned with causal discovery nor with pure iden-
tification, both of these areas are central to causality. A recent original work on the former proposed a
meta-objective based on a notion of speed of adaptation which will allow the true causal structure to adapt
‘faster’ in response to the sparse change (Bengio et al., 2019). For the latter, a pragmatic, high dimensional
setting was investigated in (Jesson et al., 2021). Only recently, important work has also been done on the
intersection of both, where an extension of the ‘standard’ notion of the Pearlian causal inference framework
to multiple data sets with each having different contexts was presented (Mooij et al., 2020). A special
case of this setting focussed on investigating the cases where the source and target data distributions differ
(Magliacane et al., 2018). This has paved way for causality to be applied to an extended set of machine
learning models. One such approach has been suggested by (Zaffalon et al., 2020) where equivalences to
credal networks were established. Furthermore, the usage of GNNs within causal domains have only recently
been studied and have stayed either at the application level (Wein et al., 2021; Li et al., 2020) or have been
used for generating causal explanations for the underlying GNNs (Lin et al., 2021; Bajaj et al., 2021). In
this work, we take an inspection of how causality per se ‘naturally’ arises in GNN and their relation to SCM,
NCM and aspects of partial causality.
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3 Allowing Interventions in GNN and Minimal/Maximal NCMs
To expand further on the boundaries of the integration between causality and machine learning, we perform a
theoretical investigation on the relation between graph neural networks (GNN) and structural causal models
(SCM), thereby transitively also their common parameterized variant: neural causal models (NCM). Note
how when we use NCM without any further specifications, we generally refer to any type of NCM (models
that can be considered NCM), which will include the two special types to be discovered in this section. While
all the established results on causal identification have proven that intervention (sometimes also referred to
as manipulation) is not necessary for performing causal inference, the concept of intervention still lies at the
core of causality as suggested by the long-standing motto of Peter Holland and Don Rubin “No causation
without manipulation” (Holland, 1986). The centrality of interventions is why we choose to consider them
as a starting point of our paper’s discussions. It is important to note that choosing to start with or even
keep the discussion restricted to interventions does not imply that we might only connect GNN to Causal
Bayesian Networks (CBN; see Pearl (2011)), which model causality but only up to interventions (ignoring
counterfactuals and confounders). Historically, SCM extended CBN by the notion of counterfactuals and
hidden confounders (Bongers et al., 2021) and many times in the literature SCM may also be identified
as Functional BN (FBN) to denote the lineage with regular (Causal) Bayesian Networks. Most important
for the distinction is the fact that the exogenous variables can be modelled explicitly. To return to our
previous point, therefore, having interventions in GNN would lead to a connection to CBN but also leave
open a connection to full SCM–which we will also consider in this work–but for simplicity, we start with
interventions. To this effect, we first define a process of intervention within the GNN computation layer that
will subsequently reveal sensible properties of the process akin to those of intervention on SCM.
Definition 1 (Intervention on GNN Computation). An intervention x on the corresponding set of variables
X ⊆ V within a GNN layer f(D,AG), denoted by f(D,AG| do(X = x)), is defined as a modified layer of
computation,

hi = ϕ

(
di,

⊕
j∈MG

i

ψ(di,dj)
)
, (8)

where the intervened local neighborhood is given by

MG
i := NG

i \ pai if i ∈ X else NG
i (9)

where NG denotes the regular graph neighborhood. Such GNN-layers are said to be interventional.
Note that we focus on directed edges as common in causality, still the general GNN formalism would actually
be capable of bi-directedness. However, allowing for those would conflict with the meaning of a direct cause as
indicated by a direct edge in a causal graph, thereby leaving them out of the definition. The above definition
is akin to a hard intervention and takes into account the self-loop (since di for node i is always part of the
computation). An intervention on a GNN, just like in an SCM, is local in nature i.e., the new neighborhood
of a given node is a subset of the original neighborhood at any time, M ⊆ N . The notion of intervention
belongs to the causal layers of the PCH i.e., layers 2 (interventional) and 3 (counterfactual). Fig.4 presents
an intuitive illustration of how the semantic changes within the SCM upon intervention translate to a change
in computation for the GNN. A causal relationship is always based on directionality in that one variable
is called the ‘cause,’ whereas the other is known as the ‘effect,’ which is to be contrasted with general
computational models like the GNN, where we usually look at the neighborhood of a node thus ignoring the
directionality and even computing using values that in the causal sense would be considered coming from a
child node. In our notion of (hard) intervention, the key property that we use is that parental relations are
being severed.
The motivational origin of this work lies in the tighter integration of causality with present machine learning
methodologies like neural networks. Ultimately, we envision a fully-differentiable system that combines the
benefits of both worlds. We can see Def.1 as a first step towards this goal, since it allows us now to view
interventions in GNN as a special case of parameterizing a CBN with neural approximators. Remembering
C2 of our contributions, we suggested that we had discovered three new neural-causal model classes, namely
(i) the first partially causal model based on GNN, (ii) a maximally parameterized NCM, and (iii) a minimally
parameterized NCM. We will start off by taking a conservative view on SCM exploring (i-iii) in reverse order,
where we will begin with (iii) and then gradually drop assumptions/requirements to conclude with (i) where
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Figure 4: Graph Neural Networks and Interventions akin to SCM. A schematic overview. Left,
a do-intervention on an SCM. Right, the same for a GNN according to Def.1. Semantically, we cut the
causal dependence on the parents (for atomic interventions y), which in turn cuts the number of necessary
computations in the GNN. (Best viewed in color.)

we spend the bulk of our discussion and our empirical investigation. We find (iii) by asking the question:
with interventions now at our disposal, can we also talk about counterfactuals (quantities on L3 of the PCH)
and thereby a relation between GNN and fully fledged SCM? Indeed, it turns out we can consider a direct
conversion between GNN and SCM. Such a conversion between GNN and SCM will necessarily have to cope
with transforming a shared, global function ψ into the collection of all local partial mechanisms fij of any
structural equation7. Thereby, one can anticipate that training such model becomes tremendously difficult
due to this globality constraint of the GNN. More formally, we can still state the following model conversion.
Theorem 1 (C2(iii), Minimal NCM, Existence of SCMs in the Set of All GNNs). Consider a message-
passing GNN node computation hi : Fh 7→ F ′

h as in Eq.4. For any SCMM := ⟨U,V,F , P (U)⟩ there always
exists a choice of feature spaces Fh,F ′

h and shared functions ϕ, ψ, such that for all structural equations fi ∈ F
it holds that hi = fi.

Proof. It is sufficient to provide a general construction scheme on SCMs. Therefore, let M :=
⟨U,V,F , P (U)⟩ be any SCM. Further, let fi(pai, Ui) ∈ F be the structural equation of endogenous vari-
able Vi ∈ V. We can now consider a decomposition of the structural equation of the form fi(pai, Ui) =
fii(Ui,Ai) +

∑
j∈pai

fij(Vj) where the summation is over all linearly decomposable causal sub-effects fij(Vj)
(what we referred to as ‘partial’ previously) whereas the first term depends on a dynamic, potentially empty
argument list Ai ∈ 2| pai | that captures all aspects of the structural equation fi that are not decomposable
in linear terms. For instance, if fi is linear in its arguments, then Ai = ∅, but if the structural equation fi

might be something like fi(Vi, Ui) = Vi ·Ui, then Ai = {Vi}. This decomposition is similar in spirit to what
can be found in for instance (Kuo et al., 2010). It is only important to note that whether Ai compromises
the empty set or the maximal set of parents of Vi, that is pai, is not critical for establishing the proof but
rather for talking about the similarity of the given SCM and GNN. I.e., if Ai = pai, then we might consider
the SCM and GNN to be maximally similar in that each causal sub-effect fij maps to a message computation
in the GNN layer hi. Having said that, now, we are equipped to map between GNN and SCM. We choose
the following mapping for the respective GNN computation components:

