
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STOPPING COMPUTATION FOR CONVERGED TOKENS
IN MASKED DIFFUSION-LM DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Masked Diffusion Language Models generate sequences via iterative sampling
that progressively unmasks tokens. However, they still recompute the attention
and feed-forward blocks for every token position at every step—even when many
unmasked tokens are essentially fixed, resulting in substantial waste in compute.
We propose SURELOCK: when the posterior at an unmasked position has stabi-
lized across steps (our sure condition), we lock that position—thereafter skipping
its query projection and feed-forward sublayers—while caching its attention keys
and values so other positions can continue to attend to it. This reduces the domi-
nant per-iteration computational cost from O(N2d) to O(MNd) where N is the
sequence length, M is the number of unlocked token positions, and d is the model
dimension. In practice, M decreases as the iteration progresses, yielding substan-
tial savings. On LLaDA-8B, SureLock reduces algorithmic FLOPs by 30–50%
relative to the same sampler without locking, while maintaining comparable gen-
eration quality. We also provide a theoretical analysis to justify the design ratio-
nale of SureLock: monitoring only the local KL at the lock step suffices to bound
the deviation in final token probabilities.

1 INTRODUCTION

Discrete diffusion language models (DLMs) generate text by iteratively denoising a discrete se-
quence over T steps (Li et al., 2022; Schiff et al., 2024); While its formulation varies (e.g., token
swap, insertion, or masking), a widely used family operates through masking and unmasking—
Masked Diffusion Language Models (MDLMs) (Sahoo et al., 2024; Shi et al., 2024; Nie et al.,
2025; Arriola et al., 2025). Unlike autoregressive (AR) decoding (Vaswani et al., 2017)—whose
per-step compute naturally grows by one query token via a KV –cache—standard diffusion-style
sampling repeatedly recomputes self-attention and per-token feed-forward sublayers for all N token
positions1 at every step—even for tokens that have already been unmasked and considered to be sta-
ble. Hence, the per-block cost is dominated by computing the attention scores QK⊤ and applying
them to V , i.e., O(N2d) where d is the model dimension. It leads to substantial waste in compute.

To address the computational challenges of DLM sampling, prior work has mainly progressed along
two axes: Temporal approaches shrink the step count—e.g., parallel/dilated unmasking and staged
or learned samplers—thereby requiring fewer refinement (Luxembourg et al., 2025; Israel et al.,
2025; Wei et al., 2025); Reuse approaches reduce per-step compute by reusing or approximating
K/V vectors and partially updating hidden features across steps (Ma et al., 2025; Liu et al., 2025b;
Wu et al., 2025a). These choices chiefly either reduce the step count T or amortize work across
steps by reusing intermediate states; they do not alter the within-step spatial granularity: each step
still issues N query rows, so the attention-dominated cost remains O(N2d) even in late iterations.

Beyond reducing the step count T or reusing K/V across steps, we pursue a largely orthogonal axis:
permanently and monotonically deactivating token positions as the sampling unfolds. We propose
SURELOCK: once a token’s posterior has stabilized, we lock that position—we cache K/V vectors
and therefore skip its Q-projection and per-token feed-forward sublayers. Active token positions can
still attend to the locked ones via the cached K/V (Sec. 2). The per-block cost becomes O(MtNd)

1In this paper, we use position to refer to the a fixed token slot i in the length-N sequence; a position exists
even while its token remains masked.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

prompt prompt

t = 1

t = 0

masked decoded reused w/ cached KV† locking action step-wise compute

† still attended by other tokens via cached K/V

(a) Baseline (b) SureLock

Figure 1: Iterative sampling by a normal sampler and SureLock. (a) Baseline consistently
recomputes attention scores and FFN sublayers for every token position at every step even after the
marginal tokens have become unmasked. (b) SureLock permanently stops recomputing for locked
positions once these positions are locked. Via cached K/V , other tokens still attend to locked
tokens.

for attention and O(Mtd
2) for FFN, instead of O(N2d) and O(Nd2), yielding a monotonically

decreasing per-step compute profile as Mt shrinks. We lock token positions based on their local
stability; a criterion whether the per-step KL divergence of the generative probability distribution
falls below a threshold ε. In order to justify using KL as the locking signal, we derive a closed-form
bound, which links a per-step KL at locking time to the terminal log-prob deviation2. This axis is
complementary to the Temporal and Reuse approaches; existing methods continue to operate on the
remaining active token positions.

Our work is most closely related to selection-based methods (e.g., DLLM-CACHE (Liu et al.,
2025b)) lower per-step compute by updating only a subset of positions. SURELOCK, by contrast,
answers a different question—what to remove from compute permanently, instead of what to com-
pute now—so the active position set contracts over time; their selection target of step-wise compute
can be tapered down monotonically.

We evaluate SURELOCK on representative MDLMs—LLaDA-8B-Base/-Instruct (Nie et al.,
2025)—in Sec. 3. Across diverse decoding settings (e.g., sequence length, locking threshold), per-
step algorithmic FLOPs are monotonically decreasing. On continuation generation with WikiText-
103 (Merity et al., 2016) and instruction following with MT-Bench (Zheng et al., 2023), SURELOCK
reduces algorithmic FLOPs up to 50% in our runs without an expense of generation quality.

2 SURELOCK

We consider MDLMs that iteratively denoise a length-N sequence, producing intermediate se-
quences over steps t = 1, . . . , T . At step t, an L-block Transformer yields token-wise logits z

(i)
t

and posteriors p(i)t = softmax(z
(i)
t) at token position i, together with hidden states h(i)

t ∈ Rd. Let
Mt ⊆ [N] denote the masked positions (prediction targets) and M̄t = [N] \ Mt the unmasked
ones. In the standard dLLM sampler, each step recomputes self-attention and FFN for all tokens.

In the following, we explain the proposed method SURELOCK (Algorithm 1). Once a token’s
posterior has stabilized at a step, it locks that token position to stop step-wise computations at all
subsequent steps by bypassing sublayers and caching K/V values (Sec. 2.1). Our locking criterion is
based on the step-wise KL divergence of the posterior (Sec. 2.2). We explain the rationale of using
the KL as locking criterion from a theoretical perspective (Sec. 2.3).

2It is deliberately conservative and is intended as a design rationale, not as a calibrated predictor for some
specific models and datasets

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 SureLock

Require: sequence length N , total steps T , confidence threshold percentile m, KL threshold ε
Require: vocabulary set V , number of layers L, an unmasking policy UpdateMASK(·)

1: State: boolean lock ∈ {0, 1}N (init: all 0), caches C for (k, v) (init: None)
2: State: previous posteriors pt−1 (init: None), masked indicesMt (init: [N])
3: State: frozen block-input x̂ ∈ RN×d (init: prompt embeddings)
4: Notation: Xt ∈ RN×d denotes the model input at t (from embeddings or previous step output)
5: for t = 1 to T do ▷ one diffusion step
6: At ← {i | locki = 0}, Lt ← {i | locki = 1} ▷ active and locked position at t
7: Initialize block input x(1)[At]← Xt[At], x(1)[Lt]← x̂[Lt]
8: Compute on active positions i ∈ At:
9: for ℓ = 1 to L

10: Q[At],K[At], V [At]← ProjQ,K,V (LN(x(l)[At])) ▷ main projections
11: Kall[At]←K[At], K

all[Lt]←C.k[Lt]; same for V all ▷ assemble
12: h(l)[At]← FFN(Attn(Q[At],K

all, V all)) ▷ attention with FFN
13: x(l+1)[At]← h(l)[At], x(l+1)[Lt]← x(l)[Lt] ▷ locked rows pass through
14: end for
15: Obtain posteriors pt[At]← softmax(Projout(x

(L+1)[At]))
16: Unmasking:Mt← UpdateMASK(pt,Mt), M̄t← [N] \Mt ▷ unmask with posterior
17: Score on active positions i ∈ At:
18: u

