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ABSTRACT

Anomaly detection is a critical learning task with many significant and diverse
applications. Currently, semi-supervised methods provide the state-of-the-art ac-
curacy performance but require labeled normal data for training. Unsupervised
approaches, on the other hand, do not have this requirement but can only offer
inferior anomaly detection performance. In this paper, we introduce NARCISSUS,
a novel unsupervised anomaly detection method that achieves accuracy compa-
rable to semi-supervised approaches. Our key insight is that a learning model
when training with a mix of normal and sparse anomalous data converges first
on normal data. Leveraging this insight, NARCISSUS employs a tailored early
stopping scheme, eliminating the need for pseudo labels and costly label genera-
tion interactions. It also offers systematic solutions to minimize the influence of
model uncertainty, ensuring robust detection. NARCISSUS is model-agnostic and
can therefore make use of even a semi-supervised anomaly detection model un-
derneath, thereby turning it into an unsupervised one. Comprehensive evaluations
using time series, image and graph datasets show that NARCISSUS provides simi-
lar or better detection performance compared to best-performing semi-supervised
methods while not requiring labeled data.

1 INTRODUCTION

Anomaly detection (AD) (Han et al., 2022; Pang et al., 2021; Chandola et al., 2009), or outlier
detection, is a critical machine learning (ML) task with diverse applications, including anti-money
laundering, network diagnostics, rare disease detection, and social media analysis. AD algorithms
identify data instances that significantly deviate from the norm. While traditional unsupervised
methods (Nakamura et al., 2020; Ahmad et al., 2017) detect anomalies without prior knowledge
of normal or anomalous data, emerging (semi-)supervised approaches (Lai et al., 2024; Tuli et al.,
2022) demonstrate improved accuracy by leveraging prior information.

However, (semi-)supervised approaches rely on well-labeled data, which presents two key chal-
lenges for anomaly detection: (1) Data Availability: Obtaining a well-labeled training dataset is of-
ten difficult, and it can be challenging to ensure the dataset is entirely anomaly-free; (2) Overfitting:
The trained model may overfit to the training data, resulting in inaccurate detection when faced with
distribution shifts. Conversely, unsupervised anomaly detection methods generally under-perform
compared to semi-supervised approaches that provide state-of-the-art accuracy (Pang et al., 2021;
Han et al., 2022). The absence of supervision makes it more difficult for unsupervised methods to
effectively distinguish anomalies from normal patterns.

The above discussion suggests that combining unsupervised and semi-supervised learning can be a
promising way forward. Indeed, previous works have attempted training with bootstrapped datasets
that mix normal and abnormal data; however, a significant performance drop is consistently observed
compared to training with exclusively normal data (Livernoche et al., 2024; Han et al., 2022). There
are also self-supervised methods that assign pseudo labels generated by an unsupervised detection
technique to train semi-supervised models (Li et al., 2021; Zhang et al., 2023). However, the ef-
fectiveness of the self-supervised approach is constrained by the convergence speed and accuracy
of the initial unsupervised method, providing only modest improvements to overall accuracy. Thus,
achieving high-accuracy unsupervised anomaly detection remains a significant challenge.
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Motivated by the above, we aim to design an unsupervised anomaly detection scheme that offers the
state-of-the-art accuracy. Our work is inspired by research in binary classification, where models
tend to exhibit significantly lower loss on low-influence data early in the training process (Paul et al.,
2021), as well as the use of early stopping as a Nonparametric Variational Inference method (Du-
venaud et al., 2016). Our key insight is that when training a model for some learning task on a mix
of normal and anomalous data, the model converges faster on normal data while struggling to fit to
anomalous data. In other words, at a certain point in the training process, the model would have
effectively learned to fit the normal data but continues to exhibit higher loss on anomalous data (see
Figure 1 for an illustration). Note that this phenomenon is model-agnostic, as all models undergo a
similar process when fitting the training dataset.

In this paper, we introduce NARCISSUS, a new unsupervised anomaly detection method that ex-
ploits the above insight. NARCISSUS leverages training dynamics for accurate and robust anomaly
detection with unlabeled data through a combination of a tailored early stopping algorithm and
an ensemble method. Early stopping enables identifying anomalies without the additional data
labeling cost, while the highly parallel ensemble method mitigates the impact of epistemic un-
certainty in a lightweight yet reliable way. Our comprehensive evaluation demonstrates that
NARCISSUS allows successfully turning an AD algorithm originally designed for semi-supervised
anomaly detection to an unsupervised setup while maintaining or often improving accuracy.
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Figure 1: Evolution of
loss during training of
TranAD (Tuli et al., 2022)
on MBA dataset (Moody &
Mark, 2001). Convergence
speed faster for normal data
relative to anomalous data.

Our main contributions are as follows:
• NARCISSUS: We propose a novel unsupervised anomaly detec-

tion method that achieves high accuracy without requiring la-
beled data.

• Key Insight – Training Dynamics: We observe, analyze, and
leverage the unique dynamics when performing model training
with a mix of normal and sparse anomalous data, where the
model consistently converges on normal data first.

• Mitigating Model Uncertainty: We employ an ensemble ap-
proach to reduce the impact of epistemic uncertainty, enhancing
the robustness of anomaly detection.

2 RELATED WORK

Anomaly detection methods mainly fall into two categories based
on the availability of labeled data: (1) Unsupervised: No labels are available. These methods aim
to detect anomalies solely based on the inherent properties of the data (Ruff et al., 2018; Zong
et al., 2018; Nakamura et al., 2020; Zhang et al., 2023); (2) Semi-supervised: Only partial labels
are known, typically for a subset of normal data (Ahmad et al., 2017; Li et al., 2019; Zhao et al.,
2020; Audibert et al., 2020; Deng & Hooi, 2021; Tuli et al., 2022; Lai et al., 2024). These methods
leverage the available labeled normal data to improve detection accuracy. Fully supervised scenarios,
where ample labeled data for both normal and anomalous cases exist, are uncommon in real-world
applications due to the rarity and diversity of anomalies. Therefore, our focus is on unsupervised
and semi-supervised settings. In addition to different levels of supervision, anomaly detection have
been applied across diverse data formats, including time series (Tuli et al., 2022; Zhang et al., 2023),
images (Schlegl et al., 2017; Roth et al., 2022; Livernoche et al., 2024), and graphs (Zheng et al.,
2019b; Ma et al., 2021).

Recent studies in binary classification and influence scores (Zhang et al., 2024; Paul et al., 2021; Liu
et al., 2021) are closely related to anomaly detection, as the latter also involves classifying data into
normal or anomalous categories. Paul et al. (2021) introduced the EL2N score (§A.1) to quantify a
sample’s contribution to a binary detection model, observing that high-value samples exhibit higher
loss during the early training phase. Similarly, Liu et al. (2021) identified that classification models
do not converge uniformly across categories. Although anomaly detection models are typically re-
gression or reconstruction based rather than following traditional classification, these insights inspire
us to explore similar patterns during training for anomaly detection. Other related works include in-
fluence functions (Koh & Liang, 2017) and Kalman Filters with outlier robustness (Duran-Martin
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et al., 2024). While these methods can highlight outliers by estimating the loss on specific samples,
they lack the expressiveness needed to capture the full complexity of anomaly detection.