Fh,F ′
h := V ∪U (10)

ϕ(di,
⊕

j∈N G
i
ψ(di,dj)) := fii(Ui,Ai) +

∑
j∈pai

ψ(di,dj) (11)

ψ(di,dj) := fij(dj). (12)

Note how having ψ not depend on di in fij is simply an artefact of notational conventions, since in causality
we typically use subscripts to denote the specific function and for causal sub-effects we then use both variables
(i, j) that compose the message for the GNN message-passing function ψ. Further, note how NG

i = pai holds
because of the decomposition according to the causal graph G implied by M. Finally, it holds that

hi = ϕ

(
di,

⊕
j∈N G

i
ψ(di,dj)

)
= fii(Ui,Ai) +

∑
j∈pai

fij(Vj) = fi. (13)

7Here ‘partial’ refers to the ‘structure’ of any single structural equation. In a linear SCM, we can simply imagine this to be
the coefficients or causal effects fij := aj · xj , where fi :=

∑
j∈pai

aj · xj . In the case that some effects are shared e.g. when
there is a multiplicative component like fi{jk} := ajk · xj · xk, the separation still works but is naturally less decomposed.
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Note how the notation on fi is purposefully overloaded to make clear the correspondence between the new
latent vector and the corresponding structural equation result, fi is to be understood as fi(ui,pai).

The common ground between SCM and GNN lies within their graph structures, which is typically implied
for the SCM since we learn it and assumed for the GNN since it acts as a prior or inductive bias. This
common ground in the graph is in fact the key in leveraging the reparameterization from GNN to SCM as
our Thm.1 suggests. We can simply use the mappings dictated by the graph to establish the relation by
decomposing the structural equation into said causal sub-effects. Let us illustrate on an example how this
might look like.
Example 1 (Two SCMs and their Sub-Effects). First let us consider the case where we get a complete or
maximal decomposition of a structural equation into sub-effects. This occurs for instance when the structural
equations of the SCM are linear in its arguemnts. For instance, when

M1 = ({fX(Z,UX) := Z + UX , fZ(UZ) := UZ}, P (UX , UZ)), (14)

then we have AX = ∅ and simply choose to separate fX into two functions f(UX) = UX , f(Z) = Z.
Now, as a second case, let us consider the other end of the extreme being the case where we cannot easily
decompose our SCM’s structural equations i.e., our argument list from Thm.1 is the maximal set, the set of
Vi’s parents Ai = pai. For instance,

M2 = ({fX(Z,UX) := Z ∧ UX , fZ(UZ) := UZ}, P (UX , UZ)), (15)

where ∧ is a logical AND operator (X,Z are binary). Then we have

fX =
UX = 0 UX = 1( )

0 1 Z = 1
0 0 Z = 0

⇐⇒
fXZ(Z) + fUX

(UX , Z)
[Z] + [UX − (Z ∨ UX)].

(16)

The decomposition in (16) simply takes the identity of the parent (Z) while considering the negated logical
OR for the remainder term fUX

. Its sum then results in the original logical AND function fX of M. While
the decomposition for this specific example does not seem to reveal any sensible advantage as opposed to the
linear case, it still is captured by Thm.1. With this we have seen that the actual decomposition (and therefore
Ai) will lie somewhere on this spectrum from ‘empty’ to ‘containing all parents’ for any given variable. The
wording ‘actual’ here refers to the specific A that one will encounter when considering the conversion for
some SCM-GNN tuple. Thus it reveals a natural tendency towards the style of computation of ‘messages’
in the GNN. Since in a GNN we typically consider the complete neighborhood of a variable, a linear SCM
would be the most natural choice for such a computation. ■

Before moving to the insights that we can extract from the above example, we want to once more high-
light that A also handles non-linear SCM, that is, we pose no restrictions on our original SCM definition.
Nonetheless, the linear SCM can be considered a clear special case for when A contains all the variables since
we have coefficients equaling the causal sub-effects. Up until now we have established two new insights. One,
how to define interventions on the computation within GNN akin to SCM which compares them directly to
at least the class of causal models such as CBN. Two, how to reparameterize SCM to do computation akin to
GNN, therefore, making GNN directly comparable to even the class of complete causal models such as SCM.
With Thm.1 we extend the previously existing big picture in the literature on neural-causal models since we
can now understand GNN as another ‘species’ of neural SCMs and more specifically our theorem provides a
constructive approach that illustrates the necessary conditions required for taking that perspective. Actually,
we can even be more specific than that since these ‘GNN-SCM’ are actually minimally parameterized neural
SCM. We can understand this by considering the intuition behind the proof. Essentially, what happens in
the proof is that we construct a sort of ‘look-up table’ of messages for the GNN in advance. The messages
in this table are the sub-effect decompositions of each of the SCM’s structural equations and then ψ in the
GNN computation is simply able to reference for each variable pair the corresponding sub-effect.8 By doing

8Since structural equations are not required to be decomposable, we need the technically around the remainder term or
argument list A but that is not important for the discussion of minimality in parameterization.
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so, we ultimately have an SCM that hides away its structural equations implicitly within the message pass-
ing of a single GNN. It is important here to understand that an SCM (and typical formulations of NCM)
are sets of models decomposing according to a graph, whereas a GNN is just a single model depicting a
graph. In that sense our construction in Thm.1 is truly the minimal NCM (C2 iii) since we replace multiple
graph-structured neural nets with one single message-passing GNN. Interestingly, we can now view our newly
discovered neural-causal model also as an insight on GNNs in that there exist causal models within the set
of all GNNs. A more radical view would postulate that all GNNs are therefore SCMs (since the Theorem
proves the existence of a SCM for any GNN), just that the SCMs that are being modelled by our GNN are
most of the time not the SCMs that we seek for our application.9 Before turning to the next thought, let
us re-iterate once more on this in different terms. Indeed our Theorem shows a correspondence between
the sets of SCM and the sets of GNN, however, there is a gap between just having a computational model
and the ‘right’ model. SCMs are usually confused to be the “underlying reality,” although they are simply
a formalism for talking about causality. Any given SCM could potentially be the “underlying reality” for
some phenomenon but this potential is in no way a necessity. To grasp once more the foundational insight
provided by our Theorem: under consideration of A, we get to know how we can map between computations
(or ‘messages’) in a GNN and causal effects in an SCM. This A will be very different for different structural
equations of (different) SCMs. Furthermore, it raises the point of differentiation between “purely compu-
tational” and causal models. Turning now to a different aspect of our theorem, it does not give away any
information on optimization. Put differently, Thm.1 does not talk about whether the reparameterization is
feasible in the practical sense when being deployed as a machine learning model. It follows naturally that ψ
is a shared function amongst all nodes of the graph while an SCM considers a specific mechanism for each of
the nodes in the graph. This subtle, yet crucial distinction is what makes optimization difficult for a GNN
that mimics an SCM in the way that Thm.1 proposes. In a nutshell, the messages ψ(i, j) need to model
each of the causal sub-effects fij within a structural equation such that the messages themselves become a
descriptor of the causal relation for Vi ← Vj , {Vi, Vj} ⊆ V. The question arises whether there is a smarter
way of reparameterization of SCM in terms of GNN. Can we for instance drop the sharedness property of
GNN? Unfortunately, we cannot if we intend on preserving the GNN since the shared message-computing
function is essential to what defines a GNN. Nonetheless the answer to this research question poses an in-
teresting insight on the class of all neural SCMs. We observe that dropping sharedness by allowing each of
the ψ(i, j) to be computed by a separate function ψij reveals a new NCM model that opposed to C2(iii) is
maximally parameterized (C2(ii)) since now we can use local messages parameterized by MLP10 that allow
for computation per-variable. This stands in contrast to ‘classical’ NCM that use a MLP each for modelling
each of the SCM’s structural equations. They are also the maximal NCM model class since it poses the most
fine-grained parameterization using MLPs that can be chosen for parameterizing SCM and therefore lies at
the other end of the spectrum of parameterization as the previous GNN-SCM (Thm.1) which only used a
single GNN for modelling all of the structural equations. Accordingly, we state the following:
Corollary 1 (C2(ii), Maximal NCM). Assume the setting from Thm.1. Further, we allow for the violation
of sharedness of ψ by arbitrary parameterization with MLP. The resulting computation is an NCM special
case with a computation per-edge. ■

