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ABSTRACT

Radiology report generation is a critical application at the intersection of radiol-
ogy and artificial intelligence. It aims to reduce radiologists’ workload by au-
tomating the interpretation and reporting of medical images. Previous works have
employed diverse approaches, with some focusing solely on imaging data while
others incorporate the indication but often neglect the interrelationships among
different report sections. Our work identifies and harnesses the intrinsic relation-
ships between the indication, findings, and impression sections of a radiology re-
port. The indication section provides the clinical context and specifies the reason
for the examination, setting the stage for targeted image analysis. The findings
section details the radiologist’s observations from the image, including identified
abnormalities and relevant normal findings. The impression section synthesizes
these observations to form a diagnostic conclusion, directly addressing the clinical
query presented in the indication. By mapping these relationships, we propose a
Radiologist-Like Progressive Generation (RLPG) framework that mirrors the ra-
diologist’s workflow for report generation. Initially, an image encoder and a large
language model process the imaging data alongside the indication to generate de-
tailed findings. Subsequently, the same image, the indication, and the predicted
findings are utilized to produce a concise impression. This method improves the
alignment between report sections and improves the clinical relevance of the gen-
erated reports. To facilitate research and benchmarking in report generation, we
introduce MIMIC-1V3 (i.e., 1 case vs. 3 sections), a curated dataset derived from
the MIMIC-CXR by dividing each report into three sections: indication, findings,
and impression. The new dataset, in conjunction with our progressive framework
design, fosters advancements in automated report generation by providing a more
accurate and clinically relevant solution.

1 INTRODUCTION

In real-world medical practice, creating a radiology report (see Fig. 1 (a)) starts with an indication
from the ordering physician. The indication provides rich clinical context, often containing a clinical
question (i.e., the reason for the examination) and the patient’s brief medical history. Subsequently,
the radiologist interprets the imaging study within the clinical context. The radiology report rep-
resents the sum of a radiologist’s insight into the patient’s condition. It mainly has two sections:
findings and impression. The findings section provides an accurate radiologic description of all ab-
normalities with pertinent negatives. The impression answers the clinical question and reflects the
meaning of findings, leading to a diagnosis (Hartung et al., 2020). However, radiologist workload
has increased significantly within the last three decades (Markotić et al., 2021). Automated radi-
ology report generation aims to reduce radiologists’ workload by automating image interpretation
and reporting, improving efficiency and accuracy to meet growing diagnostic demands, which has
attracted lots of research attention (Jing et al., 2018; Li et al., 2018; Chen et al., 2020; Wang et al.,
2023a;b; Lee et al., 2023; Tu et al., 2024; Zhou et al., 2024; Wu et al., 2023; Chen et al., 2024).

In retrospect, as shown in Fig. 1 (b-1) and (b-2), there are two main paradigms in previous works.
One paradigm in Fig. 1 (b-1) simplifies the process by using radiographs as the sole input modality
and combining the findings and impression sections into a single long paragraph as the training
target without incorporating additional clinical context. The other paradigm in Fig. 1 (b-2) leverages
indication and radiographs as inputs but only generates the findings section.
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bilaterally could reflect atelectasis. Evaluation of  

cardiac is somewhat limited to overlying opacities. 

However, there is probable mild cardiomegaly. 
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Figure 1: Comparison of real-world radiology workflow (a), two main paradigms in previous works
(b-1 & b-2), and our proposed approach (c). In (a), the clinical question is highlighted in red. Find-
ings that are closely related to the indication are highlighted in brown. The impression directly
answers the clinical question (highlighted in blue). Our paradigm takes imaging data and the indi-
cation as inputs, progressively generating the findings and the impression.

Such paradigms have the following limitations: First, combining findings and the impression for
training increases the model’s learning difficulty due to the distinct nature of these sections. Findings
typically involve detailed descriptions of specific structures and abnormalities in the image, while the
impression provides a diagnosis that synthesizes these findings within the clinical context (Hartung
et al., 2020). The task of generating both sections simultaneously risks the model disproportionately
focusing on the more extended, more detailed findings section at the expense of overlooking the
shorter but crucial impression section. As a result, the quality of impression, which require careful
diagnostic reasoning, is often compromised.

Second, the content of the impression is closely related to the indication. Relying solely on imag-
ing data hinders the model’s ability to accurately capture the patterns required for generating the
impression. Generating the impression is far beyond summarizing image findings but requires con-
sideration of the patient’s medical history and the reason for the examination, as illustrated in Fig. 1
(a). Without the essential context provided by the indication, the model struggles to identify which
image details are the most relevant for the diagnosis. This leads to a lack of specificity and accu-
racy in the impression. This issue becomes particularly problematic when dealing with complex or
atypical cases, where the absence of the indication makes it harder for the model to produce clini-
cally meaningful impressions. Besides, omitting the impression section in the output, as seen in the
paradigm of Fig. 1 (b-2), deviates from real-world medical practice, leaving the clinical question in
the indication unanswered.

This paper tackles the above limitations by decomposing the distribution estimation processes and
then conquering them progressively. Concretely, to closely align our pipeline with the workflow
of radiologists’, as shown in Fig. 1 (c), we break down the complex process into two successive
stages: visual understanding for findings recognition followed by diagnostic reasoning. For the first
stage, we only focus on transferring the information from the visual domain to the text domain, i.e.,
generating the findings from the given radiograph and clinical context. For the second stage, we
consider what can be inferred from the radiograph that is the most relevant to the clinical question

2
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(i.e., generating the impression) aided by the output of the first stage. Finally, we directly combine
the findings and the impression to yield the final reports.

