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Abstract

Generative models are spearheading recent progress in deep learning, showcasing
strong promise for trajectory sampling in dynamical systems as well. However,
whereas latent space modeling paradigms have transformed image and video
generation, similar approaches are more difficult for most dynamical systems.
Such systems — from chemical molecule structures to collective human behav-
ior — are described by interactions of entities, making them inherently linked to
connectivity patterns, entity conservation, and the traceability of entities over
time. Our approach, LAM-SLIDE (Latent Space Modeling of Spatial Dynamical
Systems via Linked Entities), bridges the gap between: (1) keeping the trace-
ability of individual entities in a latent system representation, and (2) leveraging
the efficiency and scalability of recent advances in image and video generation,
where pre-trained encoder and decoder enable generative modeling directly in
latent space. The core idea of LAM-SLIDE is the introduction of identifier rep-
resentations (IDs) that enable the retrieval of entity properties and entity com-
position from latent system representations, thus fostering traceability. Exper-
imentally, across different domains, we show that LAM-SLIDE performs fa-
vorably in terms of speed, accuracy, and generalizability. Code is available at
https://anonymous.4open.science/r/lam-slide-B38B.

1 Introduction

Understanding dynamical systems represents a fundamental challenge across numerous scientific and
engineering domains [44, 43| 167]]. In this work, we address spatial dynamical systems, characterized
by scenes of distinguishable entities at defined spatial coordinates. Modeling temporal trajectories
of such entities quickly becomes challenging, especially when stochasticity is involved. A prime
example is molecular dynamics [44]].

A conventional approach to predict spatial trajectories of entities is to represent scenes as neighbor-
hood graphs and to subsequently process these graphs with graph neural networks (GNNs). When
using GNNs [75 1591 32, [11]], each entity is usually represented by a node, and the spatial entities
nearby are connected by an edge in the neighborhood graph. Neighborhood graphs have extensively
been used for trajectory prediction tasks [48], especially for problems with a large number of indis-
tinguishable entities, [e.g.,[73,58]. Recently, GNNs have been integrated into generative modeling
frameworks to effectively capture the behavior of stochastic systems [87, 22].

Despite their widespread use in modeling spatial trajectories, GNNs hardly follow recent trends in
latent space modeling, where unified representations [42] together with universality and scalability
of transformer blocks [[82] offer simple application across datasets and tasks, a behavior commonly
observed in computer vision and language processing [24} 25]]. Notably, recent breakthroughs in
image and video generation can be accounted to latent space generative modeling [36, [15]. In such
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paradigms, pre-trained encoders and decoders are employed to map data into a latent space, where
subsequent modeling is performed, leveraging the efficiency and expressiveness of this representation.
This poses the question:

Can we leverage recent techniques from generative latent space modeling to boost the
modeling of stochastic trajectories of dynamical systems with varying number of entities?

Recently, it has been shown [5] that it is possible to model the bulk behavior of large particle systems
purely in the latent space, at the cost of sacrificing the traceability of individual particles, which is
acceptable or even favorable for systems where particles are indistinguishable, but challenging for,
e.g., molecular dynamics, where understanding the dynamics of individual atoms is essential.

Graph Neural Networks LaM - SLidE Latent Diffusion
(conditional generation)

t t+ At t Latent Space

Latent Space

Figure 1: Overview of our approach. Left: Conventional graph neural networks (GNNs) model time-
evolving systems (e.g., molecular dynamics) by representing entities as nodes and iteratively updating
node embeddings and positions to capture system dynamics across timesteps. Right: Latent diffusion
models employ an encoder-decoder architecture to compress input data into a lower-dimensional
latent space where generative modeling is performed. Latent diffusion models, frequently enhanced
with conditional information like text, excel at generative tasks, but due to the fixed input/output
structure, are not directly adaptable to physical systems with varying number of entities. Middle:
Our proposed approach LAM-SLIDE bridges these paradigms by: (1) introducing identifiers that
allow traceability of individual entities, and (2) leveraging a latent system representation.

In order to leverage a latent systems representation, we need to be able to trace individual entities of
the system. The core idea of our approach LAM-SLIDE is the introduction of identifiers (IDs) that
allow for retrieval of entity properties, e.g. entity coordinates, from the latent system representation.
Consequently, we can train generative models, like flow-matching [50, 153} 2], purely in latent space,
where pre-trained decoder blocks map the generated representations back to the physics domain. An
overview is given in Fig.[I] For more background information, please refer to App. [A]

2 LaM - SLidE

We introduce an identifier pool and an identifier assignment function which allow us to effectively
map and retrieve entities to and from a latent system representation. The ID components preserve the
relationships between entities, making them traceable across time-steps. LAM-SLIDE follows an
encoder & - approximator .4 - decoder D paradigm.

2.1 Problem Formulation

State space. We consider spatial dynamics. Our states s € S describe the configuration of entities
within the scene together with their individual features. We assume that a scene consists of IV entities
e; withi € 1,..., N. An entity e; is described by its spatial location x; € RP= and some further
properties m; € RP™ (e.g., atom type, etc.), we denote the set of entities as E = {e1,...,e,}. We
consider states s’ at discretized timepoints ¢. Analogously, we use x!, m! to describe coordinates
and properties at time ¢, respectively. We refer to the coordinate concatenation [x, .., x%] of the N
entities in s’ as X! € RY*P=_ Analogously, we use M € RV*Pm to denote [m!, .., m%,]. When
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Figure 2: Architecture of our encoder-decoder structure (First Stage): Left: The encoder maps N
input tokens to a latent system representation by cross-attending to L learned latent query tokens.
The decoder reconstructs the input data from the latent representation using the assigned IDs. Right:
Structure of the input token, consisting of an ID, spatial information and features (see also App.

