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Abstract
Compositional reasoning capabilities are usually
considered as fundamental skills to characterize
human perception. Recent studies show that cur-
rent Vision Language Models (VLMs) surpris-
ingly lack sufficient knowledge with respect to
such capabilities. To this end, we propose to thor-
oughly diagnose the composition representations
encoded by VLMs, systematically revealing the
potential cause for this weakness. Specifically, we
propose evaluation methods from a novel game-
theoretic view to assess the vulnerability of VLMs
on different aspects of compositional understand-
ing, e.g., relations and attributes. Extensive exper-
imental results demonstrate and validate several
insights to understand the incapabilities of VLMs
on compositional reasoning, which provide use-
ful and reliable guidance for future studies. The
deliverables will be updated here.

1. Introduction
Recently, Vision Language Models (VLMs) (Radford et al.,
2021; Jia et al., 2021; Li et al., 2022b; Singh et al., 2022;
Goel et al., 2022; Yao et al., 2021) have made remarkable
strides, which significantly advance a wide range of uni-
modal and multimodal applications, e.g., object detection
(Gu et al., 2021; Du et al., 2022; Zang et al., 2022), semantic
segmentation (Zhou et al., 2022; Li et al., 2022a; Xu et al.,
2022) and text-to-image generation (Rombach et al., 2022;
Ramesh et al., 2022). However, recent studies have unveiled
a surprising weakness of state-of-the-art VLMs: they strug-
gle with compositional reasoning capabilities (Yuksekgonul
et al., 2022; Thrush et al., 2022), such as object relations and
object attributes. For instance, BLIP (Li et al., 2022b) failed
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to correctly comprehend the subtle differences between “the
horse is eating the grass” and “the grass is eating the horse”
(Yuksekgonul et al., 2022). Given the fundamental status of
compositionality in human intelligence (Cresswell, 1973),
this lack of compositional knowledge has hindered the fur-
ther development of vision language models.

Previous studies on the compositionality of VLMs mainly
focused on two perspectives. Some studies proposed to
evaluate the compositional reasoning capabilities of VLMs
in a black-box probing manner (Yuksekgonul et al., 2022;
Thrush et al., 2022; Ma et al., 2023; Hsieh et al., 2023; Zhao
et al., 2022). They usually measured the accuracy perfor-
mance on whether VLMs correctly retrieved the matching
text for a given image between two captions with minimal
changes. Other studies proposed to improve the composi-
tionality of VLMs in an empirical manner by introducing
the supervision of scene graphs (Herzig et al., 2023; Huang
et al., 2023b) or curated hard-negative samples (Yuksek-
gonul et al., 2022; Doveh et al., 2023). However, there still
lack in-depth analyses to thoroughly diagnose the internal
compositional representations of VLMs, which can help us
understand the essential cause of this weakness and provide
reliable guidance for future studies.

Therefore, in this paper, we propose to take a further step
and conduct detailed analyses on the potential causes of
VLMs’ poor compositional reasoning capabilities. Since a
VLM usually contains an image encoder and a text encoder
as a whole, we propose to comprehensively evaluate VLMs
by firstly focusing on the compositional knowledge of each
unimodal encoder separately and then the multimodal com-
positional knowledge jointly. Under this scheme, we expect
to answer the following questions.

• Question 1. Does the text encoder of a VLM understand
texts compositionally?

• Question 2. Does the image encoder of a VLM under-
stand images compositionally?

• Question 3. Do the text encoder and the image en-
coder of a VLM have mutually-matching knowledge on
compositionality?

In this way, such a disentangled representation dissection
scheme can help us obtain a more meticulous and fine-
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Figure 1. Diagnosing the compositional reasoning capabilities of Vision Language Models (VLMs). In this paper, we systematically
analyze the potential causes for the poor compositional performance of VLMs from each unimodal separately and then multimodal jointly.
In this way, three insights are obtained and validated correspondingly. Please see Section 1 for detailed elaborations.

grained understanding on VLMs’ poor compositional rea-
soning capabilities.

To answer previous questions, we propose to evaluate the
compositional representations inside VLMs from a novel
game-theoretic view. Specifically, we propose several met-
rics based on the Harsanyi dividend (Harsanyi, 1963) to
assess the sensitivities of VLMs to the changes of different
compositionality aspects, e.g., relations and attributes. The
Harsanyi dividend was originally proposed in game theory
to measure the interactions between different players, which
makes itself a natural metric to dissect the compositional
knowledge of DNNs. Besides, the Harsanyi dividend is
related to the Shapley value (Shapley, 1953), theoretically
satisfying the efficiency, linearity, dummy, symmetry axioms,
which further ensures the trustworthiness of the interpreta-
tions for DNNs (Ren et al., 2022; 2023; Li & Zhang, 2023).

In this way, we conduct extensive evaluations on five state-
of-the-art VLMs (Radford et al., 2021; Li et al., 2022b; Zeng
et al., 2022; Yuksekgonul et al., 2022; Singh et al., 2022)
with four widely-used datasets (Yuksekgonul et al., 2022;
Zhao et al., 2022; Hsieh et al., 2023; Wang et al., 2023),
obtaining and validating several fine-grained insights on the
internal representations of VLMs w.r.t. the compositional
reasoning capabilities.

• Insight 1. It is to our surprise that text encoders of
VLMs show excellent compositional reasoning capabili-
ties, able to recognize the dominant compositional differ-
ences between input texts like human understanding.

• Insight 2. Image encoders of VLMs demonstrate com-
positional reasoning capabilities to some extent, which
are relatively weaker than the corresponding text en-
coders, partially resulting in the poor compositional per-
formance of VLMs.

• Insight 3. Although text encoders and image encoders
show certain compositional reasoning capabilities indi-
vidually, they do not share mutually-matching composi-
tional knowledge, which also partially accounts for the
poor compositional abilities of VLMs1.

These insights provide a detailed understanding on the po-
tential causes of VLMs’ poor compositional knowledge,
which can provide beneficial and reliable instructions for
future studies. For instance, to bring more significant per-
formance gain on the compositional reasoning tasks, it may
be more effective to design stronger image encoders instead
of text encoders for VLMs.

The contributions of our paper are summarized as follows.
1) We conduct a systematical analysis to diagnose the inter-
nal representations of VLMs, progressively revealing the
potential causes for their weakness in compositional reason-
ing capabilities. 2) We propose several metrics from a novel
game-theoretic view to assess the vulnerability of VLMs
on different aspects of compositional understanding, e.g.,
relations and attributes. 3) Experimental results on various
state-of-the-art VLMs and datasets demonstrate and validate
several insights on the compositional reasoning capabilities
of VLMs, which can help instruct future studies for more
effective improvements of VLMs.

2. Related Work
Vision Language Models. In recent years, Vision Lan-
guage Models (VLMs) (Chen et al., 2020; Li et al., 2019a;

1Compared to previous studies (Herzig et al., 2023; Huang
et al., 2023b; Doveh et al., 2023) which mainly provided intuitive
understanding in this aspect, we presented detailed and in-depth
analyses from a novel game-theoretic view to further validate this
assumption in this paper.
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Tan & Bansal, 2019; Li et al., 2021a; Jia et al., 2021; Goel
et al., 2022; Singh et al., 2022; Liu et al., 2023; Zhu et al.,
2023) have received an increasing research focus, provid-
ing benefits for both unimodal and multimodal applications.
Generally, VLMs were trained to generate correspondences
between input texts and images. Their encoded representa-
tions were then evaluated on many zero-short or few-short
downstream tasks, such as CLIP (Radford et al., 2021), X-
VLM (Zeng et al., 2022), BLIP (Li et al., 2022b) and etc.
However, recent studies showed that despite the high perfor-
mance on dozens of well-established benchmarks (Yao et al.,
2021; Li et al., 2021b; Gao et al., 2022), most of the VLMs
surprisingly exhibited poor compositional understanding
capabilities (Yuksekgonul et al., 2022; Thrush et al., 2022).

Compositionality of VLMs. Previous studies firstly de-
signed a number of new benchmarks to comprehensively
evaluate the compositional reasoning capabilities of VLMs,
such as Winoground (Thrush et al., 2022), ARO (Yuk-
sekgonul et al., 2022), VL-CheckList (Zhao et al., 2022),
CREPE (Ma et al., 2023), SUGARCREPE (Hsieh et al.,
2023), COLA (Ray et al., 2023), EQBEN (Wang et al.,
2023), SyViC (Cascante-Bonilla et al., 2023) and SPEC
(Peng et al., 2024). However, these benchmarks usually
evaluated the compositionality of VLMs with the accuracy
metric, testing whether the paired images and texts could be
correctly retrieved among perturbed samples. Such a black-
box probing scheme failed to provide further explanations
for the unsatisfying performance. Besides the development
of these benchmarks, other studies focused on improving
the compositional performance of VLMs in an empirical
manner, such as introducing the guidance of scene graphs
(Herzig et al., 2023; Huang et al., 2023b) and generating
curated hard-negative samples (Yuksekgonul et al., 2022;
Doveh et al., 2023; Sahin et al., 2023; Momeni et al., 2023).
However, there still lacks a thorough representation diag-
nosis on the compositional reasoning capabilities of VLMs,
so as to systematically unveil the essential causes for this
weakness.

