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ABSTRACT

A well-defined benchmark is essential for measuring and accelerating research
progress of machine learning models. In this paper, we present a benchmark
for high-level mathematical reasoning and study the reasoning capabilities of
neural sequence-to-sequence models. We build a non-synthetic dataset from the
largest repository of proofs written by human experts in a theorem prover. The
dataset has a broad coverage of undergraduate and research-level mathematical
and computer science theorems. In our defined task, a model is required to fill in a
missing intermediate proposition given surrounding proofs. This task provides a
starting point for the long-term goal of having machines generate human-readable
proofs automatically. Our experiments and analysis reveal that while the task
is challenging, neural models can capture non-trivial mathematical reasoning.
We further design a hierarchical transformer that outperforms the transformer
baseline. The dataset and models are available from: https://github.com/
Wenda302/IsarStep.

1 INTRODUCTION

Neural networks have achieved outstanding performance on a wide range of problems in natural
language processing, computer vision, and speech recognition. However, research investigating
their capacity of doing mathematical reasoning is still limited, with earlier attempts focusing on
simple arithmetic tasks like integer addition and multiplication (Zaremba & Sutskever, [2014; |Kaiser|
& Sutskever, [2016; Trask et al., [2018)). More recently, there has been work on solving school-level
mathematical problems (Saxton et al.;, 2019), logical reasoning (Evans et al., 2018)), and problems of
function integration, ordinary differential equations (Lample & Chartonl 2020), and properties of
differential systems (Charton et al.| 2020). While these are valuable contributions to the machine
learning community, they focused on generating answers to questions from a specific domain and
were carried out on synthetic datasets with small vocabulary (e.g. up to 100 unique tokens).

In this paper, we consider general undergraduate and research-level mathematical proofs as a target
for neural networks. When humans prove a theorem, a crucial step is to propose an intermediate
proposition to bridge the gap between the goal and the currently known facts. This step requires
complicated reasoning capabilities such as creative thinking, inference, understanding existing
conditions, and symbolic manipulation of rules. For example, consider the following proof of the
irrationality of V2

Proof of irrationality of v/2. Assume /2 is rational. Then there exists a pair of coprime integers a
and b such that /2 = a/b, and it follows that 2 = a2/b2 and then 202 = a2. Hence a is even. Thus
there exists an integer c such that a = 2¢, which combined with 2b? = a? yields 2¢? = b?: hence b is
also even. So a and b are both even although they are coprime, contradiction. [
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1 theorem "sqrt 2 ¢ Q"

2 proof

3 assume "sqrt 2 € Q"

4  then obtain a b :: int where "sqrt 2 = a/b" "coprime a b"

5 by (metis Rat cases Rats def imageE normalize stable of rat divide

6 of rat of int eq quotient of Fract quotient of div)

7 then have "2 = a2 / b2" by (smt of_int_power power divide real sqrt_pow2)
8 then have *:"2*p2 = 32

9 by (cases "b=0",auto simp:field simps,use of int eq iff in fastforce)

10 then have "even a" by (metis dvd triv_left even mult_iff power2_eq_square)
11 then obtain c::int where "a=2*c" by blast

12  with * have "b2 = 2*c2" by simp

13 then have "even b" by (metis dvd triv_left even mult iff power2 eq square)
14 with <even a> <coprime a b> show False by auto

15 ged

Figure 1: Full declarative proof the irrationality of v/2 in Isabelle/HOL.

To derive 3¢ € Z. a = 2¢ from 2b* = a?, the intermediate proposition “a is even” would reduce the
gap and lead to a successful proof. We would like to simulate the way humans prove theorems by
proposing an intermediate proposition synthesis task — IsarStep. Instead of having primitive steps
like 3 + 5 = 8, the proof steps in IsarStep are at a higher-level, with much bigger steps as basic.
Therefore it usually cannot be simply solved by pattern matching and rewriting. To succeed in this
task, a model is required to learn the meaning of important mathematical concepts (e.g. determinant
in linear algebra, residue in complex analysis), how they are related to each other through theorems,
and how they are utilised in proof derivations. Solving the IsaStep task will be potentially helpful for
improving the automation of theorem provers, because proposing a valid intermediate proposition
will help reduce their search space significantly. It is also a first step towards the long-term goal of
sketching complete human-readable proofs automatically.