Fig. ).

properties are conserved over time, i.e., M = M, we just skip the time index and the time-wise
repetition of states and use M € RV *P=_ We concatenate sequences of coordinate states X! with
t€1..Ttoatensor X € RT*N*D= which describes a whole sampled coordinate trajectory of a
system with 7" time points and IV entities. An example for such trajectories from dynamical systems
are molecular dynamics trajectories (e.g. App. Fig.[9). Notation is summarized in App.

Prediction task. We predict a trajectory of entity coordinates X[Zet1: 7]
[(XTott . Xt ... XT] € RT-To)xNxDa given a short (observed) initial trajectory X[+ Tl =
(X1 ..., Xt ..., XTo] € RToXNXDs together with general (time-invariant) entity properties M.

Here, T, denotes the length of the observed trajectory and Ty = T" — T}, the prediction horizon.

2.2 Entity Structure Preservation

We aim to preserve the integrity of individual entities in a latent system representation. More
specifically, we aim to preserve both the number of entities as well as their structure. For example, in
the case of molecules, we want to preserve both the number of atoms and the atom composition. We
therefore assign identifiers from an identifier pool to each entity, which allows us to trace the entities
by the assigned identifiers. The two key components are: (i) creating a fixed, finite pool of identifiers
(IDs) and (ii) defining an unique mapping between entities and identifiers.

Definition 2.1. Forafixed u € N, letZ = {0, 1,...,u — 1} be the identifier pool. An identifier i is
an element of the set Z.

Definition 2.2. Let F be a finite set of entities and Z an identifier pool. The identifier assignment
pool is the set of all injective functions from F to Z:

I={ida(:): Ew— 1 |Ve;,e; € E:e; #e; = ida(e;) # ida(ej)}, (1
An identifier assignment function ida(-) is an element of the set I.

Proposition 2.3. Given an identifier pool I and a finite set of entities E, an identifier assignment
pool I as defined by Definition2.2]is non-empty if and only if |E| < |Z|.

Proposition 2.4. Given an identifier pool T and a finite set of entities E such that |E| < |Z|, the
identifier assignment pool I as defined by Definition contains finitely many injective functions.

Notably, since ida(-) may be selected randomly - the specific choice of the mapping ida(-) can
be arbitrary, the only requirement is that an injective mapping between entities and identifiers is
established, i.e. each entity is uniquely assigned to an identifier, but not all identifiers need to be
assigned to an entity. Further, Proposition[2.3]suggests to use an identifier pool which is large enough,
such that a model learned on this identifier pool can generalize across systems with varying numbers
of entities. For proofs and an example, we refer to App.

2.3 Model Architecture

Since predicting continuations of system trajectories is a conceptually similar task to generating
videos from an initial sequence of images, we took inspiration from Blattmann et al. [[15] in using a
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latent diffusion architecture. We also took inspiration from Jaegle et al. [40] to decompose our model
architecture as follows: To map the state of the system composed of N entities to a latent space
containing L learned latent tokens (€ RP=), we use a cross-attention mechanism. In the resulting
latent space, we aim to train an approximator to predict future latent states based on the embedded
initial states. Inversely to the encoder, we again use a cross-attention mechanism to retrieve the
physical information of the individual entities of the system from the latent system representation. To
wrap it up, LAM-SLIDE , is built up by an encoder £ - approximator .4 - decoder D architecture,
Do Ao&. A detailed composition of £ and D is shown in Fig.[2]

Encoder. The encoder £ aims to encode a state of the system such that the properties of each
individual entity e,, can be decoded (retrieved) later. At the same time the structure of the latent state
representation Z* € RE*P= is constant and should not depend on the different number N of entities.
This contrasts with GNNs, where the number of the latent vectors depends on the number of nodes.

To allow for traceability of the entities, we first embed each identifier 7 in the space R”+ by a learned
embedding IDEmb : Z — RP«. We map all (n = 1,..., N) system entities e,, to u,, € RP+ as
follows:

ida(-) (arbitrary identifier assignment) 2)
n = IDEmb(ida(e,)) vnel,...,N 3)

The inputs to the encoder comprise the time dependent location x!, € RP=, properties m,, € R+,
and identity representation u,, € RP= of each entity e,,, as v1suallzed in the right part of Flg I We
concatenate the different types of features across all entities of the system: X = [x},..,x}], M =
[my,..,my]and U = [uy,..,uy].

The encoder £ maps the input to a latent system representation via
£ [Xt,M7U] € RNX(DT,+DM+D“) — Zt c RLXDZ7

realized by cross-attention [82] [69]] between the input tensor € RN *(P=+Dm+Du) which serves as
keys and values, and a fixed number of L learned latent vectors € RP= [40], which serve as the
queries. The encoding process is depicted on the left side of Fig. 2]

Decoder. The aim of the decoder D is to retrieve the system state information X* and M from the
latent state representation Z! using the encoded entity identifier embeddings U. The decoder D maps
the latent system representation back into the coordinates and properties of each entity via

D:Z' e RF*P= x U e REXPv s [XE, M] € RVX(PetDm),

As shown in the middle part of Fig. 2] D is realized by cross-attention layers. The latent space
representation Z* serves as the keys and values in the cross-attention mechanism, while the embedded
identifier u,, acts as the query. Applied to to all (n = 1, ..., N) system entities e,,, this results in the
retrieved system state information X* and M. Using the learned identifier embeddings as queries can
be interpreted as a form of content-based retrieval and associative memory [6} 38} [69]].

