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Abstract

This paper addresses the problem of decentralized cooperative monitoring of an agile target
using a swarm of robots undergoing dynamic sensor failures. Each robot is equipped with
a proprioceptive sensor suite for the estimation of its own pose and an exteroceptive sensor
suite for target detection and position estimation with a limited field of view. Further, the
robots use broadcast-based communication modules with a limited communication radius
and bandwidth. The uncertainty in the system and the environment can lead to intermittent
communication link drops, target visual loss, and large biases in the sensors’ estimation out-
put due to temporary or permanent failures. Robotic swarms often operate without leaders,
supervisors, or landmarks, i.e., without the availability of ground truth regarding pose infor-
mation. In such scenarios, each robot is required to exhibit autonomous learning by taking
charge of its own learning process while making the most out of available information. In this
regard, a novel Autonomous Online Learning (AOL) framework has been proposed, in which
a decentralized online learning mechanism driven by reward-like signals, is intertwined with
an implicit adaptive consensus-based, two-layered, weighted information fusion process that
utilizes the robots’ observations and their shared information, thereby ensuring resilience in
the robotic swarm. In order to study the effect of loss or reward design in the local and
social learning layers, three AOL variants are presented. A novel perturbation-greedy reward
design is introduced in the learning layers of two variants, leading to exploration-exploitation
in their information fusion’s weights’ space. Convergence analysis of the weights is carried
out, showing that the weights converge under reasonable assumptions. Simulation results
show that the AOL variant using the perturbation-greedy reward in its local learning layer
performs the best, doing 182.2% to 652% and 94.7% to 150.4% better than the baselines
in terms of detection score and closeness score per robot, respectively, as the total number
of robots is increased from 5 to 30. Further, AOL’s Sim2Real implementation has been
validated using a ROS-Gazebo setup.

1 Introduction

Target search, detection, tracking, and monitoring are crucial elements in a variety of high-impact real-world
applications like search and rescue (Scherer et al., 2015), firefighting (Harikumar et al., 2018; Zhang et al.,
2022), convoy protection (Spry et al., 2005), traffic monitoring (Khan et al., 2020), surveillance, etc., where
the use of a multi-robot system can prove to be advantageous in terms of robustness and tracking perfor-
mance, especially in unsafe and uncertain environments (Mohiuddin et al., 2020). With the advancement
in sensor and communication technologies, making them miniaturized, inexpensive, and reliable, there has
been an increased interest in the use of robotic swarms for target search and tracking (Senanayake et al.,
2016). Robotic swarms mostly operate under the philosophy of Swarm Intelligence (SI) (Beni & Wang,
1993; Beni, 2004), which is characterized by decentralized local sensing and control, local communication,
and the emergence of self-organizing global behaviors (Sharkey, 2007), along with three main advantages
– scalability, robustness, and adaptability (Bayindir & Şahin, 2007), which are highly desirable in robotic
swarms.
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The problem of cooperative target search and tracking has been studied widely in the literature. There are
many target-tracking works that solve the multi-robot problem settings involving an agile target being chased
by a swarm of robots. However, most of these works tackle this problem mainly from a control perspective.
Moreover, such works assume accurate localization as well as target position estimation (Senanayake et al.,
2016), i.e., they do not consider temporary or permanent failures in the proprioceptive (IMU, INS, odometry,
etc.) and exteroceptive (camera, LiDAR, RaDAR, etc. – algorithmic/sensor uncertainty in detection and
relative pose sensing) sensors onboard the robots. Yao et al. (2007) propose a stable and decentralized
control strategy based on artificial potentials and sliding mode control to capture a moving target using a
robotic swarm in a specific formation, where the artificial potentials take care of both tracking and formation
tasks, and the sliding mode control ensures that the robots follow the required motion. Wang & Gu (2011)
consider the problem of cooperative target tracking using a robot swarm with limited communication range,
and propose a distributed Kalman filter-based estimation scheme with implicit consensus for the target’s
position estimation and a distributed flocking algorithm for motion control. Blazovics et al. (2012) propose a
simple rule-based distributed algorithm for target tracking and surrounding using a swarm of homogeneous
robots based on the concept of basis behaviors, where the robots are aware of the target’s position at all times.
To achieve dynamic obstacle avoidance and target tracking using a swarm of robots, Radian et al. (2013) use a
distributed Kalman filter to estimate the velocity and position of the unknown dynamic convex obstacles and
a stochastic target, and a potential field approach to enable target tracking and obstacle avoidance among
the robots. Kwa et al. (2020) present a fully decentralized swarming strategy offering tunable exploration-
exploitation multi-agent dynamics, which is achieved by combining adaptive inter-agent repulsion and an
adjustable network PSO-based strategy, thereby resulting in the optimal collective performance of the swarm
corresponding to a specific k-nearest neighbor graph connectivity.

Unlike many works in the target search and tracking literature, this paper’s main focus is on the target’s
position estimation part of the overall cooperative target search and tracking task, rather than the control
part – this paper considers temporary or permanent sensor failures that cause inaccurate localization and
target position estimation among the robots in the swarm. The robots use broadcast-based communication
modules with a limited communication radius and bandwidth, exteroceptive sensors for target detection and
position estimation with limited field-of-view, and proprioceptive sensors for their own position estimation.
The robot swarm has to operate under adverse situations involving temporary or permanent failures in the
sensors resulting in large biases in their estimates, intermittent communication link drops, and target visual
loss. Robot swarms often operate without leaders, supervisors, or landmarks, i.e., without the availability
of a ground truth regarding pose information; typically, the robots use the ground truth to identify which
sensors or neighboring robots are undergoing failures. Without the availability of a landmark or a leader,
the robots are required to collaborate among themselves. In this regard, a decentralized online learning
framework called the Autonomous Online Learning (AOL) framework has been proposed in this paper,
which is used to drive an adaptive and fault-tolerant information fusion process among robots. The AOL
framework takes its philosophical inspiration from the concepts of ‘independent learning’ (Hockings et al.,
2018) and ‘self-directed learning’ (Garrison, 1997) in educational psychology in which the learner, devoid of
any supervisor or teacher, takes charge of its own learning process while making the most out of the available
resources and information.

In the AOL framework, an autonomous online learning mechanism is intertwined with an implicit adaptive
consensus-based, two-layered (local and social), weighted information fusion process, which is driven by the
robots’ observations and their shared information. This enables each robot to figure out which neighboring
robot’s information about the target’s position can be trusted at a given time instant, thus bringing in
an aspect of resilience to the robotic swarm – the robots undergoing sensor failures are less likely to be
trusted by themselves as well as their neighbors for their sensor information, thereby improving their target’s
position estimates by giving more weight to the information shared by robots with functional sensors. The
learning process in the AOL framework is inspired by that of the exponentially weighted online learning
forecaster (Cesa-Bianchi & Lugosi, 2006), which is a centralized online learning algorithm driven by a loss
function calculated using ground truth. But unlike the exponentially weighted online learning forecaster,
the AOL framework involves decentralized online learning which is driven by reward-like signals, exhibiting
exploration-exploitation behaviors in the online learning process. Since the main focus of this paper is
not the control part of the target search and tracking task, a simplified target search and tracking control
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strategy has been used, which can be replaced by any other advanced control strategy. For instance, the
control strategies proposed by Radian et al. (2013) and Kwa et al. (2020) can be used along with the AOL
framework to achieve better swarm formation control behavior while ensuring resilience in the robotic swarm.

To understand the effect of loss/reward designs in the local and social learning layers, three different AOL
algorithms are presented, namely AOL-C, AOL-1P, and AOL-2P. A novel perturbation-greedy reward design
is introduced in the learning process of two AOL variants, leading to exploration-exploitation in their infor-
mation fusion’s weights’ space. Among the AOL variants, AOL-C involves a comparative loss function in
its local learning layer, AOL-1P involves the perturbation-greedy reward function in its local learning layer,
and AOL-2P involves the perturbation-greedy reward functions in both its local and social learning layers.

Theoretical analysis of the three AOL variants is carried out, showing that the weights converge under
reasonable assumptions. The performance of the three AOL variants is then evaluated in a simulated envi-
ronment with adverse conditions involving sensor failures. The three AOL variants are compared against two
decentralized fusion methods – Averaging-Consensus Fusion (ACF) and Kalman-Consensus Fusion (KCF).
Averaging consensus and Kalman filter-based approaches have been used in various works (Katragadda et al.,
2017; Zhang & Li, 2019; Azam et al., 2020) for the purpose of multi-estimate fusion. Hence, a comparison of
the proposed AOL algorithms is provided with ACF and KCF fusion methods as baselines. However, sensor
failures inducing sudden biases in the estimates may or may not increase their covariance, and therefore,
covariance-based methods may not perform satisfactorily or may even fail. Simulation results show that the
best-performing variant, AOL-1P, performs 182.2% to 652% and 94.7% to 150.4% better than the baselines
in terms of cumulative average detection score per robot and cumulative average closeness score per robot,
respectively, as the total number of robots is increased from 5 to 30. Simulation results further reveal that
using the target detection confidence as a reward signal for the update of weights in the social learning layer,
as in AOL-1P, does better than using a perturbation-greedy reward-based learning strategy as in AOL-2P.
However, using a perturbation-greedy reward-based learning strategy for the update of weights in the local
learning layer, as in AOL-1P, does better than using a comparative Euclidean distance-based loss function
as in AOL-C. Further, the top two performing AOL variants’ (AOL-1P and AOL-C) Sim2Real aspects are
evaluated in Gazebo using ROS1.

