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Abstract
ASR Error Detection (AED) models aim to001
post-process the output of Automatic Speech002
Recognition (ASR) systems, in order to detect003
transcription errors. Modern approaches usu-004
ally use text-based input, comprised solely of005
the ASR transcription hypothesis, disregard-006
ing additional signals from the ASR model.007
Instead, we propose to utilize the ASR sys-008
tem’s word-level confidence scores for improv-009
ing AED performance. Specifically, we add010
an ASR Confidence Embedding (ACE) layer011
to the AED model’s encoder, allowing us to012
jointly encode the confidence scores and the013
transcribed text into a contextualized represen-014
tation. Our experiments show the benefits of015
ASR confidence scores for AED, their comple-016
mentary effect over the textual signal, as well017
as the effectiveness and robustness of ACE for018
combining these signals. To foster further re-019
search, we publish a novel AED dataset con-020
sisting of ASR outputs on the LibriSpeech cor-021
pus with annotated transcription errors.1022

1 Introduction023

Automatic Speech Recognition (ASR) systems024

transcribe audio signals, consisting of speech, into025

text. While state-of-the-art ASR systems reached026

high transcription quality, training them requires027

large amounts of data and compute resources. For-028

tunately, many high performing systems are avail-029

able as off-the-shelf cloud services. However, a030

performance drop can be observed when applying031

them to specific domains or accents (Khandelwal032

et al., 2020; Mani et al., 2020), or when transcrib-033

ing noisy audio. Moreover, cloud services usually034

expose the ASR model as a black box, making it035

impossible to further fine-tune it.036

ASR Error Detection (AED) models are de-037

signed to post-process the ASR output, in order038

to detect transcription errors and avoid their propa-039

gation to downstream tasks (Errattahi et al., 2018).040

1The code will be released upon publication.

Figure 1: Our ASR Error Detection pipeline. The word-
level confidence scores are quantized and jointly en-
coded with the transcription text. The resulting con-
textualized representation is fed into a sequence tagger.

AED models are widely used in interactive systems, 041

to engage the user to resolve the detected errors. 042

One example of an AED system can be found in 043

Google Docs Voice Typing, where low confidence 044

words are underlined, making it easier for users to 045

spot errors and take actions to correct them. 046

Modern NLP models usually build upon the 047

Transformer architecture (Vaswani et al., 2017). 048

However, no Transformer-based AED models have 049

been proposed yet. Recently, the Transformer has 050

been applied to ASR error correction (Mani et al., 051

2020; Liao et al., 2020; Leng et al., 2021a,b), an- 052

other ASR post-processing task. These models use 053

only the transcription hypothesis text as input and 054

discard other signals from the ASR model. How- 055

ever, earlier work on AED (not Transformer-based) 056

has shown the benefits of such ASR structured 057

signals (Allauzen, 2007; Pellegrini and Trancoso, 058

2009; Chen et al., 2013) and specifically the ben- 059

efits of ASR word-level confidence scores (Zhou 060

et al., 2005), which are often provided in addition 061
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to the transcribed text (Jiang, 2005; Li et al., 2021).062

