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Abstract

ASR Error Detection (AED) models aim to
post-process the output of Automatic Speech
Recognition (ASR) systems, in order to detect
transcription errors. Modern approaches usu-
ally use text-based input, comprised solely of
the ASR transcription hypothesis, disregard-
ing additional signals from the ASR model.
Instead, we propose to utilize the ASR sys-
tem’s word-level confidence scores for improv-
ing AED performance. Specifically, we add
an ASR Confidence Embedding (ACE) layer
to the AED model’s encoder, allowing us to
jointly encode the confidence scores and the
transcribed text into a contextualized represen-
tation. Our experiments show the benefits of
ASR confidence scores for AED, their comple-
mentary effect over the textual signal, as well
as the effectiveness and robustness of ACE for
combining these signals. To foster further re-
search, we publish a novel AED dataset con-
sisting of ASR outputs on the LibriSpeech cor-
pus with annotated transcription errors.'

1 Introduction

Automatic Speech Recognition (ASR) systems
transcribe audio signals, consisting of speech, into
text. While state-of-the-art ASR systems reached
high transcription quality, training them requires
large amounts of data and compute resources. For-
tunately, many high performing systems are avail-
able as off-the-shelf cloud services. However, a
performance drop can be observed when applying
them to specific domains or accents (Khandelwal
et al., 2020; Mani et al., 2020), or when transcrib-
ing noisy audio. Moreover, cloud services usually
expose the ASR model as a black box, making it
impossible to further fine-tune it.

ASR Error Detection (AED) models are de-
signed to post-process the ASR output, in order
to detect transcription errors and avoid their propa-
gation to downstream tasks (Errattahi et al., 2018).

!The code will be released upon publication.
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Figure 1: Our ASR Error Detection pipeline. The word-
level confidence scores are quantized and jointly en-
coded with the transcription text. The resulting con-
textualized representation is fed into a sequence tagger.

AED models are widely used in interactive systems,
to engage the user to resolve the detected errors.
One example of an AED system can be found in
Google Docs Voice Typing, where low confidence
words are underlined, making it easier for users to
spot errors and take actions to correct them.
Modern NLP models usually build upon the
Transformer architecture (Vaswani et al., 2017).
However, no Transformer-based AED models have
been proposed yet. Recently, the Transformer has
been applied to ASR error correction (Mani et al.,
2020; Liao et al., 2020; Leng et al., 2021a,b), an-
other ASR post-processing task. These models use
only the transcription hypothesis text as input and
discard other signals from the ASR model. How-
ever, earlier work on AED (not Transformer-based)
has shown the benefits of such ASR structured
signals (Allauzen, 2007; Pellegrini and Trancoso,
2009; Chen et al., 2013) and specifically the ben-
efits of ASR word-level confidence scores (Zhou
et al., 2005), which are often provided in addition



to the transcribed text (Jiang, 2005; Li et al., 2021).

In this work we focus exclusively on AED and
propose a natural way to embed the ASR confi-
dence scores into the Transformer architecture. We
introduce ® RED-ACE, a modified Transformer
encoder with an additional embedding layer, that
jointly encodes the textual input and the word-level
confidence scores into a contextualized represen-
tation (fig. 2). Our AED pipeline first quantizes
the confidence scores into integers and then feeds
the quantized scores with the transcribed text into
the modified Transformer encoder (fig. 1). Our
experiments demonstrate the effectiveness of RED-
ACE in improving AED performance. In addition,
we demonstrate the robustness of RED-ACE to
changes in the transcribed audio quality. Finally,
we release a novel dataset that can be used to train
and evaluate AED models.

2 & RED-ACE

Following recent trends in NLP, we use a pre-
trained Transformer-based language model, lever-
aging its rich language representation. Our AED
model is based on a pre-trained BERT (Devlin et al.,
2019), adapted to be confidence-aware and further
fine-tuned for sequence tagging. Concretely, our
AED model is a binary sequence tagger that given
the ASR output, consisting of the transcription hy-
pothesis words and their corresponding word-level
confidence scores, predicts an ERROR or NOTER-
ROR tag for each input token.