3 PRELIMINARIES

3.1 OBJECTIVE OF ANOMALY DETECTION

Given a time series X = {x0, x1, . . . , xt−1, xt}, the anomaly detection problem for time series can
be described as: learn an anomaly score st = {st,i} for each time stamp t, where i represents differ-
ent attributes in a multivariate time series so that there is a threshold Ta (either learnt or predefined)
to compute a label lt for each time stamp,

lt =

{
0, if ∀i, st,i < Ta,

1, if ∃i, st,i ≥ Ta
(1)

where lt = 1 means there is an anomaly at time t. Denoting the ground truth anomaly label with
l̂t, the objective of anomaly detection is to ensure ∀t, lt = l̂t. Note that the score for a timestamp
can be interpreted similarly to pixel or node scores in image and graph setups. Anomaly detection
applies this concept consistently across different data formats.

3.2 SEMI-SUPERVISED DETECTION AND ANOMALY SCORE

The state-of-the-art approach for obtaining an anomaly score follows a semi-supervised learning
paradigm, typically through the prediction or reconstruction loss of a model pretrained with normal
data (Lai et al., 2024; Deng & Hooi, 2021). The rationale of this scoring method is that with a
properly trained model using normal data, the high prediction (reconstruction) error for a test input
indicates that the input is an outlier (Hinton & Salakhutdinov, 2006), which can be represented as

p(x ∈ U|L(x) > σ) < ϵ (2)

where L(·) is the loss function, σ is variance of errors for inputs within the training distribution, U
is the set of normal data, ϵ is a small positive . Equation 2 is the fundamental theoretical support for
all existing deep (semi-)supervised detection methods. The effectiveness of a deep detection method
depends on how well the learnt function models the normal data.

Comparing equations (1) and (2), if we use the loss as an anomaly score, set Ta to kσ, and classify
all inputs with non-zero probability density as normal samples, they become equivalent.

4 NARCISSUS: ANOMALY DETECTION DURING TRAINING

4.1 UNSUPERVISED ANOMALY DETECTION FROM A SEMI-SUPERVISED VIEWPOINT

In unsupervised setup, we cannot leverage Equation 2 directly since we need to learn a function that
describes normal data to compute L(·). Let us consider a heuristic approach in which training data is
randomly selected for semi-supervised learning. The ideal detection function f should perfectly fit
all normal data with negligible loss while failing to fit anomalous data. This leads us to the following
optimization problem:

arg max
Y⊂X,f∈FU

∑
y∈Y |Lf (y)|
|Y|

s.t. |Y| < Nmax ≪ |X|
|Lf (y)| > ϵ, ∀y ∈ Y
E[(E(f̃)− E(f))|U] < ϵ

(3)

where X is the set of all data, Y is the pseudo anomalous set, Lf (·) computes the loss value of
function f on different inputs, FU is set of all possible functions trained on pseudo normal subset
U = X − Y, f̃ is the ideal function that fits the normal data, ϵ ≪ 1. Intuitively, it tries to find
subset Y so that (i) Y is the small subset (the first constraint), |Y| ≪ |X| reflects that anomalies
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are rare compared to the total dataset, and Nmax/|X| represents the expected anomaly sparsity, as
statistically, only a small fraction of long-term observation data can be classified as anomalies; (ii)
find f that describes pseudo normal set U (the third constraint) but yields significant error on pseudo
anomalous data (the second constraint). Because of the hypothesis in Eq. 2, the objective function
can also be interpreted as the probability of y belonging to normal set to be nearly zero.

Lemma 4.1. If there exist anomalous point in the dataset, the optimization problem defined in Eq. 3
must admit at least one solution, though the solution may not be unique.

Proof. Proof is by contradiction, see §A.2.

The bootstrapping method used in Livernoche et al. (2024) neither maximizes the objective function
in the above optimization problem nor does it satisfy the associated constraints. It simply performs
a random search to resolve Eq. 3. Consequently, we can expect its performance to be inferior to the
semi-supervised approach, that has more informed guidance through labeled normal data.

4.2 DATA CHARACTERISTICS

We identify the following common characteristics across typical anomaly detection scenarios: (i)
anomalies are generally sparse, constituting only a small fraction of the entire dataset; and (ii) the
data is well-bounded, with the dynamic range of anomalous points not significantly (orders of mag-
nitude) exceeding that of normal data. Observation (i) aligns with the definition of an anomaly
or outlier – data that deviates from the normal majority. Observation (ii) applies specifically to
cases requiring deep learning, as simpler threshold-based methods could otherwise detect anoma-
lies. Later, we demonstrate how these characteristics result in different convergence rates for normal
and anomalous data, an insight we leverage for unsupervised anomaly detection.

4.3 STOCHASTIC GRADIENT DESCENT LEARNS TO FIT NORMAL DATA FIRST

Theorem 4.2. Given a regression task on a dataset X containing sparse anomalous data Y, and the
rest is normal data U, (Na = |Y| ≪ |X− Y| = |U| = Nn), suppose the gradient of the loss function
with respect to the model are bounded, i.e., for any normal data x ∈ U: ∇θL(x, ft(x))∥ ≤ δn, and
for any anomalous data y ∈ Y: ∇θL(y, ft(y))∥ ≤ δa where∇θL(x, ft(x)) denotes the gradient of
the loss with respect to the model parameter θ at iteration t, and δn and δa are upper bounds on the
gradient norms for normal and anomalous data, respectively.
If the condition Nn · δn ≫ Na · δa holds, then training the model f using stochastic gradient
descent (SGD) will result in convergence towards fitting the normal data, with a bounded difference
compared to training on anomaly-free data.

Proof. Consider an iteration t of SGD, the update to the model parameter θ can be decomposed into
contributions from normal and anomalous data:

∆t = −η

 ∑
x∈X−Y

∇θL(x, ft(x)) +
∑
y∈Y
∇θL(y, ft(y))


where η is the learning rate. By assumption, the gradients are bounded, hence the total gradient
contribution bounds are: Normal data contribution:

|
∑

x∈X−Y
∇θL(x, ft(x))| ≤ Nn · δn

Anomalous data contribution:

|
∑
y∈Y
∇θL(y, ft(y))| ≤ Na · δa

To ensure that the model converges towards fitting the normal data, the influence of the normal data
on the parameter updates must significantly outweigh that of the anomalous data. This requires:

Nn · δn ≫ Na · δa

4
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This condition implies that the cumulative gradient magnitude from normal data is much larger than
that from anomalous data. Since Na ≪ Nn, and assuming δa is not excessively larger than δn, the
anomalous data contributes relatively little to the overall gradient. Specifically, the ratio of the total
anomalous gradient contribution to the normal gradient contribution satisfies:

Na · δa
Nn · δn

≪ 1

Under the above condition, the parameter updates are primarily influenced by the normal data. The
anomalous data introduce a bounded perturbation, which can be considered as noise in the optimiza-
tion process. According to the convergence properties of SGD with bounded noise, the model will
still converge towards the optimal parameters for the normal data, possibly at a slower rate or with a
small bias.