The rest of this paper is organized as follows: section 2 presents the problem formulation, and Section 3
presents the AOL framework, along with its three variants. Section 4 presents a theoretical analysis of the
convergence of weights involved in the AOL variants. Section 5 presents AOL’s performance evaluation,
comparing the three variants with two baselines. Finally, section 6 concludes this paper. Further, a table of
nomenclature is provided in the appendix.

2 Problem Formulation

The problem of Decentralized Cooperative Target Monitoring considered in this paper involves a swarm of
robots equipped with broadcast-based communication modules with limited range and bandwidth, propri-
oceptive sensors (e.g., IMU, INS, optical encoders, etc.), and exteroceptive sensors (e.g., camera, LiDAR,
RaDAR, etc.) with limited field-of-view (FOV), as shown in Fig. 1. The goal of the robots is to detect,
track, and stay as close as possible to the target while maintaining some distance from it, thus ensuring a
high degree of detection and monitoring of the target at all times. However, the sensors onboard the robots
may undergo temporary or permanent failures, along with intermittent target visual loss and communication
link drops due to system and environmental uncertainty, thereby jeopardizing the target monitoring goal of
the robotic swarm. Therefore, the robots are required to collaborate over the communication network to
help each other detect and monitor the target successfully.

Robot Kinematic Model: let the total no. of robots be N . With ∆T as the sampling period (seconds),
each robot i, ∀i ∈ [N ], follows a discrete-time 3-DOF kinematic model stated below:

xt+1,i = xt,i + ∆T

[
cos ϕt,i − sin ϕt,i

sin ϕt,i cos ϕt,i

]
v̄t,i (1a)

ϕt+1,i = ϕt,i + ∆Tw̄t,i (1b)
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Figure 1: Cooperative Target Monitoring using Robotic Swarm

where xt,i ∈ R2 is the ith robot’s 2-D position vector (in m), v̄t,i ∈ R2 is the ith robot’s body-axis velocity
vector (m/s), ϕt,i ∈ R is the ith robot’s heading angle (radians), and w̄t,i ∈ R is the ith robot’s yaw rate
(rad/s) at discrete-time t, respectively. Here, the body-axis velocity v̄t,i and yaw rate w̄t,i are bounded
control inputs for the ith robot.

Target Kinematic Model: the target’s kinematics also follow the model stated as equation (1), but its
dynamics is unknown. The target’s position vector xt,B ∈ R2 (in m), heading angle ϕt,B ∈ R (radians),
body-axis velocity v̄t,B ∈ R2 (m/s), and yaw rate w̄t,B ∈ R (rad/s), respectively, can be represented by
replacing i with B (Bogey) in the set of equations (1). Similarly, v̄t,B and w̄t,B are the bounded control
inputs to the target at time t, which are unknown to the robots since its dynamics is unknown.

Communication Model: let Rcomm. be the range of communication, and let pld be the communication
link drop probability. The topology of the communication network between robots is represented by a
uni-directional dynamic graph Gt, whose adjacency matrix At satisfies the following, ∀i, j ∈ [N ] such that
i ̸= j,

[At]ij =
{

1 : (||xt,i − xt,j || ≤ Rcomm.) ∧ (Uij(0, 1) ≥ pld)
0 : otherwise

(2)

where [At]ij is the ijth element of At, Uij(0, 1) ∈ [0, 1] is a uniform random variable. For i = j, [At]ii = 0.
The above equation implies that even if two robots are in the communication range of each other, the
communication link between them may still drop with a probability of pld.

The neighbor set of the ith robot at time t, denoted by Ωt,i, can be defined as follows, ∀i ∈ [N ]:

Ωt,i = {j : [At]ij = 1 ∧ j ∈ [N ]} (3)

Further, define nt,i := |Ωt,i|, i.e., nt,i is the number of communicating neighbors of the ith robot at time
t. Moreover, due to limited bandwidth, there is a limit on the number of neighbors the ith robot can have
at time t, i.e., nt,i ≤ nl, where nl ∈ {1, 2, · · · , N} based on the limitations posed by the communication
hardware. In case more than nl robots appear in the communication range of the ith robot, nl robots are
chosen randomly out of them to be considered as communication neighbors, such that nt,i ≤ nl holds.

Proprioceptive Sensor Model: the proprioceptive sensor suite onboard the ith robot is responsible for
the estimation of its 2-D position and yaw angle, where the estimates are denoted as x̂Pi

t,i ∈ R2 and ϕ̂Pi
t,i ∈ R,

respectively, and are modeled as follows:

x̂Pi
t,i = xt,i + µx

t,i (4a)

ϕ̂Pi
t,i = ϕt,i + µϕ

t,i (4b)

4



Under review as submission to TMLR

(a) (b)

Figure 2: (a) Exteroception’s field-of-view (FOV). (b) Target Search strategy inspired by food foraging
pattern used by Oxyrrhis Marina.

where µx
t,i ∈ R2 and µϕ

t,i ∈ R represent bounded arbitrary noise in the ith robot’s proprioceptive sensor
suite’s estimates, ∀i ∈ [N ].

Exteroceptive Sensor Model: the exteroceptive sensor suite of the ith robot is responsible for the detec-
tion and relative position estimation of the target, in terms of the target detection confidence dt,i ∈ [0, 1] and
the target’s relative position estimate ∆x̂Ei

t,B ∈ R2. The exteroceptive sensor suite is further characterized
by a limited field-of-view (FOV), with a detection range RFOV and an angle-of-view θFOV, as shown in Fig.
2a. Let pvl be the probability of target visual loss. If the target lies outside the FOV region, dt,i = 0. On
the other hand, if the target lies inside the FOV region, the detection confidence dt,i follows the model as
stated below:

dt,i =


1 − b0

r
r0

: r ≤ r0
(1 − b0) exp (3 r0−r

RFOV−r0
) : r0 < r ≤ RFOV

0 : (r > RFOV) ∨ (Ui(0, 1) < pvl)
(5)

where r := ||xt,B − xt,i||, Ui(0, 1) ∈ [0, 1] is a uniform random variable, ∀i ∈ [N ], and b0 ∈ [0, 1) and
r0 ∈ (0, RFOV] are model parameters. The parameters b0 and r0 can be tuned based on the characteristics
of the exteroception system to be installed in the robots. Note that the above model implies a linear decay
of the detection confidence till r = r0, after which the decay is exponential, leading to a near zero detection
confidence value at r = RFOV. In real-world usage, similar behavior is observed in camera and LiDAR-based
exteroception (Singh & Davis, 2017; Najibi et al., 2019). Further, even if the target lies in the FOV region
of the robot, there may be a visual loss of the target with probability pvl.

The relative target position estimation (∆x̂Ei

t,B) model is stated as follows:

∆x̂Ei

t,B = xt,B − xt,i + νt,i (6)

where νt,i ∈ R2 represent bounded arbitrary noise in the ith robot’s exteroception’s relative target position’s
estimate, ∀i ∈ [N ].

Thus, the combination of the estimates from proprioception and exteroception yields the combined sensor
estimate of the target’s position x̂Si

t,B as follows:

x̂Si

t,B = x̂Pi
t,i + ∆x̂Ei

t,B (7)

Control Law: robots use a hybrid switching control law, which switches between the target chase mode
and the target search mode based on whether they or their neighbors have detected the target.
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For both the modes, the ith robot’s translational control law consists of two terms:

v̄t,i = v̄R
t,i + ∆v̄t,i (8)

where v̄R
t,i is the ith robot’s velocity reference command signal responsible for either chasing or searching the

target and ∆v̄t,i is the ith robot’s velocity correction control signal responsible for avoiding collisions with
other robots (more details in the supplementary document). Note that any other advanced target search
and tracking control law can be used here. But for the sake of simplicity, the following search and tracking
control strategy has been used in this paper.

Target Chase Mode: This mode gets activated whenever the ith robot has detected the target (dt,i > 0) or
one of its neighbors has detected the target (dt,j > 0, j ∈ Ωt,i). In this mode, the ith robot considers its
estimate of the target’s position x̂i

t,B as the reference position for the reference velocity control law. The
yaw control of the robot makes sure that the robot’s longitudinal body axis points towards the target’s
estimated position x̂i

t,B . A more detailed description, along with the control algorithm, is included in the
supplementary document.