Interactions of DNNs. Considerable studies have focused
on quantifying the interactions among input units for diag-
nosing the representation of DNNs (Grabisch & Roubens,
1999; Zhang et al., 2020b; 2021a; Wang et al., 2020; Ren
et al., 2021; Wang et al., 2021; Yao et al., 2023; Dong
et al., 2022; Chen et al., 2023). Based on the Shapley value
(Shapley, 1953) originally proposed in game theory, some
studies (Grabisch & Roubens, 1999; Sundararajan et al.,
2020) proposed interaction metrics to quantify the relation-
ships among the input units, such as the Harsanyi dividend
(Harsanyi, 1963). Besides, Zhang et al. (2021b; 2020a)
further extended the interaction metric to the multi-order
and multivariate interactions, which were applied to explain
several phenomena of DNNs (Deng et al., 2021; Wang et al.,
2020; Ren et al., 2021). In comparison, our study aims to

provide detailed explanations on the poor compositional
reasoning capabilities of VLMs.

3. Quantifying the compositional knowledge of
VLMs with the Harsanyi dividend

In this paper, we propose several metrics based on the
Harsanyi dividend (Harsanyi, 1963) to evaluate the com-
positional reasoning capabilities of VLMs from different
aspects. To this end, we first present a brief introduction to
the Harsanyi dividend for better understanding.

3.1. The Harsanyi dividend

The Harsanyi dividend was a typical metric in game theory
(Harsanyi, 1963), which measures the interaction among
a set of players. Specifically, given a set of players N =
{1, 2, ..., n} participating in a game v, certain rewards can
be obtained. Here, v(·) represents a function to map any
subset of players S ⊆ N to a real number, representing
the obtained numerical reward. Intuitively, during such a
game, each player usually does not contribute to the reward
individually, but interacts with each other, forming different
coalitions/patterns to cause casual effects on the final out-
come. Mathematically, such effects can be measured by the
Harsanyi dividend, which is defined as follows:

w(S|N ) =
∑
S′⊆S

(−1)|S
′|−|S| · v(S ′). (1)

Besides, the Harsanyi dividend also satisfies many axioms to
theoretically support the fairness and trustworthiness of its
calculation (Grabisch et al., 2016; Ren et al., 2023). Please
see Appendix A for details.

3.2. Quantifying the compositional knowledge of VLMs

Based on the definition of the Harsanyi dividend, we then
elaborate on how to quantify the compositional knowledge
of VLMs with it. To limit the scope of discussion in this
paper, we mainly focus on the aspects of compositionality
as follows: relations, objects and attributes. To this end, we
believe that a VLM with a comprehensive and excellent
compositional reasoning capability should be sensitive to
the changes of objects, relations, attributes, and also, be-
ing sensitive to the changes of interactions among them.
To be specific, let us take the samples in Figure 1 for an
example.

Given the two input captions in Figure 1 showing changes
regarding the textual compositionality, they both contain the
same words but these words have different interactions with
each other, describing different relations between objects.
To this end, a VLM with an excellent compositional reason-
ing capability should learn that the object words alone (i.e.,
{child’s hand, deer’s nose}) or the relation words alone
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Figure 2. Evaluating the sensitivities of text encoders of VLMs
to the changes of textual patterns. Specifically, given captions
T1 and T2 with object words being swapped, we design QO , QR

and QR&O to assess whether text encoders react correctly to the
fine-grained changes of compositionality. In this case, QR&O ,
which measures the interaction changes between object words and
relation words, should be of a greater value than QO and QR. Here
T1 · I1 represents the cosine similarity between the normalized text
embedding T1 and normalized image embedding I1.

(i.e., {resting on}), have almost the same casual effect on
the understanding of each caption. By contrast, the inter-
actions between the object words and the relation words
in each caption should have different casual effects on the
understanding of each caption correspondingly.

Besides, given the two input images in Figure 1 showing
changes in terms of the visual compositionality, they both
contain objects of the same identity (i.e., image regions
showing the same child and the same deer in these two
images.), but these objects interact differently with each
other. In this way, between these two images, a VLM with
an excellent compositional reasoning capability should learn
that image regions of the same object alone (i.e., image
regions of the child or the deer alone) should make similar
casual effects on the representation of each image. On the
contrary, the interactions between these two object regions
should have different casual effects.

In order to meticulously examine the above fine-grained un-
derstanding of compositionality inside VLMs, we propose to
exploit the Harsanyi dividend to first quantitatively measure
the effect of each visual and textual pattern on the output of
VLMs. In this way, we can further quantitatively evaluate
whether VLMs show sharp sensitivities to the changes of
these patterns, which relate to different aspects of compo-
sitionality. Specifically, we can analogously consider the
inference process of VLMs as a game v(·, ·) with two sets

of players N I = {1, 2, ..., nI} (e.g., all the visual concepts
on an image) and N T = {1, 2, ..., nT } (e.g., all the words
in a caption). Here, v(·, ·) represents the output of VLMs,
which measures the matching similarity between an input
image and an input text, e.g., the cosine similarity between
an input image embedding and an input text embedding for
CLIP (Radford et al., 2021). The casual effect of the pattern
SI ⊆ N I and ST ⊆ N T defined by the Harsanyi dividend
is then calculated as,

w({SI ,ST }|{N I ,N T })

=
∑

SI′⊆SI ,

ST ′⊆ST

(−1)|S
I′|−|SI |+|ST ′|−|ST | · v(SI′

,ST ′
). (2)

where SI′ represents the input image with only the vi-
sual concepts in the subset SI′ while masking other vi-
sual concepts in N I\SI′; ST ′ represents the input cap-
tion with only the words in the subset ST ′ while mask-
ing other words in N T \ST ′2. For simplicity, we denote
w({SI ,ST }|{N I ,N T }) as w({SI ,ST }) in the follow-
ing sections.

With Equation 2 measuring the effects of visual/textual pat-
terns, we then design metrics to evaluate VLMs’ sensitivities
to the changes of these patterns, so as to fully examine the
compositional reasoning capabilities of VLMs in a fine-
grained manner. In the following sections, we start from
each unimodal representations of VLMs separately, and
then to the multimodal representations of VLMs jointly.

4. Can text encoders of VLMs understand
texts compositionally?

To fully examine the compositional reasoning capabili-
ties of VLMs in a fine-grained manner, we first explore
whether text encoders of VLMs encode reliable composi-
tional knowledge in the first place. Specifically, we propose
several metrics based on the Harsanyi dividend to quan-
titatively evaluate the sensitivities of text encoders to the
changes of textual patterns, which relate to different aspects
of compositionality.

As shown in Figure 2, given an image-text pair {I1, T1}
and a perturbed text T2, which is generated from swapping
object words in T1, VLMs like CLIP (Radford et al., 2021)
would output two matching scores v(N I1 ,N T1)) = I1 · T1

and v(N I1 ,N T2)) = I1 · T2, where I1 represents the nor-
malized image embedding of I1 and T1/2 represents the
normalized text embedding of T1/2. In this way, the varia-
tions between I1 · T1 and I1 · T2 can be considered as the

2In this paper, the baseline value for masking out image re-
gions/text tokens was set as zero, following previous studies (An-
cona et al., 2019; Wang et al., 2021; Zhang et al., 2020b; 2021b;
Dong et al., 2022).
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Figure 3. The Pearson correlation coefficients ρ(X T ,YT ) between the reward differences X T and interaction effect differences on the
Visual Genome Relation dataset, i.e., YT

R , YT
O and YT

R&O . Each point represents a data sample containing two captions and one image.
Results show that the reward differences between the two captions were mainly related to the interaction changes of object words and
relation words, demonstrating that text encoders of VLMs reacted correctly to the textual compositional differences in this dataset.

coarse measurement on the sensitivities of text encoders
to the changes of a mixture of textual patterns. However,
it still remains uncertain whether text encoders of VLMs
react to each specific texture pattern in a correct manner
individually. To this end, we expect to take a step further
and comprehensively analyze fine-grained sensitivities of
text encoders, regarding different aspects of composition-
ality. Mathematically, we propose the sensitivity metric as
follows,

Q(T1, T2, I1)

=
1

ZT
sens

||w({N I1 ,ST1})− w({N I1 ,ST2})||2
(3)

where ZT
sens = ET ′∈{T1,T2}EST ′ ||w({N I1 ,ST ′})||2 is

used for normalization. Intuitively, this metric measures
detailed textual casual effect changes between text T1 and
T2 when given the image I13. In this way, given different
subsets of words ST1 and ST2 , we mainly compute five
types of sensitivity metrics in implementations.