To ensure the model converge towards to normal data, according to Theorem 4.2, we need ensure

|
∑
Nn

∇L(x, ft(x))| ≫ Na · δa

Apparently, we also have

Nn · δn ≥
∑
Nn

|∇L(x, ft(x))| ≥ |
∑
Nn

∇L(x, ft(x))|

If the loss on normal dataset is bounded by δn, |∇L(x, ft(x))/Nn| ≤ δn. If the Nn · δn ≫ Na · δa,
i.e., δa

δn
≪ Nn

Na
, then the model will very likely converge to fit the normal data. Nn

Na
is a constant large

value, therefore the ratio δa
δn

can reflects whether the model will converge on normal data. Figure 1
illustrates this empirically, showing that the model converges on normal data significantly faster than
anomalous data.

Notice that in binary classification problems, the samples that contribute most to the training can
often be identified early in the process (Paul et al., 2021). In the Appendix A.1, Theorem A.2,
we clarify the fundamental differences between general binary classification and anomaly detection
through theoretical analysis and experiments. We demonstrate that the concepts and methods pro-
posed in Paul et al. (2021); Zhang et al. (2024) are not applicable to anomaly detection due to the
fundamental differences in training approaches.

4.4 VERY EARLY STOPPING

Theorem 4.2 suggests an important corollary:

Corollary 4.3. The first converged data are more likely to be normal and the model starts to learn
anomalous data only when the loss on normal data is small.

Inspired by this, we propose Very Early Stopping (VES), a tailored early stopping scheme for train-
ing the model according to selected validation sets. The key idea behind VES is that the model
begins by learning patterns from the normal data and only starts to fit anomalous data when the
loss on the normal data has become sufficiently small. The complete process is enclosed in §A.3,
Algorithm 3.

Algorithm 1 (Core Algorithm) Very Early Stopping for Unsupervised Anomaly Detection

1: if N ≤ Nmax and EN have not converge then ▷ Nmax is the maximum epoch number
2: while i < |T′|

|τi| do

3: vi ←
∑

∀t∈τi
L(t,f(t))

|τi|
4: i← i+ 1
5: V′ ← {vi}, vi < qmean(V, η%) ▷ Filter out top η% loss on validations {τ} by mean
6: V∗ ← {vi}, vi < qmax(V, η%) ▷ Filter out top η% loss on validations {τ} by maximum
7: EN ←

∑
V′∩V∗

|V′∩V∗| ▷ Compute the constraint
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Alg. 1 illustrates the core component of VES. Specifically, we randomly select |T′|
|τi| small validation

subsets τi from the original dataset X to get the large validation set T′. After each epoch, the
loss at each timestamp within every validation subset is computed. The validation subsets are then
sorted based on their mean and maximum loss values. We filter out the top η% of validation subsets
with the highest mean losses and separately filter out the top η%with the highest maximum losses.
Statistically, if we ignore the top η% high loss on validation set, then the rest part will mostly reflect
the convergence on normal data, where the η% is the upper bound of the portion of anomalous data.
Therefore, we obtain the following Alg. 1 to identify if the model converges on normal data. More
detailed discussion in §A.4.

The intersection of the remaining subsets V′ ∩ V∗ is used to calculate the convergence metric,V
represents the loss of all validation set, V′ and V′ represent the loss of selected subset in line 5 and
6, Alg.1. Once the the model converges on the intersection (conventional early stopping is applied),
we deem that the model has converged on normal data and constraint E[(E(f̃) − E(f))|U] < ϵ in
Eq. 3 is met.

By stopping the training early, we prevent the model from starting to fit the anomalous data, which
could lead to over-fitting and reduced anomaly detection performance. VES thus enhances the
model’s ability to generalize to unseen normal data and to better distinguish anomalies during infer-
ence.

Time series

Small Segments

Random Selection

Training Set

Validation Sets

SGD

VES

Reselect & Repeat

Model 0 Model 1

Model 2 ......

Anomaly Detection

Detection on 
Model 0

Detection on 
Model 1

Detection on 
Model 2

Final Decision

Stop immediately when converge 
on normal data (Alg. 1) Trained Model(s)

Joint

 RVES 
(Alg. 2)

Training Phase Detection Phase

Split into:↓

Figure 2: Main process of NARCISSUS. Using RVES in Alg. 2 randomly select validation sets and
retrain the same model as different models in an ensemble, and take the joint set in the ensemble for
the final decision.

Algorithm 2 Robust VES by repeating

Require: |T′
i| = |T′

j |; |T′
i ∩ T′

j | = 0,∀i ̸= j;
⋂

i T′
i = X

Ensure: E[(E(f̃)− E(f))|U] < ϵ,∀ T′
i

1: Random Initialization M = {Mi} ▷ Non-overlap random mask with window size |τ0|.
2: T′

i ← T ·Mi ▷ Refer to Figure 2
3: Initialize VES(·) ▷ Initialize Alg. 1
4: N = 0
5: while N < |M| do
6: AN ← VES(T′

N ) ▷ Record the detection result with different T′
i

7: N = N + 1
8: A =

⋂
Ai,∀i ▷ Combine (joint set) the result of different validation set.

Note that in Alg. 1, empirically we can choose a large η to ensure most of the considered validation
data are normal, which will accelerate the VES process. We include more optimisations to further
accelerate VES in Appendix A.5.

Building on VES, we propose the framework of NARCISSUS, which is illustrated in Figure 2. NAR-
CISSUS improves overall robustness through Robust VES (RVES) in Alg. 2. As the red arrow of

6
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Figure 2 illustrates, RVES enhances robustness by repeatedly performing VES with random varia-
tions and leveraging the trained model in different iterations for ensemble learning.

Given the limited size of the dataset, it is challenging to avoid stochastic biases when selecting the
validation set. The scarcity of training data further amplifies model uncertainty, and the validation
set selection exacerbates this issue by reducing the data available for training. To mitigate these
challenges, RVES in Alg. 2 adopts the following strategies:
• Try multiple random validation sets until a significant portion of the dataset is covered. This

reduces the impact of selecting a biased validation set.
• Training with different datasets in RVES jointly performs random initialization (Lee et al., 2015;

Lakshminarayanan et al., 2017), and Nonparametric Variational Inference (Duvenaud et al.,
2016), which can reflect the epistemic uncertainty and enhance the robustness of detection.

Informally, NARCISSUS includes a while-loop of VES, with VES serving as the core component,
while RVES reflects the ensemble.