Target Search Mode: This mode gets activated whenever the ith robot has not detected the target (dt,i = 0)
and either none of its neighbors have detected the target (dt,j = 0, ∀j ∈ Ωt,i) or it has no neighbors (nt,i = 0).
In this mode, the ith robot executes a search pattern inspired by the food foraging pattern used by Oxyrrhis
Marina (Lowe et al., 2011; Harikumar et al., 2018), as shown in Fig. 2b. The robot first chooses a random
direction to move towards. With its longitudinal body axis aligned with that direction, it moves in that
direction using its longitudinal velocity control while doing a growing sinusoidal maneuver (green curve in
Fig. 2b) using its lateral velocity control to cover more area as it moves. After Ts discrete-time steps, the
robot randomly chooses a new direction and repeats the process.

3 Reward-based Autonomous Online Learning for Cooperative Target Monitoring

The Reward-based Autonomous Online Learning (AOL) framework proposed in this paper is a decentralized
online learning framework designed for cooperative target monitoring using a swarm of robots in a non-
stationary environment. Its ability to learn in real-time without the need for any ground truth allows the
robots to exhibit high target monitoring success in scenarios where the sensors onboard the robots may be
undergoing temporary or permanent failures, even when landmarks, supervisors, or leaders are unavailable.

Within the AOL framework, three variants of AOL algorithms are proposed, namely AOL-C, AOL-1P, and
AOL-2P, where AOL-C involves a comparative loss function in one of its learning layers, AOL-1P involves a
novel perturbation-greedy reward function in one of its learning layers, and AOL-2P involves the perturbation-
greedy reward functions in both of its learning layers. Three different AOL variants are considered in order
to study: a) the effect of using comparative loss compared to the perturbation-greedy reward in the local
learning layer (AOL-C versus AOL-1P), and b) the effect of using the perturbation-greedy reward in the
social learning layer (AOL-1P versus AOL-2P).

All three variants of AOL algorithms involve four phases: a communication phase sandwiched between
two estimation phases, and a learning phase. The discrete-time variable t = 1, 2, · · · , T , where T is the
discrete-time horizon.

Local estimation phase: The first estimation phase involves a weighted fusion of the information available
locally to the ith robot, i.e., its combined sensor estimate of the target position x̂Si

t,B and its previous-time
final estimate of the target position x̂i

t−1,B , to form the intermediate estimate x̂Ii

t,B of the target position, as
follows:

If the target is detected by ith robot’s exteroception, i.e., dt,i > 0, then

x̂Ii

t,B = αi(t − 1)x̂Si

t,B + (1 − αi(t − 1))x̂i
t−1,B (9)

otherwise, if the target is undetected by ith robot’s exteroception, i.e., dt,i = 0, then

x̂Ii

t,B = x̂i
t−1,B (10)
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Here, the local weight αi(t − 1) is calculated as follows:

αi(t − 1) = α̂i(t − 1)
α̂i(t − 1) + α̂′

i(t − 1) (11)

where the weights α̂i(t − 1) and α̂′
i(t − 1) are initialized as α̂i(0) = α̂′

i(0) = 1. These weights are updated in
the local learning layer of the learning phase. Note that the weight αi(t−1) is indicative of how much weight
should be given to the combined sensor estimate in the local estimate fusion process at time t relative to the
robot’s previous-time final estimate of the target position. Further, let α̂i(0) = α̂′

i(0) = α̂i(−1) = α̂′
i(−1) = 1

(for the AOL variants with perturbations, called AOL-1P and AOL-2P).

Communication phase: The ith robot broadcasts the information {t, i, dt,i, x̂Ii

t,B , x̂i
t−1,B , ŵii(t − 1)} and

receives the information {t, j, dt,j , x̂Ij

t,B , x̂j
t−1,B , ŵjj(t − 1)} from its communicating neighbors j ∈ Ωt,i. Here,

the weight ŵii(t − 1) is initialized as ŵii(0) = 1, and is updated in the social learning layer of the learning
phase.

Social estimation phase: The second estimation phase involves a weighted fusion of the information
available socially to the robots, i.e., the intermediate estimates x̂Ij

t,B given by its communicating neighbors
j ∈ Ωt,i, and its own intermediate estimate x̂Ii

t,B , to form its final estimate x̂i
t,B of the target’s position, as

follows:

x̂i
t,B =

∑
∀j∈Λt,i

wij(t − 1)x̂Ij

t,B (12)

where Λt,i := Ωt,i ∪ {i}, and the social weights wij(t − 1) are calculated as follows:

wij(t − 1) = ŵjj(t − 1)∑
∀j′∈Λt,i

ŵj′j′(t − 1) (13)

where the weight ŵii(t − 1) is updated in the ith robot’s social learning layer of the learning phase, and the
weights ŵjj(t − 1) are obtained from its communicating neighbors j ∈ Ωt,i during the communication phase.
The weight ŵii(t − 1) is initialized as ŵii(0) = 1, ∀i ∈ [N ]. Note that the weight wij(t − 1) is indicative
of how much weight should be given to the jth robot’s intermediate estimate in the social estimate fusion
process at time t relative to other robots in the set Λt,i. Further, let ŵii(0) = ŵii(−1) = 1 (for the AOL
variants with perturbations, called AOL-1P and AOL-2P).

Learning phase: The online learning of the ith robot is primarily driven by the objective of maximizing
its target detection confidence dt,i directly or indirectly, which acts as a reward-like signal guiding a mul-
tiplicative exponential update process for the weights used in both the estimation phases. The learning
phase for all three variants involves a periodic reset of the weights α̂i(t), α̂′

i(t), and ŵii(t) to deal with the
system uncertainty and non-stationary environment; the periodic reset is required to eliminate any biases
accumulated in the learned weights. In practice, the multiplicative exponential weight update process allows
for a higher learning rate that can cover the loss in performance due to periodic reset of the learned weights.

Three variants of the AOL learning phase are proposed, resulting in three different AOL algorithms, which
are described as follows:

1) AOL-C: the weight ŵii(t−1) is updated via the multiplicative exponential strategy using lw
t,i := (1−dt,i)

as the loss function, as follows:

ŵii(t) = ŵii(t − 1) exp (−ηw(1 − dt,i)) (14)

where ηw is a learning rate parameter. With the above update strategy, note that a decrease in the detection
confidence of the ith robot leads to a decrease in the weight ŵii(t). Equation (14) constitutes as the social
learning layer.
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The weights α̂i(t−1) and α̂′
i(t−1) are updated via the multiplicative exponential strategy using the following

loss functions

lα
t,i := min{||x̂Si

t,B − x̂
Ir∗

t,i

t,B ||/Do, 1} (15a)

lα′

t,i := min{||x̂i
t−1,B − x̂

Ir∗
t,i

t,B ||/Do, 1} (15b)

where r∗
t,i := arg maxj∈Λt,i

wij(t − 1), and wij(t − 1) is calculated as per equation (13). Here, Do is a
normalization parameter, and r∗

t,i
th robot is one whose intermediate estimate is considered to be the most

accurate among the estimates of robots in the set Λt,i = Ωt,i ∪ {i} based on the weights wij(t − 1). Thus,
the weights α̂i(t − 1) and α̂′

i(t − 1) are updated as follows:

α̂i(t) = α̂i(t − 1) exp (−ηαlα
t,i) (16a)

α̂′
i(t) = α̂′

i(t − 1) exp (−ηαlα
t,i) (16b)

where ηα > 0 and ηw > 0 are the learning rate parameters. Equations 16 constitute the local learning layer.

Comparative Loss Function: given by equations (15), the loss functions lα
t,i and lα′

t,i are a measure of

how close the estimates x̂Si

t,B and x̂i
t−1,B are to the socially best intermediate estimate x̂

Ir∗
t,i

t,B , respectively.
Therefore, an increase in these loss functions leads to a decrease in the weights α̂i(t) and α̂′

i(t), respectively.
This implies an increase in the local weight αi(t) if the estimate x̂Si

t,B is more close to the socially best
intermediate estimate compared to x̂i

t−1,B , and vice versa.

Further, the learning phase also involves a periodic reset - the weights α̂i(t), α̂′
i(t), and ŵii(t) are reset to 1

after every Tp discrete time steps.

2) AOL-1P: update strategy for the weight ŵii(t − 1) is given by equation (14), which is the same as in the
previous variant, AOL-C.

The weights α̂i(t − 1) and α̂′
i(t − 1) are updated via the multiplicative exponential strategy using a novel

perturbation-greedy reward function definition described as follows:

rα
t,i := ea1∆αi(t − 1)∆di(t) + ep(1 − dt,i) + ea2αi(t − 1)dt,i (17a)

rα′

t,i := −ea1∆αi(t − 1)∆di(t) + e′
p(1 − dt,i) + ea2(1 − αi(t − 1))dt,i (17b)

where ∆αi(t − 1) := αi(t − 1) − αi(t − 2), ∆di(t) := dt,i − dt−1,i, ep and e′
p are the perturbation signals, and

ea1 > 0 and ea2 > 0 are learning rate parameters. With the above-described reward function definitions, the
weights α̂i(t − 1) and α̂′

i(t − 1) are updated as follows:

α̂i(t) = α̂i(t − 1) exp (rα
t,i) (18a)

α̂′
i(t) = α̂′

i(t − 1) exp (rα′

t,i) (18b)

where equations (18) constitute the local learning layer.