We have built the IsarStep dataset by mining arguably the largest publicly-hosted repository of
mechanised proofs: the Achieve of Formal Proofs (AFP)P_-] The AFP is checked by the Isabelle proof
assistant (Paulson,|{1994) and contains 143K lemmas. Combining the AFP with the standard library of
Isabelle/HOL yields a dataset of 204K formally-proved lemmas. The dataset covers a broad spectrum
of subjects, including foundational logic (e.g. Godel’s incompleteness theorems), advanced analysis
(e.g. the Prime Number Theorem), computer algebra, cryptographic frameworks, and various data
structures. A nice property of the mined formal proofs is that they are mostly declarative proofs, a
proof style very close to human prose proofs Fig. illustrates the proof of irrationality of /2 in
Isabelle. We can see that the proof is actually legible (even to people who are not familiar with the
system) and and it captures high-level structures like those in human proofs.

We further explore the reasoning capabilities of neural models. We frame the proposed task as a
sequence-to-sequence (seq2seq) prediction problem. Beyond evaluating the existing neural seq2seq
model baselines—the seq2seq with attention (Bahdanau et al.,[2015), the transformer (Vaswani et al.
2017)—we also propose a new architecture, the hierarchical transformer (§4). The architecture is
motivated by the way humans reason about propositions; it consists of a set of local transformer
layers, modelling the representation of each proposition, and a set of global layers, modelling the
correlation across propositions. Experiments (§5) show that these neural models can solve 15-25%
of problems on the test set, and the hierarchical transformer achieves the best result. Further analysis
(§6) on the output of these models shows that while the proposition synthesis task is hard, the neural
models can indeed capture mathematical reasoning. We find that the embeddings of closely related
mathematical concepts are close in cosine space; models can reason about the relation between set,
subset, and member, and perform more complex multi-step reasoning that is even hard for humans.

Our contributions are summarised as follows:
1. We mine a large non-synthetic dataset of formal proofs and propose a task for evaluating neu-

ral models’ mathematical reasoning abilities. The dataset contains 820K training examples
with a vocabulary size of 30K.

"https://www.isa-afp.org
2 A comparison of proofs in different systems is available in[Wiedijk|(2006). The declarative style proof is
also available in Mizar (Grabowski et al., [2010), where the style originates.
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. We evaluate existing neural seq2seq models on this task.
. We introduce a hierarchical transformer model, which outperforms the baseline models.

. We provide a comprehensive analysis of what has been learned by the neural models.

| S N \S]

. We provide a test suite to check the correctness of types and the validity of the generated
propositions using automatic theorem provers.

2 THE ISARSTEP TASK

In this section, we define the task of intermediate proposition generation more concretely. We again
take the proof of irrationality of v/2 as an example. We will have the following derivation:

202 =a? = aiseven = Ic € Z.a = 2c.
—_—— —— N—_———
(1) (2) (3)

In our proposed task, we would like to generate (2) given (1) and (3). When humans prove a
theorem, they implicitly assume certain background knowledge, as lemmas. For example, in this
case we assume that we can trivially prove (1) = (2) based on the fact that the product of two
numbers are even iff at least one of them is even. In Isabelle (Paulson,|1994), these relevant lemmas
(e.g. even_mult_iff: even (?a » ?b) = (even ?a V even ?b) corresponding to line 10
in Fig. [I) can be found automatically by its built-in automation Sledgehammer (Blanchette et al.,
2011). In our task, we optionally provide these lemmas as extra information in addition to (1) and

3.

The derivation of (2) = (3) in the proof above is a simple step, because only (2) is needed to arrive
at (3). In most cases, multiple propositions have to be used together in order to infer a proposition, for
example P, P>, P; = P,. For these more general cases, we also include the additional propositions
(e.g. P, and P) as part of the source propositions.

To summarize, each example in the IsarStep dataset is formed by five parts:

F.1 atarget proposition (e.g. a is even),

F.2 a set of used local propositions to derive(e.g. 202 = a?),

F.3 alocal proposition derived from the target proposition[F.I] (3¢ € Z. a = 2¢),
F.4 other local propositions and (library) lemmas used to justify [F.3]

F.5 aset of used (library) lemmas to justify [F.1|(e.g. even_mult_iff: even (?a * ?b) =
(even ?a V even ?b)).

We want to synthesise [F1] given [F2]— [F.4 with [F.5] optional: the named lemmas in [F.5are common
knowledge and can be used as additional hints. The propositions are generated as a sequence of
tokens and therefore the search space is ¥*: search over 30K actions (§3.3] vocabulary size for
seq2seq models) at every timestep without a predefined maximum output length.

IsarStep can be considered as single step reasoning, which can be repeated to sketch more complex
proofs. Good performance on this task is a crucial step for designing models that can automatically
prove theorems with minimal human assistance.

3 DATASET PREPROCESSSING AND STATISTICS

The mined raw dataset has long propositions and a large number of unique tokens. To alleviate
the performance deterioration of machine learning models due to the aforementioned problems, we
propose tricks to preprocess the raw dataset, including free variable normalisation and removing
unnecessary parentheses. These tricks substantially reduce the sequence lengths and vocabulary size.