5 EVALUATION

5.1 METHODOLOGY

We consider three kinds of baselines, including: (i) unsupervised anomaly detection methods, (ii)
semi-supervised methods with unsupervised bootstrapping (Han et al., 2022; Livernoche et al.,
2024), and (iii) semi-supervised methods in their original setup. Baseline type (i) refers to the
methods that perform anomaly detection in an unsupervised manner, such as Zong et al. (2018).
Type (ii) is the most common approach for applying a semi-supervised model to an unsupervised
scenario, using randomly selected data as normal data for bootstrapping during training. The differ-
ence between type (ii) and (iii) is the training dataset, where (iii) is trained with clean dataset free of
anomalies.

Self-supervised methods (Zhang et al., 2023) with pseudo labels and interactive training are not
considered because they would need a method like NARCISSUS as a module in the self-supervised
workflow. Since NARCISSUS significantly outperforms existing unsupervised detection methods, it
will inherently boost performance in self-supervised setups. Empirically, we find that models trained
with NARCISSUS match or surpass semi-supervised models with comparable computational over-
head, making self-supervised workflows unnecessary due to their limited improvement and higher
computational cost.

We evaluate different AD methods considering widely used metrics: F1 score, precision (P), recall
(R), and AUC – area under receiver operating characteristic (ROC) curve.

5.2 MULTI-VARIATE TIME SERIES ANOMALY DETECTION

For multi-variate time series (MTS), as a base model in NARCISSUS, we mainly consider the fol-
lowing semi-supervised methods: LSTM-NDT (Hundman et al., 2018a), OmniAnomaly (Su et al.,
2019a), USAD (Audibert et al., 2020), MTAD-GAT (Zhao et al., 2020), GDN (Deng & Hooi,
2021), TranAD (Tuli et al., 2022), and NPSR (Lai et al., 2024). Besides, we also consider com-
mon methods that are designed solely for unsupervised detection – DAGMM (Zong et al., 2018),
MSCRED (Zhang et al., 2019) and Merlin (Nakamura et al., 2020). We selected these baselines
because they are highly representative, consistently deliver state-of-the-art performance within their
respective method categories, and have been widely reproduced and validated across numerous stud-
ies (Lai et al., 2024; Tuli et al., 2022; Han et al., 2022).

We evaluate NARCISSUS on datasets that are widely used in previous works (Lai et al., 2024; Tuli
et al., 2022) with the same prepossessing methods, namely: NAB (Numenta Anomaly Bench-
mark) (Ahmad et al., 2017), SMD (Server Machine Dataset) (Su et al., 2019b), MBA (MIT-BIH
Supraventricular Arrhythmia Database) (Moody & Mark, 2001), SMAP (Soil Moisture Active Pas-
sive) (Hundman et al., 2018b), SWaT (Secure Water Treatment) (Goh et al., 2017), and a Synthetic
dataset used in Tuli et al. (2022).

The comparison between NARCISSUS and conventional unsupervised learning methods are demon-
strated in Table 1. Overall, the implementation of NARCISSUS with different base semi-supervised

7
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Method NAB MBA SMD
P AUC F1 P AUC F1 P AUC F1

DAGMM 0.7622 0.7272 0.7443 0.9103 0.9954 0.9491 0.7453 0.9987 0.6890
MSCRED 0.8522 0.7606 0.7502 0.7276 0.9921 0.8414 0.9116 0.9842 0.9437
MERLIN 0.8013 0.7262 0.8414 0.2871 0.7158 0.3842 0.7619 0.7542 0.8018
N-LSTM-NDT 0.6400 0.6667 0.8374 0.9736 0.9671 0.9042 0.7578 0.8294 0.9152
N-OmniAnomaly 0.8421 0.6667 0.8754 0.8881 0.9946 0.9401 0.8344 0.9716 0.8196
N-USAD 0.8571 0.9995 0.9231 0.8453 0.9531 0.9287 0.9110 0.9921 0.9235
N-MTAD-GAT 0.9999 0.6667 0.5000 0.8670 0.9607 0.9220 0.9990 0.8635 0.8416
N-GDN 0.8889 0.9996 0.9412 0.8598 0.9583 0.9246 0.7980 0.9872 0.8350
N-TranAD 0.8889 0.9996 0.9412 0.9461 0.9854 0.9723 0.9996 0.9220 0.9152
N-NPSR 0.8571 0.9995 0.9231 0.8595 0.9582 0.9244 0.8117 0.9867 0.8950

Method SMAP SWaT Synthetic
P AUC F1 P AUC F1 P AUC F1

DAGMM 0.8523 0.7326 0.8602 0.7778 0.9519 0.6586 0.9543 0.9988 0.9766
MSCRED 0.8130 0.9149 0.9485 0.9999 0.8376 0.6879 0.9776 0.9994 0.9887
MERLIN 0.1577 0.9999 0.7426 0.6560 0.7140 0.5022 0.8543 0.7576 0.8332
N-LSTM-NDT 0.8060 0.9891 0.9885 0.9833 0.8436 0.9997 0.9231 0.9988 0.9231
N-OmniAnomaly 0.8175 0.9216 0.9218 0.9992 0.9998 0.9887 0.9776 0.9994 0.9887
N-USAD 0.8455 0.9692 0.9066 0.9977 0.8438 0.8143 0.9562 0.9988 0.9776
N-MTAD-GAT 0.8485 0.9806 0.9180 0.9700 0.8462 0.8101 0.9449 0.9985 0.9717
N-GDN 0.9440 0.9823 0.9603 0.9762 0.8497 0.8166 0.9658 0.9991 0.9826
N-TranAD 0.8503 0.9809 0.9191 0.9933 0.8436 0.8128 0.9776 0.9994 0.9887
N-NPSR 0.9401 0.9820 0.9587 0.9977 0.8438 0.8143 0.9856 0.9996 0.9928

Table 1: Performance comparison of unsupervised AD methods with semi-supervised methods
trained with NARCISSUS (named as “N-[Method Name]”) in terms of Precision (P), AUC and
F1 score metrics on multiple different datasets.

Methods NAB MBA
Semi-Supervised NARCISSUS Semi-Supervised NARCISSUS

P AUC F1 P AUC F1 P AUC F1 P AUC F1
USAD 0.8421 0.8330 0.7442 0.8571 0.9995 0.9231 0.8953 0.9701 0.9443 0.8453 0.9531 0.9287

MTAD-GAT 0.8421 0.8478 0.7752 0.9999 0.6667 0.5000 0.8390 0.9551 0.9124 0.8670 0.9607 0.9220
GDN 0.8129 0.8542 0.7998 0.8889 0.9996 0.9412 0.8832 0.9528 0.9332 0.8598 0.9583 0.9246
NPSR 0.4615 0.9965 0.6316 0.8571 0.9995 0.9231 0.8578 0.9576 0.9235 0.8595 0.9582 0.9244

TranAD 0.8889 0.9541 0.9364 0.8889 0.9996 0.9412 0.9569 0.9885 0.9780 0.9461 0.9854 0.9723

Methods SMD SMAP
Semi-Supervised NARCISSUS Semi-Supervised NARCISSUS

P AUC F1 P AUC F1 P AUC F1 P AUC F1
USAD 0.9060 0.9933 0.9495 0.9110 0.9921 0.9235 0.8139 0.9890 0.8974 0.8455 0.9692 0.9066