Existing large-scale datasets like MIMIC-CXR are unsuitable for directly validating our proposed
paradigm. Specifically, the raw data, including 227,835 free-text reports, exhibits severe inconsisten-
cies. For instance, 57,570 reports lack the findings section, while 69,455 are missing the impression
section. Even after applying MIMIC-CXR’s official report parsing code, the findings section still
contains misassigned contents, such as phrases that belong in the technique or comparison sections.
Additionally, some reports include irrelevant information in the impression section, like “Findings
were conveyed by Dr. to at 15:33”, which is unnecessary for training report generation models.
These issues create significant obstacles to verifying our approach. To address this, we propose
a new benchmark derived from MIMIC-CXR, called MIMIC-1V3. It is a clean, well-structured
dataset where each report is segmented into three distinct sections (i.e., indication, findings, impres-
sion) and paired with one frontal radiograph. Further details are provided in Section 4.

In summary, our contributions include:

• We propose a new Radiologist-Like Progressive Generation (RLPG) framework in the field
of report generation, which decomposes the radiologist’s workflow into visual understand-
ing for findings recognition followed by diagnostic reasoning. Our paradigm is closer to
real-world medical practice and improves the semantic alignment between input images
and output reports, as demonstrated by improved clinical efficacy metrics.

• Due to no existing large-scale datasets suitable for optimizing our new paradigm, we derive
a new benchmark, namely MIMIC-1V3, from the MIMIC-CXR. It serves as a standardized
test bed for future report generation models.

• We conduct quantitative evaluations to assess the impact of integrating the indication as
input on the quality of the generated findings and the impression. Additionally, we compare
the performance of our approach against advanced LLM-based report generation models
and demonstrate that it significantly outperforms them.

2 RELATED WORKS

The usage of ground truth reports of previous efforts in report generation diverges. Some works (Jing
et al., 2018; Li et al., 2018; Chen et al., 2020; Wang et al., 2023a;b) combine findings and impression
sections as the training target and take images as the sole input. In the groundbreaking work of (Jing
et al., 2018), the authors explain this practice by stating: “The impression and findings sections are
concatenated together as a long paragraph since impression can be viewed as a conclusion or topic
sentence of the report.”

Conversely, other studies focus exclusively on the findings section as the training target for given
radiographs (Liu et al., 2021a; Tanida et al., 2023; Huang et al., 2023). Recent works (Zhou et al.,
2021; Serra et al., 2023; Hyland et al., 2023; Bannur et al., 2024; Chaves et al., 2024) have recog-
nized the rich clinical context in the indication section, thereby using indication and radiographs as
model inputs while generating only the findings section. The exclusion of the impression section in
these works is either unspecified or justified by the assertion that “the impression section summariz-
ing the actionable insights from the study... cannot be fully gathered from the image alone.”

Advancements in report generation have also seen the incorporation of large-scale training datasets
and the adoption of instruction tuning techniques to build large language model (LLM)-centered
multimodal multitask interactive systems. For example, RadFM (Wu et al., 2023), CheXagent(Chen
et al., 2024), and MedVersa (Zhou et al., 2024) scale up the training data to the millions level,
covering nearly all available public medical datasets. In their settings, the task of report generation
reduces to a downstream task. CheXagent divides report generation into two tasks: (1) generating
findings from the image and (2) generating impression directly from the image or through findings
summarization without the image. MedVersa designs different prompts for generating findings-
only, impression-only, and complete report (findings + impression). RadFM designs the prompt
for report generation as “Please generate a radiology report for this scan <image-1>?”, without
specifying which sections to generate. Other notable works such as LLM-CXR (Lee et al., 2023) and
R2GenGPT (Wang et al., 2023b), both obfuscate findings and impression sections, instructing the
model to generate a “free-text radiology reports” or “a comprehensive and detailed diagnosis report”

3
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<PR1> Generate 

comprehensive 

findings for this 

X-ray …

<FIN> There are persisting small to moderate bilateral pleural 

effusions with subjacent atelectasis …

<IMPR> Findings are suggestive of pulmonary 

edema. Persisting right infrahilar opacity.

Embedding Layer

Text Decoder

Linear & Softmax

…… …

LLMStage 1

Findings

Generation

Embedding Layer

Text Decoder

Linear & Softmax

…… …

LLMStage 2

Impression

Generation

…

<PR2> Generate a concise 

impression for this X-ray. 

Impression should address 

the clinical question posed 

in indication.

<IND> Q u es t io na b l e

right sided pneumonia

based on outside hospital

CXR rule out pneumonia.

<IND> Q u es t io na b l e

right sided pneumonia

based on outside hospital

CXR rule out pneumonia.

Projection Layer

Image Encoder

Projection Layer

Image Encoder

Figure 2: Overall framework. In the first stage, the inputs are image tokens and text tokens sourced
from the indication (IND) and instruction prompt (PR1). The output is the findings (FIN) section.
In the second stage, the inputs are image tokens combined with text tokens of the same indication, a
new instruction prompt (PR2), and the findings (FIN). The output is the impression (IMPR) section.

for the given radiograph. These works mentioned above overlook the clinical context provided by
the indication and fail to leverage it to guide the generation of both findings and impression.

3 METHOD

The overall of our proposed Radiologist-Like Progressive Generation (RLPG) framework is illus-
trated in Fig. 2. It consists of two sequential stages, i.e., findings generation and impression gener-
ation. In the first stage, the image encoder extracts the image feature into image tokens, which are
concatenated with text tokens of the indication and an instruction prompt. The LLM processes these
integrated tokens to yield detailed findings. In the second stage, image tokens are concatenated with
text tokens of the same indication, a new instruction prompt, and the findings as the inputs of the
LLM. The LLM only generates the impression in this stage. We use ground-truth findings during
training and predicted findings during inference. We depict more details in the following.