3.1 THE LoGIiCc AND TOKENS

The core logic of Isabelle/HOL is simply-typed A-calculus with de Bruijn indices for bound variables
(Wenzel, 2020, Chapter 2.2). A local proposition or a (library) lemma/theorem is essentially a ferm
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in the calculus. As types can be inferred automatically, we drop types in terms (to reduce the size of
the vocabulary) and encode a term as a sequence of tokens that include lambda term constructors:
CONST, FREE, VAR, BOUND, ABS (function abstraction), and $ (function application). Additionally,
parentheses have been used in the sequence to represent the tree structure. To give an example, we
encode the proposition even a as the following sequence of tokens separated by a white space:

CONST HOL.Trueprop $ (CONST Parity.semiring_parity_class.even $ FREE <X0>)

where CONST HOL.Trueprop is a boilerplate function that converts from type bool to prop;
CONST Parity.semiring_parity_class.even is the even predicate; FREE <X0> en-
codes the Skolem constant a in even a. Since a is a user-introduced local constant that can be
arbitrary, we normalised it to the algorithmically generated name <X0> in order to reduce the
vocabulary size (see §3.2).

Overall, every local proposition and library lemma/theorem is encoded as a sequence of tokens, and
can be mostly decoded to the original term with type inference.

3.2 FREE VARIABLE NORMALISATION

Due to Isabelle’s use of de Bruijn indices, bound variables have already been normalised: Vx. P x is
no different from V y. P y, as both x and y are encoded as BOUND 0. However, arbitrary variable
names can be introduced by the command fix in declarative proofs or unbounded variables in lemma
statements (e.g. False = P and False = Q are semantically equivalent but with different free
variables). To reduce the vocabulary size here, we normalised these free variables like the bound ones.
For example, False = P would be normalised to False = <V0> as P is the first free variable
in the proposition. Such normalisation reduced the vocabulary size by one third. The normalisation
preserves the semantics, and we can always parse a normalised term back under a proper context.

3.3 STATISTICS

We have mined a total of 1.2M data points for IsarStep. We removed examples in which the length of
the concatenation of the source propositions, i.e.[F.2]—[F.4]in §2] longer than 800 and the length of the
target propositions, i.e.[F-1)in §2] longer than 200, which results in approximately 860K examples.
From these examples we randomly sampled 10K examples for validation and test. In the training
data, we removed duplicates, the examples whose target propositions exist in the held-out set, and
those that are from the same theorems as the propositions in the held-out set. The final dataset split
is 820K, 5000, 5000 for the training, validation, and test sets, respectively. The vocabulary size is
29,759.

4 MODEL
We define X = [z!,22,..., z] as the sequence of I source propositions, and y = (y1,%2,...,YN)
as the target proposition containing N tokens. Let " = (x4, 2%, . .., ') represent the ith proposi-

tion in the set, consisting of M tokens. Each source proposition z* belongs to a category —
defined in We annotate the category corresponding to ® as C; and therefore the sequence of
categories corresponding to X is C = [C1,Ca, . ..,Cy]. The generation of a target proposition y is
determined by finding the proposition g, where p(y | X, C) is optimal,

§ = argmaxp(y | X, C). (1

We propose two approaches to parameterising the conditional probability p(y | X,C), which
differ in the way of modelling the sequence of source propositions. The first method is simply
appending a label to each source proposition indicating their category and then concatenating the
source propositions using a special token <SEP>, treating the resulting long sequence as the input
to a seq2seq model.

Our second approach models the encoding of source propositions hierarchically. As shown in
Fig.[2] the encoder has two types of layers. The local layers build the proposition representations by
modelling the correlations of tokens within each proposition; the global layers take the proposition
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Figure 2: Architecture of the encoder of the hierarchical transformer (HAT). There are two types of
layers, the local layers model the correlation between tokens within a proposition, and the global
layers model the correlation between propositions. The input to the network is the sum of the token
embedding, the positional information, and the embedding of the corresponding category.

Table 1: Test set accurarcies (exact match) and BLEU scores of different models on the IsarStep task.