MTAD-GAT 0.8210 0.9921 0.8683 0.9990 0.8635 0.8416 0.7518 0.9841 0.8583 0.8485 0.9806 0.9180
GDN 0.7170 0.9924 0.8342 0.7980 0.9872 0.8350 0.8293 0.9901 0.9067 0.9440 0.9823 0.9603
NPSR 0.8110 0.9689 0.8843 0.8117 0.9867 0.8950 0.9236 0.9798 0.9496 0.9401 0.9820 0.9587

TranAD 0.9262 0.9974 0.9605 0.9996 0.9220 0.9152 0.8175 0.9892 0.8996 0.8503 0.9809 0.9191

Methods SWaT Synthetic
Semi-Supervised NARCISSUS Semi-Supervised NARCISSUS

P AUC F1 P AUC F1 P AUC F1 P AUC F1
USAD 0.9977 0.8460 0.8143 0.9977 0.8438 0.8143 0.9619 0.9990 0.9806 0.9562 0.9988 0.9776

MTAD-GAT 0.9718 0.8464 0.8109 0.9700 0.8462 0.8101 0.9600 0.9989 0.9796 0.9449 0.9985 0.9717
GDN 0.9697 0.8462 0.8101 0.9762 0.8497 0.8166 0.9677 0.9916 0.9836 0.9658 0.9991 0.9826
NPSR 0.9697 0.8462 0.8101 0.9977 0.8438 0.8143 0.9677 0.9916 0.9836 0.9856 0.9996 0.9928

TranAD 0.9760 0.8491 0.8151 0.9933 0.8436 0.8128 0.9091 0.9975 0.9524 0.9776 0.9994 0.9887

Table 2: Performance comparison of various semi-supervised AD methods with their original train-
ing setup (“Semi-Supervised”) with same methods when trained with NARCISSUS in an unsuper-
vised manner (“NARCISSUS”) in terms of Precision (P), AUC and F1 score metrics on multiple
different datasets.

methods significantly outperforms all unsupervised detection methods in every metric, including
precision, AUC, and F1 score. In Table 1, we also observe that in a few specific cases, such as
applying NARCISSUS to MTAD-GAT on the NAB dataset, performance is affected due to the small
dataset size with only 8,000 timestamps, making it challenging to train MTAD-GAT effectively with
NARCISSUS. This special case, however, does not reflect the reliability of NARCISSUS, as NARCIS-
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Semi-supervised PatchCore PatchCore bootstrapping PatchCore NARCISSUS
Metric 25% 10% 1% 25% 10% 1% 25% 10% 1%
AUC↑ 0.9811 0.9810 0.9802 0.9553 0.9567 0.9549 0.9811 0.9803 0.9802
Error↓ 1.9 1.9 2.0 4.4 4.3 4.4 1.9 2.0 2.0

Table 3: Implement NARCISSUS and bootstrapping on
PatchCore.

Method Precision↑ Recall↑ Sensitivity↑ Specificity↑ AUC↑
AnoGAN 0.8839 0.7312 0.7281 0.8929 0.8912

w/ bootstrapping 0.8672 0.7113 0.7196 0.8901 0.8795
w/ NARCISSUS 0.8812 0.7352 0.7312 0.8973 0.8925

Table 4: Implement NARCISSUS and boot-
strapping on AnoGAN.

SUS with all other base methods performs similarly or better than their semi-supervised counterparts
as we show next in Table 2. The low F1 score is an inherent limitation of MTAD-GAT, not of the
NARCISSUS itself.

Recall that NARCISSUS introduces a novel training approach that can enable direct training of semi-
supervised detection models without the need for any pseudo labels – a capability that, to the best of
our knowledge, is entirely unique. We then compare NARCISSUS against semi-supervised methods,
where a substantial amount of normal data is available to the baselines during the training phase.
The corresponding results are showed in Table 2, where in most cases, the difference is F1 score
is within 0.02. We observe many instances where the unsupervised NARCISSUS significantly out-
performs semi-supervised methods, such as on the SMAP dataset, due to its ability to effectively
leverage normal data mixed with anomalous data in the overall dataset. Excluding the extreme case
of MTAD-GAT on the NAB dataset, F1 score drops at most by 0.04 when trained using NARCIS-
SUS. Overall, NARCISSUS maintains comparable accuracy to semi-supervised methods (with their
original training setup using normal data), achieving this with just unlabeled data.

5.3 BEYOND TIME SERIES DATA: ANOMALY DETECTION ON IMAGES AND GRAPHS

NARCISSUS can be generalized to AD with other types of data beyond time series. Conceptually, an
image or graph can be treated as analogous to a time series segment. In anomaly detection for images
and graphs, some tasks focus solely on a supervised approach with labeled data to detect predefined
anomalies. Here, we instead focus on cases that rely on semi-supervised AD to demonstrate the
ability of NARCISSUS to achieve equivalent performance with unsupervised training. Specifically,
we consider three representative semi-supervised AD methods, as follows:
• PatchCore (Roth et al., 2022), a reconstruction based method for image AD.
• AnoGAN (Schlegl et al., 2017), an unconditional generation based method for image AD.
• AddGraph (Zheng et al., 2019b) for anomaly detection in dynamic graphs.

We train PatchCore with NARCISSUS on the MVTec2D dataset. We do the same for AnoGAN using
the MNIST dataset (Schlegl et al., 2020). We use the official implementation of AddGraph (Zheng
et al., 2019a) and train it following NARCISSUS approach using the UCI Message and Digg (a social
news site) dataset. By default, we merge the original training and test data in these works and
then apply NARCISSUS to detect anomaly in an unsupervised manner, without changing any other
configuration. We apply NARCISSUS as well as the implementation approaches (ii) and (iii) in §5.1,
where the bootstrapping is repeated 30 times randomly.

The performance is included in Table 3 for PatchCore, Table 4 for AnoGAN, and Table 5 for Ad-
dGraph, where we use the metrics as in those original works for performance evaluation. Training
with NARCISSUS shows performance comparable to training on the entire normal dataset, with only
negligible changes in metrics such as AUC. Achieving high-accuracy detection without labels is a
non-trivial task. We also implemented a bootstrapping approach, where the training set is randomly
sampled, and the model is trained to convergence. Bootstrapping resulted in significant performance
degradation on PatchCore and AddGraph, while its performance on the MNIST dataset remained
more stable, likely due to MNIST’s synthetic nature and the sparse, pronounced anomalies.

5.4 ABLATION STUDY

For ablation study, we tried the unsupervised learning without VES or without RVES (i.e., only do
VES in one shot).