• The sensitivity metric of relation words QR. This metric
measures the casual effect changes of only relation words
on the output of text encoders of VLMs, where ST1 and ST2

contain relation words only.

• The sensitivity metric of attribute words QA. This
metric measures the casual effect changes of only attribute
words on the output of text encoders of VLMs, where ST1

and ST2 contain attribute words only.

• The sensitivity metric of object words QO. This metric
measures the casual effect changes of only object words on
the output of text encoders of VLMs, where ST1 and ST2

contain object words only.

• The sensitivity metric of interaction between relation
words and object words QR&O. This metric measures the
casual effect changes of interactions between relation words
and object words, where ST1 and ST2 contain both relation
words and object words.

3Note that to control the input variables for better clarity, in Eq.
3, we do not mask out any image regions when only analysing text
pattern casual effect changes.

Table 1. Evaluating the compositional sensitivities of text encoders
of VLMs. In the Visual Genome Relation dataset, the object words
are swapped to obtain perturbed texts. Results show that QR&O

(bold) have larger values than QR and QO in this dataset across
different VLMs, demonstrating that text encoders of various VLMs
exhibit accurate sensitivities to the changes of textual patterns.

Dataset Models QO QR QR&O

Visual Genome Relation

CLIP 4.5e-3 9.8e-6 1.3e-2
NEGCLIP 3.7e-3 1.1e-5 2.0e-2
BLIP 3.3e-2 1.3e-4 1.7e-1
XVLM 5.0e-2 1.1e-3 1.4e-1
FLAVA 7.4e-2 3.0e-2 4.3e-1

• The sensitivity metric of interaction between attribute
words and object words QA&O. This metric measures
the casual effect changes of interactions between attribute
words and object words, where ST1 and ST2 contain both
attribute words and object words.

Experiment protocols. Based on the metrics, we system-
atically analyzed the compositional knowledge of text en-
coders of various VLMs. Specifically, we evaluated text en-
coders of five state-of-the-art VLMs: CLIP (Radford et al.,
2021), BLIP (Li et al., 2022b), NEGCLIP (Yuksekgonul
et al., 2022), XVLM (Zeng et al., 2022) and FLAVA (Singh
et al., 2022). The evaluations were conducted on three popu-
lar benchmarks: ARO (Yuksekgonul et al., 2022), SUGAR-
CREPE (Hsieh et al., 2023) and VL-CheckList (Zhao et al.,
2022). Due to the page limitation, please see Appendix C
for results on SUGARCREPE and VL-CheckList.

Experimental results on ARO benchmark. In this ex-
periment, we mainly focused on the attribute and relation
aspects of compositionality, using two of the sub-datasets
in the ARO benchmark: Visual Genome Attribution and
Visual Genome Relation (Krishna et al., 2017; Hudson &
Manning, 2019). Each sample in the dataset includes one
image and two captions with minimal differences. We here
present results on the Visual Genome Relation dataset in the
main paper. Please see Appendix C for results on the Visual
Genome Attribution dataset.

In the Visual Genome Relation dataset, the input correct and
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Figure 4. Evaluating the sensitivities of image encoders of VLMs
to the changes of visual patterns. Specifically, given images I1

and I2 with object relations being altered, we design DO1 , DO2

and DO1&O2 to assess whether image encoders react correctly to
the fine-grained changes of visual compositionality. In this case,
DO1&O2 , which measures the relation changes between objects,
should be of a greater value than DO1 and DO2 .

wrong captions are in the templates of “[object 1] [relation]
[object 2]” and “[object 2] [relation] [object 1]” with the
SWAP manipulation. To this end, we mainly evaluated the
sensitivity metrics of relation words, object words and the
interactions between relation words and object words, i.e.,
QR, QO and QR&O. Masks denoting the relation words
and object words are obtained directly based on the tem-
plates. Based on human understanding, the compositional
differences between the correct and wrong captions in this
dataset should be largely reflected by the interaction changes
between relation words and object words (i.e., QR&O). By
contrast, the casual effect changes of relation words alone
and object words alone should be less significant. Results
are reported in Table 1, where QR&O has the highest values
among metrics for various VLMs. It is to our surprise that
despite the poor performance of VLMs on this bench-
mark, text encoders of VLMs did recognize the domi-
nant compositional differences between captions in the
relation-object aspect, similar to human understanding.

To further examine the compositional knowledge of text
encoders, we propose to calculate the Pearson correlation
coefficients between the reward differences and interac-
tion effect differences. Specifically, we calculated the
reward differences X T and interaction effect differences
YT as follows: X T = v(N I1 ,N T1) − v(N I1 ,N T2);
YT = w(N I1 ,ST1) − w(N I1 ,ST2). We then calcu-
lated the Pearson correlation coefficients ρ(X T ,YT ) for
different subsets of words ST1 and ST2 , i.e., ρ(X T ,YT

O ),
ρ(X T ,YT

R ), ρ(X T ,YT
R&O). Here YT

O represents the ca-

Table 2. Evaluating the compositional sensitivities of image en-
coders of VLMs with the EQBEN dataset, where object relations
alter but each object maintains the same identity within image
pairs. The maximum metrics are shown in bold.

Dataset Models DO1
DO2

DO1&O2
ρO1

ρO2
ρO1&O2

EQBEN

CLIP 1.7e-2 3.1e-2 2.0e-2 0.34 0.56 0.12
NEGCLIP 3.7e-2 7.5e-2 3.4e-2 0.37 0.67 0.05

BLIP 5.6e-1 7.4e-1 4.4e-1 0.36 0.46 0.23
XVLM 8.2e-1 1.2e0 8.1e-1 0.39 0.51 0.13
FLAVA 6.9e-1 1.0e0 1.2e0 0.20 0.33 0.20

sual effect changes when ST1 and ST2 only contain object
words. YT

R represents the casual effect changes when ST1

and ST2 only contain relation words. YT
R&O represents the

casual effect changes when ST1 and ST2 contain both ob-
ject and relation words. As shown in Figure 3, YT

R&O has a
significant positive correlation with the final reward differ-
ences X T among various VLMs. Such results demonstrate
that the reward differences between correct captions and
negative captions were mainly caused by the interaction
effect changes between relation words and object words,
which was surprisingly consistent with human understand-
ing, despite the unsatisfying performance on this benchmark
(Yuksekgonul et al., 2022).

5. Can image encoders of VLMs understand
images compositionally?

In previous analyses, we surprisingly find text encoders of
VLMs demonstrate sharp sensitivities to different aspects
of compositionality in texts. Such experimental results sig-
nificantly reduce the accountability of text encoders for the
poor compositionality performance of VLMs. To rule out
other potential causes, we then turn our concentration on ex-
ploring whether image encoders should be held accountable
for this weakness.

Similar to the analyses on text encoders of VLMs, we hope
to answer the following key question in this section: do im-
age encoders correctly know the fine-grained compositional
differences between two images? As shown in Figure 4,
given an image-text pair {I1, T1} and a perturbed image I2,
where the relation between the child and the deer varies. It
is expected that the relation changes between the child and
the deer should be considered the essential compositional
differences between images I1 and I2. In the meantime,
casual effect changes of the child alone or the deer alone
should be considered less significant. To diagnose such
detailed visual compositional understanding of VLMs, we
propose to calculate the following sensitivity metric,

D(I1, I2, T1)

=
1

ZI
sens

||w({SI1 ,N T1})− w({SI2 ,N T1})||2
(4)
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where ZI
sens = EI′∈{I1,I2}ESI′ ||w({SI′

,N T1})||2 is cal-
culated for normalization. Intuitively, this metric measures
detailed visual casual effect changes between I1 and I2
when given the text T14. To limit the discussion in this pa-
per, we only focus on image pairs I1 and I2, which contain
the same object pair but show different object relations as
in Figure 4. We leave analyses on more complex visual
cases for future studies. To this end, we mainly calculated
two types of sensitivity metrics given different sets of visual
concepts SI1 and SI2 in implementations.

• The sensitivity metric of each object DO1/DO2 . This
metric measures the casual effect changes of each individual
object region on the output of image encoders of VLMs,
where SI1 and SI2 contain the object regions of the same
identity, i.e., object O1/O2.

• The sensitivity metric of relation within a pair of ob-
jects DO1&O2

. This metric measures the casual effect
change of the relation within a pair of objects O1 and O2,
where SI1 and SI2 contain both object regions.