An overview of our AED pipeline can be seen
in fig. 1. Given the ASR output, we first quantize
the floating-point confidence scores into integers
using a binning algorithm.? The binning algorithm
and the number of bins are hyper-parameters of our
algorithm.?

The quantized scores and the transcription text
are fed into our confidence-aware BERT (fig. 2).
In BERT, each input token has 3 different embed-
dings.* To adapt BERT to be confidence-aware,
we add additional embedding to every input token,
indicating the confidence bin it belongs to. We
construct a learned confidence embedding lookup
matrix M € REXH  where B is the number of
bins and H is BERT’s embedding vector’s size.
For a given token, its input representation is con-

Typical confidence scores range between 0.0 to 1.0.

3We experiment with different binning strategies, see §A.1.

*Token, Segment and Position embeddings. See fig. 2 in
Devlin et al. (2019).
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Figure 2: Our confidence-aware AED model. We use
a BERT-based tagger with modifications colored in
green. An additional embedding layer is added to repre-
sent the embedding of the quantized confidence scores.

Pool | Split | # Examples | # Words | # Errors

Train 103,895 | 3,574,027 | 357,145 (10.0%)
clean | Dev 2,697 54,062 5,111 (9.5%)
Test 2,615 52,235 4,934 (9.4%)
Train 146,550 | 4,650,779 | 770,553 (16.6%)
other | Dev 2,809 48,389 9,876 (20.4%)
Test 2,925 50,730 | 10,317 (20.3%)

Table 1: AED dataset statistics.

structed by summing the corresponding BERT’s
embeddings with its confidence embedding.

3 Dataset Creation and Annotation

To train and evaluate our model, we generate a
dataset with labeled transcription errors. First, we
decode audio data using the candidate ASR model
and obtain the transcription hypothesis. Then, we
align the hypothesis words with the reference (cor-
rect) transcription. Specifically, we find an edit
path, between the hypothesis and the reference,
with the minimum edit distance and obtain a se-
quence of edit operations (insertions, deletions and
substitutions) that can be used to transform the hy-
pothesis into the reference. Every incorrect hypoth-
esis word (i.e needs to be deleted or substituted)
is labeled as ERROR and the rest are labeled as
NOTERROR.

For the ASR model, we use Google Cloud
Speech-to-Text API° (more details in §A.2). For an
audio data source, we use the LibriSpeech corpus
(Panayotov et al., 2015), containing approximately
1000 hours of transcribed English speech from au-
dio books.® The corpus contains clean and other
pools, where clean is of higher recording quality.
Table 1 contains our generated dataset statistics. To
encourage further research we make our dataset

Shttps://cloud.google.com/
speech-to-text
*https://www.openslr.orqg/12/
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Main setups

| Robustness setups

Train other -> Eval other

Train other -> Eval clean | Train clean -> Eval other

Traln clean > Eval clean
F1 R P R P F1 R P F1
C-O0 52.1 42.5 46.8 | 63.5 456 53.1 63.6 34.7 44.9 52.3 52.3 52.3
BERT 58.5 77.6 66.7 | 58.0 77.1 66.2 64.3 71.9 67.9 47.1 80.3 594
RED-ACE \ 61.1° 819 70.0" \ 64.1 79.9° 71.1% \ 67.9* 77.00 722 \ 53.7° 83.3" 65.3"
F1 A% \ +4.9% \ +7.4% \ +6.3% \ +9.9%

Table 2: AED results. R and P stands for Recall and Precision. F1 A% compares RED-ACE to the strongest
baseline. RED-ACE results with * indicate a statistically significant difference compared to the strongest baseline.
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Figure 3: Precision/Recall values that can be obtained
by using thresholds on confidence to detect errors.

publicly available. For additional details about the
corpus and our generated dataset see §A.4.