(i)
t ← 1−maxv∈V p

(i)
t (v) for i ∈ At ▷ confidence value

19: D
(i)
t ← KL(p

(i)
t ∥p

(i)
t−1) if t > 1 else∞ ▷ step-wise KL

20: Locking candidates: Zt ←At ∩ M̄t ▷ must be active & unmasked
21: θm ← Percentile

(
{u(j)

t }j∈Zt
, m

)
▷ threshold over candidate positions

22: Lock:
23: Ft ← { i ∈ Zt | u(i)

t ≤ θm ∧ D
(i)
t ≤ ε } ▷ locking evaluation

24: lock[Ft]← 1; Cℓ.{K,V }[Ft]← {Kℓ, Vℓ}[Ft] ∀ℓ ▷ update locked indices and cache
25: x̂[Ft]← x(1)[Ft] ▷ freeze block-input for future steps
26: end for

2.1 PERMANENTLY STOPPING STEP-WISE COMPUTE AND CACHING K/V

Once a token i is deemed converged at step t⋆, we permanently eliminate its position from per-
step compute: we cache its K/V vectors, and bypass its query projection and per-token FFN at
all subsequent steps. Let Lt be the set of indices locked by step t, and define the active set At :=
M̄t\Lt (unmasked and not yet locked). At step t we assemble the queries Q[At] and run a variable-
length attention kernel against the full key/value tables Kall and V all where Kall[Lt], V

all[Lt] are
read from cache. This yields attention outputs only for active positions ∈ At, and we apply the FFN
sublayers only to them. Moreover, for locked indices i ∈ Lt we keep their predictions fixed, i.e.,
p
(i)
t ← p

(i)
t⋆ , and skip their FFN computation. Note that locked positions continue to be attended by

other tokens via cached K/V .

2.2 CRITERION FOR LOCKING: STEP-WISE KL DIVERGENCE

Our locking rule is driven primarily by local KL; we will justify the validity of this design in Theo-
rem 1 in Sec. 2.3. We also apply a confidence gating as a secondary safeguard to prefer more confi-
dent tokens with peaked posteriors. Disabling the confidence gate leaves the theorem unchanged.

Primary: Local KL divergence. For position i at step t, we define the one-step divergence as

D
(i)
t ≜ KL

(
p
(i)
t ∥ p

(i)
t−1

)
.

Optional: Confidence gate. Let uncertainty u
(i)
t =1−maxv∈V p

(i)
t (v) and qm(ut) the empirical

m-th percentile of {u(j)
t : j ∈ At }. When enabled, the gate accepts token position i as a locking

candidate, if u(i)
t ≤ qm(ut), i.e., top-m% confidence among active tokens.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Locking rule. We lock token position i at step t⋆, if

D
(i)
t⋆ ≤ ε and, if the confidence gate is enabled, u

(i)
t⋆ ≤ qm(ut⋆).

The primary criterion alone suffices Theorem 1. Upon locking we cache (k
(i)
t⋆ , v

(i)
t⋆) and remove

position i from A>t thereafter.

2.3 DESIGN JUSTIFICATION

The purpose of this section is design-theoretic: we justify the use of a local KL threshold as a locking
(freezing) criterion by proving that it upper-bounds the terminal error of the log-probability in closed
form. The controller based on SURELOCK locks position i at step t⋆, bypassing Q-projection and
FNN sublayers, and reusing its cached K/V thereafter (Alg. 1). We establish that the resulting
error of the terminal log-probabilities, relative to an alternative identical sampler without locking,
is bounded by δ = Ctail

√
ε under some assumptions, where Ctail depends on operator-norm

constants of the model and ε is the threshold for determining lock (i.e., D(i)
t⋆ ≤ε). Therefore, the local

KL criterion immediately converts to an explicit design for the terminal error (ε(δ) = δ2/C2
tail). In

the following, p(i)t and z
(i)
t denote the posterior and logits at position i after step t in the no-lock

run, while p̂
(i)
t denotes the corresponding posterior when i is locked at t⋆.

Note. We emphasize that we here justify the use of a local KL threshold as a locking criterion by
proving that it upper-bounds the terminal error in closed form, rather than to predict an empirical
error value for a given specific setting.

Standing assumptions for Theorem 1. Let z the logit and f(z) = log softmax(z). Fix constants
L > 0, Lsm > 0, and ρ ∈ (0, 1). For any position i and step s, the following hold:

(A1) Locking semantics. Once i is locked at t⋆, it is excluded from subsequent re-masking.

(A2) Geometric tail contraction. D(i)
s ≤ ρD

(i)
s−1 for s > t⋆.

(A3) One-step logit smoothness. ∥z(i)s − z
(i)
s−1∥2 ≤ L

√
D

(i)
s−1 (derivation in Appendix C).

(A4) Log-softmax Lipschitzness. ∥f(z)− f(z′)∥∞ ≤ Lsm∥z − z′∥2.

Theorem 1 (Locking error bound and closed-form threshold). Fix a position i that is unlocked up
to t⋆ and then locked (Alg. 1). Under (A1)–(A4), for any terminal time T > t⋆,∥∥log p(i)T − log p̂

(i)
T

∥∥
∞ ≤ Ctail

√
D

(i)
t⋆ , Ctail := Lsm L/(1−√ρ).

In particular, if the locking test enforces D(i)
t⋆ ≤ ε, then the terminal log-probability error is at most

δ = Ctail
√
ε, so the closed-form threshold is

ε(δ) = δ2/C2
tail.

Proof. By (A1), locking token position i at t⋆ permanently stops the i’s step-wise compute, so for
all t ≥ t⋆ we have p̂

(i)
t = p

(i)
t⋆ and log p̂

(i)
T = log p

(i)
t⋆ . Therefore∥∥log p(i)T − log p̂

(i)
T

∥∥
∞ =

∥∥log p(i)T − log p
(i)
t⋆

∥∥
∞ =

∥∥f(z(i)T)− f(z
(i)
t⋆)

∥∥
∞,

By the triangle inequality and telescoping over s = t⋆+1, . . . , T ,

∥z(i)T − z
(i)
t⋆ ∥2 ≤

T∑
s>t⋆

∥z(i)s − z
(i)
s−1∥2.

Applying (A3) term-wise yields

∥z(i)T − z
(i)
t⋆ ∥2 ≤ L

T∑
s=t⋆+1

√
D

(i)
s−1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Under (A2), D(i)
s−1 ≤ ρ s−1−t⋆D

(i)
t⋆ , therefore

√
D

(i)
s−1 ≤ ρ

s−1−t⋆

2

√
D

(i)
t⋆ and∑

s>t⋆

√
D

(i)
s−1 ≤

1

1−√ρ

√
D

(i)
t⋆ .

Finally, by (A4): ∥∥log p(i)T − log p
(i)
t⋆

∥∥
∞ ≤ Lsm∥z(i)T − z

(i)
t⋆ ∥2 ≤ Ctail

√
D

(i)
t⋆

which proves the claim and the stated ε(δ).

2.4 COMPUTATIONAL COMPLEXITY: ALGORITHMIC FLOPS

This paper reports algorithmic FLOPs, counting only GEMMs (Q/K/V/Out projections, QK⊤ and
AV , and FFN sublayers).3 Let Ngen the number of positions reserved for generation at initial step,
Nprompt the number of tokens for the prompt, Nb := maxb∈B(Nprompt)+Ngen be the sequence length
of batch b; S the number of sampling steps; B the batch size; d the model dimension; L the number
of layers; H the number of attention heads; dh := d/H the head size; Hkv the number of K/V
heads; dff the FFN dimension; Tb := BNb the number of token positions; At,b the active index set
at t; and Mt,b := |At,b|. We count algorithmic FLOPs as follows:

Baseline. For a step t, algorithmic FLOPs per batch are constant across t:

F t
base,b = L (4BHNb

2dh︸ ︷︷ ︸
QK⊤+AV

+2BNbd
2︸ ︷︷ ︸

Q

+2BNbd
2︸ ︷︷ ︸

Out

+4BNbdHkvdh︸ ︷︷ ︸
K,V

+6BNbd dff︸ ︷︷ ︸
FFN

).