Experiment protocols. Following previous analyses, we
continued to evaluate the compositional knowledge of image
encoders for CLIP, NEGCLIP, BLIP, XVLM and FLAVA.
As for benchmarks, we exploited the EQBEN dataset (Wang
et al., 2023) collected from natural videos (Zhou et al., 2018;
Ji et al., 2020; Wang et al., 2022) or synthetic engines (Rom-
bach et al., 2022; Hertz et al., 2022; Greff et al., 2022). In
this dataset, each sample contains two image-text matching
pairs sharing minimal differences. However, to conduct
quantitative evaluations with Eq. 4, we need to obtain the
pixel-wise mask for each described object on images, which
is not provided in the original dataset. To this end, we care-
fully selected a subset of data samples (290 image-text pairs)
from the original dataset and utilized SAM (Kirillov et al.,
2023) to help obtain the final mask for each described object
in images. Please see Appendix B for annotations5.

Experimental results on EQBEN benchmark. Besides the
proposed metrics, we also calculated the Pearson correlation
coefficients ρO1

, ρO2
and ρO1&O2

for further evaluations,
following Sec. 4. Here ρO1/O2

= ρ(X I ,YI
O1/O2

) and
ρO1&O2 = ρ(X I ,YI

O1&O2
), where X I = v(N I1 ,N T1)−

v(N I2 ,N T1); YI = w(N I1 ,ST1) − w(N I2 ,ST1).
YI
O1/O2

represents the casual effect changes when SI1 and
SI2 only contain the same object O1/O2. YI

O1&O2
repre-

sents the casual effect changes when SI1 and SI2 contain
both objects O1 and O2.

Results are summarized in Table 2. On the one hand, dif-
ferent from the trend in Table 1 where text encoders show

4Similar to Eq. 3, we do not mask out any text tokens when
only analysing visual pattern casual effect changes for clarity.

5New annotations are available here.

sharp sensitivities to the relation changes between objects
(i.e., QR&O being larger than QO and QR.), DO1&O2 had
a smaller value than DO1 and DO2 for most VLMs, which
shows that image encoders demonstrated less accurate com-
positional sensitivities regarding the changes of object re-
lations. They were more sensitive to the mild and less sig-
nificant changes of each object alone, instead of the major
relation changes between objects. Besides, the coefficients
results show that the reward differences within the image
pairs were not mostly related to the relation changes between
objects, i.e., ρO1&O2

did not have the largest value than ρO1

and ρO2
, which was less consistent with human understand-

ing compared to text encoders of VLMs. In summary, the
above results show that image encoders demonstrated
weaker compositional reasoning capabilities, which may
partially result in the overall poor compositional perfor-
mance of VLMs.

6. Do text encoders and image encoders have
matching compositional knowledge?

Based on previous analyses, we find that text encoders and
image encoders of VLMs both demonstrate certain sensitiv-
ities to the compositional changes of input, though image
encoders are less sensitive. To further comprehensively
examine the compositional knowledge of VLMs, we then
evaluate whether text encoders and image encoders have mu-
tually matching compositional knowledge. In other words,
do image encoders correctly consider the interaction be-
tween object words and relation words in texts as the re-
lations between objects in images, or mistakenly consider
as each object alone? Similarly, do text encoders correctly
consider the relations between objects in images as the in-
teractions between object words and relation words in texts,
or mistakenly consider as the object/relation words alone?

To evaluate the correspondence between the compositional
knowledge encoded inside text encoders and image en-
coders, we propose to compute the following modified met-
rics for image-text pairs describing relations between two
objects,

QT :R&O−→I:(·)

=
1

ẐT
sens

||w({SI1 ,ST1

R&O})− w({SI1 ,ST2

R&O})||
2 (5)

DI:O1&O2−→T :(·)

=
1

ẐI
sens

||w({SI1

O1&O2
,ST1})− w({SI2

O1&O2
,ST1})||2

(6)
where ẐT

sens = ET ′∈{T1,T2}EST ′ESI1 ||w({SI1 ,ST ′

R&O})||2

and ẐI
sens = EI′∈{I1,I2}ESI′EST1 ||w({SI′

O1&O2
,ST1})||2

are used for normalization. Here, for T ′ ∈ {T1, T2}, ST ′

R&O

denotes the object words and relation words in texts; for
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Sensitivity metrics to visual pattern changes
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Figure 5. Evaluating whether image encoders and text encoders
of VLMs possess mutually matching compositional knowledge
with modified sensitivity metrics. Specifically, given image-text
pairs {I1, T1} and {I2, T2} sharing minimal differences of ob-
ject relations, we design QT :R&O−→I:O1 , QT :R&O−→I:O2 and
QT :R&O−→I:O1&O2 to assess whether image encoders obtain the
corresponding compositional knowledge for text encoders. Be-
sides, we also design DI:O1&O2−→T :O , DI:O1&O2−→T :R and
DI:O1&O2−→T :R&O to assess whether text encoders obtain the cor-
responding compositional knowledge for image encoders. Please
zoom in for better visualization.

I ′ ∈ {I1, I2}, SI′

O1&O2
denotes the image regions of object

O1 and object O2.

Intuitively, Eq. 5 aims to examine VLMs by measuring
what components of images are more related to the interac-
tions between object words and relation words. As shown
in Figure 5, we mainly calculated QT :R&O−→I:O1/O2

and
QT :R&O−→I:O1&O2

. Taking QT :R&O−→I:O1
as an example,

it measures how the interaction changes between object
words and relation words within T1 and T2 would affect the
output of VLMs when only given the image region of the
child in I1. In this case, QT :R&O−→I:O1&O2 should be of
the greatest value, showing that only when the visual pattern
demonstrates the interactions between objects, swapping
object words to change their relations in the textual pattern
would cause significant influence on the output of VLMs.

Similarly, Eq. 6 aims to examine VLMs by measur-
ing what components of texts are more related to the
interaction between objects on images. As shown in
Figure 5, we mainly calculated DI:O1&O2−→T :O/R and
DI:O1&O2−→T :R&O. Taking DI:O1&O2−→T :O as an exam-
ple, it measures how the relation changes between ob-
jects within I1 and I2 would affect the output of VLMs,
when only given the object words in T1. In this case,
DI:O1&O2−→T :R&O should be of the greatest value, show-
ing that only when the textual pattern demonstrates the
relations between objects, altering the relations of objects in
images would put significant effects on the output of VLMs.

Experiment results. Following previous analyses, we con-

Table 3. Evaluating whether image encoders and text encoders of
VLMs possess mutually matching compositional knowledge with
the EQBEN dataset, where each sample contains two images and
two texts both with minimal differences in the relation aspect. The
maximum metrics are shown in bold.

Dataset Models QT :R&O−→I:O1
QT :R&O−→I:O2

QT :R&O−→I:O1&O2

EQBEN

CLIP 2.8e-1 6.9e-1 2.4e-1
NEGCLIP 5.1e-1 1.3e0 3.8e-1

BLIP 5.1e-1 6.7e-1 4.3e-1
XVLM 1.2e-1 1.9e-1 8.5e-2
FLAVA 5.4e-1 9.2e-1 6.5e-1

Dataset Models DI:O1&O2−→T :R DI:O1&O2−→T :O DI:O1&O2−→T :R&O

EQBEN

CLIP 8.0e-1 2.4e0 1.3e0
NEGCLIP 1.0e0 3.0e0 1.3e0

BLIP 6.7e-1 1.5e0 3.6e0
XVLM 1.0e0 1.6e0 3.2e0
FLAVA 1.0e0 2.1e0 2.6e0

tinued analyzing CLIP, NEGCLIP, BLIP, XVLM, FLAVA
and harnessed our annotated EQBEN sub-dataset for evalua-
tions, considering each sample contains two images and two
texts both with minimal differences. Results in Tab. 3 show
that QT :R&O−→I:O1&O2

did not maintain the largest among
all three metrics, showing that in terms of object relations,
image encoders of VLMs did not learn corresponding visual
patterns to match the textual object relation patterns encoded
inside text encoders. Instead, image encoders tended to
associate the representations of mere objects with the inter-
actions between object words and relation words learned by
text encoders (e.g., QT :R&O−→I:O2

showed the largest value
for all VLMs.). Meanwhile, DI:O1&O2−→T :R&O failed to
maintain the largest among all three metrics across all VLMs
as well, showing that regarding the object relations, text en-
coders also did not associate the corresponding textual pat-
terns to the visual object relation patterns learned by image
encoders. They sometimes considered the representations of
object words alone to be more related to the object relations
depicted in images (e.g., DI:O1&O2−→T :O had the largest
value for CLIP/NEGCLIP.). In summary, these models did
not exhibit mutually matching compositional knowledge
from the text and visual sides, which may also partially
account for the poor compositional capabilities of VLMs.