4 Experimental Setup

As described in §2, we use pre-trained BERT (De-
vlin et al., 2019) and adapt it to be confidence-
aware by introducing RED-ACE. We then fine-tune
it for sequence tagging using the annotated tran-
scription errors from our dataset (§3). We provide
extensive implementation details in §A.1.

4.1 Baselines

To evaluate the complementary effect of the textual
and the confidence signals, as well as the effective-
ness of RED-ACE in combining those signals, we
compare RED-ACE to the following baselines:

Confidence Only (C-O) As the primary purpose
of the ASR confidence scores is to allow down-
stream applications to detect transcription errors,
our first baseline is based on confidence only. We
use a score threshold to predict errors, meaning that
tokens with scores below the threshold are classi-
fied as ERROR. We choose the threshold that yields
the best F1 on the development set (see fig. 3).

BERT We fine-tune BERT (Devlin et al., 2019)
for sequence tagging (without RED-ACE), using
the annotated transcription errors from our dataset
(§3). This baseline is based on the Grammatical Er-
ror Detection (GED) model proposed by Cheng and
Duan (2020), where BERT based taggers achieved

the highest performance in the NLPTEA-2020
Shared Task for Chinese GED (Rao et al., 2020).
We used a GED model as we could not find any
modern AED models (see §6). In addition, lever-
aging a Transformer that uses only the ASR hy-
pothesis text as input, is also in line with recent
work on ASR error correction, an additional ASR
post-processing task (§6).

4.2 Evaluation

We measure Precision (P), Recall (R) and F1. Re-
call measures the percent of real errors that were
detected, while Precision measures the percent of
the real errors out of all detected errors.

Robustness A real-word transcription system
should be robust to changes in the audio quality.
Such changes can affect the ASR model’s errors
distribution and thus can potentially reduce the ef-
fectiveness of the AED model. Luckily, our dataset
contains 2 pools with different audio quality (§3),
allowing us to evaluate RED-ACE’s robustness.
We perform a cross-pools evaluation, evaluating
models that were trained on clean and other pools
using the other and the clean test sets respectively.

5 Results

Table 2 contains the main results, comparing RED-
ACE to the baseline models (§4.1). When observ-
ing the F1 results for C-O, the advantage of the
models that use textual input is evident. Thus, we
focus our analysis on comparing RED-ACE to the
text-based BERT tagger.

We first analyze the main setups and observe that
RED-ACE consistently outperforms BERT on all
evaluation metrics in both pools. This demonstrates
the usefulness of the confidence scores signal on
top of the textual input, as well as the effective-
ness of our approach in combining those signals.
RED-ACE F1 A% drop a little on clean, compared
to other. This is expected since errors in clean
are rare (thus harder to detect), with an error rate



twice lower than in other (see table 1), making it
more challenging to further improve on top of the
strong BERT baseline.

Next we analyze the robustness setups. When an-
alyzing other -> clean, we observe that BERT and
RED-ACE achieve higher recall and lower preci-
sion, compared to clean -> clean. This is probably
caused by the higher error rate of other (table 1),
which leads to a model with a higher tendency to
mark words as errors. Interestingly, the overall
F1 actually increases for both models, suggesting
that even though other is more noisy, exposing the
model to a larger number of errors is crucial. An
opposite trend can be seen when comparing clean
-> other to other -> other. In this case, the recall
drops dramatically for both models, while the pre-
cision is improving. Overall F1 drops significantly,
again demonstrating the importance of exposing
the AED model to a larger amount of errors.