Approximator. Finally, the approximator models the system’s time evolution in latent space, i.e., it
predicts a series of future latent system states Z[To+1: 71 = [ZTo+1 7t 7ZT], given a series
of initial latent system states Z!*: 7ol = [Z1 ... Z! ... ZT°],

A . Z[l: To) c RTOXLXDZ — Z[To+1: T) c RTfXLXDz.

Given the analogy of predicting the time evolution of a dynamical system to the task of synthesizing
videos, we realized A by a flow-based model (specifically it’s based on the stochastic interpolants
framework [2} 56]]).

Further architecture details and general training details can be found in App.[D] concrete experimental
implementation details and details to datasets related to Sect. [3]are in App. [E]

3 Experiments

We evaluate LAM-SLIDE on two molecular dynamics datasets: the well established MD17 [21]]
dataset and on a tetrapeptides dataset (4AA) [41] to investigate its long prediction horizons. We
further provide results on n-body system dynamics in App.
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The MD17 dataset contains simulated molecular dynamics trajectories of 8 small molecules. The size
of those molecules ranges from 9 atoms (Ethanol and Malonaldehyde) to 21 atoms (Aspirin). We use
10 frames as conditioning, 20 frames for prediction and report ADE/FDE averaged over K = 5 runs.
The 4AA dataset contains explicit-solvent molecular dynamics trajectories simulated using
OpenMM [26]. The dataset comprises 3,109 training, 100 validation and 100 test peptides. We use
a single conditioning frame to predict 10,000 consecutive frames. The predictions are structured
as a sequence of ten cascading 1,000-step rollouts, where each subsequent rollout is conditioned
on the final frame of the previous. Note that, in contrast to the MD17 dataset, the methods predict
trajectories of unseen molecules.

Tab. [T] shows the performances of LAM-SLIDE and the performances of compared methods on
the MD17 benchmark. LAM-SLIDE achieves the lowest ADE/FDE of all methods and for all
molecules. These results are particularly remarkable considering that: (1) our model operates without
explicit definition molecular bond information, and (2) it surpasses the performance of all equivariant
baselines, an inductive bias we intentionally omitted in LAM-SLIDE .

Notably, we train a single model on all molecules — a feat that is structurally encouraged by the
design of LAM-SLIDE . For ablation, we also train GeoTDM [33]] on all molecules and evaluate the
performance on each one of them (“all—each” in the App. Tab.[I0). Interestingly, we also observe
consistent improvements in the GeoTDM performance; however, GeoTDM’s performance does not
reach the one of LAM-SLIDE . We also note that our latent model is trained for 2000 epochs, while
GeoTDM was trained for 5000 epochs. Trajectories are shown in App. Fig. [0}

Table 1: Results on the MD17 dataset. Compared methods have to predict atom positions of 20
frames, conditioned on 10 input frames. Results in terms of ADE/FDE, averaged over 5 runs.
Aspirin Benzene Ethanol =~ Malonaldehyde Naphthalene  Salicylic Toluene Uracil
ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

RF [49]° 0.303 0.442 0.120 0.194 0.374 0.515 0.297 0.454 0.168 0.185 0.261 0.343 0.199 0.249 0.239 0.272
TFN [80]* 0.133 0.268 0.024 0.049 0.201 0.414 0.184 0.386 0.072 0.098 0.115 0.223 0.090 0.150 0.090 0.159
SE(3)-Tr. [30]* 0.294 0.556 0.027 0.056 0.188 0.359 0.214 0.456 0.069 0.103 0.189 0.312 0.108 0.184 0.107 0.196
EGNN [74]*  0.267 0.564 0.024 0.042 0.268 0.401 0.393 0.958 0.095 0.133 0.159 0.348 0.207 0.294 0.154 0.282
EgMotion [84]* 0.185 0.246 0.029 0.043 0.152 0.247 0.155 0.249 0.073 0.092 0.110 0.151 0.097 0.129 0.088 0.116
SVAE [85]* 0.301 0.428 0.114 0.133 0.387 0.505 0.287 0.430 0.124 0.135 0.122 0.142 0.145 0.171 0.145 0.156
GeoTDM [33] * 0.107 0.193 0.023 0.039 0.115 0.209 0.107 0.176 0.064 0.087 0.083 0.120 0.083 0.121 0.074 0.099

LAM-SLIDE  0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074

% Results from Han et al. [33].

Tab. 2] compares performances of MDGen [41]] and LAM- Table 2: Results on the Tetrapeptide
SLIDE (for details on used metrics see App.[E.6). App. dataset: Columns denote the JSD be-
Fig. [10| shows the distribution of backbone torsions an- tween distributions of torsion angles
gles, and the free energy surfaces of the first two TICA (backbone (BB), side-chain (SC), all an-
components, for ground truth vs simulated trajectories. gles), the TICA, and the MSM metric.
LAM-SLIDE performs competitively with the current
state-of-the-art method MDGen with respect to torsion Torsions TICA  MSM Time
angles, which is a notable achievement given that MD- : BB SC Al 0 0.1 joint

Gen operates in torsion space only. With respect to the 10" 103 055 076 201 268 .208 ~ 5h
TICA and MSM metrics, LAM-SLIDE even outperforms ——ooctl 130 99 109 23 319 253 ~ 0
MDGen. Sampled trajectories are shown in App. Fig.[IT] LM SLDE 8 B M A 9 M v

* Results from Jing et al. [41].
We assess the computational efficiency and scalability of
LAM-SLIDE in App.[F2}] LAM-SLIDE requires up to 10x-100x fewer function evaluations.