The proof can be found in the appendix. In the special (or extreme) case of the original SCM being linear,
the maximal NCM portrayed in Cor.1 is then maximally more fine-grained than the the definition of classical
NCM since the former will model each of the causal sub-effects fij with separate MLPs, whereas the original
NCM will choose only the structural equations to be modelled by MLPs i.e., the NCM is an aggregated or
consolidated view of the maximal NCM. Naturally, this makes the latter a computationally more expensive
model since the architecture will scale with both with the number of equations but also their decomposability.
In a sense, NCM will scale with the number of endogenous variables O(|V|) whereas maximal NCM scale
with the number of edges O(|E|) of the SCM’s implied graph GM = (V, E). We believe that maximal NCM
can justify their overhead in computation through improved interpretability since each causal sub-effect can
be investigated separately to attribute on the cause level instead of the mechanism level. Note that this

9This is partly a philosophical discussion on the topic whether causality is a concept independent of truth. That is, there
are a lot of SCM that are ‘gibberish’ in that they don’t model our physical reality faithfully (i.e., they are not good ‘models’),
however, they are still causal since they follow the definition of an SCM and endogenous variables are computed through
structural equations.

10In this work we write MLP = multi-layer perceptron = (feed-forward) neural net = NN.
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Figure 5: Reparameterization Reveals Relation Between GNN, SCM and NCM. A schematic
overview of the results established in Thm.1 and Cor.1. The design choice can be summarized as (a)
modelling on mechanism or cause level, and (b) modelling with a single, shared or multiple independent
function approximators. (Best viewed in color.)

discussion around NCM is one of parameterization, that is, actual computational models for SCM. Therefore,
the discussion is not concerned with learning the actual graph iteratively using an NCM or GNNs, which
was explored by for instance (Ke et al., 2019) and (Lin et al., 2021) respectively.

To conclude this section, we point to Fig.5 which illustrates schematically how the parameterization of
a structural equation reveals different connections between GNN, SCM and NCM. In a sense, the design
choices involve whether to model on mechanism (classical NCM as in previous literature) or on cause level
(Minimal and Maximal NCM) and further whether to model with multiple (Maximal NCM) or only a single
approximator (Minimal and classical NCM).

Contextualizing the Different NCM Variants. The minimal and maximal NCM pose original contri-
butions that define extensions to the original NCM as formally discussed in (Xia et al., 2021). The extensions
come in the form of extreme ends on the dimension of number of neural modules employed, further justifying
the use of the terms ‘minimal’ (for the least number of neural modules, that is, one) and ‘maximal’ (for the
highest number of neural modules, that is, the number of edges in the implied causal graph).

4 iVGAE: A First Partially Causal Model Based on GNNs
When we say partially causal, then we refer to models that lie on the spectrum that is spun by non-causal
models such as linear regression, CNNs, Transformers etc. and causal models such as fully-fledged SCM but
that are belonging neither to the former nor the latter class. For readers more familiar with ML literature it
might come as a surprise as labelling certain models as ‘causal’ or ‘non-causal’ since in their perspective the
type of inference (here causal) is usually considered independent of the model employed. This is especially
true if we consider for example that linear models can be used for causal inference. Or in the same way,
that an SCM can consist of linear equations. However, the semantics are inherently different. An SCM
actually is a causal model since the equations denote what it means to be ‘causal,’ that is, if they are not,
then we don’t have an SCM. This is not the case for linear models for instance, which is why we refer
to them as non-causal. Furthermore, like depicted in Fig.6, ‘full’ causal means that we fully capture the
hierarchy i.e., you have an SCM. That is, “fully causal” is synonymous to being capable of generating all 3
types of distributions. In other words, these models are partially causal because they induce some causal
inference capabilities but it is clear that they are not SCM equivalent. Looking again at the newly uncovered
Minimal NCM in Thm.1 and the Maximal NCM in Cor.1 (both of which are depicted in Fig.5), we observe
that they are parameterized variants of an SCM and thus fully causal models. Furthermore, both of these
models are difficult to handle computationally, which makes them more restrictive. For said two reasons,
being theoretically unappealing and computationally prohibitive, we decide to focus in this section on what
can be achieved when following only our initial definition of interventions within GNN (see Def.1)—which
will reveal the first partially causal model based on GNN. Since such partially causal models, have not been
investigated theoretically in the literature, we provide a first attempt. To the best of our knowledge, the
first (albeit non-GNN) PCM discussed in the literature was the interventional Sum-product Network from
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PCM-SCM HybridCBNAssociational PCM SCM

Figure 6: Classifying Causal Models based on PCH Expressivity. Legend (top left): Li denote the
PCH levels, mid-point denotes L(model) ⊂ Li, whereas outer-point denotes L(model) = Li. Partial Causal
Models are those models that span an area that is neither minimal (Associational) nor maximal (SCM).
Note how the classical CBN falls into the category of PCM. (Best viewed in color.)

(Zečević et al., 2021), even if the authors did neither define PCM nor classify their model as such. To this
end, we will consider a construction of a GNN based on partial knowledge on the SCM like the SCM’s implied
graphical structure. We define a GNN construction based on an SCM as follows:

Definition 2. Let GM be the graph induced by SCM M. A GNN layer f(D,AG) for which G = GM holds
is said to correspond to SCM M. If M is clear from context, we drop the subscript.

Remember that G (from AG) is simply the inductive bias, in the form of a graph (adjacency), to the GNN,
whereas GM (in alternate literature also G(M)) is the graph implied by some SCM M. This definition
allows for providing prior knowledge on the causal structure of the problem as a basis for the GNN to be
deployed. This definition is purposefully inline with common practices in GNN literature but it further
comes with the subtle notion on the fact that any GNN actually models some particular SCM. A simple
consequence of constructing the previous Definitions 1 and 2 is the following:

Proposition 1. Let M be an SCM with graph G and let f be a GNN layer corresponding to M. An
intervention do(X),X ⊆ V, on both M and f produces the same intervened graph. ■

Like before the proof is in the appendix. The above proposition essentially acts as a sanity check to us
choosing sensible definitions prior since now an intervention within a GNN layer (Def.1) is dual to the
notion of intervention within an SCM i.e., like observing within the intervened graph is equivalent to per-
forming interventions (probabilistically pM(v | do(W)) = pM(do(W))(v)), computing a regular GNN layer
on the intervened graph is equivalent to perfoming the intervention on the original GNN layer, that is,
f(D,AG| do(X)) = f(D,AGx) where Gx is the graph upon intervention do(X). For readers familiar with
optimization literature, ‘dual’ here should be simply understood as the two perspectives of GNN and SCM
type of interventions, which through Prop.1 are shown to be equivalent (which further justifies that the
definition of GNN intervention was chosen sensibly.) Now, before defining our PCM based on a GNN that
we constructed from an SCM, we first need to consider how to relate PCM to SCM in more detail. That
is, how can we compare the causal aspects of a PCM with the causal aspects of an SCM? To answer this
question, we take inspiration from prior works that defined notions of consistency for matching the different
distributions that are being emitted by the different layers Li of the PCH (see Fig.3 and discussions in Sec.2)
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by any given model. To this end, we now define what it means for an SCM to be consistent with a model
that is not an SCM.
Definition 3 (PCM). Let M be an SCM and Li(M) the set of all distributions implied by M on level i of
the PCH (see Sec.2, e.g. L2 allows for all distributions with do(X) where X ⊆ V). We say that a model V
is partially consistent with M if either (i) or (ii) holds:

(i) Li(V) is defined only for i ∈ {1, 2} and Li(V) ⊆ Li(M) with |Li(V)| ∈ [1..∞]

(ii) Li(V) is defined for i ∈ {1, 2, 3} and Li(V) ⊂ Li(M) with |Li(V)| ∈ [1..∞).