SureLock. Algorithmic FLOPs exhibit temporal dynamics since step-wise computation is only
for active positions ∈ At,b, which changes across t:

F t
prop,b =

|At,b|
BNb

F t
base,b =

Mt,b

Tb
F t

base,b

3 EXPERIMENTS

This section reports our empirical evaluation. We consider two kinds of basic tasks—language mod-
eling and instruction following. In each run with different settings, profiling the per-batch sequence
length Nb and the number of active positions Mt,b = |At,b| at each step, we report computational
complexity (algorithmic FLOPs). We also assess any quality degradation in these tasks induced
by locking behavior of SURELOCK. Unless otherwise noted, we set the number of sampling steps
to S = Ngen, and fix the percentile for the optional confidence gate (Sec. 2.2) to m=20%. The
block length for the semi-aggressive generation option is set to Ng = Ngen, yielding a fully parallel
configuration. Temperature and classifier-free guidance scale are set to 0 by default.

3.1 MASKED DIFFUSION LANGUAGE MODELS AND DATASETS.

We evaluate leading open-weight and representative MDLMs with 8 billion parameters: LLaDA-
8B-Base and LLaDA-8B-Instruct (Nie et al., 2025).

We use the following datasets: WikiText-103 (Merity et al., 2016) for language modeling (continua-
tion generation) and MT-Bench (Zheng et al., 2023) for instruction following benchmarking. These
benchmarks evaluate complementary aspects: WIKITEXT-103 stresses core token-level modeling
on broad, category-agnostic text, whereas MT-BENCH evaluates instruction-following ability and
response helpfulness across eight categories (e.g., “writing”, “coding”); together they cover both
core modeling capacity and practical instruction-following behavior. Data usage settings vary by
experimental set, so we will explain them in the following as needed. More detailed settings are
provided in Appendices D– F.

3Element-wise operations (activations, gating, LN, softmax, RoPE) and cache I/O/packing are lower-order
relative to the dominant O(N2

b d) attention and O(Nbd
2) FFN matmuls and occur similarly across methods, so

omitting them does not affect relative comparisons.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Ngen ε ↓ r̄ ↓ Fbase ↓ Fprop ↓ Fprop/Fbase

64 5e-4 .548 9.017e+11 4.936e+11 0.547×
64 5e-3 .506 9.017e+11 4.565e+11 0.506×
64 5e-2 .482 9.017e+11 4.342e+11 0.482×

256 5e-4 .496 3.629e+12 1.801e+12 0.496×
256 5e-3 .482 3.629e+12 1.750e+12 0.482×
256 5e-2 .475 3.629e+12 1.725e+12 0.475×

1024 5e-4 .494 1.492e+13 7.366e+12 0.494×
1024 5e-3 .492 1.492e+13 7.333e+12 0.492×
1024 5e-2 .490 1.492e+13 7.315e+12 0.490×

Table 1: Algorithmic FLOPs per token by setting—Fbase and Fprop. r̄ is the micro-averaged ratio
of the number of active token positions.

1 2 4 8 16 32 64 128 256 512 1024Sampling Steps t
0.0

0.2

0.4

0.6

0.8

1.0

F p
ro

p/F
ba

se

Ngen: 64, ε: 0.0005
Ngen: 64, ε: 0.005
Ngen: 64, ε: 0.05
Ngen: 256, ε: 0.0005
Ngen: 256, ε: 0.005

Ngen: 256, ε: 0.05
Ngen: 1024, ε: 0.0005
Ngen: 1024, ε: 0.005
Ngen: 1024, ε: 0.05

Figure 2: Step-wise FLOPs ratio. Ratio of step-wise algorithmic FLOPs, i.e., F t
prop/F t

base (and the
micro-averaged number of per-step active positions r̄t =

∑
b Mt,b/

∑
b BNb consistently decreases

as steps proceed, explaining later-step savings of computational cost.

3.2 RESULTS

Experiment-1: Computational Complexity. We first evaluate the impact of SURELOCK on the
reduction of algorithmic FLOPs, using LLaDA-8B-Instruct on a fixed set of 32 single-turn prompts
from MT-Bench, which we sampled uniformly from each category (Appendix. D). We use a subset
of MT-BENCH to efficiently sweep diverse inference settings. We set batch size B = 4, Ngen =
{64, 256, 1024}, ε = {5e− 4, 5e− 3, 5e− 2}, and run to record the actual number of active token
positions Mt,b = |At,b| sequence length Nb per-batch per-step. Table 1 shows that the computational
complexity steadily decreased compared to the same sampler without applying SURELOCK. The
smaller the locking criterion threshold ε, the lower the reduction rate; it aligns with our design
intent where ε is set for tightening the locking test (Sec. 2.2). Moreover, on the scale from 5e-2 to
5e-4, ε is less influential to the reduction of computational complexity. We also report the micro-
averaged ratio of the number of active positions; r̄ =

∑
b

∑
t Mt,b/

∑
b

∑
t BNb just as a reference

to intuitively grasp how many active rows have been reduced. We can see that r̄ is roughly aligned
with the reduction ratio of algorithm FLOPs, suggesting that reducing the number of computable
token positions leads to reducing computational load.

Experiment-2: Temporal Dynamics of Computational Complexity. Figure 2 shows the dy-
namics in computational complexity associated with the progression of sampling steps; logging
data points was obtained from the same runs as the experiment-1. We can see that, as sampling
progresses, the ratio of algorithmic FLOPs decreases at an accelerating rate. This is probably be-
cause surrounding most tokens are unmasked in the later steps (Mt << N) leading to the stability of
local-KL. We put the results on the runs with different settings for m={10, 40}% in the Appendix E.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ngen steps ε ↓ Gen.-PPLbase ↓ Fbase ↓ Gen.-PPLprop ↓ Fprop

64 32 5e-4 5.7537 4.488e+11 6.0782 (1.06×) 3.138e+11 (0.70×)
64 32 5e-3 5.7537 4.488e+11 6.2177 (1.08×) 2.788e+11 (0.62×)
64 64 5e-4 3.4813 8.976e+11 4.5722 (1.31×) 5.203e+11 (0.58×)
64 64 5e-3 3.4813 8.976e+11 4.7596 (1.37×) 4.664e+11 (0.52×)

128 128 5e-4 2.6006 1.799e+12 2.9202 (1.12×) 9.585e+11 (0.53×)
128 128 5e-3 2.6006 1.799e+12 3.1042 (1.19×) 8.964e+11 (0.50×)
128 64 5e-4 3.1604 8.997e+11 3.8371 (1.21×) 5.620e+11 (0.63×)
128 64 5e-3 3.1604 8.997e+11 3.7353 (1.18×) 5.083e+11 (0.57×)

256 128 5e-4 2.3428 1.808e+12 2.6092 (1.11×) 1.012e+12 (0.56×)
256 128 5e-3 2.3428 1.808e+12 2.6687 (1.14×) 9.497e+11 (0.53×)
256 256 5e-4 2.0127 3.616e+12 2.0486 (1.02×) 1.845e+12 (0.51×)
256 256 5e-3 2.0127 3.616e+12 2.2103 (1.10×) 1.779e+12 (0.49×)

512 256 5e-4 1.6293 3.650e+12 1.7134 (1.05×) 1.919e+12 (0.53×)
512 256 5e-3 1.6293 3.650e+12 1.7526 (1.08×) 1.851e+12 (0.51×)
512 512 5e-4 1.4658 7.301e+12 1.5248 (1.04×) 3.643e+12 (0.50×)
512 512 5e-3 1.4658 7.301e+12 1.5444 (1.05×) 3.588e+12 (0.49×)

Table 2: Generation quality of continuation sequences with and without SURELOCK on LLaDA-
8B-Base using WikiText-103. Gen.-PPL is the micro averaged PPL evaluated with LLaMA-3-8B.