7. Conclusion
In this paper, we have conducted systematical analyses on
the compositionality reasoning capabilities of Vision Lan-
guage Models (VLMs), which are widely considered as
important characteristics of human intelligence. To this
end, we have progressively diagnosed the compositional
knowledge of each unimodal encoder separately and then
the multimodal compositional knowledge jointly. A number
of new metrics from a novel game-theoretic view have been
proposed to conduct fine-grained compositionality knowl-
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edge diagnoses. In this way, we have obtained and validated
several insights regarding the causes for the poor compo-
sitional performance of VLMs, which may help provide
useful guidance on future explorations.
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A. Axioms of the Harsanyi dividend
The Harsanyi dividend (Harsanyi, 1963) satisfies many axioms, which provide solid theoretical foundations for our
explanations in the main paper. The axioms are as follows.

• Linearity axiom. Given a game t combined by a game u and a game v, i.e., t(·) = u(·) + v(·), the Harsanyi dividend
of any subset of players S in the game t is equal to the sum of the Harsanyi dividends in the game u and v, i.e.,
wt(S|N ) = wu(S|N ) + wv(S|N ).

• Dummy axiom. If ∀S ⊆ N\{i}, v(S ∪ {i}) = v(S) + v({i}), then player i is a dummy player, having no interactions
with other players,i.e., w(S ∪ {i}|N ) = 0.

• Symmetry axiom. Given two players i and j, if ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(N ∪ {j}), then they have the same
interaction effects with other players, i.e., ∀S ⊆ N\{i, j}, w(S ∪ {i}|N ) = w(S ∪ {j}|N ).

• Efficiency axiom. The overall output of the game v(N ) can be disentangled into the interaction effects of different
subsets of players S, i.e., v(N ) =

∑
S⊆N w(S|N ).

Besides, the Harsanyi dividend is also related to the Shapley value (Shapley, 1953), as described in the following theorem.

Theorem 1 (proven in (Harsanyi, 1963; Ren et al., 2022)). Let ϕ(i) represents the Shapley value of the player i ∈ N . In this
way, we have ϕ(i) =

∑
S⊆N\{i}

1
|S|+1w(S ∪ {i}|N ), showing that the Shapley value can be considered as the uniform

allocations from the numerical values of Harsanyi dividends.

B. Visualizing the new annotations of EQBEN
In this section, we provide samples from our new object annotations in the subset of the EQBEN dataset. The visualization
results are presented in Figure 6.

C. More results on diagnosing the compositional knowledge of text encoders
Experimental results on Visual Genome Attribution dataset. In this dataset, the correct captions and wrong captions
are in the templates of “the [attribute 1] [object 1] and the [attribute 2] [object 2]” and “the [attribute 2] [object 1]
and the [attribute 1] [object 2]” with the SWAP manipulation. Therefore, we mainly measured the sensitivity metrics
of attribute words, object words and the interactions between attribute words and object words, i.e., QA, QO and QA&O.
Masks denoting the attribute words and object words were obtained based on the templates. Intuitively, this type of caption
pair is majorly different in the aspect of the interaction between attribute words and object words, rather than attribute/object
words alone. Results in Table 4 are consistent with this human intuition, showing QA&O has the largest value among other
metrics. Such results indicate that text encoders also recognize the prominent compositional differences between
captions in the attribute-object aspect.

Besides, we also calculated the Pearson correlation coefficients ρ(X T ,YT ) between reward differences and interaction
effect differences in the Visual Genome Attribution dataset, i.e., ρ(X T ,YT

O ), ρ(X T ,YT
A ), ρ(X T ,YT

A&O). YT
A represents

the casual effect changes when ST1 and ST2 only contain attribute words. YT
A&O represents the casual effect changes when

ST1 and ST2 contain both object and attribute words. Results in Figure 7 show that the interaction effect changes between
attribute words and object words played a major part in the final reward differences, showing that text encoders correctly
reflected the prominent compositional differences within each caption pair.

Experimental results on VL-CheckList benchmark. The VL-CheckList benchmark (Zhao et al., 2022) contains a large
scale of images and captions (over 100K) combined from 4 datasets: Visual Genome (Krishna et al., 2017), SWiG (Pratt
et al., 2020), VAW (Pham et al., 2021), and HAKE (Li et al., 2019b) datasets. In each sample, there exist one image, one
correct caption and one wrong caption. The wrong caption is generated by REPLACING one compositionality aspect of the
correct caption, including objects, relations and attributes. Furthermore, these samples were then divided into 9 categories:
1) Object: the location and size of it, 2) Relation: action or spatial relation between objects, 3) Attribute: color, material,
size, state and action. In experiments, we exploited Spacy (Honnibal & Montani, 2017) for part-of-speech tagging to roughly
divide each sentence into object words, relation words and attribute words. Other irrelevant words were then treated as the
constant text background.
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Table 4. Evaluating the compositional sensitivities of text encoders of VLMs. In the Visual Genome Attribution dataset, the attribute
words are swapped to obtain perturbed texts. Results show that QA&O (bold) have larger values than QA and QO in this dataset across
different VLMs, showing that text encoders of various VLMs exhibit accurate sensibilities to the changes of textual patterns.

Dataset Models QO QA QA&O

Visual Genome Attribution

CLIP 1.2e-4 2.9e-3 1.6e-2
NEGCLIP 2.6e-4 4.5e-3 2.9e-2
BLIP 3.0e-3 2.5e-2 1.9e0
XVLM 3.3e-3 2.0e-2 4.5e-1
FLAVA 2.0e-2 9.6e-2 2.9e-1

We report the results in Table 5 and Table 6. Intuitively, by replacing the correct caption with new object/relation/attribute
words, not only does the effect of object/relation/attribute words change, but also the interactions among them should vary
significantly. As shown in Table 5, on the object aspect, QR&O and QO (as well as ρR&O and ρO) had the highest values
across different text encoders of VLMs, demonstrating their capabilities to recognize the replacing effect of object words.
Besides, QO usually had a slightly higher value than QR&O, showing that text encoders considered that the replacement of
object words affected less on the relation changes between objects.

On the relation aspect in Table 5, results showed that QR and QR&O (as well as ρR and ρR&O) had the largest values,
showing that text encoders of VLMs recognized the changes of relation words and the interaction changes between relation
words and object words. Besides, for action relations, results show that text encoders of CLIP and NEGCLIP considered
that the replacement of relation words caused less impact on the interaction changes between object words and relation
words (i.e., QR&O/ρR&O having a smaller value than QR/ρR). Meanwhile, text encoders of BLIP, XVLM and FLAVA had
opposite understandings on the replacement of relation words (i.e., QR&O/ρR&O having a larger value than QR/ρR). As for
spatial relations, all text encoders of these VLMs considered the replacement of relation words affected more on interaction
changes between object words and relation words.

In Table 6, we present the results on the attribute aspect in the VL-CheckList dataset. Similar to the results in Table 5, QA

and QA&O (as well as ρA and ρA&O) had the largest values in general, indicating that text encoders of VLMs successfully
recognized the changes of attribute words and the interaction changes between attribute words and object words. Besides,
it is noteworthy that for replacing attribute words in captions, text encoders of CLIP and NEGCLIP usually paid more
attention to the changes of attribute words alone (i.e., QA&O/ρA&O having a smaller value than QA/ρA), which may expose
certain deficiency of CLIP on understanding the close binding relationship between attribute words and object words. Such
results may provide certain explanations for the phenomenon that Stable Diffusion models (Rombach et al., 2022) struggled
to generate correct images given the type of attribute binding text prompts (Huang et al., 2023a), since they learned their text
encoders from CLIP.

In summary, results in Table 5 and Table 6 indicate that text encoders of VLMs recognized the effects of replacing words in
texts similar to human understanding. Besides, experimental results on such a large-scale dataset further strengthen the
trustworthiness of our explanations on diagnosing the compositional reasoning capabilities of text encoders.

Experimental results on SUGARCREPE benchmark. The SUGARCREPE benchmark (Hsieh et al., 2023) contains
a significant amount of image-text samples, each of which contains one image and two captions. Compared to previous
benchmarks, each wrong caption in SUGARCREPE is manipulated with one of the following manipulations: SWAP,
REPLACE and ADD, and debiased to obtain a plausible and fluent text (OpenAI., 2022). Such a comprehensive benchmark
presents a more significant compositional challenge to VLMs. In experiments, we harnessed Spacy (Honnibal & Montani,
2017) to roughly obtain the masks denoting object words, relation words and attribute words. Results are summarized from
Table 7 to 8.