Further, V is called a partially causal model.
Note how the definition requires V to be a model capable of implying/emitting distributions, so it can
be any generative, probabilistic model such as for instance the popular class of variational auto-encoders.
Furthermore, said model should fulfill any of the two conditions: Def.3(ii) |Li(V)| ∈ [1..∞) is bounded and
not infinite i.e., there is no procedure for generating either infinitely many interventional or counterfactual
distributions, or Def.3(i) V is not capable of producing counterfactuals in the first place. These conditions
are necessary conditions for these models to be considered partial as otherwise it would be either an standard
SCM or a model capable of reasoning across the complete causal hierarchy which is equivalent to an SCM
in terms of causal reasoning.11 A consistency w.r.t. some SCMM is actually enforced through the operator
Li(M) which gives the set of all distributions for level i of that SCM and the PCM then only requires a
subset of that specific set. Without this condition, we’d only have a PCM and not a SCM-corresponding
PCM, which is the defining property we formalize. To make this new conceptual idea of partial causality
and PCMs more clear, we provide a schematic illustration in Fig.6. In the following, we simply talk about
consistency but mean partial consistency as in Def.3. As we have seen, a consistent model is therefore by
definition a causal model capable of emitting a subset of the Li-distributions of the PCH. We are now finally
ready to define our first PCM based on GNN. As the underlying skeleton, we’ll use the variational graph
auto-encoder (VGAE; see Kipf & Welling (2016b)) since they define a standard, generative probabilistic
model with GNN being the underlying workhorse.
Definition 4 (iVGAE). Let V be a VGAE with encoder q and decoder p being GNNs. If (q, p) are set
to be interventional GNN layers (Def.1) modelling the latent variables and endogenous variables (data)
respectively, then V is also called interventional VGAE.
In Fig.7 we schematically illustrate the difference of a PCM (specfically, the just-defined iVGAE) against the
traditional SCM. Both allow for causal computation (generative modelling of interventional distributions)
but that is where the similarities end, since the PCM will resort to data and a gating signal provided by the
intervention on the underlying causal graph, whereas the SCM will simply sample the exogenous variables
and then evaluate in topological order each and every structural equation. An immediate key observation is
that the SCM is a lot more complex in terms of model description.

Model Expr. Complex.
iVGAE L1,2 O(1)
NCM L1,2,3 O(|U|)

Table 1: Trade-off for Differ-
ent Causal Models.

That is, an SCM needs to model each structural equation and so the
model complexity (here the amount of neural models if we consider clas-
sical NCM) scales with the number of endogenous variables O(|U|) while
the iVGAE will always consist of only a single encoder-decoder pair O(1)
independent of how many endogenous variables we might want to con-
sider. This poses a significant advantage for causal graphs on, say, social
networks which have n lie in the multi-million range. What we observe
is therefore a tradeoff between model expressivity and model complexity.
See Tab.1. The iVGAE’s constant complexity has an advantage over the
SCM’s linear complexity, yet falls short when it comes to modelling capabilities on the PCH—the iVGAE
specifically has not been designed to model counterfactuals, so it fulfills condition (i) from Def.4 being a

11In other words, if our model called M1 can generate L2- and L3-distributions as well as match a given SCM M2 in the limit
(Li(M1) = Li(M2) where |Li(M2)| = 1 for i = 1 and ∞ for i ∈ {2, 3}, then that model (M1) must be an SCM as well–which
makes Def.3 a sensible definition for what we mean by partially causal. Note that for i > 1, the number of possible interventions
is even uncountably infinite, e.g. take any intervention of the form do(X = x) where Val(X) := R, which immediately implies
that |Li| = 2ℵ0 .
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Figure 7: Causal Inference in PCM vs SCM. A schematic overview of the inference process within the
partially causal model V (iVGAE from Def.4 is depicted) alongside the analogue process within a classical
SCM M. While M can be directly queried for the causal effect p(D| do(Y)) through evaluations of the
exogenous terms U, the PCM V makes use of corresponding mixed data D. (Best viewed in color.)

PCM and not SCM.12 In the following, we investigate this restricted expressivity of PCM. We first state a
reassuring result on the correspondence of PCM and SCM.
Theorem 2. For any SCM M there exists an iVGAE V for which V is L2 consistent w.r.t. M. ■

The proof is provided in the appendix. This theorem suggests that we there will always be a (potentially
infinite) number of PCM that will correspond to any SCM of interest since consistency is unbounded and
we are only restricted by the available data (and knowing whether the data decomposes into interventions).
It is important to note that whether we are able to actually find such corresponding or relevant PCM is not
the topic of discussion in Thm.2. As a simple corollary, we might state that for any GNN that corresponds
to an SCM (such as the Minimal NCM from Def.2) it will always allow for an iVGAE that corresponds to
that very SCM that implied the graph for the GNN construction.

Just now we established iVGAE as a first instance of a GNN-based PCM capable of causal inferences, yet not
being an SCM. Another important corollary is related to the causal hierarchy theorem (CHT; see Bareinboim
et al. (2020)), which reassures that causal inference “will make sense” in that we cannot easily do inter-level
jumps on the PCH. The CHT also holds for PCM (and therefore the iVGAE). We state:
Corollary 2 (Partial-CHT for PCM). Consider the sets of all SCM and PCM, Ω,Υ, respectively. If for all
V ∈ Υ it holds that ∃q ⊂ N. [L1(V) = L1(M) =⇒ Lq

2(V) = Lq
2(M)] with M ∈ Ω and q choosing a subset

of L2 distributions, then we say that layer 2 collapses relative to M. By extension of the classical NCM
result on the CHT, it is clear that on the Lebesgue measure over SCMs the subset in which layer 2 of iVGAE
collapses to layer 1 has measure zero.13 ■

Note that the proof for the CHT has not been made publically available by the authors, however, an alternate
proof from a topological perspective was recently given by a group of researchers that included a subset of
the authors of the original CHT paper in (Ibeling & Icard, 2021) which supports the belief in the truth of
the CHT (as also suggested in the measure theoretic sense of the original theorem which is the argument
we use for Cor.2). As discussed in the literature, the CHT does not impose a negative result by claiming
impossibility on lower to higher layer inferences, however, it suggests that even sufficient expressivity of a
model does not allow for the model to overcome the boundaries of the layers unless causal information (e.g.
in the form of structural constraints such as knowledge on the causal graph) is available. The PCHT in Cor.2
simply reassures that using PCMs does not suddenly change the familiar setting of causal inference with
SCM/NCM—causal inference therefore still “makes sense” in that the different queries we can ask across
the different Li are indeed qualitatively different from each other. The slogan “causal inference still makes
sense” is a phrase encountered often times in causality when the causal hierarchy theorem is being discussed,
since this foundational result can be considered as the justification for the term ‘causality’ and its definition

12As we noted in the beginning, while we focus on interventions, the iVGAE could also be adapted to further condition on
exogenous terms making it capable of modelling L3 as well since interventions are the key ingredient. However, as this work’s
focus is not on generative modelling specifically, we leave an extended discussion here for future work.