Ngen steps ε ↑ Scorebase ↓ Fbase ↑ Scoreprop ↓ Fprop

64 32 5e-4 3.9 4.515e+11 3.8 (0.97×) 3.153e+11 (0.698×)
64 32 5e-3 3.8 4.515e+11 3.7 (0.97×) 2.947e+11 (0.653×)
64 64 5e-4 4.2 9.030e+11 4.2 (1.00×) 5.658e+11 (0.627×)
64 64 5e-3 4.2 9.030e+11 4.3 (1.02×) 5.304e+11 (0.587×)

128 64 5e-4 4.4 9.047e+11 4.2 (0.96×) 5.700e+11 (0.630×)
128 64 5e-3 4.3 9.047e+11 4.2 (0.98×) 5.406e+11 (0.598×)
128 128 5e-4 4.8 1.809e+12 4.9 (1.02×) 1.044e+12 (0.577×)
128 128 5e-3 4.8 1.809e+12 5.1 (1.06×) 1.000e+12 (0.553×)

256 128 5e-4 4.2 1.817e+12 4.4 (1.05×) 1.042e+12 (0.573×)
256 128 5e-3 4.3 1.817e+12 4.2 (0.98×) 1.007e+12 (0.554×)
256 256 5e-4 4.4 3.634e+12 4.5 (1.02×) 1.969e+12 (0.542×)
256 256 5e-3 4.4 3.634e+12 4.7 (1.07×) 1.920e+12 (0.528×)

512 256 5e-4 4.0 3.667e+12 4.3 (1.08×) 1.971e+12 (0.537×)
512 256 5e-3 4.0 3.667e+12 4.2 (1.05×) 1.934e+12 (0.528×)
512 512 5e-4 4.5 7.334e+12 4.7 (1.04×) 3.819e+12 (0.521×)
512 512 5e-3 4.4 7.334e+12 4.8 (1.09×) 3.777e+12 (0.515×)

Table 3: Quality changes in generated responses by LLaDA-Instruct. Scorebase and Scoreprop indi-
cate the overall score for the MT-Bench with single-turn settings evaluated with gpt-4o.

Experiment-3: Trade-off between Efficiency and Generation Quality. We evaluate LLaDA-
8B-Base on Wikitext-103, where we prompt a fixed set of text fragments, requiring the model to
generate the continuation, and report Gen.-PPL measured by an external AR model—LLaMA-3-
8B (Grattafiori et al., 2024). More details are in Appendix F. We also evaluate LLaDA-8B-Instruct
on MT-Bench with single-turn settings; we report the averaged LLM-as-a-judge score from gpt-4o
for the generated responses. Other details are described in Appendix F. We set batch size B = 4,
Ngen = {64, 128, 256, 512}, ε = {5e−4, 5e−3} thoughout datasets, and Np = 64 in WikiText-103.
Table 2 and Table 3 show that while computational complexity is indeed decreasing, performance
is being maintained at competitive levels. It demonstrates that while computational load is indeed
decreasing, performance is maintained at an equivalent level. Upon deeper analysis, the instruct
model consistently maintained performance across all settings i.e., -0.1pt at maximum, while reduc-
ing computational load about 0.70×–0.50×. The base model also showed the same trend in most
settings. However, base Model sometimes revealed relatively large degradation (≥ 1.21×) for short
generation lengths (Ngen = {64, 128}). It suggests that, in language modeling where prompts are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1 2 4 8Batch Size B

64
256

102
4

Gen
era

tion
 len

gth
 N ge

n

0.73 1.17 1.22 1.19

1.23 1.30 1.35 1.30

1.36 1.39 1.38 OOM

0.8
0.9
1.0
1.1
1.2
1.3

TPS
pr

op
/TP

S bas
e

(a) Ratio of End-to-end TPS

1 2 4 8 16 32 64 128 256 512 1024Sampling Steps t
0.5

1.0

1.5

2.0

2.5

3.0

TPS
pr

op
 / T

PS b
as

e

Ngen: 64, B: 1
Ngen: 64, B: 2
Ngen: 64, B: 4
Ngen: 64, B: 8
Ngen: 256, B: 1
Ngen: 256, B: 2

Ngen: 256, B: 4
Ngen: 256, B: 8
Ngen: 1024, B: 1
Ngen: 1024, B: 2
Ngen: 1024, B: 4

(b) Ratio of step-wise E2E-TPS

Figure 3: Throughput behavior with SURELOCK: (a) end-to-end TPS ratio across different Ngen and
batch size B.; (b) per-step TPS ratio increasing as sampling progresses.

Question: Benjamin went to a bookstore and purchased a variety of books. He bought 5 copies of a sci-fi
novel, each priced at $20, 3 copies of a history book priced at $30 each, and 2 copies of a philosophy book
for $45 each. What was the total cost of his purchases?.

Baseline (score: 10)
Benjamin bought 5 copies of a sci-fi novel, each
priced at $20, so he spent 5 * $20 = $100. He
bought 3 copies of a history book, each priced at
$30, so he spent 3 * $30 = $90. He bought 2 copies
of a philosophy book, each priced at $45, so he
spent 2 * $45 = $90. The total cost of his purchases
is $100 + $90 + $90 = $280. Summing up,

SureLock (score: 10)
Benjamin bought 5 copies of a sci-fi novel for $20
each, so the total cost is 5 * $20 = $100. He also
bought 3 copies of a history book for $30 each, so
the total cost is 3 * $30 = $90. Lastly, he bought 2
copies of a philosophy book for $45 each, so the
total cost is 2 * $45 = $90. The total cost of his
purchases is $100 + $90 + $90 = $280. Con

Figure 4: Comparison of responses between Baseline vs. SURELOCK on LLaDA-8B-Instrut with
ε = 5e− 4, Ngen = 128, S = 128. The question is sampled from MT-bench with question id= 119.

considered as open questions, setting a short Ngen can lead to undesirable final results by SURE-
LOCK. While this can affect creative tasks like novel generation, the impact is minimal since such
tasks are not typically executed on short sequences e.g., 128 tokens.

Experiment-4: Runtime Performance. We evaluate End-to-end Token/Sec (E2E-TPS), which
is the sustained decoding throughput of the model across multiple batches, and temporal dynam-
ics for step-wise TPS. See Appendix G for more details on the metrics. We here follow the
settings in Experiment-1 as for the dataset and the model. We set batch size B = {1, 2, 4, 8},
Ngen = {64, 256, 1024}, ε = 5e− 3. Figure 3a shows that SURELOCK can achieve greater runtime
gains in compute-bound areas e.g., N≥256, B>1, and no runtime gain was observed under rela-
tively light computational load settings (Ng=64, B=1); this differs from the trend in computational
complexity. SURELOCK reduces the per-step compute with the monotonously decreased number
of active positions (Mt) but keeps the costs other than computational complexity. For example, it
leaves the KV read intact and accessing weights for specific rows/columns involves discontinuous
memory access. Therefore, speedups relatively easily appear in compute-heavy regimes (long Ngen,
larger batch size B) where gains exceeding fixed costs are expected. See Figure 3b for temporal dy-
namics of step-wise TPS. We can see that the gain in local runtime increases as the step progresses,
which is consistent with the computational trends (Figure 2).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Example Analysis. Feeding the same question sampled from MT-Bench to the LLaDA-8B-
Instruct, Figure 4 shows the responses from the same sampler with and without SURELOCK. With
settings achieving approximately 0.6× of computational complexity on average (See Table 3), we
can confirm that not only the quantitative score but also the qualitative quality is comparable to the
baseline. While fixing token representations during sampling might seem to introduce disruptions
to generated text, we can observe the limited impact. More examples are described in Appendix I.

4 RELATED WORK

Computational savings for DLMs. Prior efforts to decrease the sampling cost of discrete diffu-
sion LMs (DLMs) largely follow two axes—Temporal and Reuse. Temporal methods shrink the
number of sampling steps T via parallel/dilated unmasking and edit-based updates (Ghazvininejad
et al., 2019; Gu et al., 2019; Luxembourg et al., 2025; Israel et al., 2025; Huang & Tang, 2025; Wei
et al., 2025), or by adopting higher-order / distilled samplers from diffusion literature, e.g., DPM-
Solver (Lu et al., 2022). Reuse methods amortize work across steps by reusing or approximating
intermediate states—e.g., K/V caching or approximation and selective feature refresh (Ma et al.,
2025; Liu et al., 2025b; Wu et al., 2025a), Selection-based partial compute reduces per-step com-
plexity by updating only a fixed number of subset positions, sometimes with periodic full recompu-
tation for stability (Liu et al., 2025b; Wu et al., 2025a). These two axes primarily reduce how many
steps we take or how much previous computation we can reuse between steps; they typically leave
the within-step active-query count constant up to the end of the sampling step, so per-step compute
remains bounded by N even late in sampling. Crucially, these are complementary to SURELOCK;
by focusing only on the gradually contracting active position sets, they could yield even greater
savings.