Finally, we examine RED-ACE’s robustness by
comparing the F1 A% between the main and ro-
bustness setups. In the other -> clean setup, RED-
ACE achieves a relative F1 improvement compa-
rable to clean -> clean (6.3% compared to 4.9%),
which indicates that RED-ACE effectiveness is ro-
bust to transcriptions from different audio quality.
The results on clean -> other are even more impres-
sive. RED-ACE improves the F1 by 9.9%, com-
pared to 7.4% improvement on other -> other.®
clean -> other is the hardest setup with BERT’s F1
significantly lower than the rest 3 setups, meaning
that RED-ACE shows the strongest improvement in
the hardest setup. This is another strong indication
of the robustness of RED-ACE.

Robustness to Candidate ASR  In order to make
sure that RED-ACE is applicable to not only one
specific ASR model, we repeat our main experi-
ments using a different ASR model.” The results
can be seen in table 3. RED-ACE outperforms all
baselines, which provides additional evidence for
its robustness, this time to errors that stem from
different ASR models.

6 Related Work

AED has been studied for many years, we refer
the reader to Errattahi et al. (2018) for a thorough
review. Zhou et al. (2005) used data mining models,

"The difference in F1 A% is not statistically significant.

8The difference in F1 A% is statistically significant.

°Also using Google Cloud API, this time with video in-
stead of default model, more details in §A.2.

other -> other

clean -> clean
R P F1

R P FI
C-0 ‘ 287 224 252 ‘ 345 262 298
BERT 549 772 642 | 527 788 632
RED-ACE| 58.6° 75.4 659°| 552" 80.7° 65.6"
FI A% | +2.6% | +3.8%

Table 3: AED results on main setups using errors from
a different ASR model. Format is similar to table 2.

leveraging features from confidence scores and a
linguistics parser. Allauzen (2007) used logistic
regression with features extracted from confusion
networks. Pellegrini and Trancoso (2009) used
a Markov Chains classifier. Chen et al. (2013)
focused on spoken translation using confidence
scores from a machine translation model, posteriors
from entity detector and a word boundary detector.

Modern Transformer-based approaches have not
addressed the AED task directly. A few attempts
were made to apply the Transformer for the er-
ror correction task. Some used autoregressive
sequence-to-sequence models to map directly be-
tween the ASR hypothesis to the correct (reference)
transcription (Mani et al., 2020; Liao et al., 2020),
while others used non-autoregressive models (Leng
et al., 2021a,b). To the best of our knowledge, our
work is the first to address the AED task using the
Transformer architecture and to introduce represen-
tation for ASR confidence scores in a Transformer-
based ASR post-processing model.

7 Conclusion

We introduced ® RED-ACE, an approach for em-
bedding ASR word-level confidence scores into a
Transformer-based ASR error detector. RED-ACE
jointly encodes the scores and the transcription hy-
pothesis into a contextualized representation. Our
experiments showed significant performance gains
when using RED-ACE, compared to using the tran-
scription text or the confidence scores alone, indi-
cating the effectiveness of RED-ACE in construct-
ing richer representation for error detection. Our
results also demonstrated the robustness of RED-
ACE to changes in the audio quality, which can be
crucial for real-world applications.

In future work, we would like to explore the
benefits of ASR confidence scores for error cor-
rection models. We also hope that our work will
inspire AED researchers to integrate RED-ACE in
their models, in order to potentially benefit from its
complementary effect.
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A Appendix

A.1 Implementation Details

Training We fine-tune our BERT-based (Devlin
et al., 2019) model with a batch size of 512, a
weight decay of 0.01, and a learning rate of 3e-6.
The maximum input length is set to 128 tokens.
We pad shorter sequences and truncate longer ones
to the maximum input length. We use the cross-
entropy loss function, optimizing the parameters
with the AdamW optimizer. We train for a maxi-
mum of 500 epochs and choose the checkpoint with
the maximum tagging accuracy on the development
set. The best checkpoint was found at epochs 100-
150 after approximately 8 hours of training time.
All models were trained on TPUs (4x4). The con-
fidence embedding matrix is randomly initialized
with truncated normal distribution.!. If a single
word is split into several tokens during BERT’s
tokenization, all the corresponding tokens get the
confidence score of the original word. To predict
word-level errors, we treat a word as an error if
one of it’s tokens was tagged as error by the model.
Bert base has 110 million parameters, the inclusion
of confidences embeddings for RED-ACE added
10k additional parameters.