13The branch of mathematics called measure theory defines this notion. Probability theory is a special case of measure theory,
which tries to generalize and formalize geometrical measures such as length, area or volume. To give an example of “measure
zero,” the rational numbers Q are measure zero relative to the real numbers R since a single point set {x}, x ∈ Q is measure
zero and the set formed through the union over such countably infinite sets is still measure zero. In a sense it conveys the idea
that the cases in which there could be a counterexample are essentially negligible.
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by Pearl to begin with. The CHT suggests that inter-level inferences without assumptions are impossible,
thus giving different semantics to the different levels, since if they were infer-able from each other, then that
would necessarily mean that they are equivalent.

While we have not discussed identification within PCM yet, we realize that an extended discussion blows
the boundaries of this initial work on GNN, SCM, NCM and finally PCM. Therefore, we leave this for
future work. However, one important thing to note is that identification and estimation actually coincide for
iVGAE (and we believe more generally for PCM, again, this needs to be investigated thoroughly in a separate
work) since the model is being fed experimental data and has no inherent causal conceptions apart from
allowing a naturally defined intervention on the computation of the output (see interventional GNN layers
from before). Therefore, identification and estimation in the following might be viewed interchangeably but
to reduce confusion amongst classical causal inference readers we stick to the term of estimation, which
generally refers to using data to acquire an actual estimate for the quantity of interest. The estimation
is performed using a modified version of the variational objective in Eq.2 to respect the causal quantities,
Eq[log p(V|Z, do(W))] − KL(q(Z|do(W))||p(Z)), where W⊂V are intervened variables and Z denotes the
latent variables. After optimizing the iVGAE model with this causal ELBO-variant, we can consider any
quantity of interest dependent on the modelled levels. One interesting choice for such a query Q is the
average treatment effect (ATE; defined as ATE(X,Y ) := E[Y | do(X = 1)] − E[Y | do(X = 0)]), where the
binary14 variable X is being referred to as treatment.

5 Empirical Analysis for iVGAE
In this final technical section, we will assist our theoretical results with an extensive set of empirical illus-
trations on the causal modelling capabilities of our PCM instance iVGAE. Our code is publically available
for scientific reproduction at: https://anonymous.4open.science/r/TMLR-Submission-Causality
-and-Graph-Neural-Networks-5D52. In the following, we will (as for most of our theoretical analysis)
discuss iVGAE and not Minimal/Maximal NCMs which we leave for future work. Since our specification of
the iVGAE model does not compute counterfactuals, the following analysis only considers causal quantities
of interventional form. Since gold-standard SCM data sets are unfortunately not readily available in the
existing literature, we will be using data sets that come with Causal Bayesian Networks (CBN) which are
equivalent to SCM in our setting since we only consider queries up to the interventional level.15

Remark on the Purpose of this Empirical Analysis. Naturally, the following analysis does not serve a
contribution to deep learning but is concerned with validating the theoretical insights generated previously on
foundational questions regarding the integration of causality with (geometric) deep learning. Therefore, this
section is concerned with (a) answering empirical questions on the conceptual level and (b) sanity-checking
correct model specifications as a proof-of-concept.

5.1 Systematic Investigation on Density Estimation

TL;DR. Fig.8 reveals that our PCM, iVGAE, is capable of appropriately modelling causal queries. While
Thm.2 predicted the mere existence of such a consistent iVGAE, our simple experiment shows that (at least
in these low-dimensional settings) optimization can also identify said models.

We perform multiple experiments to answer various interesting questions. The following list enumerates all
the key questions to be highlighted and discussed in this section:

(a) What aspects of an interventional change through do-intervention does the method capture?

(b) How does variance in ELBO (Eq.2) during variational optimization affect the method?

(c) When and how does the method fail to capture interventional distributions?

(d) At what degree does the performance of the method vary for different training durations?
14Without loss of generality we can extend the ATE to be categorical/continuous.
15SCM extend CBN in terms of counterfactuals and hidden confounding, which are the two cases that are not of interest in

the following discussion. As a note that makes connection of SCM to CBN clear, an alternate name for SCM is also Functional
Bayesian Network (FBN).
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Figure 8: Causal Density Estimation. Illustration of the results on semi-synthetic data from the CBN
ASIA by Lauritzen & Spiegelhalter (1988). The iVGAE adequately models both the observational and the
queried interventional distributions. The intervention uses a fair coin flip (Bernoulli B( 1

2 )) to randomize the
values of node tub. (Best viewed in color.)

(e) How does the method scale w.r.t. interventions when capacity is kept constant?

(f) How important is parameter tuning?

For all the subsequent experiments we considered the same architecture. That is, an iVGAE (Def.4) model
consisting of two interventional GNNs (Def.1) for the encoder and decoder respectively where each GNN
consists of 2 Sum-Pool Layers as introduced by (Kipf & Welling, 2016a). The decoder has 2B2 parameters,
whereas the encoder has 3B2 parameters, where B is the batch size, to allow for modelling the variance
of the latent distribution. We consider data sets of size 10,000 per intervention. The interventions are
collected by modifying the data generating process of the data sets. For simplicity, we mostly consider
uniform interventions, however, without loss of generality non-perfect and soft interventions could have also
been considered. Optimization is done with RMSProp (Hinton et al., 2012) and the learning rate is set to
0.001 throughout. We perform a mean-field variational approximation using a Gaussian latent distribution
and a Bernoulli distribution on the output. All data sets we have considered are binary but extensions to
categorical or continuous domains follow naturally.

In the following, we focus on ASIA introduced in (Lauritzen & Spiegelhalter, 1988), and Earthquake/Cancer
covered within (Korb & Nicholson, 2010) respectively. Acquiring a gold standard for the causal graph,
let alone the actual SCM, is difficult in practice—in the case of the data sets we consider, like ASIA,
we are given the CBN which constitutes the causal graph alongside parameterizations. CBN are capable
of providing interventional distributions making them a necessary and sufficient tool for our subsequent
empirical analysis in which we are only concerned with observational and interventional distributions. We
employ a training, validation and test set and use the validation set to optimize performance subsequently
evaluated on the test set. We use a 80/10/10 split. We use 50 samples per importance sampling procedure
to account for reproducibility in the estimated probabilities. Training is performed in 6,000 base steps where
each step considers batches of size B that are being scaled multiplicatively with the number of interventional
distributions to be learned. The adjacency provided to the GNNs is a directed acyclic graph (DAG) summed
together with the identity matrix to allow for self-reference during the computation. The densities are
acquired using an importance sampling approach for the iVGAE. All subsequent experiments are being
performed on a MacBook Pro (13-inch, 2020) laptop running a 2,3 GHz Quad-Core Intel Core i7 CPU with
a 16 GB 3733 MHz LPDDR4X RAM on time scales ranging from a few minutes up to approximately an
hour with increasing size of the experiments. In the following, we will have a figure each to act as reference
for the subsequent subsections’s elaborations on the questions (a)-(f), so Fig.9 for question (a), Fig.10 for
question (b) and so on. Numerical statistics are provided in Tab.2. For reproducibility and when reporting
aggregated values (e.g. mean or median) we consider 10 random seeds.
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Figure 9: Systematic Investigation: Question (a). What aspects of an interventional change through
do-intervention does the method capture? (Best viewed in color.)

Q-(a) What aspects of an interventional change through do-intervention does the method
capture? Consider Fig.9 in the following. It shows an iVGAE model trained on the observational (L1)
and one interventional (L2, intervention do(tub = B( 1

2 ))) distributions, where the former is shown on the left
and the latter on the right. We can observe that both the change within the intervention location (tub) but
also in the subsequent change propagation along the causal sequence (either, xray, dysp) are being captured.
In fact, they are not only being detected but also adequately modelled for this specific instance. If the
optimization is successful in fitting the available data with the available model capacity, then this is the
general observation we make across all the other settings we have evaluated i.e., the model can pick-up on
the interventional change without restrictions.