3.1 PROBLEM REFORMULATION

In a typical radiology report generation model, the objective is to maximize the probability p(y|x)
between input image x and output report y, which is a non-trivial task due to the intrinsic complicity
in medical data and the large modality gap between visual inputs and textual outputs. To bridge
the modality gap and tackle the intrinsic complicity in medical data, we draw inspiration from the
workflow of radiologists and decompose the complex process of radiology report generation into
two sequential stages and conquer them progressively. Generally, a normative radiology report y
consists of a findings u and an impression v, i.e., y ← [u, v]. In the first stage, the model takes
image x as input and generates only findings u. In the second stage, the models takes image x
and the generated findings u as input and outputs the impression v. Mathematically, the probability
becomes

p(y|x) = p(u, v|x) = p(v|x, u)p(u|x). (1)
Moreover, to further reduce the risk of overlooking critical clinical information and enhance diag-
nostic accuracy, we mimic the process of radiologists interpreting the radiographs in regard to the
indication. Concretely, we introduce the indication as input for both stages mentioned above. The
indication directs the model to focus more intently on specific anatomical locations or abnormalities
within the image x, ensuring a more thorough analysis. Thus, we reformulate Eq. (1) to

p(y|x, c) = p(u, v|x, c) = p(v|x, c, u)p(u|x, c), (2)

where c refers to the indication corresponding to paired image x.

4
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3.2 RADIOLOGIST-LIKE PROGRESSIVE GENERATION (RLPG) FRAMEWORK

Stage 1: Findings Generation As shown in Fig. 2 (left), the process begins with an image encoder
Eimg followed by a projection layer P(1) encodes the radiograph x into tokens that can be accepted
by the LLM, capturing relevant visual features for medical diagnoses. Alongside the visual input, the
indication c, which provides contextual clinical information, and an instruction prompt r1 are used
to generate textual tokens. This is done by using the embedding layer Etxt of a large language model
(LLM), which prepares the text-based data for integration with the image tokens. The visual and
textual tokens are concatenated to form a comprehensive input vector. This combined input is then
fed through subsequent layers Dtxt of the LLM, which processes the data to synthesize detailed and
clinically relevant findings u. Mathematically, the findings generation process G(1) can be defined
as

u = G(1)(x, c, r1) = Dtxt

([
P(1) (Eimg(x)) , Etxt([c, r1])

])
, (3)

where [·, ·] refers to the concatenation operation. These findings encapsulate the critical observations
derived from the image, which is useful for clinical decision-making.

Stage 2: Impression Generation As shown in Fig. 2 (right), the same image x is re-encoded
using image encoder Eimg with a projection layerP(2) to ensure that any subtle features not captured
during the first pass are processed. This step generates a new set of visual tokens, providing a fresh
perspective on the image data. These new visual tokens are combined with the textual tokens from
the same initial indication c, a new instructional prompt r2, and the findings u generated in the
first stage. This comprehensive input setup ensures that the impression generation is informed by
both the immediate findings and additional context that may influence the clinical interpretation.
Similar to the first stage, the input then is processed by the rest of the LLM, i.e., Dtxt. Formally, the
impression generation G(2) can be written as

v = G(2)(x, c, u, r2) = Dtxt

([
P(2)(Eimg(x)), Etxt([c, u, r2])

])
, (4)

where Etxt is the embedding layer of the LLM, and v is the generated impression. This impression
provides the necessary contextualization and diagnostic summary to guide further medical action or
evaluation.

3.3 TRAINING AND INFERENCE

Training Based on the formulation above, our training objective can be defined as
max

Eimg,P
log p(y|x, c) = max

Eimg,P
log p(u, v|x, c) = max

Eimg,P
log p(v|x, c, u)︸ ︷︷ ︸

second stage

+ log p(u|x, c)︸ ︷︷ ︸
first stage

. (5)

Here, we only optimize the image encoder Eimg and projection layer P while keeping the LLM
parameters fixed. This way refines visual feature extraction for our specific needs without disturbing
the established linguistic capabilities of the LLM, ensuring stable text generation. Notably, we also
omit the instruction prompts r1 and r2 since they are consistent across all samples during both the
training and inference phases.

In the first stage, we initialize the image encoder Eimg with ImageNet pre-trained weights and ran-
domly initialize the projection layer P . In general, sequence generation models are often trained
using the autoregressive Teacher Forcing technique, which maximizes the likelihood of the often
token wt given all previous often tokens wi<t. In our setting, we optimize the model by

L1 = − log p(u|x, c) =
T∑

t=1

− log p(wt|wi<t, x, c), (6)

where wt is the t-th token in the findings u and T is the total number of tokens in u.

We take the well-trained image encoder in the first stage as an initialization for the second-stage
image encoder with a new randomly initialized projection layer. Similar to the optimization method
in stage one, the loss function in the second stage can be written as

L2 = − log p(v|x, c, u) =
L∑

l=1

− log p(wl|wj<l, x, c, u), (7)

5
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(b) Normalized Label distribution across splits in MIMIC-1V3.

Figure 3: Each index represents a specific label defined in CheXpert. 1: Atelectasis, 2: Car-
diomegaly, 3: Consolidation, 4: Edema, 5: Enlarged Cardiomediastinum, 6: Fracture, 7: Lung
Lesion, 8: Lung Opacity, 9: No Finding, 10: Pleural Effusion, 11: Pleural Other, 12: Pneumonia,
13: Pneumothorax, 14: Support Devices.

where wl is the l-th token in the impression v and L is the total number of tokens in v. Note that we
use ground-truth findings during training and the predicted findings in inference.

Inference In the first stage, with the pre-defined instruction prompt r1, the whole model G(1)
takes a radiograph x and the indication c as inputs to generate findings ũ. In the second stage, with
another prompt r2, both the generated findings ũ and the same inputs x and c are fed into model G(2)
to produce an impression ṽ. The final diagnostic report ỹ is then composed of these two outputs,
i.e., ỹ ← [ũ, ṽ]. Formally, the whole inference process can be defined as

ỹ ← [ũ, ṽ], where ũ = G(1)(x, c, r1) and ṽ = G(2)(x, c, ũ, r2). (8)

This structured, sequential approach allows each model to specialize in distinct aspects of report
generation, enhancing the overall accuracy and relevance of the generated reports.