In this work we focus exclusively on AED and063

propose a natural way to embed the ASR confi-064

dence scores into the Transformer architecture. We065

introduce RED-ACE, a modified Transformer066

encoder with an additional embedding layer, that067

jointly encodes the textual input and the word-level068

confidence scores into a contextualized represen-069

tation (fig. 2). Our AED pipeline first quantizes070

the confidence scores into integers and then feeds071

the quantized scores with the transcribed text into072

the modified Transformer encoder (fig. 1). Our073

experiments demonstrate the effectiveness of RED-074

ACE in improving AED performance. In addition,075

we demonstrate the robustness of RED-ACE to076

changes in the transcribed audio quality. Finally,077

we release a novel dataset that can be used to train078

and evaluate AED models.079

2 RED-ACE080

Following recent trends in NLP, we use a pre-081

trained Transformer-based language model, lever-082

aging its rich language representation. Our AED083

model is based on a pre-trained BERT (Devlin et al.,084

2019), adapted to be confidence-aware and further085

fine-tuned for sequence tagging. Concretely, our086

AED model is a binary sequence tagger that given087

the ASR output, consisting of the transcription hy-088

pothesis words and their corresponding word-level089

confidence scores, predicts an ERROR or NOTER-090

ROR tag for each input token.091

An overview of our AED pipeline can be seen092

in fig. 1. Given the ASR output, we first quantize093

the floating-point confidence scores into integers094

using a binning algorithm.2 The binning algorithm095

and the number of bins are hyper-parameters of our096

algorithm.3097

The quantized scores and the transcription text098

are fed into our confidence-aware BERT (fig. 2).099

In BERT, each input token has 3 different embed-100

dings.4 To adapt BERT to be confidence-aware,101

we add additional embedding to every input token,102

indicating the confidence bin it belongs to. We103

construct a learned confidence embedding lookup104

matrix M ∈ RB×H , where B is the number of105

bins and H is BERT’s embedding vector’s size.106

For a given token, its input representation is con-107

2Typical confidence scores range between 0.0 to 1.0.
3We experiment with different binning strategies, see §A.1.
4Token, Segment and Position embeddings. See fig. 2 in

Devlin et al. (2019).
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[CLS] [SEP]c3c1 c2 c4 c5Confidence scores

Figure 2: Our confidence-aware AED model. We use
a BERT-based tagger with modifications colored in
green. An additional embedding layer is added to repre-
sent the embedding of the quantized confidence scores.

Pool Split # Examples # Words # Errors

clean
Train 103,895 3,574,027 357,145 (10.0%)
Dev 2,697 54,062 5,111 (9.5%)
Test 2,615 52,235 4,934 (9.4%)

other
Train 146,550 4,650,779 770,553 (16.6%)
Dev 2,809 48,389 9,876 (20.4%)
Test 2,925 50,730 10,317 (20.3%)

Table 1: AED dataset statistics.

structed by summing the corresponding BERT’s 108

embeddings with its confidence embedding. 109

3 Dataset Creation and Annotation 110

To train and evaluate our model, we generate a 111

dataset with labeled transcription errors. First, we 112

decode audio data using the candidate ASR model 113

and obtain the transcription hypothesis. Then, we 114

align the hypothesis words with the reference (cor- 115

rect) transcription. Specifically, we find an edit 116

path, between the hypothesis and the reference, 117

with the minimum edit distance and obtain a se- 118

quence of edit operations (insertions, deletions and 119

substitutions) that can be used to transform the hy- 120

pothesis into the reference. Every incorrect hypoth- 121

esis word (i.e needs to be deleted or substituted) 122

is labeled as ERROR and the rest are labeled as 123

NOTERROR. 124

For the ASR model, we use Google Cloud 125

Speech-to-Text API5 (more details in §A.2). For an 126

audio data source, we use the LibriSpeech corpus 127

(Panayotov et al., 2015), containing approximately 128

1000 hours of transcribed English speech from au- 129

dio books.6 The corpus contains clean and other 130

pools, where clean is of higher recording quality. 131

Table 1 contains our generated dataset statistics. To 132

encourage further research we make our dataset 133

5https://cloud.google.com/
speech-to-text

6https://www.openslr.org/12/
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Main setups Robustness setups

Train clean -> Eval clean Train other -> Eval other Train other -> Eval clean Train clean -> Eval other
R P F1 R P F1 R P F1 R P F1

C-O 52.1 42.5 46.8 63.5 45.6 53.1 63.6 34.7 44.9 52.3 52.3 52.3
BERT 58.5 77.6 66.7 58.0 77.1 66.2 64.3 71.9 67.9 47.1 80.3 59.4

RED-ACE 61.1∗ 81.9∗ 70.0∗ 64.1 79.9∗ 71.1∗ 67.9∗ 77.0∗ 72.2∗ 53.7∗ 83.3∗ 65.3∗

F1 ∆% +4.9% +7.4% +6.3% +9.9%

Table 2: AED results. R and P stands for Recall and Precision. F1 ∆% compares RED-ACE to the strongest
baseline. RED-ACE results with ∗ indicate a statistically significant difference compared to the strongest baseline.