Without VES, we can only train the model in a bootstrapping manner with random sampled training
set. We conduct bootstrapping training with three representative methods: GDN (Deng & Hooi,
2021), TranAD (Tuli et al., 2022), and NPSR (Lai et al., 2024). We repeat 30 times randomly during
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Method Dataset Precision↑ Recall↑ Sensitivity↑ Specificity↑ AUC↑

Semi-supervised AddGraph UCI Message 0.8054 0.6955 0.7082 0.8439 0.8050
Digg 0.8282 0.7431 0.7434 0.8274 0.8470

Unsup. AddGraph w/ bootstrapping UCI Message 0.6995 0.7034 0.7015 0.6634 0.7383
Digg 0.8286 0.7021 0.6903 0.8192 0.8244

Unsup. AddGraph w/ NARCISSUS
UCI Message 0.8178 0.6899 0.7015 0.8496 0.8147

Digg 0.8336 0.7404 0.7412 0.8301 0.8452

Table 5: AddGraph (Zheng et al., 2019b) evaluation using its official setup with a mixture of normal
and anomalous data.
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Figure 3: Bootstrapping performance with TranAD on MBA dataset.

bootstrapping. The detailed result is enclosed in §A.6, Table 6. In the worst case, bootstrapping may
detect nothing when the majority of sampled data are anomalous.

Bootstrapping is unreliable due to the significant randomness in training data selection, making it
impossible to determine which trained model performs better. For example, when applying boot-
strapping to TranAD on the MBA dataset, which mixes normal and anomalous data, the performance
is highly unstable, with F1 scores ranging from 0.43 to 0.97, as shown in Figure 3. Across all time
series datasets, bootstrapping consistently exhibits unstable performance and, on average, performs
significantly worse than NARCISSUS. More results in §A.6.

Without RVES in Alg. 2, the model may perform significantly worse because the validation set may
not faithfully reflect the normal data. We present the statistics associated with RVES in §A.7, Table 7
with GDN, TranAD, and NPSR. NARCISSUS’s final detection is jointly influenced by the models in
the ensemble, thereby limiting the worst case performance.

6 DISCUSSION

Limitation of NARCISSUS. NARCISSUS can only be used when data is well bounded and anomaly
is sparse. However, in real-world scenarios where a significant portion of the data may be anoma-
lous, semi-supervised approaches trained with normal data may be necessary. Additionally, NAR-
CISSUS requires a relatively large dataset to execute RVES effectively. After partitioning a validation
set, the remaining data must be sufficient to train the base model. A notable exception was observed
when applying NARCISSUS to MTAD-GAT on the NAB dataset, highlighting that NARCISSUS per-
forms more reliably with larger datasets.

Less image and graph cases are studied. In image and graph anomaly detection, leveraging labeled
data is common, with models trained to identify specific objects (Acsintoae et al., 2022; Tang et al.,
2023). Moreover in models like PatchCore (Roth et al., 2022), all features are extracted using a
pretrained model, limiting our ability to carry out more reliable anomaly detection. However, our
experiments still demonstrate the potential of NARCISSUS in extending beyond time series to other
domains.

7 CONCLUSIONS

In this paper, we have introduced NARCISSUS, a novel unsupervised learning approach that achieves
accuracy on par with state-of-the-art semi-supervised methods but solely with unlabeled data. The
success of NARCISSUS stems from our key insight: provided that anomalies are sparse and the
data is well-bounded, the model training with mixed normal and anomalous data initially converges
on the normal data. Comprehensive experiments demonstrate the effectiveness of the NARCISSUS
approach and highlight its potential for AD with time series and other types of data.
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A APPENDIX

A.1 APPLY EL2N SCORE ON ANOMALY DETECTION

Lemma A.1. The training of arbitrary semi-supervised anomaly detection model F trained on
normal data D with L1 loss, L2 loss, and mixture, if the data in D is bounded by η, then it will
meanwhile converge to a binary classification model trained with CE loss with measurable difference
on loss.

Proof. When the value is bounded by η, the target prediction can be normalized by 1
η , so it is

equivalent to train with softmax as the final activation. When a model trained with softmax and
converge on L1 or L2 loss, these loss can be taken as approximation of CE loss according to the
Taylor series expansion.

In Binary Cross-Entropy Loss, for a single example with true label, y ∈ {0, 1}, and predicted
probability ŷ ∈ (0, 1),

LCE(y, ŷ) = −[y log(ŷ) + (1− y) log(1− ŷ)]

If we know the label is according to a fixed threshold, i.e.,

y =

{
0, (y∗ − ŷ)2 > ϵ

1, (y∗ − ŷ)2 ≤ ϵ

The Taylor series expansion at y∗ is:

LCE(y, ŷ) = −y[log(y∗) +
1

y∗
(ŷ − y∗)− 1

2y∗2
(ŷ − y∗)2 + · · · ]

− (1− y)[log(1− y∗)− 1

1− y∗
(ŷ − y∗)− 1

(1− y∗)2
(ŷ − y∗)2 · · · ]

(4)
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When a model converge on ground truth y∗ at arbitrary input, we have ŷ → y∗, |ŷ − y∗| → 0, and
hence y = 1.

then we have

LCE(1, ŷ) = −y[log(y∗) +
1

y∗
(ŷ − y∗)− 1

2y∗2
(ŷ − y∗)2 + · · · ] (5)

when y∗ → 1,

LCE(1, ŷ) = −(ŷ − y∗) +
1

2
(ŷ − y∗)2 + · · ·

For L2 loss, we have ŷ ∈ (0, 1) and y∗ ∈ (0, 1),

LL2(y
∗, ŷ) =

1

2
(y∗ − ŷ)2

Therefore when y∗ → 1 (i.e., the value of different data is very close), and y is defined as aforemen-
tioned, then converge on LL2 is equivalent to converge on the CE Loss.

In more general case, we have

|LCE(1, ŷ)| = | log(y∗)−
1

y∗
(ŷ − y∗) +

1

2y∗2
(ŷ − y∗)2 + · · · |

≈ | log(y∗)− 1

y∗
(ŷ − y∗) +

1

2y∗2
(ŷ − y∗)2|

≈ | log(y∗)|

≥ 1

2
(y∗ − ŷ)2

(6)

because y∗ does not close to 1.

Theorem A.2. The training dynamic with L1 or L2 loss cannot faithfully reflect the convergence
on the binary classification task, with a constant difference log y∗, which is agnostic to the model
structure and other training schemes.

Proof. Note that when model converge on L1 or L2, and if the value is not large, there is a model
agnostic difference to the model trained with CE loss at log y∗ in Equation 6. To avoid log 0 issue we
simply add δ to original data to avoid zeros, which does not influence prediction and reconstruction
accuracy.

According to Theorem A.2, we can obtain the contribution of each sample on the anomaly detection
(a binary classification task) via observing the L1 or L2 loss on regression task. From previous
work (Paul et al., 2021), we know the samples that contribute less to binary classification task is
stable at two metrics GraNd and EL2N. Here we focus on the EL2N score as it shows empirically
better accuracy in (Paul et al., 2021). With L1/L2 loss, the EL2N score is estimated as:

E||p(wt, x)|CE − y||2 = E||p(wt, x)|L2 − y − log y∗||2 = E||p(wt, x)|L2 − 1− log y∗||2
Here we implicitly do two things: (1) when L2 does not converge, we do not compute its EL2N
score, because obviously it is still valuable to a simpler task (e.g.,L2 regression); (2) when model
easily converge on L2 loss, we can approximate its EL2N score as y∗− 1− log y∗ < y∗− 1− log δ,
this points to the samples with smaller values. Let log δ = −1, then the EL2N score is bounded by
y∗.