Figure 10: Systematic Investigation: Question (b). How does variance in ELBO during variational
optimization affect the method? (Best viewed in color.)

Q-(b) How does variance in ELBO during variational optimization affect the method? Consider
Fig.10 in the following. Two different random seeds (that is, different initializations and thus optimization
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trajectories) for the same iVGAE under same settings (data, training time, etc.) are being shown. Clearly,
the optimization for the seed illustrated on the left was successful in that the quantities of interest are being
adequately estimated. However, the random seed shown on the right overestimates several variables (tub,
either, xray) and simply does not fit as well. We argue that this is a general property of the variational method
and ELBO (Eq.2) i.e., the optimization objective is non-convex and only a local optimum is guaranteed.
Put differently, the variance in performance amongst random seeds (as measured by ELBO) is high.

Figure 11: Systematic Investigation: Question (c). When and how does the method fail to capture
interventional distributions? (Best viewed in color.)

Q-(c) When and how does the method fail to capture interventional distributions? Consider
Fig.11 in the following. The predicted marginals of a single iVGAE model on the Earthquake dataset
(Korb & Nicholson, 2010) are being presented for the observational density (top) and the interventional
do(Earthquake = B( 1

2 )) (bottom). The underlying graph in this real-world inspired data set is given by

G = (V, E) = ({B,E,A,M, J},{(B → A), (E → A), (A→ {M,J})}), (17)

where B,E,A,M, J are ‘Burglary’, ‘Earthquake’, ‘Alarm’, ‘MaryCalls’ and ‘JohnCalls’ respectively. From G
we can deduce that the mutilated graph GI that is generated by the aforementioned Bernoulli-intervention
I := do(E = B( 1

2 )) will in fact be identical G = GI . Put differently, conditioning and intervening are iden-
tical in this setting. The formulation for performing interventions in GNN (Def.1) only provides structural
information i.e., information about the intervention location but not about the content of the intervention.
While this generality is beneficial in terms of assumptions placed onto the model, it also restricts the model
in this special case where associational and interventional distributions coincide. In a nutshell, computa-
tionally, the two posed queries I1 = I and I2 = do(∅) are identical in this specific setting (I1 = I2) and
this is also being confirmed by the empirical result in Fig.11 i.e., the predictions are the same across all
settings as follows naturally from the formulation in Def.1 which in this case is a drawback. Generally, this
insight needs to be considered a drawback of formulation Def.1 opposed to being a failure mode since the
formulation indeed behaves as expected. In all our experiments, actual failure in capturing the densities
seems to occur only in low model-capacity regimes, with early-stoppage or due to numerical instability.

Q-(d) At what degree does the performance of the method vary for different training durations?
Consider Fig.12 in the following. It shows the same model being probed for its predictions of the observational
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Figure 12: Systematic Investigation: Question (d). At what degree does the performance of the method
vary for different training durations? (Best viewed in color.)

distributions at different time points, left is early and right is later (at convergence). Following intuition and
expectation, training time does increase the performance of the model fit. Consider nodes ‘tub’ and ‘lung’
which were both underestimated in the earlier iterations while being perfectly fit later upon convergence.

Figure 13: Systematic Investigation: Question (e). How does the method scale w.r.t. interventions
when capacity is kept constant? (Best viewed in color.)

Q-(e) How does the method scale w.r.t. interventions when capacity is kept constant? Con-
sider Fig.13 in the following. We show the same iVGAE model configurations being trained on either 2
interventional (left column) or 4 interventional distributions (right column) from the Earthquake dataset.
I.e., we keep the model capacity and the experimental settings constant while increasing the difficulty of the
learning/optimization problem by providing double the amount of distributions. As expected, we clearly see
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Figure 14: Systematic Investigation: Question (f). How important is parameter tuning? (Best viewed
in color.)

a degeneration in the quality of density estimation. The iVGAE model trained on 2 distributions adequately
estimates the distributions (lower left) while the model trained on more distributions fails (lower right).

Q-(f) How important is parameter tuning? Consider Fig.14 in the following. It shows an iVGAE
model before and after parameter tuning (left and right respectively) on the Bernoulli-intervention do(tub =
B( 1

2 )) on the ASIA dataset where the tuned parameters involve aspects like pooling (sum, mean), layer
numbers, learning rate, batch size etc. We clearly see an improvement towards a perfect fit for certain
nodes (‘smoke’, ‘tub’, ‘either’). As expected, parameter tuning, as for any other machine learning model,
is essential for improving the predictive performance. Especially for universal density approximation this is
crucial—since in principle any density can be approximated with sufficient capacity and thus is dependant
on not only on the model itself but also on the optimization.

Numerical Report. In Tab.2 we show numerical statistics on the trained models applied to the different
data sets for answering the investigated questions (a)-(f). For reproducibility and stability, we trained 10
random seeds per run. NaN values might occur for a single seed due to numerical instability in training,
thus invalidating the whole run. We show the performance on different, increasing interventional data sets
at various training iterations. We report mean, best and worst ELBO and log-likelihood performances
(the higher the better). Question (b) regarding the variance of ELBO becomes evident when considering
the best-worst gaps. As expected, ELBO lower bounds the marginal log-likelihood. Also, by providing
more distributions to learn, thus increasing difficulty, the quality of the fits in terms of ELBO/likelihood
degenerates which is inline with what we observed regarding question (e). Finally, we might also note that
the validation performance, as desired, corresponds to the test performance.

5.2 Causal Effect Estimation
TL;DR. Fig.15 reveals that a PCM like iVGAE is capable of competing with reported results in the
literature (e.g. NCM) when it comes to causal effect estimation (here ATE) although not being an SCM,
as compared to the SCM the iVGAE is significantly compressed in terms of model complexity (only O(1)
sub-models n opposed to O(n) as for SCM/NCM).

Our experiments in the following investigate causal inference in the form of causal or treatment effect
estimation. We are interested in the average treatment effect defined as ATE(X,Y ) := E[Y | do(X=1)] −
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Dataset |L2| Steps Mean
Train ELBO

Mean
Valid ELBO

Mean
Test ELBO

Mean
Valid log p(x)

Mean
Test log p(x)

Best
Test ELBO

Worst
Test ELBO

ASIA 2 16k -3.43 -6.02 -4.60 -4.15 -4.11 -4.10 -5.37
ASIA 4 16k NaN NaN -4.61 NaN -4.05 -3.79 -5.59

Cancer 2 12k -2.26 -4.76 -3.17 -3.66 -2.76 -2.35 -4.49
Cancer 4 12k NaN NaN -3.26 NaN -2.88 -2.43 -4.53

Earthquake 2 12k -1.21 -3.02 -2.43 -1.92 -1.93 -1.49 -3.50
Earthquake 4 12k -0.78 -4.67 -2.77 -2.31 -2.27 -1.75 -3.46

Table 2: Causal Density Estimation: Key Statistics. The aggregations cover 10 random seeds for each
of the models respectively. Details in the main text.

0 0.20.1

Figure 15: Causal Effect Estimation. The iVGAE estimates the ATE on average with error rates up to
maximally 10% on the three SCM families Mi under consideration. (Best viewed in color.)