Top-1 Acc. Top-10 Acc. BLEU

Base Base @ Base
RNNSearch 13.0 16.7 262 322 423 522
Transformer 204 22.1 33.1 34.6 59.6 629
HAT 228 243 352 372 61.8 65.7

Model

representations as input and model the correlations across propositions. Both the local layers and
global layers are transformer layers (Vaswani et al., [2017)). Positional information is encoded
separately for different source propositions. That is, suppose ' has M tokens, then the position of
the first token in & is not M + 1 but 1. The embedding of a token z¢, is obtained by adding the token
embedding, the positional information, and the embedding of the category that the proposition z?
belongs to. The category embedding is learnt together with the rest of the network. We call this model
the hierarchical transformer (HAT). Intuitively, HAT models the structure of the source propositions
more explicitly compared to the first approach and therefore should be better at capturing reasoning
between source and target propositions. We will validate our hypothesis in §5]

5 EXPERIMENTS

We benchmark three models on IsarStep (§2), namely the seq2seq model with attention (RNNSearch)
(Bahdanau et al., 2015; [Wu et al., 2016), transformer (Vaswani et al.l 2017), and hierarchical
transformer (HAT). The input to the RNNSearch and the transformer is a concatenation of source
propositions (the first parameterisation approach described in §4). We train these models with the
same training data and report their performance on test sets. See appendix for experimental setup.

5.1 EVALUATION

Widely used metrics for text generation are BLEU score (Papineni et al.,[2002) and ROUGE score
(Lin, [2004) that measure n-gram overlap between hypotheses and references. Both metrics are
not ideal in mathematical proofs since a proposition can be invalid due to one or two incorrect
tokens. Therefore, in addition to BLEU score, we also consider exact match between hypotheses
and references as our evaluation metric. We report top-1 accuracy and top-10 accuracy. The top-1
accuracy is the percentage of the best output sequences that are correct in the given dataset. The
top-10 accuracy is the percentage of target sequences appearing in the top 10 generated sequences.

It is possible that models generate alternative valid propositions that are not exactly the same as
the references. We further implemented a test suite to bring the generated propositions back to the
Isabelle environment and check their correctness using automatic theorem provers (ATPs).
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5.2 RESULTS

BLEU and Exact Match Table [l presents the results of different models for the IsarStep task.
Overall, the neural seq2seq models achieve around 13-25% top-1 accuracies and 26-38% top-10
accuracies, which indicates that this task is non-trivial and yet not too difficult for neural networks.
Of the three models, the transformer (Vaswani et al.|[2017) outperforms the RNNSearch (Bahdanau
et al.,|2015; |Wu et al., [2016)) significantly and our HAT performs best. As mentioned in §|Z|, adding
[E5]is optional and is conjectured for better performance due to exploiting used lemmas explicitly.
We experimented with both cases and found that adding this extra information indeed leads to further
improvement. This is consistent with the scenario when humans prove theorems: if humans are told
that certain lemmas are relevant to the current proof, they will use these lemmas and have a better
chance of success.

Alternative Valid Propositions We consider an output propo-

sition P as an alternative valid intermediate proposition if 1) P Taple 2: Percentage of correct
is a well-formed proposition and does not match the ground truth  propositions.

at the surface form; 2) P does not match any substring of the
source (to avoid it being a simple copy of or an assumption

in [F2); 3) both = Pand P é@g be automatically Model Base @
proved by ATPs[’| Note that this will only give us a lower bound ~ Transformer 252 26.8
to the number of alternative propositions, due to the limitation =~ HAT 27.6 294
of ATPs’ automation. Table 2] presents the percentage of correct
propositions on the test set. Correct proposition is a proposition
that matches either the corresponding ground truth or one of the alternative valid propositions. We can
see that alternative propositions contribute 5 percentage point more correct propositions, compared to
top-1 accuracy in Table[T]

Automation Improvement In lots of cases, ATPs cannot infer from one step to another automat-
ically (i.e. [£2] =[F.3) without the crucial intermediate steps proposed by humans. We found that
there are about 3000 cases in our test set that [F.2] =[F.3| cannot be proved automatically by ATPs.
And within these 3000 cases, 61 cases can be proved automatically given the generated intermediate
propositions from our HAT model: [F2] = P and P =[F.3] This is not a big improvement. Fur-
ther progress is needed to improve seq2seq models’ reasoning capability in order to improve the
automation of theorem provers significantly.

Better Generalisation of HAT Since the transformer and HAT
have different source sequence encoding, we explore how well these

two models perform on examples with various source sequence ————
lengths. We categorise the examples on the IsarStep test set into 5 2s.0% HAT
buckets based on their source lengths and calculate the top-1 accura-
cies for different buckets, as shown in Fig.[3] Interestingly, although
we did not train the models with source sequences longer than 512,
they can still achieve reasonable accuracies on long sequences. In '
particular, HAT performs significantly better than the transformer  s.o%
on sequences longer than 480. Especially in the length bucket of
640-800, HAT doubles the accuracy of the transformer.