Figure 3: Precision/Recall values that can be obtained
by using thresholds on confidence to detect errors.

publicly available. For additional details about the134

corpus and our generated dataset see §A.4.135

4 Experimental Setup136

As described in §2, we use pre-trained BERT (De-137

vlin et al., 2019) and adapt it to be confidence-138

aware by introducing RED-ACE. We then fine-tune139

it for sequence tagging using the annotated tran-140

scription errors from our dataset (§3). We provide141

extensive implementation details in §A.1.142

4.1 Baselines143

To evaluate the complementary effect of the textual144

and the confidence signals, as well as the effective-145

ness of RED-ACE in combining those signals, we146

compare RED-ACE to the following baselines:147

Confidence Only (C-O) As the primary purpose148

of the ASR confidence scores is to allow down-149

stream applications to detect transcription errors,150

our first baseline is based on confidence only. We151

use a score threshold to predict errors, meaning that152

tokens with scores below the threshold are classi-153

fied as ERROR. We choose the threshold that yields154

the best F1 on the development set (see fig. 3).155

BERT We fine-tune BERT (Devlin et al., 2019)156

for sequence tagging (without RED-ACE), using157

the annotated transcription errors from our dataset158

(§3). This baseline is based on the Grammatical Er-159

ror Detection (GED) model proposed by Cheng and160

Duan (2020), where BERT based taggers achieved161

the highest performance in the NLPTEA-2020 162

Shared Task for Chinese GED (Rao et al., 2020). 163

We used a GED model as we could not find any 164

modern AED models (see §6). In addition, lever- 165

aging a Transformer that uses only the ASR hy- 166

pothesis text as input, is also in line with recent 167

work on ASR error correction, an additional ASR 168

post-processing task (§6). 169

4.2 Evaluation 170

We measure Precision (P), Recall (R) and F1. Re- 171

call measures the percent of real errors that were 172

detected, while Precision measures the percent of 173

the real errors out of all detected errors. 174

Robustness A real-word transcription system 175

should be robust to changes in the audio quality. 176

Such changes can affect the ASR model’s errors 177

distribution and thus can potentially reduce the ef- 178

fectiveness of the AED model. Luckily, our dataset 179

contains 2 pools with different audio quality (§3), 180

allowing us to evaluate RED-ACE’s robustness. 181

We perform a cross-pools evaluation, evaluating 182

models that were trained on clean and other pools 183

using the other and the clean test sets respectively. 184

5 Results 185

Table 2 contains the main results, comparing RED- 186

ACE to the baseline models (§4.1). When observ- 187

ing the F1 results for C-O, the advantage of the 188

models that use textual input is evident. Thus, we 189

focus our analysis on comparing RED-ACE to the 190

text-based BERT tagger. 191

We first analyze the main setups and observe that 192

RED-ACE consistently outperforms BERT on all 193

evaluation metrics in both pools. This demonstrates 194

the usefulness of the confidence scores signal on 195

top of the textual input, as well as the effective- 196

ness of our approach in combining those signals. 197

RED-ACE F1 ∆% drop a little on clean, compared 198

to other. This is expected since errors in clean 199

are rare (thus harder to detect), with an error rate 200
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twice lower than in other (see table 1), making it201