4 Conclusion

LAM-SLIDE is a novel approach for modeling spatial dynamical systems consisting of a variable
number of entities within a fixed-size latent system representation, where assignable identifiers allow
traceability of individual entities. LAM-SLIDE matches or exceeds specialized methods and offers
promising scalability properties. It’s minimal reliance on prior knowledge makes it suitable for many
tasks, suggesting its potential as a foundational architecture for dynamical systems. We refer to
additional experiments in App. [F]for further concluding insights, for limitations, see App.
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A Background & Related Work

A.1 Dynamical systems

Formally, we consider a random dynamical system to be defined by a state space S, representing all
possible configurations of the system, and an evolution rule  : R x § — & that determines how a
state s € S evolves over time, and which exhibits the following properties for the time differences
0, fl, and, fgz

®(0,s8) =s 4
(b(£27q)(£1as)) = ¢<£1 +52as) (5)

We note that ® does not necessarily need to be defined on the whole space R x S, but we assume this
for notational simplicity. The exact formal definition of random dynamical systems is more involved
and consists of a base flow (noise) and a cocycle dynamical system defined on a physical phase
space [8]]. We skip the details, but assume to deal with random dynamical systems for the remainder
of the paper. The non-deterministic behavior of such dynamical systems suggests generative modeling
approaches.

A.2 Generative modeling

Recent developments in generative modeling have captured widespread interest. The breakthroughs
of the last years were mainly driven by diffusion models [[78, 79,35, a paradigm that transforms a
simple distribution into a target data distribution via iterative refinement steps. Flow Matching [50,
53, 2] has emerged as a powerful alternative to diffusion models, enable simulation-free training
between arbitrary start and target distributions [51] and were also extended to data manifolds [[19].
This approach comes with straighter paths, offering faster integration, and has been successfully
applied across different domains like images [27], audio [83], videos [65], protein design [39] and
robotics [13]].

A.3 Latent space modeling

Latent space modeling has achieved remarkable success at image and video generation [15} 27],
where pre-trained encoders and decoders map data into a latent space, and back into the physics
space. The latent space aims to preserve the essential structure and features of the original data,
often following a compositional structure D o A o £ [[77, /4] 5], where the encoder £ maps the input
signal into the latent space, the approximator .A models a process, and the decoder maps back to
the original space. Examples of approximators are conditional generative modeling techniques, e.g.,
generating an image given a text prompt (condition) [[71]. This framework was recently used for 3D
shape generation, which are generated in latent space, the final shape in the spatial domain is then
constructed by querying the latent representations over a fixed spatial grid [89, [88]].

A.4 Molecular Dynamics (MD)

The most fundamental concepts nowadays to describe the dynamics of molecules are given by
the laws of quantum mechanics. The Schrédinger equation is a partial differential equation, that

9 A
gives the evolution of the complex-valued wave function i over time ¢: zha—qf = H(t)y. Here i
is the imaginary unit with i2 = —1, h is reduced Planck constant, and, H (t) is the Hamiltonian

operator at time ¢, which is applied to a function 1) and maps to another function. It determines how
a quantum system evolves with time and its eigenvalues correspond to measurable energy values
of the quantum system. The solution to Schrodinger’s equation in the many-body case (particles

1,...,N) is the wave function 9 (x1,...,Xn,t) : Xilil R3? x R — C which we abbreviate as
¥({x},t). It's the square modulus |({x},t)|> = ¥*({x},t)y¥({x},t) is usually interpreted as
a probability density to measure the positions xi,...,Xy at time ¢, whereby the normalization

condition [ ... [ [¢({x},t)|?dx; ...dxx = 1 holds for the wave function 1.

Analytic solutions of 1 for specific operators H (¢) are hardly known and are only available for simple
systems like free particles or hydrogen atoms. In contrast to that are proteins with many thousands of
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atoms. However, already for much smaller quantum systems approximations are needed. A famous
example is the Born—-Oppenheimer approximation, where the wave function of the multi-body system
is decomposed into parts for heavier atom nuclei and the light-weight electrons, which usually move
much faster. In this case, one obtains a Schrodinger equation for electron movement and another
Schrodinger equation for nuclei movement. A much faster option than solving a second Schrodinger
equation for the motion of the nuclei is to use the laws from classical Newtonian dynamics. The
solution of the first Schrodinger equation defines an energy potential, which can be utilized to obtain
forces F'; on the nuclei and to update nuclei positions according to Newton’s equation of motion:
F; = m; q;(t) (with m; being the mass of particle ¢ and q;(¢) describing the motion trajectory of
particle ¢ over time ?).

Additional complexity in studying molecule dynamics is introduced by environmental conditions
surrounding molecules. Maybe the most important is temperature. For bio-molecules it is often of
interest to assume that they are dissolved in water. To model temperature, a usual strategy is to assume
a system of coupled harmonic oscillators to model a heat bath, from which Langevin dynamics can
be derived [29,90]. The investigation of the relationship between quantum-mechanical modeling of
heat baths and Langevin dynamics still seems to be a current research topic, where there there are
different aspects like the coupling of the oscillators or Markovian properties when stochastic forces
are introduced. For instance, Hoel & Szepessy [37], studies how canonical quantum observables
are approximated by molecular dynamics. This includes the definition of density operators, which
behave according to the quantum Liouville-von Neumann equation.