DLMs on longer sequences. Scaling DLMs to longer contexts has been actively explored such
as span/block-wise masking (Arriola et al., 2025), adaptive masked token insertion (Arriola et al.,
2025), DLMs’ suite Rotary Position Embedding (RoPE) Liu et al. (2025a). This line of research di-
rections yields diverse applications such as reasoning on massive code bases. By contrast, decoding
longer sequences by DLMs generally requires more sampling steps, making the stationary per-step
computational cost more severe. Advancing techniques such as SURELOCK, which monotonically
reduces this stationary compute as sampling proceeds, could facilitate DLMs’ research on longer
contexts, which lags behind compared to AR models (Wu et al., 2025b), i.e., thousands vs. millions.

5 CONCLUSION

We introduced SURELOCK, a method for iterative decoding in masked-diffusion LMs (MDLMs)
that locks converged token positions and thereafter bypasses their query projection and per-token
FFN, yielding a monotonic reduction in per-step compute. Locked positions remain fully attendable
via cached K/V vectors. The core design is a local KL locking test; we justified this approach
by deriving a closed-form link between the lock-time local KL and an error bound on the terminal
log-probability. On language modeling and instruction-following tasks, SURELOCK achieves large
reductions in algorithmic FLOPs while maintaining task quality. The approach is complementary to
step-count reduction and inter-step reuse techniques, as well as position selection methods (Liu et al.,
2025b); such methods can operate on the progressively shrinking active token positions induced by
SURELOCK, leaving their integration to future work.

Limitations. We report computational efficiency in terms of algorithmic FLOPs, a kernel-agnostic
measure that reflects theoretical savings rather than wall-clock speedups, which isolates the effect of
sampling algorithm from hardware-specific factors. Moreover, we use the theorem solely to justify
the algorithm design, especially the locking criterion based on local KL. While one could estimate L
and ρ online to obtain numerical thresholds given a specific model and dataset, we leave it to future
work. In our experiment, performance degradation was not particularly noticeable; however, meth-
ods for addressing serious errors, e.g., periodic unlocking (Appendix H), are also worth discussing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This paper aims to reduce computational complexity in inference time for discrete diffusion models,
which may have the potential to significantly impact real-world applications. Furthermore, this
research does not require diffusion models to generate harmful or sexual contents; we believe our
work does not directly contribute to malicious use for such purposes.

7 REPRODUCIBILITY STATEMENT

We will release the code used in our experiments to facilitate reproducibility. Experimental settings
are included in Sec. 3. More detailed descriptions are provided in the Appendices.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Jiatao Gu, Changhan Wang, and Junbo Zhao. Levenshtein transformer. Advances in neural infor-
mation processing systems, 32, 2019.

Chihan Huang and Hao Tang. Ctrldiff: Boosting large diffusion language models with dynamic
block prediction and controllable generation. arXiv preprint arXiv:2505.14455, 2025.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
lm improves controllable text generation. Advances in neural information processing systems, 35:
4328–4343, 2022.

Xiaoran Liu, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and Xipeng Qiu. Longllada:
Unlocking long context capabilities in diffusion llms. arXiv preprint arXiv:2506.14429, 2025a.

Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang,
and Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive
caching. arXiv preprint arXiv:2506.06295, 2025b.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems, 35:5775–5787, 2022.

Omer Luxembourg, Haim Permuter, and Eliya Nachmani. Plan for speed–dilated scheduling for
masked diffusion language models. arXiv preprint arXiv:2506.19037, 2025.

Xinyin Ma, Runpeng Yu, Gongfan Fang, and Xinchao Wang. dkv-cache: The cache for diffusion
language models. arXiv preprint arXiv:2505.15781, 2025.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. URL https://
arxiv.org/abs/2502.09992.

10

https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. Advances in Neural Information Processing Systems, 37:130136–130184, 2024.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. arXiv preprint arXiv:2412.10193, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and general-
ized masked diffusion for discrete data. Advances in neural information processing systems, 37:
103131–103167, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Qingyan Wei, Yaojie Zhang, Zhiyuan Liu, Dongrui Liu, and Linfeng Zhang. Accelerating dif-
fusion large language models with slowfast: The three golden principles. arXiv preprint
arXiv:2506.10848, 2025.

Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
and parallel decoding. arXiv preprint arXiv:2505.22618, 2025a.

Yuhao Wu, Yushi Bai, Zhiqing Hu, Shangqing Tu, Ming Shan Hee, Juanzi Li, and Roy Ka-Wei
Lee. Shifting long-context llms research from input to output. arXiv preprint arXiv:2503.04723,
2025b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

B USAGE OF LARGE LANGUAGE MODELS

We used LLMs to assist with writing paragraphs and searching literature. However, we retain full
responsibility for the content in this paper.

C DETAILED EXPLANATION OF ASSUMPTION A3.

We show that the one–step deviation of the logit vector z(i)s at position i is controlled by the previous
step’s drift on local posterior measured by KL divergence. Throughout, let p(j)t ∈ ∆V−1 be the
token posterior at position i and step t, D(j)

t := KL
(
p
(j)
t ∥ p

(j)
t−1

)
, and let E ∈ RV×dmodel denote

the embedding matrix (rows are token embeddings). We use the block norm ∥ · ∥2,1 defined by
∥X∥2,1 =

∑
j ∥xj∥2 for X = [x1, . . . , xn]

⊤.

Reclaiming Assumption A3. There exists a constant L > 0, depending only on operator norms
of the network weights and softmax/LN/activation Lipschitz constants, such that for all steps s and
positions i,

∥z(i)s − z
(i)
s−1∥2 ≤ L

√
D

(i)
s−1. (1)

Below we prove a slightly stronger global bound depending on
∑

j

√
D

(j)
s−1 and then specialize it to

the local form equation 1 using a locality factor.

C.1 FROM POSTERIOR DRIFT TO EXPECTED-EMBEDDING DRIFT

For any q, r ∈ ∆V−1 define the expected input (embedding) x(q) := E⊤q ∈ Rdmodel . Then

∥x(q)− x(r)∥2 = ∥E⊤(q − r)∥2 ≤ ∥E∥2 ∥q − r∥2 ≤ ∥E∥2 ∥q − r∥1. (A.3.1)

By Pinsker, ∥q − r∥1 ≤
√

2KL(q∥r), so with Lemb :=∥E∥2
√
2 we have

∥x(q)− x(r)∥2 ≤ Lemb

√
KL(q∥r). (A.3.2)

Applying equation A.3.2 to successive steps at position i,

∆x(j)
s := x

(
p
(j)
s−1

)
− x

(
p
(j)
s−2

)
, ∥∆x(j)

s ∥2 ≤ Lemb

√
D

(j)
s−1. (A.3.3)

C.2 SINGLE-HEAD ATTENTION: LIPSCHITZ BOUND

Consider a single-head attention with parameters (WQ,WK ,WV) and key/query dimension dk. For
input X = [x1, . . . , xn]

⊤, the head output at position i is

oi(X) =

n∑
j=1

αij(X)WV xj , αi•(X) = softmax
(

1√
dk
(WQxi)(WKX)⊤

)
. (A.3.4)

For two inputs X and X ′ = X −∆X , a standard three-term decomposition gives

∆oi := oi(X)−oi(X ′) =
∑
j

α′
ij WV ∆xj︸ ︷︷ ︸
(I)

+
∑
j

(αij − α′
ij)WV x′

j︸ ︷︷ ︸
(II)

+
∑
j

(αij − α′
ij)WV ∆xj︸ ︷︷ ︸

(III)

.