The learning phase involves a periodic reset - the weights α̂i(t), α̂′
i(t), and ŵii(t) are reset to 1 after every

Tp discrete time steps, along with the perturbation signal ep either taking the value ep = pmag ∈ R>0 or
ep = 0 with equal probability, whereas e′

p = pmag − ep. Otherwise, ep = e′
p = 0 at all other times.

Perturbation-greedy Reward Function: given by equations (17), the reward functions rα
t,i and rα′

t,i

consist of three terms - a difference-based correction term (∆αi(t − 1)∆di(t)), an inertia term (αi(t − 1)dt,i

or (1−αi(t−1))dt,i), and a perturbation term (ep(1−dt,i) or e′
p(1−dt,i)). The difference-based correction term

acts as the greedy part of the reward function, whereas the role of the inertia term is to resist abrupt changes
in the reward due to the greediness of the difference-based correction term. The role of the perturbation
term is to apply a perturbation periodically, thereby bringing in exploratory behaviors in the online learning
process. After a perturbation is applied when the periodic reset is hit, the weight αi(t − 1) may increase
(∆αi(t − 1) > 0) or decrease (∆αi(t − 1) < 0), possibly leading to a change in the detection performance as

8
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well (∆di(t) > 0 or ∆di(t) < 0). Therefore, a positive difference-based correction term (∆αi(t−1)∆di(t) > 0)
leads to an increase in rα

t,i and a decrease in rα′

t,i, thereby increasing α̂i(t) and decreasing α̂′
i(t), and vice versa.

Note that the inertia term (αi(t − 1)dt,i or (1 − αi(t − 1))dt,i) is directly proportional to detection confidence
(dt,i); a higher detection confidence promotes a larger inertia. Since perturbations should be avoided if
the detection confidence is already high, note that the magnitude of the perturbation term (ep(1 − dt,i) or
e′

p(1 − dt,i)) decreases as the detection confidence dt,i increases.

3) AOL-2P: the weights α̂i(t − 1) and α̂′
i(t − 1) are updated using the same strategy as in the previous

variant, AOL-1P, given by equations (17) and (18).

The weight ŵii(t−1) is updated via the multiplicative exponential strategy using a novel perturbation-greedy
reward function definition described as follows:

rw
t,i := ew1∆wii(t − 1)∆di(t) + ewi

p (1 − dt,i) + ew2wii(t − 1)dt,i (19)

where ∆wii(t − 1) := wii(t − 1) − wii(t − 2), ∆di(t) := dt,i − dt−1,i, ewi
p is the perturbation signal, and

ew1 > 0 and ew2 > 0 are learning rate parameters. The terms ∆wii(t − 1)∆di(t) and wii(t − 1)dt,i can
be considered as difference-based correction term and the inertia term, respectively, whereas ewi

p (1 − dt,i) is
the perturbation term that is only active when the periodic reset is hit. With the above-described reward
function definition, the weights ŵii(t − 1) are updated as follows:

ŵii(t) = ŵii(t − 1) exp (rw
t,i) (20)

where equation (20) constitutes the social learning layer.

The learning phase involves a periodic reset - the weights α̂i(t), α̂′
i(t), and ŵii(t) are reset to 1 after every

Tp discrete time steps, along with the perturbation signal ewi
p taking the value ewi

p = Unif.(0, pmag), where
pmag ∈ R>0 and Unif.(0, pmag) is a uniform random variable; this ensures that the ewi

p values for different
i ∈ [N ] are likely to be different at the periodic reset. Otherwise, ewi

p = 0 at all other times.

Perturbation-greedy Reward Function: given by equation (19), the reward function rw
t,i consists of

three terms - a difference-based correction term (∆wii(t − 1)∆di(t)), an inertia term (wii(t − 1)dt,i), and
a perturbation term (ewi

p (1 − dt,i)). The difference-based correction term acts as the greedy part of the
reward function, whereas the role of the inertia term is to resist abrupt changes in the reward due to
the greediness of the difference-based correction term. The role of the perturbation term is to apply a
perturbation periodically, thereby bringing in exploratory behaviors in the online learning process. After a
perturbation is applied when the periodic reset is hit, the weight wii(t − 1) may increase (∆wii(t − 1) > 0)
or decrease (∆wii(t − 1) < 0), possibly leading to a change in the detection performance as well (∆di(t) > 0
or ∆di(t) < 0). Therefore, a positive difference-based correction term (∆wii(t − 1)∆di(t) > 0) leads to an
increase in rw

t,i, thereby increasing ŵii(t), and vice versa. Note that the inertia term (wii(t−1)dt,i) is directly
proportional to detection confidence (dt,i); a higher detection confidence promotes a larger inertia. Since
perturbations should be avoided if the detection confidence is already high, note that the magnitude of the
perturbation term (ewi

p (1 − dt,i)) decreases as the detection confidence dt,i increases.

4 Convergence Analysis of Weights

Without the loss of generality, an analysis of the three AOL variants is carried out without considering a
periodic reset. Note that at time t = 0, the weights α̂i(0) = 1, α̂′

i(0) = 1, and ŵii(0) = 1. In order to analyze
the effect of perturbations in the rewards of AOL-1P and AOL-2P, it is assumed that the perturbations occur
in their reward functions only at t = 1 due to the perturbation-greedy reward design; as per the design, in
practice, the perturbations occur along with the periodic reset after every Tp discrete-time steps.

4.1 AOL-C

Consider the loss function lw
t,i := (1 − dt,i), and note that lw

t,i ∈ [0, 1], since dt,i ∈ [0, 1]. Thus, using equation
(14), the weight ŵii(t) can be written as: ŵii(t) = exp(−ηwLw

t,i), where the cumulative loss Lw
t,i :=

∑t
s=1 lw

s,i,
and ŵii(0) = 1, ∀i ∈ [N ].

9
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Without the loss of generality, define j∗
t,i := arg minj∈Λt,i

Lw
t,j , such that the j∗

t,i
th robot is a unique robot

that incurs the least cumulative loss among the robots in the set Λt,i = Ωt,i ∪ {i} at time t, where Ωt,i is the
neighbor-set of the ith robot at time t.

Assumption 1: limt→∞ Λt,i and limt→∞ j∗
t,i exist uniquely, such that limt→∞ Λt,i = Λ∞,i and limt→∞ j∗

t,i =
j∗

∞,i, ∀i ∈ [N ].

Remark 1: Assumption 1 implies that the neighborhood configuration (in terms of the set Λt,i) and the
performance configuration (in terms of detection confidence dt,i) get fixed as t → ∞. That is, for the ith

robot, ∀i ∈ [N ], at t → ∞, there exists a unique robot j∗
∞,i that incurs the least cumulative loss Lw

t,j among
the robots j ∈ Λ∞,i.

Note that the cumulative loss satisfies 0 ≤ Lw
t,j ≤ t (due to loss function’s definition), ∀j ∈ Λt,i, and

Lw
t,j∗

t,i
< Lw

t,j (due to j∗
t,i’s definition), ∀j ∈ Λt,i \ {j∗

t,i}.

Assumption 2: Lw
t,j − Lw

t,j∗
t,i

≥ ϵtβ > 0, such that β ∈ (0, 1] and 0 < ϵ ≪ 1.

Remark 2: Assumption 2 implies that the lower bound on the difference between the cumulative loss incurred
by the jth robot and that of the j∗

t,i
th robot grows sub-linearly (0 < β < 1) or linearly (β = 1) with the

discrete-time t, such that the magnitude and the rate of growth are finite but can be arbitrarily small
(0 < ϵ ≪ 1 and 0 < β ≪ 1). Note that assumption 2 generalizes over many practical scenarios. For instance,
consider the scenario where the j∗

t,i
th robot is fixed over time, i.e., j∗

t,i = j∗
0,i, and satisfies lw

t,j − lw
t,j∗

0,i
≥ ϵ > 0,

for t ≥ 1, i.e., the j∗
0,i

th robot incurs the least loss at any time t. This implies that Lw
t,j − Lw

t,j∗
0,i

≥ ϵt > 0,
where 0 < ϵ ≪ 1, which is a special case under assumption 2 when β = 1.
Theorem 1. Under assumptions 1 and 2, ∀i ∈ [N ], AOL-C algorithm’s weights wij(t) satisfy the following:

lim
t→∞

wij(t) = 0, ∀j ∈ Λ∞,i \ {j∗
∞,i} (21)

and
lim

t→∞
wij∗

∞,i
(t) = 1 (22)

where j∗
∞,i is the index of the robot that incurs the least cumulative loss among the robots in the set Λ∞,i as

t → ∞.