The forces in molecules are usually given as the negative derivative of the (potential) energy: F; =
—VE. In the context of molecules, F is usually assumed to be defined by a force field, which is a
parameterized sum of intra- and intermolecular interaction terms. An example is the Amber force
field [66, [18]]:

E= Z y(r —1o)? + Z ko(0 — 0p)*+ ©)
bonds r angles 0
N-1 N
A;s B, Qi
Z Va(1 + cos(ng —v)) + Z i bij 4%

12 6 )

dihedrals ¢ i=1 j=i+1 Rij Rij el

Here ky, ro, kg, 00, Vi, 7y, Aij, Bij, €, ¢i, q; serve as force field parameters, which are found either
empirically or which might be inspired by theory.

Newton’s equations of motions for all particles under consideration form a system of ordinary
differential equations (ODE?s), to which different numeric integration schemes like Euler, Leapfrog,
or, Verlet can be applied to obtain particle position trajectories for given initial positions and initial
velocities. In case temperature is included, the resulting Langevin equations form a system of
stochastic differential equations (SDEs), and Langevin integrators can be used. It should be mentioned,
that it is often necessary to use very small integration timesteps to avoid large approximation errors.
This, however, increases the time needed to find new stable molecular configurations.

A.5 Relationship to Graph Foundation Models

From our perspective, LAM-SLIDE bears a relationship to graph foundation models [GFMs; |52 57]).
Bommasani et al. [16] consider foundation models to be trained on broad data at scale and to be
adaptable to a wide range of downstream tasks. Mao et al. [57]] argue, that graphs are more diverse
than natural language or images, and therefore there are quite unique challenges for GFMs. Especially
they mention that none of the current GFM have the capability to transfer across all graph tasks and
datasets from all domains. It is for sure true that LAM-SLIDE is not a GFM in this sense. However,
it might be debatable whether LAM-SLIDE might serve as a domain- or task-specfic GFM. While
we mainly focused on a trajectory prediction task and are from that point of view task-specific, we
observed that our trained models can generalize across different molecules or differently taken scenes,
which might seem quite remarkable given that it is common practice to train specific trajectory
prediction models for single molecules or single scenes. Nevertheless, it was not our aim in this
research to provide a GFM, since we believe that this would require more investigation into further
domains and could also require, for instance, checking whether emergent abilities might arise with
larger models and more training data [52].
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A.6 Relationship to Video and Language Diffusion Models

We want to elaborate our perspective on the relationship between LAM-SLIDE and recent advances
in video [15] and language diffusion models [72} [55]]. At their core, these approaches share a
fundamental similarity: they can be conceptualized as a form of unmasking.

In video diffusion models, the model unmasks future frames; in language diffusion models, the model
unmasks unknown tokens. Both paradigms learn to recover information that is initially obscured in
the sequence, and importantly, both methods do that in parallel over the whole input sequence [9],
compared to autoregressive models which predict a single frame or a single token at a time.

Similarly, LAM-SLIDE represents each timestep as a set of latent tokens (or alternatively, as a single
token when concatenated). This perspective allows us to seamlessly incorporate recent advances from
both video and language diffusion research into our modeling paradigm.
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s2 B Notation

Table 3: Overview of used symbols and notations.

Definition Symbol/Notation  Type

continuous time i R

overall number of (sampled) time steps T N

number of observed time steps (when predicting later ones) 7, N

number of future time steps (prediction horizon) Ty =T-1T, N

time index for sequences of time steps t N

system state space S application-dependent set, to be further defined
system state s

entity e symbolic

number of entities N N

entity index n 1.N

set of entities E {e1,....en}

spatial entity dimensionality D, N

entity feature dimensionality D, N

entity location (coordinate) X RD=

entity properties (entity features) m RDm

identifier representation dimensionality D, N

number of latent vectors L N

latent vector dimensionality D, N

trajectory of a system (locations of entities over time) X RToXNX Dy

entity locations at ¢ Xt RN * D

entity 4 of trajectory at ¢ Xt RP=

trajectory in latent space Z RToxLxD-

latent system state at ¢ VA RExD=

time invariant features of entities M RN*Dm

matrix of identifier embeddings U RN *Du

projection matrices QK,V not specified; depends on number of heads etc.
identifier assignment function ida(-) E—T

encoder E() RNX(DutDotDm) y RLXD-
decoder D(.) REX D= 5 RNXDu oy RNX(De+Dm)
approximator (time dynamics model) A() RTXLxDz oy RTXLXD:

loss function L(.,.) var.

time parameter of the flow-based model T [0,1]

noise distribution 0g RT*LxDx

de-noised de-masked trajectory o =27Z RT*LxD=

flow-based model "velocity prediction" (neural net) vp(0r,T) RTXLXD: ¢ R s RTXLXD=
flow-based model "data prediction" (neural net) og(o,,T) RTXLXDz ¢ R s RTXLXD=
neural network parameters 0 undef.
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C Proofs and Example for Terminology

C.1 Proof of Proposition 2.3

The proof is rather simple, but we include it for completeness.

Proposition 2.3. Given an identifier pool I and a finite set of entities E, an identifier assignment
pool I as defined by Definition2.2)is non-empty if and only if |E| < |Z|.

Proof. Assume |E| > |Z|. By pigeonhole principle, any function f : E +— Z must map at least two
distinct elements of E to the same element in I, Therefore f cannot be injective.

Conversely, if |E| < |Z|, we can construct an injective function from E to Z by assigning each
element in E' a unique element in Z, which is possible because 7 has at least as many elements as F.

Therefore, an injective identifier assignment function ida(-) € I only exists if | E| < |Z|. Hence the
set I is non-empty in this case and empty otherwise.

C.2  Proof of Proposition 2.4

Proposition 2.4. Given an identifier pool T and a finite set of entities E such that |E| < |Z|, the
identifier assignment pool I as defined by Definition[2.2) contains finitely many injective functions.