With the calibrated EL2N score, we can filter out a subset of data that contributes most to the
anomaly detection problem. To have a high EL2N score, the sample must have significant value and
not fit on the L2 loss. According to (Paul et al., 2021), this set should be stable from the early phase
on training.

The result with calibrated EL2N (Cal-EL2N) score is shown in Figure. Where we find that Cal-
EL2N fails to highlight informative (anomalous) part of data.
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Takeaway: Essentially, this analysis shows that if two samples yield similar prediction (i.e., y∗ is
similar), then their difference on L2 loss cannot faithfully reflect their difference on the EL2N.
Only in special case, for samples with large value or very small value, converge on L2 loss is a high
order approximation of the CE loss, and hence L2 loss can directly show the difference on EL2N
score in that case.

A.2 PROOF OF LEMMA 4.1

Let X denote the set of all input data points, and let Y ⊆ X be an arbitrary subset of X. Suppose the
function f : X→ Z is a mapping defined over X. The optimization problem defined in Eq. 3 can be
formulated as:

min
f
L(f, y) subject to C(x, f(x), y) ≤ ϵ, ∀x ∈ X,

where L(f, y) is the objective function, C(·) represents the constraint function, and ϵ is a tolerance
parameter.

Proof by contradiction: Suppose that the optimization problem defined in Eq. 3 has no solu-
tion. This would imply that the set of constraints cannot be satisfied simultaneously under the given
objective function. Specifically, once the function f and the corresponding input y are known, the
objective function becomes deterministic and thus computable, resulting in a feasible region of zero
measure in the solution space. i.e.,

µ({x ∈ X|C(x, f(x), y) ≤ ϵ}) = 0,

where µ(·) denotes the measure of the feasible region in the solution space.

Now, consider a subset Y ⊂ X such that |Y| < Nmax, where Nmax denotes the maximum
allowable size of a subset that satisfies the constraints. If for every point x ∈ X − Y, the model
sequence {fn} converges, i.e.,:

lim
n→∞

fn(x) = f(x),

and can be extended to converge on any subset Y with |Y| < Nmax, then the convergence property
of f can be generalized to the entire domain X. That is, there exists a function f̂ such that

f̂ = f(x),∀x ∈ (X− Y) ∪ Y
which satisfies all constraints defined.

This leads to the contradiction since the model f can satisfy the constraints over every sub-
set Y ⊂ X with |Y | < Nmax and the convergence can be generalized to the entire set X.

A.3 COMPLETE VERY EARLY STOPPING ALGORITHM

The Alg. 3 is the complete version of Alg. 1 in §4.4. Alg. 3 leverages the sparsity in the dataset, re-
moving potential outliers in validation dataset in step 17 and 18. Therefore, the rest part of validation
are very like to be normal data and faithfully reflect the convergence on normal dataset.

A.4 REASONING OF VALIDATION SET SELECTION

Here we leverage the sparsity of anomalous data. Specifically, the following assumption is intro-
duced on random selected validation set τi,

p(|τi ∩ Y| > 0) ≈ pGT (7)

where
∑

τi = X, τi ∩ τj = ∅, |τi| = |τj |,∀i ̸= j, pGT is the ground truth sparsity of anomalous
samples, τi represents a random sampled batch from time series (or images). To ensure that this
assumption holds in practice, we limit the size (even) of the sampling set |τi| ≪ |X|. We can
easily verify this phenomenon by investigating all existing datasets with a mixture of normal and
anomalous data.

Then with the definition of sample τi, we select a subset T′ of elements in T = {τi} to perform as
the validation set jointly. Due to the law of large numbers, by sampling sufficient number of τi, i.e.,
large |T′|,

τi ∈ T′, |T′| > T → p(|τi ∩ Y| > 0) ≈ pGT (8)
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Algorithm 3 Very Early Stopping for Unsupervised Anomaly Detection

Require: |T′| > T

Ensure: E = E[(E(f̃)− E(f))|U] < ϵ,
1: T′ ← random sampling by masking T
2: V← {vi}, vi = 0∀i < |T′|, i ∈ N ▷ V is list of the mean loss on each validations
3: Initialize η, J
4: Nmax ← n ▷ N is maximal number of epochs
5: M ← m ▷ M is minimal number of epochs
6: ϵ← 0 < x≪ 1 ▷ Configure the convergence requirement of normal data
7: δ ← 0 < x≪ 1 ▷ Configure the convergence requirement of objective function
8: N ← 0
9: while N ≤ Nmax do

10: if N > M then
11: LY,N ←

∑
y∈Y L(f(yi),yi)|yi∈Y

NY
▷ Compute the objective function, Y by η%

12: i← 0
13: while i < |T′|

|τi| do

14: vi ←
∑

∀t∈τi
L(t,f(t))

|τi|
15: i← i+ 1
16: V′ ← {vi}, vi < qmean(V, η%) ▷ Filter out top η% loss on validations {τ} by mean
17: V∗ ← {vi}, vi < qmax(V, η%) ▷ Filter out top η% loss on validations {τ} by maximum
18: EN ←

∑
V′∩V∗

|V′∩V∗| ▷ Compute the constraint
19: if EN < ϵ or |EN − EN−1| < α · ϵ then ▷ converge or stop updating on validating set
20: if ∃j, |LY,N | − |LY,N−j | < 0, (j ∈ [1 . . . , J ]) or |LY,N − LY,N−1| < δ then
21: Break
22: N ← N + 1
23: ∇L(x, f(x)), x ∈ X− T′, SGD(f) ▷ Update the f model on training set
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Figure 4: Bootstrapping performance with TranAD on NAB dataset.

A.5 TRICKS TO ACCELERATE VES

We can apply the following techniques to accelerate the VES algorithm. While these optimizations
have shown empirical success on the datasets we’ve tested, due to the inherent complexity of real-
world scenarios, we recommend using the complete VES setup to ensure robustness.
• Only consider the validation set τi ∈ Ti with minimal loss in VES to determine convergence

level.
• Stop right after the τi with minimal loss converge, without check the objective function.
• Skip the RVES process if the validation sets exhibit distinct convergence speeds, or if all validation

sets converge quickly and uniformly, similar to the majority of the training set.

A.6 DETAILED EVALUATION OF BOOTSTRAPPING BASED TRAINING

We implement the same bootstrapping method as Livernoche et al. (2024); Han et al. (2022) on
all the time series datasets. Specifically, we evaluate this method on the state-of-the-art methods
NPSR (Lai et al., 2024) and TranAD (Tuli et al., 2022).