more challenging to further improve on top of the202

strong BERT baseline.203

Next we analyze the robustness setups. When an-204

alyzing other -> clean, we observe that BERT and205

RED-ACE achieve higher recall and lower preci-206

sion, compared to clean -> clean. This is probably207

caused by the higher error rate of other (table 1),208

which leads to a model with a higher tendency to209

mark words as errors. Interestingly, the overall210

F1 actually increases for both models, suggesting211

that even though other is more noisy, exposing the212

model to a larger number of errors is crucial. An213

opposite trend can be seen when comparing clean214

-> other to other -> other. In this case, the recall215

drops dramatically for both models, while the pre-216

cision is improving. Overall F1 drops significantly,217

again demonstrating the importance of exposing218

the AED model to a larger amount of errors.219

Finally, we examine RED-ACE’s robustness by220

comparing the F1 ∆% between the main and ro-221

bustness setups. In the other -> clean setup, RED-222

ACE achieves a relative F1 improvement compa-223

rable to clean -> clean (6.3% compared to 4.9%)7,224

which indicates that RED-ACE effectiveness is ro-225

bust to transcriptions from different audio quality.226

The results on clean -> other are even more impres-227

sive. RED-ACE improves the F1 by 9.9%, com-228

pared to 7.4% improvement on other -> other.8229

clean -> other is the hardest setup with BERT’s F1230

significantly lower than the rest 3 setups, meaning231

that RED-ACE shows the strongest improvement in232

the hardest setup. This is another strong indication233

of the robustness of RED-ACE.234

Robustness to Candidate ASR In order to make235

sure that RED-ACE is applicable to not only one236

specific ASR model, we repeat our main experi-237

ments using a different ASR model.9 The results238

can be seen in table 3. RED-ACE outperforms all239

baselines, which provides additional evidence for240

its robustness, this time to errors that stem from241

different ASR models.242

6 Related Work243

AED has been studied for many years, we refer244

the reader to Errattahi et al. (2018) for a thorough245

review. Zhou et al. (2005) used data mining models,246

7The difference in F1 ∆% is not statistically significant.
8The difference in F1 ∆% is statistically significant.
9Also using Google Cloud API, this time with video in-

stead of default model, more details in §A.2.

clean -> clean other -> other
R P F1 R P F1

C-O 28.7 22.4 25.2 34.5 26.2 29.8
BERT 54.9 77.2 64.2 52.7 78.8 63.2

RED-ACE 58.6∗ 75.4 65.9∗ 55.2∗ 80.7∗ 65.6∗

F1 ∆% +2.6% +3.8%

Table 3: AED results on main setups using errors from
a different ASR model. Format is similar to table 2.

leveraging features from confidence scores and a 247

linguistics parser. Allauzen (2007) used logistic 248

regression with features extracted from confusion 249

networks. Pellegrini and Trancoso (2009) used 250

a Markov Chains classifier. Chen et al. (2013) 251

focused on spoken translation using confidence 252

scores from a machine translation model, posteriors 253

from entity detector and a word boundary detector. 254

Modern Transformer-based approaches have not 255

addressed the AED task directly. A few attempts 256

were made to apply the Transformer for the er- 257

ror correction task. Some used autoregressive 258

sequence-to-sequence models to map directly be- 259

tween the ASR hypothesis to the correct (reference) 260

transcription (Mani et al., 2020; Liao et al., 2020), 261

while others used non-autoregressive models (Leng 262

et al., 2021a,b). To the best of our knowledge, our 263

work is the first to address the AED task using the 264

Transformer architecture and to introduce represen- 265

tation for ASR confidence scores in a Transformer- 266

based ASR post-processing model. 267

7 Conclusion 268

We introduced RED-ACE, an approach for em- 269

bedding ASR word-level confidence scores into a 270

Transformer-based ASR error detector. RED-ACE 271

jointly encodes the scores and the transcription hy- 272

pothesis into a contextualized representation. Our 273

experiments showed significant performance gains 274

when using RED-ACE, compared to using the tran- 275

scription text or the confidence scores alone, indi- 276

cating the effectiveness of RED-ACE in construct- 277

ing richer representation for error detection. Our 278

results also demonstrated the robustness of RED- 279

ACE to changes in the audio quality, which can be 280

crucial for real-world applications. 281

In future work, we would like to explore the 282

benefits of ASR confidence scores for error cor- 283

rection models. We also hope that our work will 284

inspire AED researchers to integrate RED-ACE in 285

their models, in order to potentially benefit from its 286

complementary effect. 287
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A Appendix398