Let n = |E| and m = |Z|, then the set of infective functions I is bounded and finite:

m!

Il=(m—-1)...(m—-n+1)= = (m), < inf @)

(m —n)!

Where (m),, is commonly referred as falling factorials, the number of injective functions from a set
of size n to a set of size m.

C.3 Example: Aspirin

@,
o @€

Figure 3: Example aspirin: IDs are assigned to the atoms of the molecule.

Aspirin CgHgOy consists of 21 atoms, thus the identifier pool Z needs to have at least 21 unique
identifiers. We select an assignment function ida(-), arbitrary, and use it to assign each atom
an unique identifier. Notably, e.g. for molecules, we do not explicitly model molecular bond
information, as the spatial relationship between atoms (interatomic distances) implicitly capture this
information. App. Fig. [3|shows an arbitrary but fixed identifier assignment for aspirin, we illustrate
different IDs by colored fingerprint symbols.
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D Architecture and Training Details

D.1 Architecture Overview in Detail

App. Fig.[d] shows an expanded view of our architecture, and how the different components of
LAM-SLIDE interact. For architectural details on the identifier assignment, the encoder and decoder,

and, the approximator we refer to App.[D.3] App.[D.4] and, App.[D3]
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Figure 4: Expanded architectural overview. First Stage: The model is trained to reconstruct the
encoded system, by querying the latent system representation by IDs. Second Stage: Latent flow-
based model is trained to predict multiple masked future timesteps. The predicted system states are
decoded by the frozen decoder.

D.2 Training Procedure

The training process follows a two-stage approach similar to latent diffusion models [[71]]. First
Stage: We train the encoder £ and decoder D, to reconstruct entities from latent space using assigned
IDs, see Fig.[2). Second Stage: We train the approximator A on the latent system representations
produced by the frozen encoder £ (details in App. [E-4).
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D.3 Identifier Assignment

We provide pseudocode for the identifier creation in App. Algorithm|[I] This algorithm prevents the
reuse of already assigned IDs, maintaining unique IDs across all entities. From a practical perspective
we sample IDs randomly, so that all entity embeddings receive gradient updates.

Algorithm 1: Identifier Construction

Input :number of entities IV; identifier pool size |Z| where N < |Z|; embedding dimension D,,
Output : U € RV*Pu

U < empty matrix of size N x D,,
S+ {} // track assigned identifiers
for i < 1to N do
r < RandomSample(Z \ S)
S+ Su{r}
e, + Embedding(r) // learnable embeddings
Ul[i] « e,

return U

D.4 Encoder and Decoder

We provide pseudocode of the forward passes for encoding (£) to and decoding (D) from the latent
system space of LAM-SLIDE in App. Algorithm[2]and App. Algorithm 3|respectively. In general,
encoder and decoder blocks follow the standard Transformer architecture [82]] with feedforward and
normalization layers. To simplify the explanation, we omitted additional implementation details here
and refer readers to our provided source code.

Algorithm 2: Encoder Function £ (Cross-Attention)

Input sinput data XMU = [X, M, U] € RVX(Pa+Dm+Du)

Output :latent system state Z € RE* D=

Internal parameters : learned latent queries Z;,;; € RV*P=

K « Linear(XMU)

V « Linear(XMU)

Q < Linear(Ziy)

return LayerNorm (Attention(Q, K, V)) // without learnable affine parameters

Algorithm 3: Decoder Function D (Cross-Attention)

Input :latent system representation Z € RZ*P=; entity representation u € RP+ drawn from
U € RV*Pu

Output : [x, m| € RP=+Dm

Z + LayerNorm(Z) // without learnable affine parameters

K + Linear(Z)
V « Linear(Z)
q < Linear(u)
return Attention([q], K, V)

For the decoding functionality presented in App. Algorithm [3] we made use of multiple specific
decoder blocks depending on the actual task (e.g., for the molecules dataset, we use one decoder
block for atom positions and one decoder block for atom types).
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D.S Approximator

To realize the latent approximator, we are interested in time-dependent processes, which interpolate
between data 0, ~ p; from a target data distribution p; and noise € ~ py == N(0, I):

O = ;01 + O+€, (8)

where 7 € [0, 1] is the time parameter of the flow (to be distinguished from system times t). o,
and o, are differentiable functions in 7, which have to fulfill o2 + 02 > 0 V7 € [0,1], and,
further g = 01 = 0, and, oy = 09 = 1. The goal is to learn a parametric model vy (0, 7), s.t.,
fol E[||ve(0s,T) — cty01 — 7€||?] dr is minimized. Within the stochastic interpolants framework,

we identify o, with a whole trajectory Z = ZI[': 71 = [Z[\: Tol Z[To+1: T]] ¢ RTXLXD=

Since the generated trajectories should be condi- c e 1D based
tioned on the latent system representations of ini- \\wkens

tial time frames Z['* 7°l, we extend vy with a con-

ditioning argument C € RT*EXP: making it ef- |

2

[0,1] x RT*LxD=y RTXLXD=  The tensor struc-
ture of C is the same as the one for Z. For the
first time steps, both tensors have equal values, i.e.,

fectively a conditional vector field vy : RT*LXP= x -\
T

Ccl: Tl = 7Z[1: Tl The remaining tensor entries Figure 5: Left: The latent model receives
ClTo+1: 71 are filled up with mask tokens, see App. conditioning via known tokens (observed
Fig.[3} timesteps) and mask tokens (for prediction).