15.0%

0-160 160-320 320-480 480-640 640-800

. ) . Figure 3: Accuracy of differ-
Importance of Category Information We subsequently investi- et source sequence lengths.

gate the effect of incorporating the category information for source
propositions into the models by removing the category embedding
for the input to the HAT encoder (Fig. 2), i.e. we are now modelling
p(y | X) instead of p(y | X,C). We see a dramatic drop in accuracy: 14.6 versus 22.8 obtained
by the HAT with category embedding included, indicating the importance of category information.
This is in line with human proofs: without knowing the logical relations between propositions, we do

31f is directly provable via ATPs, a trivial proposition (e.g. 1 = 1) can be considered as an
alternative. This is hard to detect automatically but could still serve as a fair comparison across seq2seq models
as long as they can propose a well-formed trivial proposition in such scenario.
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not know what proposition is missing. This indicates that the models are not simply doing pattern
matching but should have captured some reasoning information.

6 QUALITATIVE ANALYSIS

In this section, we present an analysis of what has been learnt by the neural network models. To
summarise our findings: 1) the seq2seq models can learn the syntax of propositions correctly; 2)
the learned token embeddings are comprehensive in that related mathematical concepts are close
in cosine space; 3) manual inspection of the generated propositions reveal that models can learn
non-trivial mathematical reasoning and even more complicated multi-step reasoning.

Token Embeddings To investigate whether the seq2seq models have learnt mathematical reason-
ing, we checked whether the learnt token embeddings were meaningful. We first projected the learnt
embeddings for all the tokens in the vocabulary into a three-dimensional space via principal compo-
nent analysis and chose random tokens and checked their 50 nearest neighbours in cosine distance.
We found that the embeddings of related concepts in mathematics were close, indicating that the
models have managed to learn the relations between mathematical concepts — the basic step towards
reasoning mathematically. For example, in Fig. ] the neighbours of ‘Borel measurable’ are mostly
measure theory related including ‘almost everywhere’, ‘integrable’, and ‘null set’, while ‘arrow’
is close to ‘isomorphism’ (EpiMonolso.category.iso), ‘identity’ (Category.partial_magma.ide), and
‘inverse arrow’ (EpiMonolso.category.inv), which are concepts in category theory. Additionally, vector
arithmetic also seems to connect related mathematical definitions: for example, the three closest
tokens next to ‘bounded’ + ‘closed’ are ‘bounded’,‘closed’, and ‘compact’, where compactness can
be alternatively defined as boundedness and closedness (on a Euclidean space).

Attention Visulisations We next investigate how reasoning has been learnt by visualising attentions
from transformer (Vaswani et al.|[2017). We find that important and related tokens are likely to attend
to each other. For example, Fig.[5]illustrates the visulisation of the last layer of the transformer encoder
for the source propositions[F.2} [E3 27 € x39[Fdt 257 C x39. The target proposition generated
from the model is z79 € x57. The interpretation of those source propositions is that combining with
@ x57 C w39 we would like to infer the intermediate step so that the goal x7g € x39 can be proved.
The transformer model gives the correct answer x7g € x57 which implicitly applied the lemma

rEAACBFzEB 2

that relates € and C. On the last self-attention layer of the transformer encoder (Fig.[5), € and C
attend to each other. Interestingly, the above reasoning seems robust. If we swap x57 and 39 in
(i-e., the source is now [F.2} T70 € T39 39 C T57), the answer becomes 79 € x39.
This totally makes sense since (2) no longer applies (despite that € and C still attend to each other
similarly as in Fig.[5)) and 27 € x39 can only be discharged by proving itself.

Multi-Step Reasoning By further inspecting the generated propositions, we find that the model
can implicitly invoke multiple theorems as humans normally do. While this property can be found in
quite a few examples, here we show one of them due to the limited space. We refer the readers to the
appendix for more examples. Given the source [F.2} dim(span(zg)) < card(zs) card(z2) =
dim(xg) card(zy) < dim(xg), finite(zs), where dim, span and card refer to the dimensionality,
the span, and the cardinality of a set of vectors, respectively, and the model gives the correct answer
dim(zp) < card(zz). Here, dim(zg) < card(zs) is derived by dim(span(zg)) < card(z3) only
if the model has implicitly learned the following theorem F dim(span(S)) = dim(S), while
dim(xg) < card(zq) yields card(zy) = dim(zg) (in conjunction of card(z2) < dim(zg)) only if
the model has implicitly invoked the antisymmetry lemmax < y,y <z kxz =y.

Failures We observe that incorrect propositions are well-formed and plausible propositions but
they are usually a copy of parts of the source propositions.