Proof. Since ŵii(t) = exp(−ηwLw
t,i), from equation (13), note that wij(t) can be re-written as follows:

wij(t) =
exp(−ηwLw

t,j)∑
∀j′∈Λt,i

exp(−ηwLw
t,j′)

(23)

Multiply both numerator and denominator by exp (−ηwLw
t,j∗

t,i
) to get:

wij(t) =
exp(−ηw(Lw

t,j − Lw
t,j∗

t,i
))

1 +
∑

∀j′∈Λt,i\{j∗
t,i

} exp(−ηw(Lw
t,j′ − Lw

t,j∗
t,i

)) (24)

Note that the cumulative loss satisfies 0 ≤ Lw
t,j ≤ t (due to loss function’s definition), ∀j ∈ Λt,i. Using this

condition along with assumption 2, ∀j ∈ Λt,i \ {j∗
t,i}, we get

t ≥ Lw
t,j − Lw

t,j∗
t,i

≥ ϵtβ > 0 (25)

where β ∈ (0, 1] and 0 < ϵ ≪ 1. Using equation (25) in equation (24), ∀j ∈ Λt,i \ {j∗
t,i}, we get

exp(−ηwt)
1 +

∑
∀j′∈Λt,i\{j∗

t,i
} exp(−ηwϵtβ) ≤ wij(t) ≤ exp(−ηwϵtβ)

1 +
∑

∀j′∈Λt,i\{j∗
t,i

} exp(−ηwt) (26)

and for j = j∗
t,i, we get

1
1 +

∑
∀j′∈Λt,i\{j∗

t,i
} exp(−ηwϵtβ) ≤ wij∗

t,i
(t) ≤ 1

1 +
∑

∀j′∈Λt,i\{j∗
t,i

} exp(−ηwt) (27)

10
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Taking limt→∞(·) on both sides in equations (26) and (27), under assumption 1, gives the desired result as
equations (21) and (22).

Considering the loss functions given by equations (15a) and (15b), note that lα
t,i ∈ [0, 1] and lα′

t,i ∈ [0, 1].
Therefore, the convergence results for the weights αi(t) can be derived by carrying out an analysis similar
to that of the weights wij(t) under an assumption similar to assumption 2, as shown above.

4.2 AOL-1P

Since the update strategy for the weights ŵii(t) for AOL-1P is the same as that of AOL-C, therefore, the
convergence proof for AOL-1P’s weights wij(t) is given by theorem 1.

Consider the weights αi(t), ∀i ∈ [N ], defined by equation (11), and the update strategy given by equations
(17) and (18). Define Rα

t,i :=
∑t

s=1 rα
t,i and Rα′

t,i :=
∑t

s=1 rα′

t,i, where rα
t,i and rα′

t,i are given by equations
(17a) and (17b), respectively. Note that α̂i(0) = 1 and α̂′

i(0) = 1. Further, αi(t) ∈ [0, 1], and dt,i ∈ [0, 1],
∀i ∈ [N ]. Therefore, for t ≥ 1, the difference-based correction term satisfies ∆αi(t − 1)∆di(t) ∈ [−1, 1],
where ∆αi(t − 1) = αi(t − 1) − αi(t − 2) and ∆di(t) = dt,i − dt−1,i.

Assumption 3: For t ≥ 1, the difference-based correction term ∆αi(t−1)∆di(t) satisfies the following: either∑t
s=1 ∆αi(s − 1)∆di(s) ≥ ϵtβ > 0 or

∑t
s=1 ∆αi(s − 1)∆di(s) ≤ −ϵtβ < 0, where 0 < ϵ ≪ 1, β ∈ (0, 1],

∆αi(t − 1) = αi(t − 1) − αi(t − 2), and ∆di(t) = dt,i − dt−1,i.

Remark 3: Assumption 3 implies that the cumulative sum of the difference-based terms over time is either
lower bounded by a positive term which is linear (β = 1) or sub-linear (β ∈ (0, 1)) in time, or upper
bounded by a negative term which is linear (β = 1) or sub-linear (β ∈ (0, 1)) in time, such that the
magnitude and the rate of growth of these bounds are finite but can be arbitrarily small (0 < ϵ ≪ 1 and
0 < β ≪ 1). Note that assumption 3 generalizes over many practical scenarios. For instance, consider the
scenario in which either ∆αi(t − 1)∆di(t) ≥ ϵ > 0 or ∆αi(t − 1)∆di(t) ≤ −ϵ < 0, for t ≥ 1, implying
either

∑t
s=1 ∆αi(s − 1)∆di(s) ≥ ϵt > 0 or

∑t
s=1 ∆αi(s − 1)∆di(s) ≤ −ϵt < 0, which is a special case under

assumption 3 when β = 1. This case corresponds to the scenario in which an increase in αi(t) always causes
either an increase or a decrease in dt,i for t ≥ 1. Considering equation (9), this further implies that either
the estimate x̂Si

t,B or the estimate x̂i
t−1,B is more accurately estimating the target position xt,B for t ≥ 1.

Theorem 2. For t ≥ 1, under assumption 3, given ea2t1−β < 2ϵea1 (check equations (17)), ∀i ∈ [N ],
AOL-1P algorithm’s weights αi(t) satisfy the following:

lim
t→∞

αi(t) = 1, if
t∑

s=1
∆αi(s − 1)∆di(s) ≥ ϵtβ > 0 (28)

and

lim
t→∞

αi(t) = 0, if
t∑

s=1
∆αi(s − 1)∆di(s) ≤ −ϵtβ < 0 (29)

where 0 < ϵ ≪ 1, β ∈ (0, 1], ∆αi(t − 1) = αi(t − 1) − αi(t − 2), and ∆di(t) = dt,i − dt−1,i.

Remark 4: Since 0 < ϵ ≪ 1, the condition ea2t1−β < 2ϵea1 further yields ea2t1−β ≪ 2ea1. This can be
satisfied either by choosing ea2 = 0, or by choosing a time-varying ea2 such that ea2(t) ∝ t−c for c > 0,
where 1 − β − c ≤ 0. In practice, since the AOL-1P algorithm involves a periodic reset with a period of
Tp discrete-time steps, this condition implies ea2Tp

1−β ≪ 2ea1. This condition can be satisfied when ea2 is
chosen to be much smaller than ea1 or ea2 ≈ 0.

Proof. Note that αi(t) ∈ [0, 1] and dt,i ∈ [0, 1]. Thus, ∆αi(t − 1) ∈ [−1, 1] and ∆di(t) ∈ [−1, 1]. Further,
αi(t − 1)dt,i ∈ [0, 1]. Using equations (11) and (18), the weights αi(t), ∀ ∈ [N ], can be written as follows

αi(t) =
exp (Rα

t,i)
exp (Rα

t,i) + exp (Rα′
t,i)

= 1
1 + exp (Rα′

t,i − Rα
t,i)

(30)

11
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Since the perturbations occur just after t = 0, therefore at t = 1, either ep = pmag & e′
p = 0 or ep =

0 & e′
p = pmag, and for t > 1, ep = e′

p = 0 (assumed for ease in analysis, without the loss of generality),
∀i ∈ [N ]. Thus, Rα′

t,i − Rα
t,i can be written as

Rα′

t,i − Rα
t,i = ±pmag(1 − d1,i) − 2ea1

t∑
s=1

∆αi(s − 1)∆di(s) + ea2

t∑
s=1

(1 − 2αi(s − 1))ds,i (31)

Note that (1 − 2αi(t − 1))dt,i ∈ [−1, 1] and ∆αi(t − 1)∆di(t) ∈ [−1, 1]. For t ≥ 1, using assumption 3, we
get the following two cases (0 < ϵ ≪ 1, β ∈ (0, 1]):

1) Case A:
∑t

s=1 ∆αi(s − 1)∆di(s) ≥ ϵtβ > 0

Since ∆αi(t − 1)∆di(t) ∈ [−1, 1], note that t ≥
∑t

s=1 ∆αi(s − 1)∆di(s) ≥ ϵtβ . Further, (1 − 2αi(t − 1))dt,i ∈
[−1, 1]. Therefore, using equation (31), the weight αi(t) satisfies the following

1
1 + exp (±pmag(1 − d1,i) − 2ϵea1tβ + ea2t) ≤ αi(t) ≤ 1

1 + exp (±pmag(1 − d1,i) − 2ea1t − ea2t) (32)

Taking limt→∞(·) on equation (32), given ea2t1−β < 2ϵea1, yields the desired result as equation (28).