This example shows conditioning on one time-
frame to predict three future ones. Right:
ID-based decoding, where the predicted atom
positions are decoded by the assigned IDs.

The latent model is structured as series transformer
blocks [81}162]], alternating between the spatial and
the temporal dimension. We parametrized our model
via a data prediction objective [51]. Pseudocode of
the data prediction network og forward pass is provided in App. Algorithm 4 The latent layer
functionality is given by App. Algorithm[5] The architecture of the latent layers (i.e., our flow model)
is based on Dehghani et al. [23]], with the additional usage of adaptive layer norm (adaLLN) [63]] as
also used for Diffusion Transformers [62]]. The implementation is based on ParalleIMLP block codes
from Black Forest Labs [14], which was adopted to use it along the latent dimension as well as along
the temporal dimension (see App. Fig.[6). The velocity model is obtained via reparameterization as

outlined in App.[D.6|

Algorithm 4: Latent Flow Model oy (data prediction network)

Input :noise-interpolated data 0y, € RT*L*P=; diffusion time 7 used for interpolation;
conditioning C € RT*E*D=; conditioning mask B € {0, 1}7*L* D=
Output : prediction of original data (not interpolated with noise) o € RT>* 1> D=
7 + Embed(r)
0 + Linear(0jpter) + Linear(C) + Embed(B)
for ¢ < 1 to num_layers do
| o« LatentLayer(o, T)

a, B,y < Linear(SiLU(7))
return o + v ® MLP(a ® LayerNorm(o) + f3)

Algorithm 5: LatentLayer

Input :o0 € RT*EXC; diffusion time embedding T
Output :updated o € RT*LxC

o += ParalleIMLPAttentionWithRoPE(o, 7, dim = 0)
o += ParalleIMLPAttentionWithRoPE(o, 7,dim = 1)
return o

20



650

651
652
653

Latent Layer

*

Parallel-MLP Block
(temporal)

f

Parallel-MLP Block
(latent)

f

Figure 6: Left: LatentLayer of our method, consisting of a latent and a temporal ParalleIMLP block.

s

Encoding (RoPE)

Ve >+
¥
T e
4
;@:
\ _ Attout | _Mipout | |
1
Attenti
‘ ) ention . S
| LayerNorm H LayerNorm l
1
e Tk TV e
Scale, Shift |«
\ 1
Positional

Input Tokens

Right: Zoomed in view of the ParalelIMLP block

Conditioning

Using einops [70] notation, the latent layer in App. Fig.[6]can be expressed as:
o' + rearrange(o, (B L) T D,— (B T) L D,)

o+ lfb(o’, T)

o' + rearrange(o’, (B T) L D,— (B L) T D,)

o« lé(o', )

with parameters sets 1) and ¢, where for the latent block the time dimension gets absorbed into
the batch dimension and for the temporal block the latent dimension gets absorbed into the batch

dimension.
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D.6 Additional Information on our Parametrization

General interpolants. The stochastic interpolants framework [2}(3}156]] is defined without reference
to an forward SDE, which allows a lot of flexibility, any choice of a; an oy, satisfying the following
conditions is possible:

1. a2 +02>0;
2. a, and o, are differentiable for all 7 € [0, 1]

3. a0201:0anda1:00:1

Interpolants. Two common choices for «; and o, are the Linear and a Generalized Variance-
Preserving (GVP) path:

Linear: o, =T, or=1—7 )

1 1
GVP: a, =sin (271'7'), 0; = COS (27TT> (10)

Parametrization. Our latent flow-based model is implemented via data prediction objective [51}435]],
with the aim to have small differences:

|166(0; 7) — 01]* . (11)

The velocity model vy is obtained by reparameterization according to Lipman et al. [51]:

. 2 .
B9(0,7) = 8(0;7) (aTUT - aTdT) + 0 (12)
ar ar
where
80(0;7) = —0-%(0 — a,;64(0;7)) . (13)

For integration, we employed the torchdiffeq package [20], which provides solvers for differential
equations.
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E Experimental Details

E.1 Datasets

Small Molecules (MD17). The MD17 dataset is available athttp://www.sgdml . org/#datasets.
Preprocessing and dataset splits follow Han et al. [33] and can be accessed through their GitHub
repository at https://github.com/hanjq17/GeoTDM. The dataset comprises, 5,000 training,
1000 validation and 1000 test trajectories for each molecule.

Tetrapeptides. The dataset, including the full simulation parameters for ground truth simulations,
is sourced from Jing et al. [41] and is publicly available in their GitHub repository at https:
//github.com/bjing2016/mdgen. The dataset comprises 3,109 training, 100 validation and 100
test peptides.

N-Body. The dataset creation scripts, along with its predefined splits is available at https:
//github.com/hanjql7/GeoTDM.

E.2 Condition and Prediction Horizon

App. Tab. |4{shows the conditioning and prediction horizon for the individual experiments. For the
Tetrapeptides experiments we predicted 1000 steps in parallel and reconditioned the model ten times
on the last frame for each predicted block, this concept is similar to Arriola et al. [9].

Table 4: Number of conditioning and predicted frames for the different experiments.

Experiment Conditioning Frames  Predicted Frames Total Frames
Molecular Dynamics (MD17) 10 20 30
Molecular Dynamics - Tetrapeptides (4AA) 1 9999 10 000
N-Body 10 20 30

E.3 Loss Functions

This section defines the losses, which we use throughout training:

Position Loss.