Binning Table 4 contains results for different bin-
ning algorithms and bin sizes. For binning algo-
rithms we use: (1) simple equal-width binning and
(2) quantile-based discretization (equal-sized buck-
ets). We note that there is no significant difference
between the results. In our main experiments we
used equal width binning with 10 bins. For special
tokens,'! that do not have confidence scores, we
chose to allocate a dedicated bin.

Statistics Significance Test In table 2, in addi-
tion to the main results, we provide a statistic sig-
nificance tests results. For this purpose we pseudo-
randomly shuffle all words in our test set, split them
up into 100 approximately equally sized subsets,
and compute recall, precision and F1 for each of
them for the baseline and RED-ACE models. We
then apply the Student’s paired t-test with p < 0.05
to these sets of metrics. To determine statistical
significance in F1 A% between different setups
evaluated on the same data set, F1 A% is com-
puted for each of the given subsets, and the same

Ohttps://www.tensorflow.org/api_
docs/python/tf/keras/initializers/
TruncatedNormal

"[CLS] and [SEP] in case of BERT.

Binning algorithm | #Bins | R P F1

10 641 799 711
Equal width bins 100 62.5 805 704
1000 63.2 80.7 70.9
Equal size bins | 10 | 63.0 815 711

Table 4: Effect on different binning strategies (other).

Pool | Split | # Examples | # Words |  # Errors

Train 104,013 | 3,589,136 | 210,324 (5.9%)
clean | Dev 2,703 54,357 3,109 (5.7%)
Test 2,620 52,557 2,963 (5.6%)
Train 148,678 | 4,810,226 | 148,678 (7.9%)
other | Dev 2,809 50,983 | 5,901 (11.6%)
Test 2,939 52,192 | 6,033 (11.6%)

Table 5: Our AED dataset statistics when using a dif-
ferent ASR model (video instead of default).

significance test is applied to the resulting sets of
F1 A% between two setups.

A.2 ASR Models

We use Google Cloud Speech-to-Text API as our
candidate ASR model.'? In our main experiments
we select the default ASR model'® and enable the
word-level confidence.'* In our experiment with
additional ASR model (table 3) we selected the
video model.

Additional details about the video model We
use the video model to make sure RED-ACE is
effective for multiple ASR models (as discussed
in §5). For completeness we provide additional
details about the setup with video. Table 5 contains
the AED dataset statistics when using the video
model instead of default. A notable difference from
table 1 is a significantly lower error rate on both
pools. In table 3 we reported results for video
only on the main setups, for completeness we add
here the results for the robustness setups as well.
Table 6 contains full results on video, including the
robustness setups.

A.3 C-O Plot for the clean Corpus

In fig. 3 we illustrate the possible precision and
recall values when using Confidence Only (C-O)
on the other pool. For completeness we provide

Phttps://cloud.google.com/
speech-to-text

Bhttps://cloud.google.com/
speech-to-text/docs/basics#select-model

Yhttps://cloud.google.com/
speech-to-text/docs/word-confidence#
word—level_confidence
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Main setups

| Robustness setups

Train other -> Eval other

Train other -> Eval clean | Train clean -> Eval other

Tram clean -> Eval clean
F1 R P F1 R P F1 R P F1
C-O0 28.7 224 25.2 34.5 26.2 29.8 354 18.3 24.1 27.4 30.5 28.9
BERT 549 772 64.2 52.7 78.8 63.2 61.2 73.5 66.8 42.9 82.2 56.4
RED-ACE \ 58.6° 754 65.9" \ 55.2* 80.7° 65.6" \ 62.8° 75.8° 68.7" \ 47.7°  79.8° 59.7"
F1 A% \ +2.6% \ +3.8% \ +2.8% \ +5.9%

Table 6: AED results using a different ASR model (video instead of default). Format is similar to table 2.
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Figure 4: Comparison of RED-ACE to using the confi-
dence scores alone on a threshold basis. Each threshold
leads to a different precision recall balance. This plot
is equivalent to fig. 3 but evaluated on the clean pool.
In addition we added a dotted line representing the pre-
cision recall curve on the clean pool from fig. 3.