A.1 Implementation Details399

Training We fine-tune our BERT-based (Devlin400

et al., 2019) model with a batch size of 512, a401

weight decay of 0.01, and a learning rate of 3e-6.402

The maximum input length is set to 128 tokens.403

We pad shorter sequences and truncate longer ones404

to the maximum input length. We use the cross-405

entropy loss function, optimizing the parameters406

with the AdamW optimizer. We train for a maxi-407

mum of 500 epochs and choose the checkpoint with408

the maximum tagging accuracy on the development409

set. The best checkpoint was found at epochs 100-410

150 after approximately 8 hours of training time.411

All models were trained on TPUs (4x4). The con-412

fidence embedding matrix is randomly initialized413

with truncated normal distribution.10. If a single414

word is split into several tokens during BERT’s415

tokenization, all the corresponding tokens get the416

confidence score of the original word. To predict417

word-level errors, we treat a word as an error if418

one of it’s tokens was tagged as error by the model.419

Bert base has 110 million parameters, the inclusion420

of confidences embeddings for RED-ACE added421

10k additional parameters.422

Binning Table 4 contains results for different bin-423

ning algorithms and bin sizes. For binning algo-424

rithms we use: (1) simple equal-width binning and425

(2) quantile-based discretization (equal-sized buck-426

ets). We note that there is no significant difference427

between the results. In our main experiments we428

used equal width binning with 10 bins. For special429

tokens,11 that do not have confidence scores, we430

chose to allocate a dedicated bin.431

Statistics Significance Test In table 2, in addi-432

tion to the main results, we provide a statistic sig-433

nificance tests results. For this purpose we pseudo-434

randomly shuffle all words in our test set, split them435

up into 100 approximately equally sized subsets,436

and compute recall, precision and F1 for each of437

them for the baseline and RED-ACE models. We438

then apply the Student’s paired t-test with p < 0.05439

to these sets of metrics. To determine statistical440

significance in F1 ∆% between different setups441

evaluated on the same data set, F1 ∆% is com-442

puted for each of the given subsets, and the same443

10https://www.tensorflow.org/api_
docs/python/tf/keras/initializers/
TruncatedNormal

11[CLS] and [SEP] in case of BERT.

Binning algorithm # Bins R P F1

Equal width bins
10 64.1 79.9 71.1
100 62.5 80.5 70.4
1000 63.2 80.7 70.9

Equal size bins 10 63.0 81.5 71.1

Table 4: Effect on different binning strategies (other).

Pool Split # Examples # Words # Errors

clean
Train 104,013 3,589,136 210,324 (5.9%)
Dev 2,703 54,357 3,109 (5.7%)
Test 2,620 52,557 2,963 (5.6%)

other
Train 148,678 4,810,226 148,678 (7.9%)
Dev 2,809 50,983 5,901 (11.6%)
Test 2,939 52,192 6,033 (11.6%)

Table 5: Our AED dataset statistics when using a dif-
ferent ASR model (video instead of default).

significance test is applied to the resulting sets of 444

F1 ∆% between two setups. 445

A.2 ASR Models 446

We use Google Cloud Speech-to-Text API as our 447

candidate ASR model.12 In our main experiments 448

we select the default ASR model13 and enable the 449

word-level confidence.14 In our experiment with 450

additional ASR model (table 3) we selected the 451

video model. 452

Additional details about the video model We 453

use the video model to make sure RED-ACE is 454

effective for multiple ASR models (as discussed 455

in §5). For completeness we provide additional 456

details about the setup with video. Table 5 contains 457

the AED dataset statistics when using the video 458

model instead of default. A notable difference from 459

table 1 is a significantly lower error rate on both 460

pools. In table 3 we reported results for video 461

only on the main setups, for completeness we add 462

here the results for the robustness setups as well. 463

Table 6 contains full results on video, including the 464

robustness setups. 465

A.3 C-O Plot for the clean Corpus 466

In fig. 3 we illustrate the possible precision and 467

recall values when using Confidence Only (C-O) 468

on the other pool. For completeness we provide 469

12https://cloud.google.com/
speech-to-text

13https://cloud.google.com/
speech-to-text/docs/basics#select-model

14https://cloud.google.com/
speech-to-text/docs/word-confidence#
word-level_confidence
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Main setups Robustness setups

Train clean -> Eval clean Train other -> Eval other Train other -> Eval clean Train clean -> Eval other
R P F1 R P F1 R P F1 R P F1

C-O 28.7 22.4 25.2 34.5 26.2 29.8 35.4 18.3 24.1 27.4 30.5 28.9
BERT 54.9 77.2 64.2 52.7 78.8 63.2 61.2 73.5 66.8 42.9 82.2 56.4

RED-ACE 58.6∗ 75.4 65.9∗ 55.2∗ 80.7∗ 65.6∗ 62.8∗ 75.8∗ 68.7∗ 47.7∗ 79.8∗ 59.7∗

F1 ∆% +2.6% +3.8% +2.8% +5.9%

Table 6: AED results using a different ASR model (video instead of default). Format is similar to table 2.