E[Y | do(X=0)], where the binary variable X is being referred to as treatment and Y is simply the outcome
variable or effect e.g. patient recovery. Note that we can extend the ATE to be categorical/continuous,
however, we focus on binary structures in the following, thereby the aforementioned formula is sufficient.
Also, note that ATE can also be viewed as a special case of density estimation in which the same intervention
location X is being queried for the different intervention parameterizations do(X = x), for binary variables
this amounts to do(X = a), a ∈ {0, 1}. General properties of the density estimation for the iVGAE have been
systematically investigated in the previous subsection (see main Fig.8 and Figs.9-14)). Effect estimation is
an important sub-category of causal inference since usually one is interested in a specific causal relation
rather than minuscule approximation of all possibly derivable probability densities within the causal realm.
For instance, a medical doctor might only be interested in the consequences of administering the particular
drugs available for patient’s treatment. In the following we do not consider identification in the usual sense,
since the iVGAE is a data-dependent model and not an SCM. An SCM (and by extension any NCM) is by
construction capable of identification, for the iVGAE it is rather a special case of estimation again. In the
following, Fig.15 will act as guiding reference to the subsequent analysis.

Considered SCM Structures. In the following we always consider the ATE of X on Y , so the SCM
structure are chosen relative to the pair (X,Y ). We consider 3 different SCM families (1: chain, 2: con-
founder, 3: backdoor) that are of significantly different nature in terms of information flow as dictated by the
d-separation criterion (Koller & Friedman, 2009). Fig.15 portraits the implied graphs (note the re-ordering
of the variables, the graphs are being drawn in a planar manner). In the following we provide the exact
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Ci do(X = x) Steps Mean
Train ELBO

Mean
Valid ELBO

Mean
Test ELBO

Mean
Valid log p(x)

Mean
Test log p(x)

Best
Test ELBO

Worst
Test ELBO

1 1 2.5k -1.48 -1.60 -1.59 -1.43 -1.43 -1.50 -1.86
1 0 2.5k -1.86 -2.12 -2.07 -1.85 -1.84 -1.70 -2.47
2 1 2.5k -1.48 -1.60 -1.59 -1.43 -1.43 -1.37 -1.86
2 0 2.5k -1.86 -2.12 -2.07 -1.85 -1.84 -1.91 -2.47
3 1 2.5k -1.48 -1.60 -1.59 -1.43 -1.43 -1.37 -1.86
3 0 2.5k -1.86 -2.12 -2.07 -1.85 -1.84 -1.91 -2.47

Table 3: Causal Effect Estimation: Key Statistics. The aggregations cover three random seeds per
model. Details in the main text.

parametric form for each of the SCMs Mi, i ∈ {1, 2, 3}, first, the chain is given by

M1 =


X ← fX(UX) =UX

Y ← fY (X,UY ) =X ∧ UY

Z ← fZ(Y, UZ) =Y ∧ UZ

W ← fW (Z,UW ) =Z ∧ UW ,

(18)

the confounded structure is given by

M2 =


X ← fX(Z,UX) =Z ⊕ UX

Y ← fY (X,Z,UY ) =(X ∧ UY )⊕ (Z ∧ UY )
Z ← fZ(UZ) =UZ

W ← fW (X,UW ) =X ∧ UW ,

(19)

and finally the backdoor structure is given by

M3 =


X ← fX(Z,UX) =Z ⊕ UX

Y ← fY (W,X,UY ) =X ∧ (W ∧ UY )
Z ← fZ(UZ) =UZ

W ← fW (Z,UW ) =Z ∧ UW ,

(20)

where ⊕ denotes the logical XOR operation. We use logical operations to assert that the variables remain
within {0, 1}. Note that in this specific example we consider Markovian SCM, thus the exogenous vari-
ables are independent. We choose Bernoulli B(p), p ∈ [0, 1] distributions for parameterizing the exogenous
variables. We choose the pi for each of the terms Ui uniformly at random to generate 5 different param-
eterizations of the same structure. For each intervention we create a data set of size 10,000 and train a
model consisting of two iVGAE modules. We consider 3 random seeds for each of the 3 parameterizations
for each of the 3 structures, resulting in 33 = 27 distinct optimizations. In the following we always consider
the ATE of X on Y , that is Q := ATE(X,Y ), which can be positive/negative with Q ̸= 0 or neutral with
Q = 0 if there is neither a direct nor indirect influence from X to Y . All ATE estimates we observed were
approaching zero. Specifically, the errors were bounded in [0, 0.2] whereas the maximum possible error is
|ATE∗ −ATE| = |1− (−1)| = 2 i.e., the worst-case single approximation was off by only 10%. Therefore we
can argue the estimates to be competitive and thereby reasonable.

Interpretation for ATE Estimation on the Chain SCM M1. The causal effect of X on Y is both
direct and unconfounded. It is arguably the easiest structure to optimize for and as expected the iVGAE
performs adequately (see top/green row in Fig.15). The variance is further reduced in comparison to the
other SCM families, arguably due to the relatively low variance in the ground truth ATEs (as M1 ATE are
mostly positive).

Interpretation for ATE Estimation on the Confounder SCM M2. The causal effect of X on Y is
direct, yet confounded via Z. The ATE can thus obtain positive, negative and also the zero value given a
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particular parameterization. The iVGAE reacts accordingly and is able to adequately estimate the causal
effect for any such parameterization. This is the key observation to assert valid causal inference since a
correlation-based model would fail to return the correct answer i.e., it would simply return p(Y |X) instead
of p(Y | do(X)) which in this case would be incorrect since the causel effect is confounded.

Interpretation for ATE Estimation on the Backdoor SCM M3. This family poses the conceptually
most difficult case since the causal effect of X on Y is confounded through a backdoor path X ← Z · · ·Y .
Nonetheless, the iVGAE prevails in adequately modelling the causal effect. The variance, like for M2, is
increased which is arguably due to the spectrum of available ATE instantiations dependent on the concrete
parameterization of the SCM.

Numerical Report. In Tab.3 we show numerical statistics on the trained models applied to the different
SCMsMi for one of the 3 parameterizations averaged across 7 random seeds. We show the two interventions
on X for computing the ATE, and report mean, best and worst ELBO and log-likelihood performances
(the higher the better). As expected, ELBO lower bounds the marginal log-likelihood and the validation
performance, as desired, is in correspondence to the observed test performance.

6 Conclusions and Future Work
Our goal with this work was to get one step closer to an integration of causality with today’s machine learning
methodologies like neural networks. We wish to do so since both worlds offer amazing capabilities that seem
crucial for any future agent capable of intelligent behavior. Ultimately, we have thus envisioned a fully-
differentiable system that combines the benefits of both worlds. Thought provoking at first was the idea that
graph neural networks and structural causal models might have more in common than previously thought.
Following this gut feeling, we started our analysis with the common ground between GNN and SCM, namely
(implied or assumed) graphs. By formalizing the key concept of intervention within GNN, we discovered
three new model classes. First, the minimal NCM which hides away the structural equations of an SCM in
its implicit message-passing that is in essence just a single GNN. Second, the maximal NCM which employs
neural models for each causal relation pair separately. Finally, third, the first partially causal model based
on GNN that we named iVGAE. To our surprise, as we did not anticipate this discovery until formalizing
interventions in GNN and continuing from there, came the notion of partial causal models which seem to
lie somewhere right in the middle of the spectrum of models spun by non-causal models and classical SCM
at the extreme ends. These models are particularly interesting for ML since they allow to output correct,
causal behavior where needed, while still being compact and easier to learn. To this end, the bulk of the
discussion in this paper was spent in favor of iVGAE, the first GNN-based PCM. Our theoretical discussions
proved conditions under which the uncovered model(s) are equivalent, feasible or expressive amongst others,
while our empirical analysis corroborated for iVGAE specifically the established results underlining some
technical details when actually learning such models in practice. Looping back to our original question at
the beginning of the paper “If we take causality and somehow sensibly combine it with modern machine
learning like deep learning, will it lead to (deep) understanding?”, we believe that the evidence points to a
‘Yes,’ nonetheless, we are unable to give a definite answer and rather rephrase our conclusions to lie in the
surprising discovery of different shades of NCM (i.e., there is no single, universal definition of NCM) and
even a completely new class of causal models, namely PCM (i.e., causality in AI is not just a binary property
of a model).