7 RELATED WORK

There have been a series of work that evaluates mathematical reasoning abilities of seq2seq models.
The tasks that these works attempt to solve include school-level mathematical problems (Ling et al.,
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Figure 4: Nearest neighbours of the tokens ‘Borel measurable’ (left) and ‘arrow’ (right) in cosine
space. The 512-dimensional embeddings are projected into 3-dimensional embeddings. Neighbours
are found by picking the top 50 tokens whose embeddings are closest to the selected token.
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Figure 5: Attention visualisation of the last layer of the transformer encoder for the source propositions
[F3} 270 € w39[Fd w57 C x39. The generated target proposition is 27 € @s7.

2017;Saxton et al.,[2019), function integration and ordinary differential equations (Lample & Charton),
2020), properties of differential systems (Charton et al.| [2020), SAT formulas and temporal logic
(Finkbeiner et al., [2020). Our task is different from the previous ones in the sense that ours is
non-synthetic, with realistic vocabulary size (i.e., 30K vs. less than 100) and has a broad coverage
topics in research-level mathematics and computer science that have no general algorithmic solutions.

Our work is closely related to the most recent work on applying language modelling to theorem
proving. [Urban & Jakubuv](2020) present initial experiments on generating conjectures using GPT-2
(Radford et al., |2019). |Polu & Sutskever| (2020) show that the GPT-3 language model (Brown
et al.||2020b)) additionally pretrained with mathematical equations mined from the web can generate
propositions that enable theorem provers to prove more theorems automatically. Rabe et al.| (2020)
pretrain a masked language models on proofs mined from the HOList dataset (Bansal et al., 2019)
and apply the pretrained models to the downstream tasks of type inference and predicting conjectures.
While both their work and ours find that transformer models have strong mathematical reasoning
capabilities, they have different objectives from ours. Their objectives are to show the effectiveness
of pretraining on downstream tasks; by contrast we are building benchmarks to test models’ ability of
solving mathematical problems. In fact, we can pretrain seq2seq models following their proposed
methods and verify their effectiveness on our dataset. We will leave this for future work.

There exists a few benchmarks for theorem proving. |[Kaliszyk et al.|(2017) propose a machine learning
benchmark for higher order logic reasoning. [Alemi et al.| (2016) use convolutional networks for
premise selection. Both of these tasks are classification problems, whereas our proposition generation
task is a generation problem with a countably infinite search space. In the benchmarks for tactic
synthesis (Huang et al|2019; Bansal et al.,|2019; [Yang & Deng} 2019; [Sanchez-Stern et al., 2019
Paliwal et al.,|2019; |Gauthier et al.,|2017), an agent is asked to propose a sequence of tactics to solve
the current goal. Our task is complementary: the model is required to conjecture a goal (intermediate
proposition) that is likely to be useful in a derivation. Wu et al.| (2020) proposed a synthetic inequality
theorem proving benchmark that studies the out-of-distribution generalization abilities of models.
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Conjecturing literals in tableau proofs using recurrent neural networks has been investigated by
Piotrowski & Urban|(2020).

Other related work includes analogy/syntax driven conjecturing (Gauthier et al., 2016} [Nagashima
& Parsert, 20185 [Wang & Deng|, 2020), goal classification/ranking (Goertzel & Urban; Brown
et al., 2020a), proof method recommendations (Nagashimal [2020; |[Nagashima & He, [2018)), and
autoformalisation of mathematics (Wang et al.,|2020; [Szegedy, [2020).

Hierarchical Models Hierarchical models have been proposed to solve natural language processing
tasks such as document representation (Yang et al.l 2016) and document summarisation (Zhang et al.|
2019; Liu & Lapatal 2019). Both our hierarchical transformer (HAT) and those models share the
similar spirit of introducing local layers to encode local sentences (or propositions) and global layers
to capture cross sentence (or proposition) information. However, our HAT is different from their
hierarchical models in the way of representing sentences (or propositions): while their models encode
sentences into fixed size vectors, the representation of a proposition in our model is a matrix of
dynamic size. The model by |Liu & Lapatal (2019)) has a more sophisticated architecture for capturing
sentence representations compared to those by [Yang et al.|(2016) and [Zhang et al|(2019), where they
introduce multi-head pooling to encode sentences with different attention weights. Compare to |Liu
& Lapata| (2019)’s model, our model does not introduce additional parameters beyond the standard
transformers. Another subtle difference between our model and the existing models is the way of
doing positional encoding. Unlike documents where the order of sentences matters, propositions
within each category of our IsarStep task do not require an order. Therefore, we do not encode the
positional information of different propositions.