4 MIMIC-1V3 DATASET

4.1 MIMIC-1V3 DATASET CONSTRUCTION

Raw reports from MIMIC-CXR are unstructured with varying numbers of sections. For example,
12.5% of all reports do not have the findings section. We aim to provide a clean and structured
dataset with easy access to different report sections. The construction of MIMIC-1V3 mainly com-
prises three steps:

View Selection The MIMIC-CXR dataset contains 14 unique X-ray image views. The frontal view,
comprising both Anterior-Posterior (AP) and Posterior-Anterior (PA) views, makes up 64.5% of all
images. The number of images paired with each report varies, with 45.4% of reports associated with
just one image. We exclusively use one frontal view image for consistency across samples for each
paired report.

Expanding Abbreviations & Acronyms Abbreviations and acronyms frequently appear in the indi-
cation section. We obtain standardized medical abbreviations from radiopaedia 1 and automatically
expand them.

Report Parsing & Cleaning We use MIMIC-CXR’s official code base to parse free text reports, ex-
tracting the indication, findings, and impression sections while excluding the incorrectly categorized
comparison and technique sections. For example, phrases like “Two frontal chest radiographs were
obtained with patient positioned upright” are mistakenly placed under findings instead of technique.
To provide a cleaner version of the report, we manually review approximately 20,000 reports to iden-
tify patterned phrases and then automatically remove such misassigned phrases from other reports.
Additionally, we discard reports lacking all three sections, for example, 59,628 reports contain only

1https://radiopaedia.org/
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Human: <img><ImageHere></img>. 

Given patient’s indication: {###}. 

Generate a detailed and 

comprehensive findings section for this 

X-ray examination. Findings are the 

factual observation of the X-ray image.

Assistant:

Human: <img><ImageHere></img>. 

Given patient’s indication: {###} and 

findings: {###}. Generate a concise 

impression section for this X-ray 

examination. Impression should address 

the clinical question posed in indication.

Assistant:

(a) (b)

Figure 4: Prompts for (a) Stage 1 and (b) Stage 2.

indication and impression, leaving it unclear whether the findings section is absent or misassigned
during data collection.

4.2 MIMIC-1V3 DATASET ANALYSIS

Data Split and Distribution MIMIC-CXR includes an official CheXpert (Irvin et al., 2019) label
file for all reports, in which the value for the positively mentioned labels is set to 1. Retaining ade-
quate positively mentioned labels in MIMIC-1V3 is crucial for providing strong and unambiguous
supervision for learning the image-text alignment.

Specifically, our MIMIC-1V3 results in 119,395 training, 936 validation, and 1,546 test samples.
We strictly follow the official data partition of MIMIC-CXR to ensure that our training, validation,
and test samples are sourced exclusively from the original sets. Fig. 3a shows the overall distribution
of positively mentioned labels in MIMIC-1V3 and MIMIC-CXR.

Compared to the original dataset, six labels in MIMIC-1V3 maintain at least 40% positive mentions.
On the other hand, Support Devices maintains only 19.1% of original positive mentions and 17%
for Enlarged Cardiomediastinum. We consider the impact of lacking Support Device to be limited,
as the presence of medical devices is not systematically reported in clinical practice by radiologists
(Bustos et al., 2020). An insufficient amount of Enlarged Cardiomediastinum remains an unresolved
challenge. The label distribution in the training, validation, and test sets is shown in Fig. 3b. The
training and validation sets have similar label distributions, while there is a noticeable discrepancy
between the label distributions in the validation and test sets.

Table 1: Word counts of the indication, findings
and impression in all splits with standard devia-
tion on our MIMIC-1V3.

Split Indication Findings Impression

Train 9.89± 6.67 45.51± 21.49 12.96± 6.17

Validation 10.23± 6.69 45.85± 22.50 12.98± 6.86

Test 9.94± 6.74 58.20± 23.76 16.82± 13.19

Lengths of Indication, Findings, and Impression
Table 1 shows the word count for three sections
across all dataset splits. The length of the indica-
tion section remains consistent across splits. Both
training and validation sets follow a similar distribu-
tion. In contrast, the average length of findings and
impression sections on the test set are 22% and 25%
longer than those on the training and validation sets,
respectively.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

During training, for both stages, we employ Swin Transformer (Liu et al., 2021b)-base as the image
encoder, one linear layer as the projection layer, and Llama2-7B-chat (Touvron et al., 2023) as
our LLM. The image encoders and projection layers are trainable, while the LLM remains frozen
and shared across both stages. Fig. 4 demonstrates the different prompts we used for each stage.
For stage 1, we instruct the LLM to generate findings conditioned on image and indication and
explicitly define the findings as the factual observation of the X-ray image. For stage 2, we include
the findings as part of the prompt. The LLM is instructed to generate the impression based on the
image, indication, and findings, focusing on addressing the clinical question posed in the indication.

7
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Table 2: Model performance of baseline one-stage training and our progressive paradigm. Here, we abbreviate
image, indication, findings, and impression as IMG, IND, FIN, and IMPR. Symbols indicate the following: ✓=
using images or ground truth findings as input, ✓ = using inference findings as input, and ✓ = sections that are
model outputs.

Dataset Split
Input Output Findings Impression

IMG IND FIN FIN IMPR NLG Clinical Efficacy NLG Clinical Efficacy

B-4 CIDEr Bert-S F1-all RE-EM RE-NLI Rad-C B-4 CIDEr Bert-S F1-all RE-EM RE-NLI Rad-C

MIMIC-1V3

✓ ✓ ✓ 0.1169 0.3084 0.5744 0.4041 0.3884 0.3238 0.2285 0.0429 0.2726 0.3518 0.5025 0.2310 0.2803 0.1187
val ✓ ✓ 0.1588 0.4293 0.5766 0.4617 0.4095 0.3619 0.2425 - - - - - - -

✓ ✓ ✓ - - - - - - - 0.0824 1.1259 0.4787 0.5057 0.3017 0.3403 0.2011
✓ ✓ ✓ - - - - - - - 0.2430 2.9432 0.6342 0.7125 0.5439 0.5246 0.4139
✓ ✓ ✓ 0.1044 0.1530 0.5595 0.4476 0.3631 0.2363 0.1981 0.0532 0.4530 0.3277 0.3875 0.1539 0.1657 0.0869
✓ ✓ 0.1139 0.1663 0.5437 0.4225 0.3320 0.2360 0.1873 - - - - - - -

test ✓ ✓ ✓ - - - - - - - 0.0582 0.6060 0.4411 0.4301 0.2374 0.1686 0.1481
✓ ✓ ✓ - - - - - - - 0.1948 1.5391 0.5715 0.6475 0.4504 0.2853 0.3081

We use AdamW (Loshchilov, 2017) as the optimizer and cosine scheduler with a learning rate of
3e-5 and a weight decay of 0.01. The majority of our experiments are conducted on two L40S GPUs.
During inference, the model first generates findings based on image and indication. Then we use
generated findings, image, and indication to generate the impression.