We hope that this present work will spark further research on the spectrum spun by non-causal and causal
models, identifying practical causal inference for a tighter integration between AI and causality.

What we ourselves envision for future research is many-fold. We believe that an extension of the definition of
an intervention on GNN might be valuable since the proposed notion is restricted to knowing only “that and
where” an intervention occurred, which naturally restricts it from supporting the complete PCH. Ideally, we
want to have fully-causal models that are not restricted in inference or learning like any form of parameterized
SCM we know of, like any of the discussed NCM variants, are. We believe this to be sensible since it can be
argued that in practice we are rarely interested in having exactly one particular SCM but rather we want to
be correct in certain sub-components of the overarching system (similar to how causal effect estimation might
only care about a quantity like the ATE and does not care about the actual structural equation). In a sense,
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this is an argument of abstraction as causality itself can be seen as an abstraction from differential equations.
On another note, concepts like persistent message passing (Strathmann et al., 2021) are interesting ideas
from geometric deep learning that might allow for similar achievements along that direction by enabling
an effective notion of counterfactuals within PCM. Naturally, testing on larger causal systems and adding
conditions to iVGAE for counterfactuals would pose two pragmatic next steps which might generally, if
successful, contribute to an increased interest in research around the integration of machine learning and
causality. Most importantly though, we feel that the introduction of PCM is a foundational new idea that
is worthwhile exploring as it trades off expressivity with complexity and it is not clear yet whether and
how identification might occur in these models. As we have seen, iVGAE have identification and estimation
essentially coincide, but that might not hold for general PCMs. Exploring what other PCMs exist and
questioning whether maybe the definition of a PCM that we propose is still too restrictive to capture what
truly makes a model partially causal are important directions of future research.
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A Remaining Proofs
To improve readability of the main paper’s content we provide the proofs following the one after Thm.1 in
this appendix.

A.1 Proof for Maximal NCM
We observe a special case of classical NCM with the following corollary.

Corollary 1 (C2(ii), Maximal NCM). Assume the setting from Thm.1. Further, we allow for the violation
of sharedness of ψ by arbitrary parameterization with MLP. The resulting computation is an NCM special
case with a computation per-edge.

Proof. The proposed computation layer (Maximal NCM) is a special case of the classical NCM in the way
that it represents the MLP as a linear combination of sub-MLPs (as in Thm.1 to the extent to which the
original structural equation of the SCM is linearly decomposable). Thereby, we have that

hi = fii(Ui,Ai) +
∑

j

fij(Vj) =
∑

j

MLPθθθj

j = MLPθθθ
i = fi (21)

where the first equality follows from Thm.1, the second equality from our assumption that ψ can be replaced
by arbitrary MLP, the third equality from MLPθθθ

i =
∑

k MLPθθθk

k (Hornik et al., 1989) which gives the last
equality being inline with the classical definition of NCM.

A.2 Proof for Interventional Equivalence
A well-defined intervention for GNN that behaves natural w.r.t. interventions in SCM. Hard interventions
are considered where the parental dependencies are cut.

Proposition 1. Let M be an SCM with graph G and let f be a GNN layer corresponding to M. An
intervention do(X),X ⊆ V, on both M and f produces the same intervened graph.

Proof. An interventional SCMMx is a submodel of the original SCMM where the structural equations for
variables X are being replaced by the assignment x. Through this operation, denoted by do(X = x), the
dependency between the causal parents of any node Vi ∈ X is being lifted (as long as the assignment x is not
dependent on the parents). Therefore the intervened graph is given by Gx = (V, E\{(j, i) | Vj ∈ pai, Vi ∈ X})
with G = (V, E). Intervening on a GNN layer that uses G implicitly considers a modified neighborhood
MG

i = {j | j ∈ NG
i , j ̸∈ pai ⇐⇒ i ∈ X} which removes exactly the relations to the parents. Since the

original graphs are the same, the intervened graphs must also be.

A.3 Proof for SCM Consistency with GNN-based PCM iVGAE
The proof is an analogue to Thm.1 in (Xia et al., 2021) but saves a lot in that a projection onto a notion of
canonical SCM is not necessary because of the restriction on L2 as suggested by (Peters et al., 2017).

Theorem 2. For any SCM M there exists an iVGAE V for which V is L2 consistent w.r.t. M.

Proof. Let V be an iVGAE and D =
⋃k

i=1{Di} a collection of data sets on the variables V of an arbitrary
SCM M for multiple interventions k ∈ {2, . . . , n}. That is, for each data set it holds that Di ∼ pi ∈
Lj(M), j ∈ {1, 2}. Note that the observational case (L1) is considered to be an intervention on the empty
set, p(V| do(∅)) = p(V) therefore D contains at least the observational case and one intervention or two
interventional cases. Since we know that there always exists a parameterization of the encoder-decoder pair
of V such that any distribution p can be modelled to an arbitrary precision16, we have that pV = pi. Since
k > 1 we further have that V models the PCH up to level partially L2(V). Finally, since the distributions
are modelled relative to M (since pi ∈ Lj(M)), we have partial consistency L2(V) ⊂ L2(M).

16This is a long standing result on universal approximators for densities (UDA; see Goodfellow et al. (2016); Plataniotis &
Hatzinakos (2017)) which extends to i-/VGAE. Choosing a Gaussian Mixture as variational family is already sufficient for UDA.
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A.4 Proof for Partial Causal Hierarchy Theorem
Assuming the truth of the Causal Hierarchy Theorem (and it needs to be assumed since the proof of the
original theorem was not made publically available by the authors, however, an alternate version of a CHT
proof was recently compiled using topology (Ibeling & Icard, 2021), therefore, justifying this assumption),
we can also provide a CHT result for the notion of partial consistency and in this case for our PCM iVGAE,
both of which are introduced in the main paper.
Corollary 2 (Partial-CHT for PCM). Consider the sets of all SCM and PCM, Ω,Υ, respectively. If for all
V ∈ Υ it holds that ∃q ⊂ N. [L1(V) = L1(M) =⇒ Lq

2(V) = Lq
2(M)] with M ∈ Ω and q choosing a subset

of L2 distributions, then we say that layer 2 collapses relative to M. By extension of the classical NCM
result on the CHT, it is clear that on the Lebesgue measure over SCMs the subset in which layer 2 of iVGAE
collapses to layer 1 has measure zero.

Proof. The proof is unfortunately not an immediate consequence of prior results since PCM are not param-
eterized variants of SCM. However, we can make it work through the notion of selectors for our PCM-based
distributions. And we can still re-use a prior result on classical NCM, while using the definition of SCM-
collapse as given by (Bareinboim et al., 2020). To be specific, our Li subset selection indexed by q is always
chosen such that Lq

2(M) = Lq
2(V) for SCM-PCM pair (M,V). If layer 2 collapses to layer 1 relative to

M∗ then any SCM M will have that L1(M) = L1(M∗) and Lq
2(M) = Lq

2(M∗). W.l.o.g., we will consider
iVGAE as our PCM representative. By Thm.2 we know that there will always exist a corresponding iVGAE
V that is L2-consistent with M but since it is consistent with M and not M∗ it follows the same behavior
that L1(V) = L1(M∗) and Lq

2(V) = Lq
2(M∗), which means that the layer 2 also collapses for the iVGAE

model. The analogue argument holds in reverse when layer 2 does not SCM-collapse to layer 1 relative to
M∗. Since both directions together suggest an equivalence on the way collapse occurs for both SCM and
iVGAE, we have the PCHT established.
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