(A.3.5)
We upper bound (I) and (II) and subsume (III) into them (yielding a conservative bound).

Term (I) By the triangle inequality,

∥(I)∥2 ≤ ∥WV ∥2
∑
j

α′
ij ∥∆xj∥2 ≤ ∥WV ∥2

∑
j

∥∆xj∥2 = ∥WV ∥2 ∥∆X∥2,1. (A.3.6)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Softmax Jacobian bound. Let α = softmax(s) and Jsm(s) = diag(α)−αα⊤. It is classical that

sup
s
∥Jsm(s)∥2 = 1

2 , (A.3.7)

achieved at two-point distributions. Hence, with mean value theorem, for score vectors si and s′i,

∥αi• − α′
i•∥2 ≤ 1

2 ∥si − s′i∥2, ∥αi• − α′
i•∥1 ≤

√
n ∥αi• − α′

i•∥2. (A.3.8)

Score difference. Write the (i, j) score as

sij =
1√
dk
⟨WQxi, WKxj⟩. (A.3.9)

Then

|∆sij | = 1√
dk

∣∣⟨WQ∆xi, WKx′
j⟩+ ⟨WQxi, WK∆xj⟩+ ⟨WQ∆xi, WK∆xj⟩

∣∣
≤ ∥WQ∥2∥WK∥2√

dk

(
∥∆xi∥2 ∥x′

j∥2 + ∥xi∥2 ∥∆xj∥2 + ∥∆xi∥2 ∥∆xj∥2
)
. (A.3.10)

Assume a uniform radius bound ∥xj∥2, ∥x′
j∥2 ≤ Rx for all j (true if inputs are bounded and LN is

used). Summing equation A.3.10 over j and using Cauchy–Schwarz and ∥∆X∥2,1 =
∑

j ∥∆xj∥2
yields

∥∆sij∥2 =

√√√√ n∑
j=1

∆(si,j)2 ≤ ∥WQ∥2∥WK∥2√
dk

(√
nRx ∥∆xi∥2 +Rx ∥∆X∥2,1 + ∥∆xi∥2 ∥∆X∥2,1

)
.

(A.3.11)

Term (II). Using the triangle inequality and operator norm of WV , we have

∥(II)∥2 =
∥∥∥∑

j

(αij − α′
ij)WV x

′
j

∥∥∥
2
≤ ∥WV ∥2

∑
j

|αij − α′
ij | ∥x′

j∥2. (A.3.12a)

Assuming ∥x′
j∥2 ≤ Rx for all j, we obtain

∥(II)∥2 ≤ ∥WV ∥2 Rx ∥αi• − α′
i•∥1. (A.3.12b)

Using the norm inequality ∥ · ∥1 ≤
√
n ∥ · ∥2,

∥(II)∥2 ≤ ∥WV ∥2 Rx

√
n ∥αi• − α′

i•∥2. (A.3.12c)

Finally, applying the softmax Jacobian bound ∥αi•−α′
i•∥2 ≤ 1

2 ∥si− s′i∥2 (cf. equation A.3.8), we
arrive at

∥(II)∥2 ≤ ∥WV ∥2
√
nRx

2 ∥si − s′i∥2. (A.3.12)

Substituting equation A.3.11 into equation A.3.12, we obtain

∥(II)∥2 ≤ ∥WV ∥2
√
nRx

2 · ∥WQ∥2∥WK∥2√
dk

(√
nRx ∥∆xi∥2 +Rx ∥∆X∥2,1 + ∥∆xi∥2 ∥∆X∥2,1

)
.

(A.3.13a)

Using ∥∆xi∥2 ≤ ∥∆X∥2,1, this simplifies to

∥(II)∥2 ≤ ∥WV ∥2 · ∥WQ∥2∥WK∥2

2
√
dk

· nR2
x ∥∆X∥2,1. (A.3.13b)

Therefore, combining equation A.3.6 and equation A.3.13b, we obtain the single-head bound

∥∆oi∥2 ≤ Aatt ∥∆X∥2,1, Aatt := ∥WV ∥2
[
1 +

∥WQ∥2∥WK∥2

2
nR2

x√
dk

]
. (A.3.13)

C.3 BLOCK COMPOSITION: MHA + FFN + RESIDUAL + LN

Let one Transformer block be

B(X) = X + FFN(MHA(LN(X))) . (A.3.14)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Assume Lipschitz bounds for each component (w.r.t. ∥ · ∥2,1)

∥LN(X)− LN(X ′)∥2,1 ≤ Lln∥X −X ′∥2,1, ∥MHA(U)−MHA(U ′)∥2,1 ≤ Amha∥U −U ′∥2,1,
(A.3.15)

and
∥FFN(V)− FFN(V ′)∥2,1 ≤ Aff∥V − V ′∥2,1 (A.3.16)

For multi-head attention with h heads concatenated and an output projection WO, one may take

Amha ≤ ∥WO∥2
(
max
head

A(head)
att

)
. (A.3.17)

By the residual form equation A.3.14,

∥B(X)−B(X ′)∥2,1 ≤ ∥X−X ′∥2,1+Aff Amha Lln ∥X−X ′∥2,1 = Lblk∥X−X ′∥2,1, (A.3.18)

with
Lblk := 1 +Aff Amha Lln. (A.3.19)

For a stack of H blocks,

∥BH(X)−BH(X ′)∥2,1 ≤ LH
blk ∥X −X ′∥2,1. (A.3.20)

Finally, with readout zi = Wohi, we get

∥zi(X)− zi(X
′)∥2 ≤ ∥Wo∥2 ∥BH(X)−BH(X ′)∥2,1 ≤ ∥Wo∥2 LH

blk︸ ︷︷ ︸
Lnet

∥X −X ′∥2,1. (A.3.21)

C.4 PUTTING THINGS TOGETHER

Applying equation A.3.21 to successive sampler states (Xs, Xs−1) and using equation A.3.3,

∥z(i)s − z
(i)
s−1∥2 ≤ Lnet ∥Xs −Xs−1∥2,1 = Lnet

∑
j

∥∆x(j)
s ∥2 ≤ Lnet Lemb

∑
j

√
D

(j)
s−1.

(A.3.22)

Define Lall := Lnet Lemb. Equation A.3.22 is the global for if equation 1.

∥z(i)s − z
(i)
s−1∥2 ≤ Lall

∑
j

√
D

(j)
s−1. (A.3.23)

Late in iterative sampling the re-masking rate decreases and many positions become stable. Empir-
ically one can upper bound the tail contribution at step s− 1 by∑

j ̸=i

√
D

(j)
s−1 ≤ κ

(i)
s−1

√
D

(i)
s−1, κ

(i)
s−1 ∈ [0,∞), (A.3.24)

where κ
(i)
s−1 is an observable ratio. Substituting equation A.3.24 into equation A.3.23,

∥z(i)s − z
(i)
s−1∥2 ≤ Lall (1 + κ

(i)
s−1)

√
D

(i)
s−1 = Lall(1 + κ

(i)
s−1)︸ ︷︷ ︸

=:L

√
D

(i)
s−1. (A.3.25)

This is exactly Assumption A3 in the main text.

Constants at a glance.

L = ∥E∥2
√
2︸ ︷︷ ︸

Lemb

×∥Wo∥2
(
1 +Aff Amha Lln

)H︸ ︷︷ ︸
Lnet

×(1 + κ
(i)
s−1), Amha ≤ ∥WO∥2 max

head
A(head)

att ,

with A(head)
att given by equation A.3.13 and Aff = ∥W2∥2Lact∥W1∥2.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D DATASET SETTINGS FOR EXPERIMENT-1

To efficiently sweep a large configuration space, in experiment-1 to profile algorithm FLOPs, we
used a focused subset of MT-Bench rather than the full set. For each of the eight categories e.g.,
“writing” and “coding,” we use the first four single-turn prompts—32 prompts in total—so that
diverse phenomena may appear. Prompts are used unedited and are preprocessed with the LLADA-
8B-Instruct tokenizer using its default chat template; no system message is injected.