5.2 EVALUATION METRICS

For Natural Language Generation (NLG) metrics, we use BLEU-4 (B-4) (Papineni et al., 2002) and
CIDEr (Vedantam et al., 2015). For Clinical Evaluation (CE) metrics, we employ Bert-Score (Bert-
S) (Zhang et al., 2019), Chexbert-all Micro F1 (F1-all) (Smit et al., 2020), and RadGraph-related
metrics (Jain et al., 2021): RadEntity-ExactMatch (RE-ME), RadEntity-NLI (RE-NLI) (Miura et al.,
2020), and RadGraph-Complete (Rad-C).

5.3 ANALYSIS OF EVALUATION RESULTS

We thoroughly analyze evaluation results on both validation and test sets. Results in Table 2 and
Table 3 are obtained with the same model architecture. The differences among the settings are the
input data, output sections, and training stages (i.e., one stage or our progressive stages).

Advantages of Our Progressive Training In Table 2, we provide the NLG and CE metrics of
baseline (i.e., one-stage training) and our proposed progressive paradigm. In the baseline setting,
the model receives only the image as input and simultaneously generates both the findings and
impression sections. In contrast, our progressive paradigm operates in two stages: first, the model
takes the image as input and generates only the findings section; second, it takes the generated
findings and the original image to produce the impression section. We evaluate each section of the
output separately.

On the validation set, the performance of both the findings and impression sections is pronounced.
In the baseline, the findings section achieves a CIDEr score of 0.3084 and an F1-all score of 0.4041.
However, the performance for the impression section is lower, with a CIDEr score of 0.2726 and a
Bert-Score of 0.3518, indicating that the baseline model exhibits greater difficulty in generating the
impression section. In contrast, with our proposed progressive paradigm, the model’s performance
constantly improves, especially in generating the impression section. On the val split, the CIDEr
score of the findings increases from 0.3084 to 0.4293 and the F1-all score increases from 0.4041
to 0.4617. More notably, for the impression section, when using predicted findings as input, the
CIDEr score increases from 0.2726 to 1.1259, and the Bert-Score increases from 0.3518 to 0.4787.
Elevated evaluation scores prove our progressive generation strategy can enhance clinical efficacy
and text generation quality.

Despite the significant label frequency and section length shift between the training and test sets,
as illustrated in Fig. 3b and Table 1, which causes a noticeable performance discrepancy between
validation and test sets, we still observe the advantages of our progressive paradigm on the test set.
Specifically, with the progressive paradigm, the findings generation CIDEr score increases from
0.1530 in the baseline to 0.1663. For the impression section, the CIDEr score improves from 0.4530
to 0.6060, and the F1-all score rises from 0.3875 to 0.4301. These results highlight that, despite
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Table 3: Evaluation results when using the indication as part of the input. For the first stage, the model takes
the image and the indication as input and outputs the findings section. In the second stage, the model takes an
image, the indication, and the predicted findings as inputs and outputs the impression section.

Dataset Split
Input Output Findings Impression

IMG IND FIN FIN IMPR NLG Clinical Efficacy NLG Clinical Efficacy

B-4 CIDEr Bert-S F1-all RE-EM RE-NLI Rad-C B-4 CIDEr Bert-S F1-all RE-EM RE-NLI Rad-C

MIMIC-1V3

✓ ✓ 0.1588 0.4293 0.5766 0.4617 0.4095 0.3619 0.2425 - - - - - - -
✓ ✓ ✓ 0.1825 0.6376 0.5906 0.4723 0.4192 0.3569 0.2554 - - - - - - -

val ✓ ✓ ✓ - - - - - - - 0.0824 1.1259 0.4787 0.5057 0.3017 0.3403 0.2011
✓ ✓ ✓ ✓ - - - - - - - 0.1075 1.6675 0.5239 0.5475 0.3647 0.4159 0.2499
✓ ✓ ✓ - - - - - - - 0.2430 2.9432 0.6342 0.7125 0.5439 0.5246 0.4139
✓ ✓ ✓ ✓ - - - - - - - 0.2705 3.1813 0.6485 0.7133 0.5569 0.5830 0.4252
✓ ✓ 0.1139 0.1663 0.5437 0.4225 0.3320 0.2360 0.1873 - - - - - - -
✓ ✓ ✓ 0.1155 0.2856 0.5630 0.4516 0.3685 0.2430 0.2026 - - - - - - -
✓ ✓ ✓ - - - - - - - 0.0582 0.6060 0.4411 0.4301 0.2374 0.1686 0.1481

test ✓ ✓ ✓ ✓ - - - - - - - 0.0648 0.7547 0.4581 0.4308 0.2773 0.2206 0.1727
✓ ✓ ✓ - - - - - - - 0.1948 1.5391 0.5715 0.6475 0.4504 0.2853 0.3081
✓ ✓ ✓ ✓ - - - - - - - 0.2074 1.6740 0.5897 0.6614 0.4892 0.3513 0.3306

the distributional shifts between splits, the progressive paradigm demonstrates stronger generaliza-
tion ability, particularly in generating clinically meaningful impressions. In addition, on validation
and test sets, replacing the predicted findings with ground-truth findings for impression generation
results in a considerable leap across all metrics. This denotes that the quality of the findings dramat-
ically impacts the impression quality. Overall, even though the distributional shift affects the test set
performance, the progressive model consistently shows its superiority in generating higher-quality
findings and impressions, further proving the effectiveness of our progressive generation strategy for
radiology report generation.