2) Case B:
∑t

s=1 ∆αi(s − 1)∆di(s) ≤ −ϵtβ < 0

Since ∆αi(t−1)∆di(t) ∈ [−1, 1], note that −t ≤
∑t

s=1 ∆αi(s−1)∆di(s) ≤ −ϵtβ . Further, (1−2αi(t−1))dt,i ∈
[−1, 1]. Therefore, using equation (31), the weight αi(t) satisfies the following

1
1 + exp (±pmag(1 − d1,i) + 2ea1t + ea2t) ≤ αi(t) ≤ 1

1 + exp (±pmag(1 − d1,i) + 2ϵea1tβ − ea2t) (33)

Taking limt→∞(·) on equation (33), given ea2t1−β < 2ϵea1, yields the desired result as equation (29).

4.3 AOL-2P

Since the update strategy for the weights α̂i(t) and α̂′
i(t) for AOL-2P is the same as that of AOL-1P, therefore,

the convergence proof for AOL-2P’s weights αi(t) is given by theorem 2.

Consider the weights wii(t), ∀i ∈ [N ], defined by equation (13), and the update strategy given by equations
(19) and (20). Define Rw

t,i :=
∑t

s=1 rw
t,i, where rw

t,i is given by equation (19). Note that ŵii(0) = 1. Further,
wii(t) ∈ [0, 1] and dt,i ∈ [0, 1], ∀i ∈ [N ]. Therefore, for t ≥ 1, the difference-based correction term satisfies
∆wii(t − 1)∆di(t) ∈ [−1, 1], where ∆wii(t − 1) = wii(t − 1) − wii(t − 2) and ∆di(t) = dt,i − dt−1,i.

Without the loss of generality, define q∗
t,i := arg maxj∈Λt,i

∑t
s=1 ∆wjj(s − 1)∆dj(s), such that q∗

t,i is unique
among j ∈ Λt,i; this implies that a cumulative change in the q∗

t,i
th robot’s social weight causes the most

positively or least negatively aligned cumulative change in its confidence score compared to other robots
including the ith robot and its neighbors at time t. Therefore, as per the weight update rule given by
equations (19) and (20), q∗

t,i
th robot is a unique robot among the robots in the set Λt,i whose intermediate

estimate is given more weight while performing the weighted fusion as given by equation (12).

Assumption 4: limt→∞ Λt,i and limt→∞ q∗
t,i exist uniquely, such that limt→∞ Λt,i = Λ∞,i and limt→∞ q∗

t,i =
q∗

∞,i, ∀i ∈ [N ].

Remark 5: Assumption 4 implies that the neighborhood configuration (in terms of the set Λt,i) and the
performance configuration (in terms of the difference-based correction term (∆wjj(t − 1)∆dj(t)) get fixed
as t → ∞. That is, for the ith robot, ∀i ∈ [N ], at t → ∞, there exists a unique robot q∗

∞,i that exhibits the
greatest cumulative sum of the difference-based correction term (i.e.,

∑t
s=1 ∆wjj(s − 1)∆dj(s)) among the

robots j ∈ Λ∞,i.

Note that the cumulative sum of difference-based correction terms satisfies −t ≤
∑t

s=1 ∆wjj(s−1)∆dj(s) ≤ t,
since ∆wii(t − 1)∆di(t) ∈ [−1, 1]. Further, due to q∗

t,i’s definition, the cumulative sum of difference-based
correction terms satisfies

∑t
s=1 ∆wqq(s − 1)∆dq(s) <

∑t
s=1 ∆wq∗

t,i
q∗

t,i
(s − 1)∆dq∗

t,i
(s), ∀q ∈ Λt,i \ {q∗

t,i}.

12
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Assumption 5:
∑t

s=1 ∆wq∗
t,i

q∗
t,i

(s − 1)∆dq∗
t,i

(s) −
∑t

s=1 ∆wqq(s − 1)∆dq(s) ≥ ϵtβ > 0, such that β ∈ (0, 1]
and 0 < ϵ ≪ 1, ∀q ∈ Λt,i \ {q∗

t,i}.

Remark 6: Assumption 5 implies that the difference between the cumulative sum of difference-based correc-
tion terms corresponding to q∗

t,i and q (∀q ∈ Λt,i \{q∗
t,i}), i.e., the difference

∑t
s=1 ∆wq∗

t,i
q∗

t,i
(s−1)∆dq∗

t,i
(s)−∑t

s=1 ∆wqq(s − 1)∆dq(s), has a lower bound that varies linearly (β = 1) or sub-linearly (0 < β < 1) with
the discrete-time t, such that the magnitude and the rate of growth of this lower bound is finite but can
be arbitrarily small (0 < ϵ ≪ 1 and 0 < β ≪ 1). Note that assumption 5 generalizes over many practical
scenarios. For instance, consider the scenario where the q∗

t,i
th robot is fixed over time, i.e., q∗

t,i = q∗
0,i, and

satisfies ∆wq∗
0,i

q∗
0,i

(t − 1)∆dq∗
0,i

(t) − ∆wqq(t − 1)∆dq(t) ≥ ϵ > 0 for t ≥ 1, ∀q ∈ Λt,i \ {q∗
0,i}, i.e., the q∗

0,i
th

robot’s change in its social weight shows the most positively aligned or the least negatively aligned change
in its detection confidence score compared to other robots including the ith robot and its neighbors for time
t ≥ 1. This implies

∑t
s=1 ∆wq∗

0,i
q∗

0,i
(s − 1)∆dq∗

0,i
(s) −

∑t
s=1 ∆wqq(s − 1)∆dq(s) ≥ ϵt, which is a special case

under assumption 5 when β = 1. Considering equation (12), this further implies that the estimate x̂
Iq∗

0,i

t,B is
more accurately estimating the target position xt,B compared to other estimates in the weighted fusion, for
t ≥ 1.
Theorem 3. Under assumptions 4 and 5, given ew2t1−β < ϵew1 (check equation (19)), ∀i ∈ [N ], AOL-2P
algorithm’s weights wij(t) satisfy the following:

lim
t→∞

wij(t) = 0, ∀j ∈ Λ∞,i \ {q∗
∞,i} (34)

and
lim

t→∞
wiq∗

∞,i
(t) = 1 (35)

where 0 < ϵ ≪ 1, β ∈ (0, 1], and q∗
∞,i is the index of the robot that exhibits the greatest cumulative sum of

the difference-based correction term among the robots j ∈ Λ∞,i.

Remark 7: Since 0 < ϵ ≪ 1, the condition ew2t1−β < ϵew1 further yields ew2t1−β ≪ ew1. This can be
satisfied either by choosing ew2 = 0, or by choosing a time-varying ew2 such that ew2(t) ∝ t−c for c > 0,
where 1 − β − c ≤ 0. In practice, since the AOL-2P algorithm involves a periodic reset with a period of
Tp discrete-time steps, this condition implies ew2Tp

1−β ≪ ew1. This condition can be satisfied when ew2 is
chosen to be much smaller than ew1 or ew2 ≈ 0.

Proof. Consider wij(t) given by equation (13); given ŵii(0) = 1, ∀i ∈ [N ], use the update rule given by
equations (19) and (20) to get

wij(t) = 1(j ∈ Λt,i)
ŵjj(t)∑

q∈Λt,i
ŵqq(t) = 1(j ∈ Λt,i)

exp (Rw
t,j)∑

q∈Λt,i
exp (Rw

t,q) (36)

where Rw
t,i =

∑t
s=1 rw

t,i and 1(·) is the indicator function; 1(j ∈ Λt,i) = 1 if the condition j ∈ Λt,i is satisfied,
otherwise 1(j ∈ Λk,l

i ) = 0. Dividing both numerator and denominator in equation (36) by exp (Rw
t,q∗

t,i
), we

get

wij(t) = 1(j ∈ Λt,i)
exp (Rw

t,j − Rw
t,q∗

t,i
)∑

q∈Λt,i
exp (Rw

t,q − Rw
t,q∗

t,i
) = 1(j ∈ Λt,i)

exp (Rw
t,j − Rw

t,q∗
t,i

)
1 +

∑
q∈Λt,i\{q∗

t,i
} exp (Rw

t,q − Rw
t,q∗

t,i
) (37)

Using the reward definition of rw
t,i as given by equation (19), since the perturbations occur just after t = 0,

therefore at t = 1, ewi
p = Unif.(0, pmag) and for t > 1, ewi

p = 0 (assumed for ease in analysis, without the loss
of generality), ∀i ∈ [N ], Rw

t,i can be written as

Rw
t,i = ewi

p (1 − d1,i) + ew1

t∑
s=1

∆wii(s − 1)∆di(s) + ew2

t∑
s=1

wii(s − 1)ds,i (38)
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where ∆wii(t − 1) = wii(t − 1) − wii(t − 2) and ∆di(t) = dt,i − dt−1,i. Using equation (38), ∀q ∈ Λt,i, we get

Rw
t,q − Rw

t,q∗
t,i

= e
wq
p (1 − d1,q) − e

wq∗
t,i

p (1 − d1,q∗
t,i

)