E ADDITIONAL RESULTS FOR EXPERIMENT-2

We show additional results for different settings of m-percentile used for the optional confidence
gate 2.2; we set m = {10%, 40%}, which differ from the one in the main text i.e., m = 20%. The
trend in temporal dynamics of FLOPs ratio does not change significantly with m, suggesting m is
not a particularly sensitive parameter.

1 2 4 8 16 32 64 128 256 512 1024Sampling Steps t

0.2

0.4

0.6

0.8

1.0

F p
ro

p/F
ba

se Ngen: 64, ε: 0.0005
Ngen: 64, ε: 0.005
Ngen: 64, ε: 0.05
Ngen: 256, ε: 0.0005
Ngen: 256, ε: 0.005
Ngen: 256, ε: 0.05
Ngen: 1024, ε: 0.0005
Ngen: 1024, ε: 0.005
Ngen: 1024, ε: 0.05

Figure 5: Step-wise FLOPs ratio. Algorithmic FLOPs ratio at step t i.e., F t
prop/F t

base (and the
averaged per-step active row ratio (micro) r̄t =

∑
b Mt,b/

∑
b BNb consistently decreases as steps

proceed, explaining later-step savings of computational cost. m-percentile is 10%.

1 2 4 8 16 32 64 128 256 512 1024Sampling Steps t
0.0

0.2

0.4

0.6

0.8

1.0

F p
ro

p/F
ba

se Ngen: 64, ε: 0.0005
Ngen: 64, ε: 0.005
Ngen: 64, ε: 0.05
Ngen: 256, ε: 0.0005
Ngen: 256, ε: 0.005
Ngen: 256, ε: 0.05
Ngen: 1024, ε: 0.0005
Ngen: 1024, ε: 0.005
Ngen: 1024, ε: 0.05

Figure 6: Step-wise FLOPs ratio. Algorithmic FLOPs ratio at step t i.e., F t
prop/F t

base (and the
averaged per-step active row ratio (micro) r̄t =

∑
b Mt,b/

∑
b BNb consistently decreases as steps

proceed, explaining later-step savings of computational cost. m-percentile is 40%.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F DETAILED SETTINGS FOR EXPERIMENT-3

F.1 ON WIKITEXT-103

We extracted a small subset from Wikitext-103 (Merity et al., 2016), which contains diverse
text, for the continuation generation task. First, we removed blank lines from the dataset loaded
from https://huggingface.co/datasets/Salesforce/wikitext, then extracted
the first 120 records at odd indices. Next, we extracted the first 64 tokens from each record to
form the prompt x for the continuation. We here used LLaDA-8B-Base tokenizer (Nie et al., 2025).

For each prompt x, we generate a sequence y of fixed length Ng , then compute Gen.-PPL us-
ing an external autoregressive language model θ. This work uses Llama-3-8B (Grattafiori et al.,
2024), a representative autoregressive language model. We define Gen.-PPL as perplexity micro-
averaged over the dataset; we first compute the micro-averaged negative log-likelihood NLLmicro =∑

i NLLi/
∑

i |yi|, then PPLmicro = exp
(
NLLmicro

)
. In the report, we used natural logarithms.

F.2 ON MT-BENCH

We evaluated LLaDA-8B-Instruct (Nie et al., 2025) using all 80 records in MT-bench Zheng et al.
(2023) with a single-turn configuration—we used the first prompt for each record. Essentially, using
the LLaDA-8B-Instruct tokenizer, we applied its default chat template to each prompt to form input.
We then fed these prompts to the model to generate a responses.

Response evaluation was conducted using the LLM-as-a-judge format. Specifically, we used the of-
ficial MT-Bench evaluation repository https://github.com/lm-sys/FastChat/tree/
main/fastchat/llm_judge as-is. As the judge model, we employed OpenAI’s gpt-4o.

G RUNTIME METRICS

E2E-TPS measures the sustained decoding throughput of the model across multiple batches, includ-
ing all inter-batch gaps and host/device launch overheads incurred during decoding. Concretely,
after preparing batches we synchronize the device and start a single wall-clock timer immediately
before the first decoding call, and stop it after the last decoding finishes. The numerator is the total
number of unmasked tokens produced by the iterative sampling process.

E2E-TPS =
#{total unmasked tokens}

wall-clock time
Step TPS at sampling step t is computed as the number of newly unmasked tokens at that step divided
by the wall-clock time, aggregating across batches:

StepTPS(t) =
#{newly unmasked tokens at step t}

∆t

where ∆t is the wall-clock time for that step t. In both baseline and SURELOCK, timing uses CUDA
events with synchronization.

H OPTIONAL UNLOCKING

In SURELOCK, once locked, a token position is excluded from re-masking by construction (Sec. 2).
However, rare context shifts can render a cached posterior stale. Therefore, allowing lightweight
unlocking to detect context drift within a small finite budget and returning tokens to the active set
could also be considered as a useful option. In following, we discuss an implementation for that
option.

After every P steps we evaluate a budgeted proxy on locked rows only (e.g., variable-length attention
with a reduced subgraph). This yields proxy uncertainty ũ

(i)
t and distributional drift from the locked

time D̃(i)
t = KL(p̂

(i)
t ∥p

(i)
t⋆i
). Let θt=qm(ut) be the top-m% uncertainty among active tokens at step

t. We unlock a locked token i if any holds:

ũ
(i)
t > θt ∧ D̃

(i)
t > εunlock ∧ t− t⋆i > Dinterval. (2)

16

https://huggingface.co/datasets/Salesforce/wikitext
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Dinterval is set for suppressing failure to converge due to excessive oscillation in the locking and
unlocking behavior. Furthermore, after an unlock, position i cannot be re-locked for Dcool steps and
must satisfy a stricter KL threshold ρε (ρ ≤ 1) when re-locking.

On unlock at step t, we invalidate cached K/V for i and reintroduce its Query projection and FFN
sublayers from step t+1; the current step is unchanged. Amortized probe overhead on attention-
dominant FLOPs is a trade-off with performance. However, the subgraph used for probing can be
reduced to a size negligible compared to the dominant cost, depending on its size.

Let ∆(i)
t = ∥ log p(i)t − log p

(i),full
t ∥2 be deviation from a no-lock decode. Unlocking cannot increase

∆
(i)
t′ for t′≥ t because the row is computed by the same subgraph as baseline thereafter. Therefore,

the error bound (Theorem 1 in Sec. 2.3) holds up to the unlock time; after that, deviation is non-
increasing.

I DECODED EXAMPLES

We provide additional response examples for MT-Bench. We randomly selected one question per
category.

Question: Compose an engaging travel blog post about a recent trip to Hawaii, highlighting cultural
experiences and must-see attractions.

Baseline (score: 1)
Title: ”Unveiling the Paradise: A Cultural Jour-
ney Through Hawaii”
Introduction:

SURELOCK (score: 3)
Title: ”A Journey Through Paradise: Unveiling
the Hidden Gems of Hawaii”
Introduction: As the sun set over the lush land-
scapes of Hawaii, I felt

Figure 7: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 81. Responses are from LLaDA-8B-
Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

Question: Embrace the role of Sheldon from ”The Big Bang Theory” as we delve into our conversation.
Don’t start with phrases like ”As Sheldon”. Let’s kick things off with the following question: ”What is
your opinion on hand dryers?”

Baseline (score: 2)
Hand dryers are useless.

SURELOCK (score: 1)
Hand dryers.

Figure 8: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 92. Responses are from LLaDA-8B-
Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Question: Thomas is very healthy, but he has to go to the hospital every day. What could be the reasons?