Benefits of Using Indication as Input In this part, we explore the benefits of including the in-
dication as input in our progressive framework. To this end, we compare the performance of our
framework with and without inputting the indication. As shown in Table 3, on the validation set,
after incorporating the indication as inputs, the BLEU-4 and CIDEr scores of the findings increase
from 0.1588 to 0.1825 and from 0.4293 to 0.6376, respectively. All CE scores have improved except
the RadEntity-NLI (with comparable performance).

The benefit of using the indication as input is more evident on the generation of impression than
on findings. The improvement can be observed across all evaluation metrics, such as CIDEr score
increases from 1.1259 to 1.6675 and RadEntity-NLI score increase from 0.3403 to 0.4159. After
replacing the predicted findings with ground-truth findings for impression generation, the indication
can still further enhance the quality of the impression, improving BLEU-4 score from 0.2430 to
0.2705, CIDEr score from 2.9432 to 3.1813, and RadEntity-NLI score from 0.5246 to 0.5830.

On the test set, despite performance drops compared to the validation set due to different label
distributions as shown in Fig. 3, incorporating the indication as input leads to notable improve-
ments in findings generation. Specifically, the CIDEr score increases from 0.1663 to 0.2856, the
RadEntity-ExactMatch score rises from 0.3320 to 0.3685, and the RadGraph-Complete score im-
proves to 0.2026. For impression generation, incorporating the indication results in an increase in
the BLEU-4 score from 0.0582 to 0.0648, the CIDEr score from 0.6060 to 0.7547, the RadEntity-
NLI score from 0.1686 to 0.2206, and the RadGraph-Complete score rises to 0.1727.

These improvements are due to the indication serving as a guideline for the generation of findings,
providing context and a soft boundary for what should be considered in the findings that are closely
related to the patient’s medical history and the clinical question. The indication and impression
are similar to a question-answer pair where the indication raises the question, and the impression
addresses it. Using the indication as the input could provide a solid guiding signal.

Comparison with Other LLM-based Report Generation Models We select three representative
LLM-based models (i.e., R2GenGPT (Wang et al., 2023b), RadFM (Wu et al., 2023), and CheXagent
(Chen et al., 2024)) to perform inference directly on the MIMIC-1V3 test set. For RadFM, we use the
prompt: “Can you provide a caption that consists of both findings and impression for this medical
image?” For CheXagent, we follow the prompts specified in their original paper: (1) Given the
<image>, generate its <findings>; (2) Given the <image>, generate its <impression>; and (3)
Given the <findings>, generate its <impression>.
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Table 4: Comparison with other LLM-based RRG methods.

Dataset Method
Input Output Findings Impression

IMG IND FIN FIN IMPR NLG Clinical Efficacy NLG Clinical Efficacy

B-4 CIDEr Bert-S F1-all RE-EM RE-NLI Rad-C B-4 CIDEr Bert-S F1-all RE-EM RE-NLI Rad-C

MIMIC-1V3

R2GenGPT ✓ ✓ ✓ 0.1044 0.1530 0.5595 0.4476 0.3631 0.2363 0.1981 0.0532 0.4530 0.3277 0.3875 0.1539 0.1657 0.0869
RadFM ✓ ✓ ✓ 0.0003 0.0110 0.1413 0.1582 0.1005 0.0589 0.0434 0.0041 0.1783 0.1526 0.2423 0.0643 0.0512 0.0397

CheXagent ✓ ✓ 0.0540 0.0732 0.5152 0.2588 0.3484 0.2639 0.1740 - - - - - - -
CheXagent ✓ ✓ - - - - - - - 0.0305 0.6147 0.3807 0.3749 0.2169 0.1753 0.1323
CheXagent ✓ ✓ - - - - - - - 0.0229 0.4732 0.3881 0.3075 0.1496 0.1624 0.0928

Ours ✓ ✓ ✓ 0.1155 0.2856 0.5630 0.4516 0.3685 0.2430 0.2026 - - - - - - -
Ours ✓ ✓ ✓ ✓ - - - - - - - 0.0648 0.7547 0.4581 0.4308 0.2773 0.2206 0.1727

As shown in Table 4, our framework outperforms the baseline LLM-based models by a large margin.
RadFM shows limited effectiveness in generating clinically meaningful findings, achieving a BLEU-
4 score of 0.0003 and a RadGraph-Complete score of 0.0434. However, it demonstrates slightly
better performance in impression generation than in findings generation, likely due to the brevity of
the impression section.

Although CheXagent achieves improved evaluation results in the findings section, it remains inferior
to our framework, obtaining BLEU-4 scores of 0.0540 versus 0.1155, CIDEr scores of 0.0732 versus
0.2856, and F1-all scores of 0.2588 versus 0.4516. Conversely, for CheXagent, generating the im-
pression directly from the image yields better results than generating the impression by summarizing
its own generated findings. This observation suggests that the findings produced by CheXagent are
less informative than the original image data. Consequently, incorporating the image as input for
impression generation proves beneficial, particularly when the quality of the generated findings is
sub-optimal.

While RadFM and CheXagent can perform multiple tasks and handle modalities beyond X-rays,
R2GenGPT is exclusively dedicated to chest X-ray report generation. Consequently, it is unsurpris-
ing that R2GenGPT’s performance is comparable to our proposed approach. It is important to high-
light that RadFM employs a domain-specific LLM comprising 13B parameters, whereas CheXagent
fine-tunes a Mistral-7B model on their medical corpus. In contrast, our model utilizes a standard
Llama2-7B-chat. By incorporating the indication as input and adopting a progressive generation
strategy, our approach effectively compensates for the lack of domain-specific knowledge within the
base LLM.