Generally speaking, given such complex caption pairs, text encoders of VLMs still demonstrated similar behavior on
the REPLACE manipulation and the SWAP manipulation as in previously evaluated benchmarks. As for the new ADD
manipulation, it is expected that adding new object/attribute words should not only change the effect of object/attribute
words alone, but also vary the interactions they contributed to. Results in Table 7 and 8 are consistent with the above
intuitions, further demonstrating that text encoders of VLMs were capable of recognizing the compositional differences
between captions in a fine-grained manner.
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Table 5. Evaluating the compositional knowledge encoded in text encoders of VLMs with the VL-CheckList dataset (object/relation
aspect). Here ρO , ρR and ρR&O represents ρ(X T ,YT

O ), ρ(X T ,YT
R ) and ρ(X T ,YT

R&O) for short. The top two largest metrics are in
bold. On the object aspect, results show that QO and QR&O (as well as ρO and ρR&O) had the largest values, showing that text encoders
of VLMs recognized both the changes of object words and the interaction changes between object words and relation words, when
replacing the object words in captions. On the relation aspect, results show that QR and QR&O (as well as ρR and ρR&O) had the largest
values, showing that when replacing the relation words in captions, text encoders of VLMs successfully recognized both the changes of
relation words and the interaction changes between relation words and object words.

Dataset Category Models QO QR QR&O ρO ρR ρR&O

VL-CheckList
(Object)

Location

CLIP 3.7e-1 1.1e-2 3.1e-2 0.86 -0.01 0.22
NEGCLIP 3.6e-1 6.5e-3 2.1e-2 0.87 0.00 0.18

BLIP 3.8e0 4.3e-2 9.3e-1 0.65 -0.05 0.44
XVLM 1.4e0 9.7e-2 2.9e-1 0.55 0.03 0.28
FLAVA 2.5e0 3.3e-1 1.0e0 0.43 0.05 0.29

Size

CLIP 3.2e-1 1.5e-2 3.6e-2 0.81 0.00 0.22
NEGCLIP 3.2e-1 6.0e-3 2.0e-2 0.88 0.01 0.18

BLIP 3.7e0 4.4e-2 9.0e-1 0.66 -0.04 0.44
XVLM 1.5e0 9.6e-2 2.9e-1 0.55 0.03 0.27
FLAVA 2.3e0 3.4e-1 1.0e0 0.44 0.05 0.28

VL-CheckList
(Relation)

Action

CLIP 4.5e-2 1.0e-1 5.0e-2 0.02 0.46 0.21
NEGCLIP 1.8e-2 9.2e-2 3.5e-2 -0.01 0.56 0.32

BLIP 3.0e-1 7.3e-1 1.5e0 -0.02 0.36 0.61
XVLM 2.6e-1 3.0e-1 4.1e-1 -0.05 0.17 0.47
FLAVA 3.9e-1 8.6e-1 1.5e0 0.16 0.19 0.51

Spatial

CLIP 1.5e-2 4.3e-2 5.4e-2 0.02 0.11 0.53
NEGCLIP 9.2e-3 1.3e-2 2.1e-2 0.03 0.23 0.64

BLIP 1.7e-1 2.3e-1 9.7e-1 0.01 0.12 0.79
XVLM 9.3e-2 2.2e-1 2.9e-1 -0.01 0.15 0.43
FLAVA 2.6e-1 6.7e-1 7.2e-1 -0.05 0.29 0.51

D. More results on evaluating the mutual compositional knowledge between text encoders and
image encoders

In this section, we provide more results to further evaluate the mutual compositional knowledge between text encoders
and image encoders. To this end, we exploited the Visual Genome Relation dataset to conduct further analyses on a larger
scale. Since each sample in the dataset contains one image and two captions individually, we mainly used QT :R&O−→I:(·)
to evaluate how image encoders considered the compositional knowledge of text encoders. For the Visual Genome
Relation dataset, we obtained the segmentation mask for each object with the help of SAM (Kirillov et al., 2023), similar
to our annotated EQBEN dataset. The newly annotated dataset contained 2000 samples in total. The newly added
segmentation masks are visualized in Figure 8. In this way, as shown in Table 9, QT :R&O−→I:O1&O2

failed to have the
largest value than QT :R&O−→I:O1 and QT :R&O−→I:O2 , showing that in terms of object relations, image encoders did
not have the corresponding compositional knowledge of text encoders. Instead, image encoders tended to consider the
interaction between object words and relation words learned by text encoders as the object representations on images (i.e.,
QT :R&O−→I:O1

being the largest among metrics). The above results were consistent with the results in Table 3 in terms of
QT :R&O−→I:(·).

E. More results on recent VLMs
In this section, we further conducted experiments on two more recent VLMs: FLIP (Li et al., 2023) and LaCLIP (Fan
et al., 2023). Specifically, we followed our proposed methods from Section 4 to 6 with the same evaluation benchmarks,
comprehensively evaluating the compositional knowledge of text encoders, the compositional knowledge of image encoders
and also, whether text encoders and image encoders have mutually matching compositional knowledge. We summarized the
results in Table 10, Table 11 and Table 12 respectively. Experimental results are consistent with our findings in the main
paper. Specifically, (1) text encoders of FLIP and LaCLIP showed excellent compositional reasoning capabilities, able to
recognize the dominant compositional differences between input texts like human understanding; (2) image encoders of
FLIP and LaCLIP demonstrated weaker compositional reasoning capabilities; (3) image encoders and text encoders of FLIP
and LaCLIP did not exhibit mutually matching compositional knowledge. The above experiments further strengthen the
reliability of the findings in the main paper.
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Table 6. Evaluating the compositional knowledge encoded in text encoders of VLMs with the VL-CheckList dataset (attribute aspect).
Here ρO , ρA and ρA&O represents ρ(X T ,YT

O ), ρ(X T ,YT
A ) and ρ(X T ,YT

A&O) for short. The top two largest metrics are in bold.
Results show that QA and QA&O (as well as ρA and ρA&O) had the largest values in general, indicating that when replacing the attribute
words in captions, text encoders successfully recognized both the changes of attribute words and the interaction changes between object
words and attribute words.

Dataset Category Models QO QA QA&O ρO ρA ρA&O

VL-CheckList
(Attribute)

Color

CLIP 4.4e-3 7.6e-2 4.0e-2 0.02 0.65 0.30
NEGCLIP 3.1e-3 8.5e-2 2.0e-2 0.00 0.81 0.05

BLIP 4.9e-2 7.7e-1 2.3e0 0.04 0.45 0.84
XVLM 7.8e-2 3.4e-1 6.2e-1 0.02 0.18 0.59
FLAVA 1.4e-1 8.1e-1 1.1e0 0.14 0.16 0.46

Material

CLIP 1.3e-2 8.6e-2 4.8e-2 -0.03 0.58 0.35
NEGCLIP 3.6e-3 9.2e-2 3.0e-2 0.00 0.70 0.13

BLIP 1.0e-1 1.3e0 1.9e0 0.11 0.42 0.71
XVLM 1.5e-1 5.6e-1 4.5e-1 0.05 0.17 0.39
FLAVA 3.0e-1 1.0e0 1.2e0 0.21 0.35 0.41

Size

CLIP 1.1e-2 3.6e-2 3.6e-2 0.06 0.32 0.49
NEGCLIP 6.1e-3 4.0e-2 2.5e-2 0.03 0.53 0.23

BLIP 4.8e-2 6.5e-1 1.2e0 0.03 0.33 0.77
XVLM 4.5e-2 2.9e-1 3.0e-1 0.04 0.23 0.51
FLAVA 9.0e-2 4.3e-1 8.7e-1 -0.04 0.19 0.46

State

CLIP 9.1e-3 4.4e-2 3.5e-2 0.04 0.50 0.48
NEGCLIP 4.7e-3 6.8e-2 2.3e-2 0.04 0.71 0.16

BLIP 4.0e-2 9.9e-1 1.0e0 -0.03 0.55 0.73
XVLM 8.1e-2 4.6e-1 3.6e-1 -0.01 0.22 0.44
FLAVA 1.7e-1 8.1e-1 1.2e0 0.06 0.18 0.42

Action

CLIP 1.8e-2 1.4e-1 4.8e-2 0.01 0.68 0.10
NEGCLIP 1.4e-2 1.7e-1 5.5e-2 0.07 0.72 -0.05

BLIP 1.1e-1 1.7e0 9.6e-1 -0.02 0.64 0.57
XVLM 1.2e-1 7.2e-1 4.0e-1 -0.01 0.27 0.33
FLAVA 2.1e-1 1.1e0 1.2e0 -0.01 0.15 0.38

F. Experimental details
In the main paper, we evaluated the following state-of-the-art Vision Language Models (VLMs): CLIP6 (Radford et al.,
2021), NEGCLIP7 (Yuksekgonul et al., 2022), BLIP8 (Li et al., 2022b), XVLM9 (Zeng et al., 2022), FLAVA10 (Singh
et al., 2022), all of which were obtained from their officially released checkpoints. For reference, we also provide the
compositional performance of these VLMs with the benchmarks exploited in the main paper. Specifically, we used ACCT
to measure the accuracy of VLMs picking up the correct caption when given one image with two captions. We also used
ACCI to measure the accuracy of VLMs picking up the correct image when given one caption with two images. Results
in Tab. 13-17 show that these state-of-the-art VLMs performed poorly on these benchmarks, exposing their weakness in
understanding the compositional information of input variables.