+ew1

(∑t
s=1 ∆wqq(s − 1)∆dq(s) −

∑t
s=1 ∆wq∗

t,i
q∗

t,i
(s − 1)∆dq∗

t,i
(s)

)
+ew2

∑t
s=1

(
wqq(s − 1)ds,q − wq∗

t,i
q∗

t,i
(s − 1)ds,q∗

t,i

) (39)

Since wqq(t) ∈ [0, 1] and dt,q ∈ [0, 1], note that ∆wqq(t − 1)∆dq(t) ∈ [−1, 1], ∀q ∈ Λt,i. Using this along with
assumption 5, we get

0 < ϵtβ ≤
t∑

s=1
∆wq∗

t,i
q∗

t,i
(s − 1)∆dq∗

t,i
(s) −

t∑
s=1

∆wqq(s − 1)∆dq(s) ≤ t (40)

where 0 < ϵ ≪ 1 and β ∈ (0, 1]. Further, note that wqq(t − 1)dt,q ∈ [0, 1]. Therefore,

−t ≤
t∑

s=1

(
wqq(s − 1)ds,q − wq∗

t,i
q∗

t,i
(s − 1)ds,q∗

t,i

)
≤ t (41)

Using equations (40) and (41) in equation (39), ∀q ∈ Λ∞,i \ {q∗
∞,i}, we get

e
wq
p (1 − d1,q) − e

wq∗
∞,i

p (1 − d1,q∗
∞,i

) − ew1t − ew2t

≤ (Rw
t,q − Rw

t,q∗
t,i

) ≤

e
wq
p (1 − d1,q) − e

wq∗
∞,i

p (1 − d1,q∗
∞,i

) − ew1ϵtβ + ew2t

(42)

Given ew2t1−β < ϵew1, taking limt→∞(·) on equation (42), ∀q ∈ Λ∞,i \ {q∗
∞,i}, implies

(Rw
t,q − Rw

t,q∗
t,i

) → −∞ as t → ∞ (43)

Taking limt→∞(·) on both sides of equation (37) under assumption 4, and using equation (43), ∀j ∈ Λ∞,i \
{q∗

∞,i}, we get
lim

t→∞
wij(t) = 0 (44)

and for j = q∗
∞,i, we get

lim
t→∞

wiq∗
t,i

(t) = 1 (45)

Equations (44) and (45) complete the proof.

5 Performance Evaluation

The proposed AOL framework is evaluated using a simulation setup involving N = 5, 10, 20, 30 robots
executing the cooperative target monitoring task discussed in the problem formulation. The communication
range Rcomm. and the communication link drop probability pld are set to be 30 m and 0.1, respectively,
with the limit on the number of communication neighbors as nl = 3. The exteroceptive sensor model’s
parameters are set as RFOV = 15 m, θFOV = 160 degrees, with the target visual loss probability as pvl = 0.1.
The parameters for the detection confidence model are set as ro = 10 m, and bo = 0.1.

The simulation results are averaged over 100 simulation runs. Each run involves a time horizon of T = 600
discrete time steps, with a sampling period of ∆T = 0.1 sec. The robots follow the control law described in
the problem formulation while trying to maintain a safe distance of 8 m from the target (more details in the
supplementary document). The target randomly changes its velocity and yaw rate after every 5 seconds. The
robots and the target always stay inside a square region of side length 100 m by overriding their control laws
to get away from the region boundary. At the start of each simulation run, the robots are always spawned
near the center of the square region, whereas the target is spawned randomly but sufficiently near to the
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Figure 3: Screenshot of the AOL-1P simulation; orange triangle – target, blue x – robots with functional
proprioception, red x – robots with faulty proprioception, green dash-dot lines – functional exteroception,
red dash-dot lines – faulty exteroception, purple-yellow links – communication links, the flow of information
is from purple towards yellow.

robots so that at least one of the robots is likely to detect it at the start of the run. This is done since the
main focus of this paper is not the target search but target detection and monitoring.

In the considered adverse scenario for the simulation, 50% of the total robots are chosen randomly at times
0, 10, 20, 30, and 50 seconds, that exhibit temporary failures in their exteroceptive sensors. Further, 50% of
the total robots are chosen randomly at time 10 sec., that exhibit permanent failures in their proprioceptive
sensors. The noise µx

t,i and µϕ
t,i in the proprioceptive sensors (equations (4)) that are functional is assumed

to be Gaussian with a mean of 0.01m and 0.02 deg., respectively, with a covariance of 0.01m2 and 0.01rad.2,
respectively. The proprioceptive sensors that fail have noise terms that are still Gaussian but with large bias
(mean) of 5m and 10 deg., respectively, with either a covariance of 0.01m2 or 5m2 with equal probability
and 0.01rad.2 or 5rad.2 with equal probability, respectively, since the bias and the covariance may be
uncorrelated. Similarly, the noise νt,i in the exteroceptive sensors (equation (6)) that are functional is
assumed to be Gaussian with a mean of 0.01m with a covariance of 0.01m2. For the exteroceptive sensors
that fail, the noise term is still Gaussian but with a large bias (mean) of 10m with a covariance of 0.01m2

or 5m2 with equal probability since the fault may or may not lead to an increase in the covariance.

The algorithms are evaluated based on two types of scores – 1) cumulative average detection score per
robot: 1

N

∑N
i=1

∑T
t=1 dt,i, and 2) cumulative average closeness score per robot: 1

N

∑N
i=1

∑T
t=1 lc

t,i, where
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Figure 4: (a) Comparison results; 100 sim. runs for each method, N = 5. (b) Comparison results; 100 sim.
runs for each method, N = 10.

lc
t,i := min

{
8

||xt,i−xt,B || , 1
}

. Note that the robots try to maintain a distance of 8 m from the target. The
cumulative average detection score per robot is a measure of the target detection performance of the robots
in the swarm; a higher score means that a larger number of robots are able to detect and monitor the target
for a longer duration. As the number of robots in the swarm increases, crowding occurs, making it harder
for all the robots to be able to detect and monitor the target – the robots closest to the target are likely to
block the robots behind them in the swarm. Therefore, in such scenarios, the cumulative average closeness
score per robot becomes a better criterion to judge the swarm’s performance, since it is a measure of how
close the robots are to the target. Note that in scenarios where the target can be fully observable to the
swarm (i.e., all the robots can view the target simultaneously), the cumulative average detection score and
the cumulative average closeness score play an equivalent role in judging the swarm’s performance. Whereas,
their roles differ in scenarios where the target is partially observable to the swarm (i.e., not all robots can
view the target simultaneously).

For all three AOL variants, a simulation-based parametric study is carried out to find a suitable set of
parameters that result in desirable performance. Based on the parametric study, the parameters for AOL-C
are set as Do = 15 m, Tp = 15, ηw = 15, and ηα = 0.01; that of AOL-1P are set as Tp = 15, ηw = 15,
ea1 = 10, ea2 = 0.1, and pmag = 0.1; that of AOL-2P are set as Tp = 15, ew1 = 1, ew2 = 0.01, ea1 = 20,
ea2 = 5, and pmag = 0.1. Further, the three variants of AOL are compared with two baselines – Average-
Consensus Fusion (ACF; equations (9), (10) and (12) with equal weights), and Kalman-Consensus Fusion
(KCF) – more details in the supplementary document.

A snapshot of the simulation of the AOL-1P in adverse conditions is shown in Fig. 3. Simulation videos are
submitted as a supplementary file.

Figures 4a, 4b, 5a, and 5b show the comparison results for N = 5, N = 10, N = 20, and N = 30, respectively.
For each method, 100 simulations are run, and the resulting cumulative scores are collected as points, which
are then used to generate their corresponding box plots. Note that on each box, the central mark indicates
the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively.
For N = 5, N = 10, N = 20, and N = 30, the best variant AOL-1P performs 182.2%, 329.7%, 463%, and
652% better in terms of cumulative detection score and 94.7%, 138.6%, 167.3%, and 150.4% better in terms
of cumulative closeness score than the best baseline ACF, respectively. Further, for N = 5, N = 10, N = 20,
and N = 30, AOL-1P performs 3.62%, 9.41%, 8.86%, and 1.1% better in terms of cumulative detection score

16



Under review as submission to TMLR

1 2 3 4 5 6

0

50

100

150

1 2 3 4 5 6

100

200

300

(a)

1 2 3 4 5 6

0

50

100

150

1 2 3 4 5 6

100

200

300

(b)

Figure 5: (a) Comparison results; 100 sim. runs for each method, N = 20. (b) Comparison results; 100 sim.
runs for each method, N = 30.

and 8.37%, 3.42%, 4.5%, and 0.0% better in terms of cumulative closeness score than the second best AOL
variant, AOL-C. Among the baselines, ACF performs better than KCF for all the cases in terms of both
types of scores.