In summary, we demonstrate the quantitative impact of integrating indication as inputs on the quality
of generated findings and impression. We can conclude that: 1) our radiologist-like progressive
generation paradigm i.e., successively generating findings and the impression, is more effective than
generating both sections at once, and 2) incorporating indication as part of input can benefit the
generation of findings and impression on both NLG metrics and CE metrics.

6 CONCLUSION AND FUTURE WORKS

In this work, we propose a novel radiologist-like progressive generation (RLPG) framework for au-
tomated radiology report generation, consisting of two successive stages: visual understanding for
findings recognition followed by diagnostic reasoning. In each stage, we incorporate the indica-
tion as input, closely mimicking real-world radiology workflows and resulting in more clinically
accurate reports than other LLM-based report generation models. Besides, we introduce a new
benchmark, MIMIC-1v3, derived from MIMIC-CXR. In MIMIC-1v3, each report is segmented into
three sections—indication, findings, and impression—and paired with the radiograph. Compared to
MIMIC-CXR, our dataset is cleaner and highly structured, ensuring consistency across all samples.

Future research could expand the framework and dataset to address different radiological sub-
specialties, enhance natural language understanding for better clinical language interpretation, and
incorporate temporal analysis to track patient condition changes over time. Testing the framework’s
adaptability across diverse datasets, especially from different anatomical regions or healthcare sys-
tems, will ensure its generalizability and robustness. Moreover, enriching the MIMIC-1v3 dataset
with more detailed annotations, such as disease severity, could increase the utility and clinical rele-
vance of the automated reports.
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A APPENDIX

A.1 SCOPE OF DIFFERENT SECTIONS IN A REPORT

The problem formulation of report generation has been deemed similar to image captioning, i.e., de-
scribing salient objects in coherent sentences. However, captioning a natural image falls well within
the scope of common sense. In contrast, interpreting a medical image takes years of professional
training, requiring radiologists to draw upon their full depth of knowledge and experience to deliver
meaningful patient care. As the most important product of medical imaging, the radiology report
represents the sum of a radiologist’s highest level of synthesis and insight into a patient’s condition.
A clinically acceptable report communicates the diagnosis or differential diagnosis, clinical implica-
tions of radiologic findings, and recommendations for directing patient management (Hartung et al.,
2020). The complexity of dictating a radiology report, which transcends simply describing factual
observations in the radiograph, warrants a more profound and clinical inspection of the dataset.

A typical radiology report is structured into several distinct sections, each with a defined purpose
(Collard et al., 2014; Hartung et al., 2020; Wallis & McCoubrie, 2011). As regional and personal
stylistic preferences abound, the naming convention of sections may vary. For example, in MIMIC-
CXR, the indication is sometimes named clinical history. We unify the naming convention based
on the most frequent terms for a more succinct and clear structure. We list the seven most prevalent
sections and clearly define the scope of each section based on established medical literature as below:

1. Wet Read: A preliminary interpretation of the radiograph without in-depth analysis, often
used for urgent cases at point-of-care.

2. Comparison: This section notes the availability of previous studies, enabling radiologists
to monitor patient’s progress. At times, reaching the conclusion that whether findings are
benign or malignant may require a thorough evaluation of comparison studies.

3. Technique: This section documents information about the imaging modality used, the
specific imaging parameters, specific projection views used in imaging such as “supine
AP” and any additional details relevant to the acquisition of the images such as subpar
imaging quality due to patient position.

4. Indication: It presents the clinical question prompting the examination (reason for this
exam) and offers a brief overview of the patient’s medical history.

5. Findings: The radiologist records factual observations from the radiograph. It comprises
short informative phrases describing the pertinent positive and negative observations about
a study. Findings emphasize facts and should avoid interpretation or synthesis intended for
the impression.

6. Impression: It provides a diagnosis or differential diagnosis (a definitive diagnosis may be
out of reach because of inherent limitations of the X-ray modality) when possible, followed
by the key findings relevant to understanding the extent of the disease. It is the sum of all the
efforts in synthesizing the meaning of findings and answering the clinical question raised
in the indication.

7. Recommendation(s): This includes the radiologist’s opinion on directing patient care.

The Wet Read section lacks reporting maturity as a preliminary report, which is excluded from
our study. The header portion (comparison and techniques) as auxiliary information is considered
beyond the scope of our work. Their function is self-evident in that the comparison is related to
longitude information, and the techniques can be used for view classification. The Recommenda-
tion(s) section is also excluded from our study as it is not closely related to interpreting images.
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Study_ID: 52093225

indication: Hypoxia, chest pain, dyspnea, question infiltrate.

findings: There is patchy opacity with air bronchograms at both lung 

bases, consistent with a pneumonic infiltrate. The differential diagnosis 

could include aspiration, but this is considered less likely. There do 

appear to be background increased interstitial markings which could be 

related to either acute or chronic lung disease. Cardiomediastinal 

silhouette is slightly prominent, but likely accentuated by low lung 

volumes. The right hemidiaphragm is elevated. Mild prominence of the 

azygos vein is likely also accentuated by low lung volumes.

impression:  Findings concerning for bilateral pneumonic infiltrates. Also 

diffusely increased interstitial markings, which may indicate a background 

acute or chronic process.

Study_ID: 54495391

indication: M with complaints of left lower chest pain with 

shortness of breath and cough.? pneumonia

findings:  Left chest wall single lead pacing device is again 

seen. Low lung volumes are noted. Increased interstitial 

markings are noted in the lungs with a basilar predominance 

which are compatible with a chronic interstitial abnormality. 

There is no superimposed acute consolidation or effusion. 

The cardiomediastinal silhouette is stable. No acute osseous 

abnormalities. Hypertrophic changes are seen the spine.

impression: Findings compatible with patient's underlying 

fibrosis without definite superimposed acute cardiopulmonary 

process.

(a) (b)

Figure 5: Two representative examples from MIMIC-1V3. The highlighted parts demonstrate the
interconnections among the indication, findings, and impression sections.