G. Future studies
In this paper, we have obtained and validated several insights to explain the poor compositional reasoning capabilities of
VLMs, which we believe could provide beneficial guidance for future studies. However, considering the large gap between
theory and practice, significant research efforts are still required to achieve the breakthrough in practice based on our
analyses, which we plan to leave to future endeavors. To this end, we introduce two promising solutions as follows: (1)
improving image encoders’ sensitivities to compositionality changes, instead of text encoders. To this end, one possible
solution is to design modules to specifically approximate the Harsanyi dividends of different visual patterns in image
encoders, drawing inspiration from (Chen et al., 2023). This approach can allow us to explicitly extract the casual effects of
different visual patterns during the training phase, making the improvements of visual compositionality sensitivities more
accessible; (2) enhancing the alignment of compositional knowledge between text encoders and image encoders of VLMs.
To this end, one possible solution is to leverage our metrics in Eq. 3- Eq. 6 as an auxiliary training loss for VLMs. However,
implementing this approach requires a large scale of training data featuring subtle changes of compositionality with detailed

6https://github.com/openai/CLIP/
7https://github.com/mertyg/vision-language-models-are-bows
8https://github.com/salesforce/BLIP
9https://github.com/zengyan-97/X-VLM/

10https://github.com/apsdehal/flava-tutorials/blob/main/winoground-flava-example.ipynb
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Table 7. Evaluating the compositional knowledge encoded in text encoders of VLMs with the SUGARCREPE dataset (object/relation
aspect). Here ρO , ρR and ρR&O represents ρ(X T ,YT

O ), ρ(X T ,YT
R ) and ρ(X T ,YT

R&O) for short. On the object aspect, for the ADD
manipulation, results show that QO and QR&O (as well as ρO and ρR&O) had the largest values (shown in bold), showing that text
encoders of VLMs recognized both the changes of object words and the interaction changes between object words and relation words,
when adding new object words in captions. As for the REPLACE manipulation on the object aspect, QO and QR&O (as well as ρO and
ρR&O) still had the largest values (shown in bold), showing that text encoders of VLMs recognized both the changes of object words and
the interaction changes between relation words and object words, when replacing object words in captions. As for the SWAP manipulation
on the object aspect, QR&O (as well as ρR&O) had the largest value (shown in bold), showing that text encoders of VLMs recognized the
interaction changes between relation words and object words, when swapping object words in captions. On the relation aspect, for the
REPLACE manipulation, results show that QR and QR&O (as well as ρR and ρR&O) had the largest values, showing that when replacing
the relation words in captions, text encoders of VLMs successfully recognized both the changes of relation words and the interaction
changes between relation words and object words. The above results show that text encoders of VLMs recognized the compositional
differences between complex captions in the SUGARCREPE dataset, similar to our intuitions across different types of manipulations.

Dataset Manipulation Models QO QR QR&O ρO ρR ρR&O

SUGARCREPE
(Object)

ADD

CLIP 3.3e-2 1.1e-2 2.1e-2 0.55 0.07 0.37
NEGCLIP 4.2e-2 7.6e-3 1.3e-2 0.66 0.12 0.17

BLIP 2.1e-1 3.0e-2 3.1e-1 0.32 -0.03 0.58
XVLM 2.0e-1 9.9e-2 1.8e-1 0.32 0.07 0.23
FLAVA 5.5e-1 3.0e-1 7.5e-1 0.06 0.02 0.10

REPLACE

CLIP 1.6e-1 9.8e-3 2.9e-2 0.80 0.09 0.37
NEGCLIP 1.5e-1 7.4e-3 1.7e-2 0.84 0.11 0.32

BLIP 8.1e-1 2.3e-2 5.7e-1 0.59 0.07 0.52
XVLM 5.8e-1 4.7e-2 2.3e-1 0.51 0.03 0.24
FLAVA 6.8e-1 1.3e-1 5.7e-1 0.16 -0.02 0.30

SWAP

CLIP 9.5e-3 9.5e-3 1.3e-2 0.29 0.01 0.58
NEGCLIP 7.1e-3 3.5e-3 1.7e-2 0.14 0.01 0.51

BLIP 4.0e-2 1.4e-2 1.3e-1 0.23 -0.05 0.65
XVLM 6.6e-2 3.3e-2 1.3e-1 0.10 0.01 0.47
FLAVA 1.3e-1 1.1e-1 3.6e-1 0.13 0.02 0.17

SUGARCREPE
(Relation) REPLACE

CLIP 3.9e-3 3.9e-2 3.0e-2 0.03 0.47 0.36
NEGCLIP 1.4e-3 4.3e-2 2.4e-2 -0.05 0.53 0.13

BLIP 1.3e-2 1.3e-1 3.1e-1 0.05 0.45 0.76
XVLM 3.5e-2 1.8e-1 2.2e-1 0.00 0.26 0.44
FLAVA 7.6e-2 4.0e-1 4.7e-1 -0.01 0.12 0.13

textual and visual annotations, which underscores the need for additional research efforts in this direction.
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Table 8. Evaluating the compositional knowledge encoded in text encoders of VLMs with the SUGARCERPE dataset (attribute aspect).
Here ρO , ρA and ρA&O represents ρ(X T ,YT

O ), ρ(X T ,YT
A ) and ρ(X T ,YT

A&O) for short. On the attribute aspect, for the ADD
manipulation, results show that QA and QA&O (as well as ρA and ρA&O) had the largest values (shown in bold), showing that text
encoders of VLMs recognized both the changes of attribute words and the interaction changes between object words and attribute words,
when adding new attribute words in captions. As for the REPLACE manipulation on the attribute aspect, QA and QA&O (as well as ρA
and ρA&O) still had the largest values (shown in bold), showing that text encoders of VLMs recognized both the changes of attribute
words and the interaction changes between attribute words and object words, when replacing attribute words in captions. As for the SWAP
manipulation on the attribute aspect, QA&O (as well as ρA&O) had the largest value (shown in bold), showing that text encoders of VLMs
recognized the interaction changes between attribute words and object words, when swapping attribute words in captions. The above
results show that text encoders of VLMs also correctly recognized the attribute-wise compositional difference within complex caption
pairs in the SUGARCERPE dataset.

Dataset) Manipulation Models QO QA QA&O ρO ρA ρA&O

SUGARCREPE
(Attribute)

ADD

CLIP 2.8e-3 2.4e-2 2.5e-2 0.05 0.38 0.34
NEGCLIP 1.8e-3 3.5e-2 1.8e-2 0.00 0.46 0.14

BLIP 2.7e-2 1.1e-1 2.8e-1 -0.03 0.49 0.66
XVLM 5.1e-2 1.3e-1 2.1e-1 0.00 0.22 0.35
FLAVA 2.2e-1 3.3e-1 5.3e-1 -0.03 0.13 0.07

REPLACE

CLIP 3.3e-3 6.1e-2 2.4e-2 0.10 0.67 0.36
NEGCLIP 2.9e-3 8.0e-2 1.8e-2 0.09 0.72 0.16

BLIP 5.6e-3 3.8e-1 5.0e-1 -0.03 0.50 0.71
XVLM 1.3e-2 2.8e-1 2.6e-1 -0.06 0.31 0.47
FLAVA 4.8e-2 4.7e-1 4.5e-1 -0.02 0.29 0.20

SWAP

CLIP 1.7e-2 1.7e-2 2.2e-2 0.13 0.17 0.47
NEGCLIP 9.8e-3 1.3e-2 2.0e-2 0.20 0.09 0.43

BLIP 4.5e-2 7.5e-2 7.7e-1 -0.01 0.23 0.82
XVLM 8.8e-2 1.3e-1 4.3e-1 -0.01 0.16 0.56
FLAVA 9.8e-2 2.0e-1 4.3e-1 -0.04 0.06 0.18

Table 9. Evaluating the mutual compositional knowledge encoded in image encoders and text encoders of VLMs with the Visual Genome
Relation dataset. The maximum metric values are shown in bold.

Dataset Models QT :R&O−→I:O1
QT :R&O−→I:O2

QT :R&O−→I:O1&O2

Visual Genome Relation

CLIP 3.7e-1 3.3e-1 1.6e-1
NEGCLIP 7.3e-1 5.9e-1 2.2e-1

BLIP 1.8e-1 1.7e-1 8.5e-2
XVLM 3.4e-1 2.9e-1 1.5e-1
FLAVA 3.2e-1 3.1e-1 2.7e-1

Table 10. Evaluating the compositional knowledge of text encoders of recent VLMs.
Dataset Models QO QR QR&O

Visual Genome Relation FLIP 1.6e-2 9.9e-5 4.2e-2
LaCLIP 3.7e-3 2.5e-6 8.3e-3

Table 11. Evaluating the compositional knowledge of image encoders of recent VLMs.
Dataset Models DO1

DO2
DO1&O2

EQBEN FLIP 3.4e-2 5.2e-2 3.3e-2
LaCLIP 1.5e-2 2.2e-2 2.1e-2

Table 12. Evaluating whether image encoders and text encoders of recent VLMs possess mutually matching compositional knowledge.