Pool | SubsetName | Audio Hours | # Examples
train-clean-100 100.6 28,539
Clean train-clean-360 363.6 104,014
dev-clean 5.4 2,703
test-clean 5.4 2,620
train-other-500 496.7 148,688
Other | dev-other 5.3 2,864
test-other 5.1 2,939

Table 7: LibriSpeech corpus subsets statistics.

the plot for the clean pool as well in fig. 4. We also
added a dotted line representing the precision recall
curve on the other pool from fig. 3. The higher pre-
cision recall values on the other pool are additional
evidence that clean can be more challenging for
error detection, due to lower error rate, as discussed
in §5.

A.4 Published AED Dataset

As described in §3, we generate our own AED
dataset. Our submission includes the AED dataset
as well as the predictions of our models on the test
sets. We hope that our dataset will help future re-
searchers and encourage them to work on AED. In
addition, while Google Cloud is a publicly avail-
able service, a paid subscription is required in order

"id": "test-other/2414/128292/2414-128292-0002",

"truth": "what matter about my shadow",
"asr": [
["foot", ©.5593389272689819, 1],

["doctor”, ©.9715939164161682, 1],
["about”, ©.9719187617301941, @],
["my", ©.8484553694725037, O],
["shadow", ©.9790922999382019, @]
]
}

Figure 5: A single example from our AED dataset.

to transcribe significant amounts of data. Thus, we
hope that our transcriptions will make AED more
accessible. Finally, the underlying ASR model in
Google Cloud can change over time, publishing
the exact transcriptions that we obtained during our
experiments, will ensure the full reproducibility of
our results.

The LibriSpeech Corpus Details We provide
here additional details abut the LibriSpeech cor-
pus.’> The corpus contains approximately 1000
hours of English speech from read audio books.
The corpus contains clean and other pools. The
training data is split into three subsets: train-clean-
100, train-clean-360 and train-other-500, with ap-
proximate sizes of 100, 360 and 500 hours respec-
tively. Each pool contains also a development and
test sets with approximately 5 hours of audio. Full
data split details can be seen in table 7. We note
that the #Examples is slightly different than the
numbers in our dataset (see table 1). When tran-
scribing with Google Cloud API, we occasionally
reached a quota limit and a negligible number of
examples was not transcribed successfully (up to
2% per split). The clean pool contains 2 training
sets, we used the larger one in our dataset (train-
clean-360).

Annotation Description A single example from
our AED dataset can be seen is fig. 5. The an-

Bhttps://www.openslr.org/12/


https://www.openslr.org/12/

notation contains the ASR hypothesis words, the
corresponding word-level confidence scores and
the ERROR or NOTERROR label.

License This data as well as the underlying Libr-
Speech ASR corpus are licensed under a Creative

Commons Attribution 4.0 International License!®.

A.5 Limitations and Risks

Limitations Whilst we evaluated RED-ACE on
multiple datasets with multiple ASR models, all
experiments were run on English data. As such
the benefits of RED-ACE on other languages has
not been shown. Additionally, in this paper we
focused on substitution and deletion errors of ASR
systems, as such our approach does not account for
ASR errors where the system simply deletes output
words.

Risks A possible risk posed by an AED system
could be caused by an over-reliance on it. Whereas
without AED, the entire output of an ASR system
may have been manually verified, with AED only
parts of output which the AED flagged may be
verified, leading to errors remaining that were not
found by the AED system.

Yhttp://creativecommons.org/licenses/
by/4.0/
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