Here, we focus on discussing the relationships and connections among the indication, findings, and
impression.

From a clinical perspective, a radiology report is a bridge between the ordering physician, the ra-
diologist, and the referring clinician, communicating critical patient information. In the indication,
the ordering physician raises a clinical question based on the patient’s current condition and medical
history. This question guides the radiologist’s attention, enabling the radiology to focus on the most
pertinent anatomic locations. The findings section is for factual observations about the image and
reflects the radiologist’s thought process. The impression section is more interpretive, drawing on
the radiologist’s expertise to infer conclusions from the findings. For instance, lung opacity refers to
an objective observation; consolidation is commonly used to describe an opacity that may resemble
pneumonia, and pneumonia is a clinical inference (Wu et al., 2020). The impression should answer
the clinical question, providing a context for the referring clinician to understand the implications of
radiologic findings.

A.2 CASE STUDIES OF MIMIC-1V3

In Fig. 5, two reports from MIMIC-1V3 demonstrate how real-world data reflects the connections
among the indication, findings, and impression. The pattern is clear: the indication presents a clinical
question (highlighted in red), the findings section contains observations closely related to the clinical
question (highlighted in brown), and the impression directly addresses the clinical question followed
by primary findings (highlighted in blue).

In report (a), the indication states the patient’s condition as Hypoxia, chest pain, dyspnea, meaning
the patient has difficulty breathing. These symptoms prompt the radiologist to assess the respiratory
and cardiovascular structures for abnormalities that could explain the patient’s distress. Question
Infiltrate, this specific clinical query directs the radiologist to scrutinize the lung parenchyma for
signs of infiltrates, such as patchy opacity. Elevated Right Hemidiaphragm and Prominent
Azygos Vein are the secondary signs that may relate to the primary symptoms of dyspnea and
hypoxia. The impression section confirms the presence of bilateral pneumonic infiltrates, directly
answering the clinical question posed in the indication. It also highlights other notable observations
from the imaging study, ensuring that other potential issues are not overlooked and assisting the
referring clinician in understanding the full scope of the patient’s pulmonary condition.

In report (b), the original indication is presented as “M with c/o left lower CP with SOB and cough.
? PNA.” The extensive use of abbreviations and acronyms renders the indication ambiguous and
unclear. Expanding these abbreviations and acronyms to their complete forms provides a more
precise context, thereby reducing model hallucinations during report generation. This issue has
been addressed in the construction of MIMIC-1V3, where abbreviations have been standardized and
expanded.

A.3 VISUALIZATION OF GENERATED REPORTS

To further demonstrate the superiority of our framework over other LLM-based models, we show-
case how our framework effectively handles the clinical query in the indication and generates a
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MIMIC-1V3 Ground Truth R2GenGPT RadFM CheXagent RLPG (Ours)

Study_ID: 52526911

Indication: -year-old 

female with altered 

mental status and 

history of seizures. 

Evaluate for aspiration 

or pneumonia.

Findings: Lung 

volumes are very low

and marked elevation of 

the left greater than right 

hemidiaphragm is 

similar to prior. Bibasilar 

atelectasis is 

unchanged. 

Cardiomediastinal

contours are stable. 

Pulmonary vascular 

markings appear 

normal. No focal 

consolidation or large 

pleural effusion.

Impression: Low lung 

volumes without 

radiographic evidence of 

aspiration or focal 

consolidation.

Findings: There are low 

lung volumes with 

bibasilar atelectasis. 

The cardiomediastinal

silhouette is not well 

assessed due to low 

lung volumes. There is 

no large pleural effusion 

or pneumothorax. Bony 

structures appear 

grossly unremarkable.

Impression: There are 

low lung volumes with 

bibasilar atelectasis.

Findings:Right pleural 

effusion. Large mass 

projects over the right 

upper chest.

Impression: Right 

pleural effusion. Large 

mass in the right upper 

chest.

Findings: The heart 

size is normal. The 

mediastinal and hilar 

contours are 

unremarkable. The 

pulmonary vasculature 

is normal. The lungs are 

clear. No pleural 

effusion or 

pneumothorax is seen. 

There are no acute 

osseous abnormalities.

Impression: No acute 

cardiopulmonary 

process.

Findings: Lung 

volumes are low. The 

cardiac mediastinal and 

hilar contours appear 

unchanged. There is 

crowding of the 

bronchovascular 

markings without 

definite focal 

consolidation. no pleural 

effusion or 

pneumothorax is seen. 

There is bibasilar 

atelectasis.

Impression: Low lung 

volumes with bibasilar 

atelectasis. No definite 

evidence for aspiration 

or pneumonia.

Figure 6: Visualization of generated reports

higher-quality report. The most relevant contents among the indication, findings, and impression are
highlighted in red, while secondary findings that are worth mentioning are underlined.

As depicted in Fig. 6, the ground truth indication states, “Evaluate for aspiration or pneumonia,”
which requires the model to make an accurate diagnosis. The performance of RadFM is inferior;
it misdiagnoses the patient with right pleural effusion and repeats most findings in the impression.
CheXagent is the only model that mentions pulmonary vasculature in the report, but it fails to iden-
tify the key finding of “low lung volumes.” Since CheXagent treats the impression as the summa-
rization of the findings and does not take the indication as the input, its generated impression, “No
acute cardiopulmonary process,” lacks the ability to address the clinical query and only reflects the
fact that all its predicted findings are negative.

R2GenGPT and our framework can identify the key finding, “low volumes.” However, without the
indication as input, R2GenGPT tends to repeat the positive findings in the impression, which falls
short of effectively addressing the clinical query.

In contrast, our framework correctly predicts “without definite focal consolidation” in the findings
and generates an impression that addresses the clinical query with a sound diagnosis, “ No definite
evidence for aspiration or pneumonia,” which slightly deviates from the ground truth but matches
the semantic meanings.

Regrettably, all models fail to identify conditions related to the hemidiaphragm. Enhancing the
model’s image understanding capabilities could help mitigate such errors.
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