The three AOL variants perform significantly better compared to KCF; since KCF is a covariance-based
method, it is unable to handle adverse conditions involving temporary or permanent sensor failures inducing
large biases that may or may not increase the covariance. Since the weights are adapted through an online
learning process in the AOL variants, their performance is better than ACF as well; unlike the AOL variants,
ACF gives equal weight to all the input estimates being fused in the weighted estimate fusion process. The
no-communication case performs better than KCF and comparably to ACF; unlike the AOL variants, KCF
and ACF do not have a mechanism to adaptively filter out the corrupt information coming from the robots
undergoing sensor failures, due to which the corrupt information propagates throughout the communication
network without any inhibition, thereby corrupting even those robots having functional sensors.

Using the detection confidence dt,i as a reward signal does better than having a perturbation-greedy reward-
based learning strategy for the update of weights ŵii(t) in the social learning layer, which is quite evident by
the improved performance of AOL-1P and AOL-C compared to the AOL-2P. However, using a perturbation-
greedy reward-based learning update strategy for the update of weights α̂i(t) and α̂′

i(t) in the local learning
layer, as in AOL-1P, does better than using a comparative Euclidean distance based loss function as in AOL-
C. Moreover, for AOL-1P, when N is increased from 5 to 10, the cumulative detection score and the closeness
score increase by 1.02% and 7.3%, which then decrease by 20.2% and 11.0% from N = 10 to N = 20, and
then decrease further by 22.4% and 18.8% from N = 20 to N = 30, respectively. Similar trends are observed
for other algorithms as well. These observations are justified since the robots, while trying to avoid collisions,
effectively push each other, therefore, making it harder for all the robots to be able to detect and stay close
to the target when crowding occurs as the number of robots N is further increased to much larger values.

Further, Sim2Real aspects of the top two performing AOL variants, AOL-1P and AOL-C, are validated
using a ROS-Gazebo setup (simulation video submitted as a supplementary file; check the supplementary
document).
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6 Conclusion

This paper proposes a novel Autonomous Online Learning (AOL) framework for the decentralized monitoring
of an agile target using a swarm of robots undergoing sensor failures, communication link drops, and target
visual loss and operating without the assistance of a supervisor or a landmark, i.e., without the availability
of ground truth regarding pose information. In the AOL framework, a decentralized online learning mecha-
nism driven by reward-like signals (based on detection confidence) is intertwined with an implicit adaptive
consensus-based, two-layered, weighted information fusion process, thereby allowing the robotic swarm to
exhibit improved robustness and adaptability. Within the AOL framework, three variants are proposed in
order to study the effect of using different loss or reward function designs in the learning phase. A novel
perturbation-greedy reward design is introduced in the learning process of two AOL variants, leading to
exploration-exploitation in their information fusion’s weights’ space. For the three AOL variants, conver-
gence analysis of the weights involved in their weighted information fusion process shows that the weights
converge under reasonable assumptions. Moreover, the AOL algorithms involve analytic expressions making
them computationally inexpensive and therefore, ideal for use in robotic swarms. Simulation results show
that among the three variants, AOL-1P performs the best in terms of detection and closeness scores, owing to
its use of the perturbation-greedy reward for learning the weights that belong to the local estimation phase,
and detection confidence-based reward for learning the weights that belong to the social estimation phase.
AOL-1P performs 182.2% to 652% and 94.7% to 150.4% better than the baselines in terms of cumulative
average detection score per robot and cumulative average closeness score per robot, respectively, as the total
number of robots is increased from 5 to 30. The Sim2Real aspects of the top two performing AOL variants
are evaluated using a ROS-Gazebo setup. The current variants of AOL are synchronous; the asynchronous
variant is left as future work.
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A Appendix

A.1 Nomenclature

| · | Cardinality operator (cardinality of a set)

|| · || 2-norm or Euclidean norm

N Total number of robots in the swarm

∆T Sampling period (seconds)

xt,i The ith robot’s 2-D position vector (in m) at time t

v̄t,i The ith robot’s body-axis velocity vector (m/s) at time t

ϕt,i The ith robot’s heading angle (radians) at time t

w̄t,i The ith robot’s yaw rate (rad/s) at time t

xt,B The target’s 2-D position vector (in m) at time t

v̄t,B The target’s body-axis velocity vector (m/s) at time t

ϕt,B The target’s heading angle (radians) at time t

w̄t,B The target’s yaw rate (rad/s) at time t

Rcomm. The range of communication

pld The communication link drop probability

Gt A uni-directional dynamic graph representing communication network
topology among the robots

At Adjacency matrix of the graph Gt

Uij(0, 1) A uniform random variable, Uij(0, 1) ∈ [0, 1], for i, j ∈ [N ]

Ωt,i The neighbor set of the ith robot as per the graph Gt, at time t

nt,i The number of communicating neighbors of the ith robot at time t,
nt,i := |Ωt,i|

nl Limit on the number of neighbors the ith robot can have, i.e., nt,i ≤ nl,
where nl ∈ {1, 2, · · · , N}

x̂Pi
t,i The ith robot’s proprioceptive sensor suite’s estimate of its 2-D position

ϕ̂Pi
t,i The ith robot’s proprioceptive sensor suite’s estimate of its yaw angle

µx
t,i Bounded arbitrary noise in the ith robot’s proprioceptive sensor suite’s

estimate of its 2-D position

µϕ
t,i Bounded arbitrary noise in the ith robot’s proprioceptive sensor suite’s

estimate of its yaw angle
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dt,i The ith robot’s exteroceptive sensor suite’s target detection confidence,
dt,i ∈ [0, 1]

∆x̂Ei

t,B The ith robot’s exteroceptive sensor suite’s estimate of the target’s
relative position

RFOV Detection range of the exteroceptive sensor suite

θFOV Angle-of-view of the exteroceptive sensor suite

pvl The probability of target visual loss

νt,i Bounded arbitrary noise in the ith robot’s exteroception’s estimate of
the target’s relative position

x̂Si

t,B The combined sensor estimate of the target’s position; combines the
estimates from proprioception and exteroception

v̄R
t,i The ith robot’s velocity reference command signal

∆v̄t,i The ith robot’s velocity correction control signal

T Discrete-time horizon

x̂Ii

t,B The ith robot’s intermediate estimate of the target’s position

x̂i
t,B The ith robot’s final estimate of the target’s position

αi(t) Weights involved in the local estimation phase

Λt,i Λt,i = Ωt,i ∪ {i}

wij(t) Weights involved in the social estimation phase

α̂i(t), α̂′
i(t) Weights updated in the local learning layer

ŵii(t) Weights updated in the social learning layer

lw
t,i Loss function involved in weights update in the social learning layer of

AOL-C and AOL-1P, lw
t,i := (1 − dt,i)

Lw
t,i Lw

t,i :=
∑t

s=1 lw
s,i

ηw Learning rate parameter for the social learning layer in AOL-C and
AOL-1P

ηα Learning rate parameter for the local learning layer in AOL-C

rα
t,i, rα′

t,i Perturbation-greedy reward functions involved in weights update in the
local learning layer of AOL-1P and AOL-2P

Rα
t,i, Rα′

t,i Rα
t,i :=

∑t
s=1 rα

s,i and Rα′

t,i :=
∑t

s=1 rα′

s,i

ea1 Learning rate parameter associated with the difference-based correction
term in rα

t,i and rα′

t,i

ea2 Learning rate parameter associated with the inertia term in rα
t,i and

rα′

t,i

ep, e′
p Perturbation signals associated with the perturbation terms in rα

t,i and
rα′

t,i

∆αi(t − 1) ∆αi(t − 1) := αi(t − 1) − αi(t − 2)

∆di(t) ∆di(t) := dt,i − dt−1,i
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lα
t,i, lα′

t,i lα
t,i := min{||x̂Si

t,B − x̂
Ir∗

t,i

t,B ||/Do, 1}, lα′

t,i := min{||x̂i
t−1,B − x̂

Ir∗
t,i

t,B ||/Do, 1}

Do A normalization parameter

r∗
t,i r∗

t,i := arg maxj∈Λt,i
wij(t − 1)

rw
t,i Perturbation-greedy reward functions involved in weights update in the

social learning layer of AOL-2P

Rw
t,i Rw

t,i :=
∑t

s=1 rw
s,i

ew1 Learning rate parameter associated with the difference-based correction
term in rw

t,i

ew2 Learning rate parameter associated with the inertia term in rw
t,i

ewi
p Perturbation signal associated with the perturbation term in rw

t,i

∆wii(t − 1) ∆wii(t − 1) := wii(t − 1) − wii(t − 2)

j∗
t,i j∗

t,i := arg minj∈Λt,i
Lw

t,j

Λ∞,i limt→∞ Λt,i = Λ∞,i

j∗
∞,i limt→∞ j∗

t,i = j∗
∞,i

q∗
t,i q∗

t,i := arg maxj∈Λt,i

∑t
s=1 ∆wjj(s − 1)∆dj(s)

q∗
∞,i limt→∞ q∗

t,i = q∗
∞,i
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