Dataset Models QT :R&O−→I:O1
QT :R&O−→I:O2

QT :R&O−→I:O1&O2

EQBEN FLIP 2.2e-1 5.5e-1 4.0e-1
LaCLIP 5.8e-1 2.0e0 7.4e-1

Dataset Models DI:O1&O2−→T :R DI:O1&O2−→T :O DI:O1&O2−→T :R&O

EQBEN FLIP 8.1e-1 2.1e0 1.0e0
LaCLIP 7.8e-1 4.0e0 8.8e-1
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the red scissors is 
in front of the 
white ramekin 
porcelain

the red scissors is 
located on the left 
side of the white 
ramekin porcelain

the black boot is 
placed in front of 
the black laptop

the black boot is 
located behind the 
black laptop

the purple doll 
house wooden sofa 
is placed on the 
right hand of the 
brown hat

the purple doll 
house wooden sofa 
is placed on the 
top of the brown 
hat

the vintage metal 
alarm clock is on 
the right of the 
pink damask bath 
towel

the vintage metal 
alarm clock is 
placed above the 
pink damask bath 
towel

the green turtle toy 
is on the right 
hand of the white 
gaming mouse

the green turtle toy 
is located above 
the white gaming 
mouse

the white porcelain 
teapot is on the 
top of the black 
boot

the white porcelain 
teapot is placed in 
front of the black 
boot

the person is 
holding the 
cup/glass/bottle 
which is in front of 
him/her

the person is not 
contacting the 
cup/glass/bottle 
which is in front of 
him/her

the 
person is 
holding 
the food 
which is 
in front 
of 
him/her

the person 
is not 
contacting 
the food 
which is 
on the 
side of 
him/her

the person is 
holding the dish 
which is in front of 
him/her

the person is not 
contacting the dish 
which is on the side 
of him/her

the person is 
holding the bag 
which is in front of 
him/her

the person is not 
contacting the bag 
which is on the side 
of him/her

the person is 
holding the book 
which is in front of 
him/her

the person is not 
contacting the book 
which is behind 
him/her

the 
person is 
holding 
the 
clothes 
which is 
in front of 
him/her

the person 
is not 
contacting 
the 
clothes 
which is 
behind 
him/her

Figure 6. Visualizing the new annotations on the subset of the EQBEN dataset. In this paper, we leveraged SAM (Kirillov et al.,
2023) to help obtain segmentation results for objects on images. Specifically, we first manually annotated the bounding box for each
object described in the corresponding caption. We then harnessed SAM to obtain the segmentation mask for each object. Unsatisfying
segmentation results were manually annotated afterward for corrections.

Figure 7. The Pearson correlation coefficients ρ(X T ,YT ) between the reward differences X T and interaction effect differences on the
Visual Genome Attribution dataset, i.e., YT

A , YT
O and YT

A&O . Each point represents a data sample containing two captions and one image.
Results show that the reward differences between the two captions were mainly related to the interaction changes of object words and
attribute words.
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the rice is to the 
right of the meat

the meat is to the 
right of the rice✅

❎
the bicycle is riding 
the man

the man is riding 
the bicycle✅

❎
the wall is to the right 
of the windshield

the windshield is to 
the right of the wall✅

❎

the sign is behind 
the building

the building is 
behind the sign✅

❎
the road is on the 
bus

the bus is on the 
road✅

❎
the baking sheet is 
on the pizza

the pizza is on the 
baking sheet✅

❎

the bowl is in the 
spoon

the spoon is in the 
bowl✅

❎

the glass is 
in the wine

the wine is 
in the glass✅

❎
the box is to the 
right of the 
woman

the woman is to 
the right of the 
box✅

❎
the bread is 
eating the 
bird

the bird is 
eating the 
bread✅

❎
the woman is 
to the right of 
the man

the man is to 
the right of the 
woman✅

❎

the child is to the 
right of the door 

the door is to the 
right of the child✅

❎
the hat is wearing 
the woman

the woman is 
wearing the hat✅

❎

Figure 8. Visualizing the new annotations on the subset of the Visual Genome Relation dataset. Specifically, we first exploited the
original bounding box annotations from the GQA dataset (Hudson & Manning, 2019) and then used SAM (Kirillov et al., 2023) to obtain
the segmentation mask for each object. We then manually annotated unsatisfying segmentation results afterward for corrections.

Table 13. Evaluating the compositional performance of VLMs with the Visual Genome Relation dataset and Visual Genome Attribution
dataset.

Dataset Models ACCT Dataset Models ACCT

Visual Genome Relation

CLIP 50.65%

Visual Genome Attribution

CLIP 60.98%
NEGCLIP 58.33% NEGCLIP 70.87%
BLIP 55.30% BLIP 87.12%
XVLM 58.65% XVLM 89.51%
FLAVA 43.79% FLAVA 68.84%

Table 14. Evaluating the compositional performance of VLMs with the VL-CheckList dataset (attribute aspect).

Dataset Category Models ACCT Category Models ACCT Category Models ACCT Category Models ACCT Category Models ACCT

VL-CheckList
(Attribute) Color

CLIP 71.20%

Material

CLIP 66.32%

Size

CLIP 60.85%

State

CLIP 61.68%

Action

CLIP 73.46%
NEGCLIP 73.59% NEGCLIP 75.87% NEGCLIP 66.06% NEGCLIP 70.60% NEGCLIP 75.34%
BLIP 86.49% BLIP 89.85% BLIP 72.13% BLIP 78.20% BLIP 80.98%
XVLM 86.41% XVLM 87.54% XVLM 76.67% XVLM 77.77% XVLM 82.44%
FLAVA 69.76% FLAVA 56.05% FLAVA 37.77% FLAVA 50.05% FLAVA 57.37%

Table 15. Evaluating the compositional performance of VLMs with the SUGARCREPE dataset (object/relation aspect).
Dataset Manipulation Models ACCT Manipulation Models ACCT Manipulation Models ACCT Dataset Manipulation Models ACCT

SUGARCREPE
(Object) SWAP

CLIP 62.70%

ADD

CLIP 76.88%

REPLACE

CLIP 91.85%

SUGARCREPE
(Relation) REPLACE

CLIP 69.18%
NEGCLIP 77.05% NEGCLIP 88.12% NEGCLIP 92.70% NEGCLIP 74.71%
BLIP 82.04% BLIP 95.98% BLIP 98.16% BLIP 86.32%
XVLM 86.12% XVLM 95.49% XVLM 97.73% XVLM 85.89%
FLAVA 70.20% FLAVA 90.64% FLAVA 90.74% FLAVA 64.07%
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Table 16. Evaluating the compositional performance of VLMs with the SUGARCREPE dataset (attribute aspect) and EQBEN dataset
(relation aspect). The performance on the EQBEN dataset was evaluated on our newly annotated subset (several samples are shown in
Figure 6).

Dataset Manipulation Models ACCT Manipulation Models ACCT Manipulation Models ACCT Dataset Manipulation ACCI ACCT

SUGARCREPE
(Attribute) SWAP

CLIP 64.94%

ADD

CLIP 67.60%

REPLACE

CLIP 81.94%

EQBEN
(Relation)

CLIP 53.85% 55.90%
NEGCLIP 76.07% NEGCLIP 81.44% NEGCLIP 85.21% NEGCLIP 53.85% 62.15%
BLIP 94.33% BLIP 90.18% BLIP 93.05% BLIP 59.72% 60.76%
XVLM 93.10% XVLM 86.76% XVLM 91.35% XVLM 61.46% 66.67%
FLAVA 81.90% FLAVA 59.08% FLAVA 76.15% FLAVA 54.86% 61.46%

Table 17. Evaluating the compositional performance of VLMs with the VL-CheckList dataset (object/relation aspect).
Dataset Category Models ACCT Category Models ACCT

VL-CheckList
(Object) Location

CLIP 88.80%

Size

CLIP 89.02%
NEGCLIP 90.72% NEGCLIP 89.50%

BLIP 92.52% BLIP 92.25%
XVLM 92.85% XVLM 92.08%
FLAVA 73.21% FLAVA 71.34%

VL-CheckList
(Relation) Action

CLIP 77.05%

Spatial

CLIP 55.77%
NEGCLIP 81.57% NEGCLIP 60.80%

BLIP 81.19% BLIP 61.68%
XVLM 77.56% XVLM 74.90%
FLAVA 33.55% FLAVA 58.45%
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