8 CONCLUSION

We mined a large corpus of formal proofs and defined a proposition generation task as a benchmark
for testing machine learning models’ mathematical reasoning capabilities. In our defined task, the gap
between adjacent proof steps is big and therefore it cannot be simply solved by pattern matching and
rewriting. We evaluated the RNN attention model and the transformer on this dataset and introduced
a hierarchical transformer that outperforms the existing seq2seq model baselines especially on long
source sequences. Our analysis shows that the neural seq2seq models can learn non-trivial logical
relations and mathematical concepts. We hope that our work will drive the development of models
that can learn to reason effectively and eventually build systems that can generate human-readable
proofs automatically.
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A EXPERIMENTAL SETUP

For RNNSearckE] (Bahdanau et al., [2015; Wu et al., [2016), we use 2-layer LSTMs (Hochreiter &
Schmidhuber} |1997) with 512 hidden units and 0.2 dropout rate. The hyperparameters for training the
transformGIE] are the same as transformer base (Vaswani et al.,[2017), i.e. 512 hidden size, 2048 filter
size, 8 attention heads, and 6 layers for both the encoder and decoder. The hyperparameters for HAT
are the same, except that the number of local context layers is 4 and global context layers is 2. We
share the source and target token embeddings for all the three models. We use beam search decoding
with beam size 5 (for topl accuracies) and 10 (for top10 accuracies). The configurations for different
models are the best ones we found based on validation performance. We train these models for 100K
steps and pick the checkpoint with the best BLEU on the validation set to evaluate on the test set.
Training the transformer and HAT takes 72 hours on 4 Tesla-V100 GPUs.

B ADDITIONAL EXPERIMENTAL RESULTS

We report additional experimental results from convolutional seq2seq models (Gehring et al.; 2017ﬂ
in TableE} We use the setup of fconv_iwslt_de_en to train the model.

C TEST SUITE

We use the default Sledgehammer (Blanchette et al.,|201 1)) method
in Isabelle as our automatic theorem prover for checking deriva- Table 4: Percentage of well-
tions. To ensure fair and efficient comparisons, we shut off three of  formed propositions

non

its options: "isar_proofs", "smt_proofs" and "learn". The timeout

for Sledgehammer is 30s. We run the test suite on a platform Model Base @
with Intel 9700K CPU and 32G RAM, and it takes about 44 hours

to evaluate on the test set. Due to some technical issues (e.g., ~ Transformer 58.2  60.1
the sampled example appears before Sledgehammer is introduced =~ HAT 582 589

when booting Isabelle/HOL), 92/5000 examples from the test set
are not supported by the current version of our test suite. We
present the percentage of well-formed propositions (i.e., outputs that type checks in Isabelle/HOL) of
Transformer and HAT in Table[4]

*Codebase: https://github.com/tensorflow/nmt

SCodebase: https://github.com/THUNLP-MT/THUMT/tree/pytorch

®Codebase:  |https://github.com/pytorch/fairseq/tree/master/examples/conv._
segz2seq
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With such settings, Sledgehammer can automatically prove the goal [F.3|in 1984/4908 examples. By
incorporating the ground truth [F1] the derivations (i.e., to prove both [F.2] =[F.1] and [F1] ={F3) can
be closed automatically in 2243 examples. Among the 1125 examples that HAT produces an exact
match, 466 of them have a ‘small’ gap: Sledgehammer discharges the goal [F.3]directly; 61 of gaps
are ‘just right’: the introduced intermediate step [F.1]can help Sledgehammer bridge the gap; most of
the remaining 598 examples have ‘large’ gaps (in either [F.2] =[F1] or [F.1| =[E.J) that are beyond the
capability of Sledgehammer. It appears that the insignificant amount of automation improvement can
be attributed to the limited number of ‘just right’ gaps that are within the reach of Sledgehammer.

D ALTERNATIVE STEPS

Many alternative steps are trivially equivalent to the ground truth (e.g. A = B given the ground
truth being B = A, and P A 1 = 1 given the truth being P). However, we still manage to find a few
non-trivial ones, and one of them (#954 in the test set) even identifies a redundant derivation in the
Isabelle standard library:

F1l:
0 = z1(x9)2(2m)in(xs, z9) 3)
| IR
x7 = {w | w ¢ path_image(z3) A n(zs, w) = 0} 4)
Tg € T7 5
E.J:
]{ dx —0 ©)
z3 T — X9
F4:
Vz & path_image(;vg).]{ a:d—mz = n(;?:lz) @)
x7 = {w | w & path_image(xz3) A n(xz, w) = 0} 8)
Tg € T7 9)

Here, i is the imaginary unit, path_image(x3) returns the image of the contour x3 on the interval
0, 1], and n(z3, 79) is the winding number of 3 around the point zg. combining (4) and
(5) leads to n(x3, z9) that proves (3). joining (8)) and (9] yields

xg & path_image(zs) (10)
n(z3,z9) =0 (11)
By further joining (I0) with (7) we have

% dr  n(xs,x9)

s T — T 27

which leads to @ considering n(xs,x9) = 0 (i.e., ). Note that ouris not used in the derivation
above hence redundant. Instead of the redundant ground truth, HAT proposed (I0) which is clearly a
much better intermediate step.