Baseline (score: 3)
here could be several reasons why Thomas has
to go to the hospital every day, despite being
very healthy. Some possible reasons include:
1. Chronic illness: Thomas may have a chronic
illness that requires daily medical attention,
such as diabetes, cancer, or a heart condition.
2. Injury recovery: Thomas may be recover-
ing from a serious injury or surgery that requires
daily monitoring and care.
3. Medical treatment: Thomas may be undergo-
ing a medical treatment that requires daily visits
to the hospital, such as chemotherapy or radia-
tion therapy.
4. Medical procedure: Thomas may be under-
going a medical procedure that requires daily
visits to

SURELOCK (score: 4)
There could be several reasons why Thomas has
to go to the hospital every day despite being
healthy. Some possible reasons include:
1. Chronic illness: Thomas might have a
chronic illness that requires daily medical at-
tention. 2. Medical treatment: He could be
undergoing a medical treatment that requires
daily visits to the hospital. 3. Recovery period:
Thomas might be recovering from an injury or
surgery that requires daily monitoring and care.
4. Medical condition: He could be managing
a medical condition that requires daily moni-
toring and treatment. 5. Medical procedure:
Thomas might be undergoing a medical proce-
dure that requires daily visits to the hospital.

Figure 9: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 103. Responses are from LLaDA-
8B-Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

Question: When rolling two dice, what is the probability that you roll a total number that is at least 3?

Baseline (score: 2)
There are 6 × 6 = 36 possible outcomes when
rolling two dice. We need to count the number
of outcomes where the sum of the dice is at least
3.
The possible sums are 3, 4, 5, and 6.
- Sum of 3: 2 outcomes (1,2), (2,1) - Sum of
4: 3 outcomes (1,3), (2,2), (3,1) - Sum of 5: 4
outcomes (1,4), (2,3), (3,

SURELOCK (score: 3)
There are 6 × 6 = 36 possible outcomes when
rolling two dice. We will count the number of
outcomes where the sum is at least 3.
- Sum = 3: (1,2), (2,1) - Sum = 4: (1,3), (2,2),
(3,1) - Sum = 5: (1,4), (2,3), (3,2), (4,1) - Sum
= 6: (1,5), (2,4), (3,3), (4,

Figure 10: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 114. Responses are from LLaDA-
8B-Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Question: Write a function to find the highest common ancestor (not LCA) of two nodes in a binary tree.

Baseline (score: 3)
Here is a Python function to find the highest
common ancestor (HCA) of two nodes in a bi-
nary tree:
“‘ class TreeNode: def init (self, val0̄,
left=None, right=None): self.val = val self.left
= left self.right = right
def find hca(root, p, q): if root is None: re-
turn None if root == p or root == q: re-
turn root left = find hca(root.left, p, q) right =
find hca(root.right,

SURELOCK (score: 3)
Here’s a Python function to find the highest
common ancestor (HCA) of two nodes in a bi-
nary tree:
“‘ class TreeNode: def init (self, val=0,
left=None, right=None): self.val = val self.left
= left self.right = right
def find hca(root, p, q): if root is None: re-
turn None if root == p or root == q: re-
turn root left = find hca(root.left, p, q) right =
find hca(root.right,

Figure 11: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 125. Responses are from LLaDA-
8B-Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

Question: Please read the paragraph below and count how many times the words ”Amazon”, ”river”, and
”you” appear. Please present the results in the format of ”word, number of appearances” with each word
on a separate line. Sort the lines in order of the number of appearances. The Amazon, a mesmerizing
expanse of nature’s wonders, is home to the legendary Amazon River. Flowing through awe-inspiring
landscapes like the Amazon rainforest, the river weaves its way through Brazil, Colombia, and Peru,
giving life to countless creatures. From the mighty jaguars prowling the Amazon jungle to the vibrant
macaws soaring above the canopy, this remarkable region teems with biodiversity. Deep within the river’s
currents, magnificent pink river dolphins gracefully glide alongside piranhas and electric eels. Along the
riverbanks, you’ll find bustling cities like Manaus, where the urban meets the wild, and Iquitos, a gateway
to the heart of the Amazon rainforest. As you venture further, the Amazon River reveals hidden gems like
the captivating Anavilhanas Archipelago, a mosaic of islands brimming with rare species. Embark on an
adventure, explore the enchanting Amazon River, and immerse yourself in a world teeming with life and
untamed beauty.

Baseline (score: 3)
Amazon, 2 river, 2 you, 2

SURELOCK (score: 3)
Amazon, 2 river, 2 you, 2

Figure 12: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 136. Responses are from LLaDA-
8B-Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Question: The city of Vega intends to build a bridge that will span the Vegona River, covering a distance
of 1.8 kilometers. The proposed location falls within a seismically active area that has experienced several
high-magnitude earthquakes. Given these circumstances, what would be the best approach to constructing
the bridge?

Baseline (score: 7)
Given the seismically active nature of the area,
the best approach to constructing the bridge
would be to use a flexible and resilient design
that can withstand the forces of earthquakes.
This could involve using a combination of mate-
rials such as steel, concrete, and timber, as well
as incorporating features such as flexible joints
and base isolators to allow the bridge to move
in response to seismic activity. Additionally, the
bridge should be designed to be lightweight and
compact to minimize the risk of damage dur-
ing an earthquake. Finally, the bridge should be
designed and constructed according to seismic
codes and regulations to ensure its safety and
stability in the event of earthquakes.

SURELOCK (score: 7)
Given the seismically active nature of the area,
the best approach to constructing the bridge
would be to use a flexible and resilient design
that can withstand the effects of earthquakes.
This could include using a combination of con-
crete and steel, as well as incorporating seismic
isolation systems such as base isolation or rub-
ber bearings. Additionally, the bridge should
be designed to be flexible and able to absorb
and dissipate energy from seismic waves, rather
than trying to resist them. It is also impor-
tant to conduct thorough research and testing to
evaluate the bridge’s performance under various
earthquake scenarios to ensure that the bridge
remains safe and stable in the face of seismic
activity.

Figure 13: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 147. Responses are from LLaDA-
8B-Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

Question: Which methods did Socrates employ to challenge the prevailing thoughts of his time?

Baseline (score: 6)
Socrates employed several methods to chal-
lenge the prevailing thoughts of his time. One
of the most famous methods was the Socratic
method, which involved asking a series of ques-
tions to uncover the underlying assumptions and
beliefs of his listeners. This method encouraged
his listeners to think critically and question their
own beliefs.
Another method Socrates used was the concept
of the ”good life,” which he believed was the
only way to achieve true happiness. He argued
that the good life involved living in accordance
with reason and virtue, rather than pursuing ma-
terial wealth or power.
Finally, Socrates used the concept of the ”just
city” to challenge the

SURELOCK (score: 6)
Socrates employed several methods to chal-
lenge the prevailing thoughts of his time. One
of the most famous methods was the Socratic
method, which involved asking a series of ques-
tions to encourage someone to think critically
and examine their own beliefs. This method
was used to uncover the underlying assumptions
and beliefs of those around him.
Another method Socrates used was the use of
irony. He would often use irony to highlight the
absurdity of certain beliefs or ideas, and to en-
courage others to question their own assump-
tions.
Finally, Socrates also used the power of dia-
logue to challenge the prevailing beliefs of his
time. He would often engage in debates

Figure 14: Quality comparison of responses between Baseline vs. SURELOCK response. The exam-
ple question uses the record from MT-bench with question id= 158. Responses are from LLaDA-
8B-Instrut with KL threshold ε = 5e− 4, Ngen = 128, S = 128.

20

	Introduction
	SureLock
	Permanently Stopping Step-wise Compute and Caching K/V
	Criterion for Locking: Step-wise KL Divergence
	Design Justification
	Computational Complexity: Algorithmic FLOPs

	Experiments
	Masked Diffusion Language Models and Datasets.
	Results

	Related Work
	Conclusion
	Ethics Statement
	Reproducibility Statement
	Appendix
	Usage of Large Language Models
	Detailed Explanation of Assumption A3.
	From posterior drift to expected-embedding drift
	Single-head attention: Lipschitz bound
	Block composition: MHA + FFN + residual + LN
	Putting things together

	Dataset Settings for Experiment-1
	Additional Results for Experiment-2
	Detailed Settings for Experiment-3
	On WikiText-103
	On MT-Bench

	Runtime Metrics
	Optional Unlocking
	Decoded Examples