A.7 DETAILED EVALUATION OF RANDOM SINGLE VES BASED TRAINING

We implement the VES as Algorithm 3 on all the time series datasets, without taking the joint set.
Specifically, we evaluate this method on the state-of-the-art methods NPSR (Lai et al., 2024) and
TranAD (Tuli et al., 2022). The result is included in Table 7.
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Figure 5: Bootstrapping performance with TranAD on SMAP dataset.
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Figure 6: Bootstrapping performance with TranAD on SWaT dataset.

Figure 7: Unsupervised anomaly detection with Narcissus on a synthetic dataset, based method is
TranAD
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Metrics Stat. NAB MBA SMD

GDN TranAD NPSR GDN TranAD NPSR GDN TranAD NPSR

P

Min 0 0 0 0.3502 0.3273 0.4421 0 0. 0
Max 0.8889 0.8889 0.8571 0.8641 0.9486 0.8658 0.9883 0.9996 0.8242
Mean 0.6112 0.6730 0.6281 0.5550 0.6373 0.6680 0.7303 0.8121 0.7962

NARCISSUS 0.8889 0.8889 0.8571 0.8598 0.9461 0.8585 0.9814 0.9996 0.9117

AUC

Min 0 0 0 0.2954 0.3431 0.3562 0 0 0
Max 0.9996 0.9996 0.9995 0.9597 0.9861 0.9603 0.8932 0.9955 0.9372
Mean 0.9996 0.9996 0.9994 0.6570 0.7339 0.7538 0.7492 0.7841 0.6932

NARCISSUS 0.9996 0.9996 0.9995 0.9583 0.9854 0.9582 0.8837 0.9220 0.9867

F1

Min 0 0 0 0.3190 0.3626 0.3161 0 0 0
Max 0.9412 0.9412 0.9231 0.9271 0.9736 0.9281 0.9394 0.9692 0.925
Mean 0.4928 0.5328 0.6051 0.5281 0.6681 0.6249 0.5823 0.6320 0.6475

NARCISSUS 0.9412 0.9412 0.9231 0.9246 0.9723 0.9244 0.9188 0.9152 0.8950

Metrics Stat. SMAP SWaT Synthetic

GDN TranAD NPSR GDN TranAD NPSR GDN TranAD NPSR

P

Min 0 0 0 0 0 0 0.4262 0.3187 0.4974
Max 0.9440 0.9199 0.8676 1.0000 1.0000 1.000 0.9736 0.9776 0.9897
Mean 0.5924 0.6192 0.6293 0.5261 0.6816 0.5793 0.5627 0.5638 0.5791

NARCISSUS 0.9440 0.8503 0.9401 0.9762 0.9933 0.9977 0.9658 0.9776 0.9856

AUC

Min 0 0 0 0 0 0 0.4384 0.4916 0.4994
Max 0.9823 0.9811 0.9835 0.8497 0.8466 0.8465 0.9993 0.9994 0.9997
Mean 0.4322 0.4814 0.5174 0.4426 0.5429 0.5440 0.4919 0.4994 0.4995

NARCISSUS 0.9823 0.9809 0.9820 0.8497 0.8436 0.8438 0.9991 0.9994 0.9996

F1

Min 0 0 0 0 0 0 0.3763 0.3936 0.3859
Max 0.9603 0.9199 0.9291 0.8166 0.8123 0.8116 0.9866 0.9887 0.9948
Mean 0.4593 0.5126 0.5056 0.4189 0.5034 0.5088 0.4812 0.5224 0.5253

NARCISSUS 0.9603 0.9191 0.9587 0.8166 0.8128 0.8143 0.9826 0.9887 0.9928

Table 6: Detailed performance of Bootstrapping: comparison of performance metrics – Precision
(P), AUC, F1 – across various anomaly detection methods on multiple datasets.

Metrics Stat. NAB MBA SMD

GDN TranAD NPSR GDN TranAD NPSR GDN TranAD NPSR

P

Min 0.8571 0.8276 0.8000 0.8502 0.9279 0.8453 0.7887 0.9141 0.8006
Max 0.8889 0.8889 0.8571 0.8641 0.9486 0.8658 0.8012 0.9996 0.8245
Mean 0.8730 0.8730 0.8286 0.8550 0.9390 0.8600 0.7961 0.9320 0.8123

NARCISSUS 0.8889 0.8889 0.8571 0.8598 0.9461 0.8595 0.7980 0.9996 0.8117

AUC

Min 0.9995 0.9994 0.9993 0.9549 0.9801 0.9531 0.9856 0.9212 0.9762
Max 0.9996 0.9996 0.9995 0.9597 0.9861 0.9603 0.9900 0.9955 0.9887
Mean 0.9996 0.9996 0.9994 0.9570 0.9838 0.9583 0.9876 0.9501 0.9358

NARCISSUS 0.9996 0.9996 0.9995 0.9583 0.9854 0.9582 0.9872 0.9220 0.9867

F1

Min 0.9231 0.9057 0.8889 0.9190 0.9626 0.9161 0.8310 0.9080 0.8875
Max 0.9412 0.9412 0.9231 0.9271 0.9736 0.9281 0.8362 0.9692 0.8950
Mean 0.9328 0.9328 0.9055 0.9226 0.9689 0.9244 0.8342 0.9320 0.8925

NARCISSUS 0.9412 0.9412 0.9231 0.9246 0.9723 0.9244 0.8350 0.9152 0.8950

Metrics Stat. SMAP SWaT Synthetic

GDN TranAD NPSR GDN TranAD NPSR GDN TranAD NPSR

P

Min 0.9398 0.8392 0.7891 0.9634 0.9593 0.9512 0.9562 0.9486 0.9697
Max 0.9440 0.9199 0.8676 1.0000 1.0000 1.000 0.9736 0.9776 0.9897
Mean 0.9424 0.9162 0.8272 0.9861 0.9816 0.9794 0.9623 0.9638 0.9792

NARCISSUS 0.9440 0.8503 0.9401 0.9762 0.9933 0.9977 0.9658 0.9776 0.9856

AUC

Min 0.9818 0.9792 0.9711 0.8385 0.8385 0.8385 0.9988 0.9986 0.9994
Max 0.9823 0.9811 0.9835 0.8497 0.8466 0.8465 0.9993 0.9994 0.9997
Mean 0.9822 0.9804 0.9777 0.8436 0.8439 0.8440 0.9989 0.9990 0.9995

NARCISSUS 0.9823 0.9809 0.9820 0.8497 0.8436 0.8438 0.9991 0.9994 0.9996

F1

Min 0.9581 0.9125 0.8821 0.8074 0.8065 0.8036 0.9776 0.9736 0.9846
Max 0.9603 0.9199 0.9291 0.8166 0.8123 0.8116 0.9866 0.9887 0.9948
Mean 0.9591 0.9162 0.9056 0.8109 0.8087 0.8088 0.9812 0.9812 0.9895

NARCISSUS 0.9603 0.9191 0.9587 0.8166 0.8128 0.8143 0.9826 0.9887 0.9928

Table 7: Detailed performance of RVES: comparison of performance metrics – Precision (P), AUC,
F1 – across various anomaly detection methods on multiple datasets.
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