E EXAMPLES OF CORRECT SYNTHESISES

In this section, we present some correctly synthesised propositions which will be labelled as[F.1]in
each case.

13
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#605 in the validation set:

[F1l:

additive( Ay, , fa,) (12)
F2l:

subalgebra(zg, z1) (13)
) 0R] B

measure_space( Xy, , Az, ; tag) (14)
) O

0(Xzy, Az, ) (15)

positive( Ay, , fiz,) (16)

measure_space(vy, vg, v2) = (o(v1, Vo) A positive(vo, v2) A additive(vg, v2)) (17)

Here, z¢ and z; are measure spaces. For a measure space y, X, A,, and y,, are the three components
of y (ie., y = (Xy, Ay, py)), where X, is the carrier set, A, is a collection of subsets on X, and 1,
is a measure defined on A, érF_Tﬁ ;1 being a subalgebra of zg (i.e., (T3)) implies A,, C Ay,
so that ., in additive(A,,, iz, ) (.., iz, is countably addictive on A,, which is implied by z;
being a measure space) can be substituted with 1, which yields (12). [-T[F.4| ={F.3} deriving (T4)
requires unfolding the definition of measure spaces (i.e., (7)), which requires v is a sigma algebra
on v, the measure v is non-negative on vy, and v is countably additive on vy. Two of the three
requirements have already been satisfied by (I5) and (I6) respectively, while (I2) entails the last one
and eventually leads to (T4).

#2903 in the validation set:

E1:

Tog & path_image(xr) (13)
K.2| :

Tag € proots(zrg) — proots_within(zg, box(z1,z2)) (19)

path_image(z7) N proots(zg) = {} (20)
.3

Xog & cbox(x1,x2) (21)
) o B

cbox(x1,x2) = box(x1,%2) U path_image(z7) (22)

Xag € proots(xg) — proots_within(xg, box(z1,x2)) (23)

Here, path_image(z7) is the image of the path function 7 on the interval [0, 1]; proots(zg) and
proots_within(z, S) are, respectively, the roots of a polynomial z( and the roots (of xo) within

a set S; box(zy,z2) = {z | 1 < < 22} and cbox(z1,22) = {z | v1 < z < z3} are
(bounded) boxes on an Euclidean space. o9 18 a root of xq (by ) that does not
intersect with the path of z7 (i.e., (20)). combining with (22)), is equivalent to

Tag & box(x1,X2) A Z2g ¢ path_image(z7), which follows from joining (23) with (T8).
#1514 in the validation set:

FE1:

z4(210) <z (24)

x4(r10)
| IR

29 = Max { ) |, o zs} (25)

r4(y)

T10 < 23 (26)
| IRIB

x4(2210) < z9za(T10) 27
F4:

0< x4 (.’1,‘10) (28)
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[E2)={F.1} (26) implies

ri(2e) _ {:1:4(2y) < IS},

z4(10) z4(y)
hence by the definition of Max. [FI|[F.4] ={F.3]by arithmetic and the positivity of the denominator
(.e., )

#1222 in the validation set:

[E1l:
limo + /1 — 22| = 1 (29)
E2:
lizog + /1 —22|* =1 (30)
[E3:
S(arcsin(zg)) =0 31
[E4:
S(arcsin(vg)) = — In(Jivg + 1/1 — v3]) (32)
e " =1/(e™) (33)
[F2] ={F1]by arithmetic. [F1[F.4 =[F.3}
S(arcsin(vg)) = —In(Jivg +1/1 —v3|) = —In1 = 0.
#35 in the validation set:
[E1l:
Ty = 3310[3712] (34)
K2l :
Va.xs = zg[z] A x < len(xg) — x4 = z10[2] (35)
I3 = £U6[1'12] (36)
x12 < len(zg) (37)
| ORI
Ty = $7[$11] (38)
[E4:
T7 = To#T10 (39
T2 < len[me] (40)
r11 =712+ 1 41

Here, x10[x12] refers to the 15" element in the list 21¢; len is the length function on a list; zg#21¢

is a list where the element xg is concatenated to the front of the list x1. by instantiating
the quantified variable z in (33)) to 212 and combining with (36]- [37).

x4 = x10[T12] = (ToH#x10)(T12 + 1) = x7[T11].
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