Figure 4: Comparison of RED-ACE to using the confi-
dence scores alone on a threshold basis. Each threshold
leads to a different precision recall balance. This plot
is equivalent to fig. 3 but evaluated on the clean pool.
In addition we added a dotted line representing the pre-
cision recall curve on the clean pool from fig. 3.

Pool Subset Name Audio Hours # Examples

Clean

train-clean-100 100.6 28,539
train-clean-360 363.6 104,014
dev-clean 5.4 2,703
test-clean 5.4 2,620

Other
train-other-500 496.7 148,688
dev-other 5.3 2,864
test-other 5.1 2,939

Table 7: LibriSpeech corpus subsets statistics.

the plot for the clean pool as well in fig. 4. We also470

added a dotted line representing the precision recall471

curve on the other pool from fig. 3. The higher pre-472

cision recall values on the other pool are additional473

evidence that clean can be more challenging for474

error detection, due to lower error rate, as discussed475

in §5.476

A.4 Published AED Dataset477

As described in §3, we generate our own AED478

dataset. Our submission includes the AED dataset479

as well as the predictions of our models on the test480

sets. We hope that our dataset will help future re-481

searchers and encourage them to work on AED. In482

addition, while Google Cloud is a publicly avail-483

able service, a paid subscription is required in order484

Figure 5: A single example from our AED dataset.

to transcribe significant amounts of data. Thus, we 485

hope that our transcriptions will make AED more 486

accessible. Finally, the underlying ASR model in 487

Google Cloud can change over time, publishing 488

the exact transcriptions that we obtained during our 489

experiments, will ensure the full reproducibility of 490

our results. 491

The LibriSpeech Corpus Details We provide 492

here additional details abut the LibriSpeech cor- 493

pus.15 The corpus contains approximately 1000 494

hours of English speech from read audio books. 495

The corpus contains clean and other pools. The 496

training data is split into three subsets: train-clean- 497

100, train-clean-360 and train-other-500, with ap- 498

proximate sizes of 100, 360 and 500 hours respec- 499

tively. Each pool contains also a development and 500

test sets with approximately 5 hours of audio. Full 501

data split details can be seen in table 7. We note 502

that the #Examples is slightly different than the 503

numbers in our dataset (see table 1). When tran- 504

scribing with Google Cloud API, we occasionally 505

reached a quota limit and a negligible number of 506

examples was not transcribed successfully (up to 507

2% per split). The clean pool contains 2 training 508

sets, we used the larger one in our dataset (train- 509

clean-360). 510

Annotation Description A single example from 511

our AED dataset can be seen is fig. 5. The an- 512

15https://www.openslr.org/12/
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notation contains the ASR hypothesis words, the513

corresponding word-level confidence scores and514

the ERROR or NOTERROR label.515

License This data as well as the underlying Libr-516

Speech ASR corpus are licensed under a Creative517

Commons Attribution 4.0 International License16.518

A.5 Limitations and Risks519

Limitations Whilst we evaluated RED-ACE on520

multiple datasets with multiple ASR models, all521

experiments were run on English data. As such522

the benefits of RED-ACE on other languages has523

not been shown. Additionally, in this paper we524

focused on substitution and deletion errors of ASR525

systems, as such our approach does not account for526

ASR errors where the system simply deletes output527

words.528

Risks A possible risk posed by an AED system529

could be caused by an over-reliance on it. Whereas530

without AED, the entire output of an ASR system531

may have been manually verified, with AED only532

parts of output which the AED flagged may be533

verified, leading to errors remaining that were not534

found by the AED system.535

16http://creativecommons.org/licenses/
by/4.0/
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