N
Ly X X1) = 0 32X X (14)
Inter-distance Loss.
X 1 L& .
Lin (X, XY) = Nz ; Zl(Dij(Xt) - Dy;(X"))? (15)
with J
Di(X') = [1X] = Xj]l2 (16)

Cross-Entropy Loss. Depending on the experiment we have different CE losses depending on the
problem see App. [E.5

1 K
Lop = ( > ue log(pk)> (17)
k=1

Frame and Torsion Loss. For the Tetrapeptide experiments, we employ two additional auxiliary
loss functions tailored to better capture unique geometric constraints of proteins, complementing
our primary optimization objectives: a frame loss L ¢.4me, Which is based on representing all atoms
withing a local reference frame [[1, Algorithm 29], and a torsion loss torsion loss Ly, inspired
by Jumper et al. [43]].
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E.4 Implementation Details

Training procedure. (i) First Stage. In the first stage we train the encoding and decoding functions
£ and D in an auto-encoding fashion, i.e., we optimize for a precise reconstruction of the original
system state representation from its latent representation well. For discrete features (e.g., atom type,
residue type) we tend to use a cross-entropy loss, whereas for continuous features we use a regression
loss (e.g., position, distance). The loss functions for each individual task are summarized in App. [E.5]
Notably, also the entity identifier assignment is random. (ii) Second Stage. In the second stage, we
freeze the encoder and train the approximator to model the temporal dynamics via the encoded latent
system representations. To learn a consistent behavior over time, we pass U from the encoder £ to
the decoder D. To avoid high variance latent spaces we used layer-normalization [10] (see. App. [E.4).

Data Augmentation. To compensate for the absence of built-in inductive biases such as equivari-
ance/invariance with respect to spatial transformations, we apply random rotations and translations to
the input coordinates.

Identifiers. For the embedding of the identifiers we use a torch.nn.Embedding [61] layer, where
we assign a random subset of the possible embeddings to the entities in each training step. See
also App. Algorithm|[I]

Latent space regularization. To avoid high variance latent spaces, Rombach et al. [[71]] relies
on KL-reg., imposing a small KL-penalty towards a standard normal on the latent space, as used in
VAE [46]. Recent work [[88]] has shown that layer normalization [[LO] can achieve similar regulatory
effects without requiring an additional loss term and simplifying training procedure, we adapt this
approach in our method (see left part of Fig. [2).

Latent Model. For the latent Flow Model we additionally apply auxiliary losses for the individual
tasks, as shown in App.|[E.5] Where we decode the the predicted latent system representations and
back-propagate through the frozen decoder to the latent model.

MD17. We train a single model on all molecules — a feat that is structurally encouraged by the
design of LAM-SLIDE . For ablation, we also train GeoTDM [33]] on all molecules and evaluate the
performance on each one of them (“all—each” in the App. Tab.[I0). Interestingly, we also observe
consistent improvements in the GeoTDM performance; however, GeoTDM’s performance does not
reach the one of LAM-SLIDE .

Tetrapeptides. For the experiments on tetrapeptides, we employ the Atom14 representation as used
in AlphaFold [1]]. In this representation, each entity corresponds to one amino acid of the tetrapeptide,
where multiple atomic positions are encoded into a single vector of dimension D, = 3 x 14. Masked
atomic positions are excluded from gradient computation during model updates. This representation
is computationally more efficient.

E.5 Hyperparameters

App. Tables[5]to[7]show the hyperparameters for the individual tasks, loss functions are as defined
in App. For all trained models we use the AdamW [47,54]] optimizer and use EMA [31]] in each
update step with a decay parameter of 3 = 0.999.
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E.6 Evaluation Details

Prediction Performance for MD17 and N-Body. For MD17 and the n-body experiments, we
utilized the Average Discrepancy Error (ADE) and the Final Discrepancy Error (FDE), defined as
ADE(X, X) = by S, 11 iy [IXE = X lo, FDE(X, X) = £ Y0 [ XT — X7, cap-
turing model performance across predicted future time steps and the model performance specifically
for the last predicted frame, respectively. These metrics represent well-established evaluation criteria
in trajectory forecasting 84, [85]].

Prediction Performance for Tetrapeptides. Our analysis of the Tetrapeptide trajectories utilized
PyEMMA [76] and followed the procedure as Jing et al. [41]]. For the MD experiments on peptides
(Tetrapeptides), we use Jensen-Shannon divergence (JSD), evaluating the distribution of torsion
angles, considering both, backbone (BB) and side chain (SC) angles. In order to capture long
temporal behavior, we use Time-lagged Independent Component Analysis (TICA) [64], focusing
on the slowest components TIC 0 and TIC 1. To investigate metastable state transitions we make
use of Markov State Models (MSMs) [68]160]. For the evaluation of these metrics we relied on the
implementations provided by [41]].

Time and Scalability. For inference time and scalability, we assess the number of function
evaluations (NFE) and report performance of our method for different model sizes.

E.7 Computational Resources

Our experiments were conducted using a system with 128 CPU cores and 2048GB of system memory.
Model training was performed on 4 NVIDIA H200 GPUs, each equipped with 140GB of VRAM. In
total, roughly 5000 GPU hours were used in this work.

E.8 Software
We used PyTorch 2 [[7] for the implementation of our models. Our training pipeline was struc-

tured with PyTorch Lightning [28]. We used Hydra [86] to run our experiments with different
hyperparameter settings. Our experiments were tracked with Weights & Biases [12].
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Table 5: Hyperparameter configuration for the small molecule (MD17) experiments.

First Stage
Network
Encoder
Number of latents L 32
Number of entity embeddings 8
Number of attention heads 2
Number of cross attention layers 1
Dimension latents D, 32
Dimension entity embedding 128
Dimension attention head 16
Decoder
Number of cross attention layers 1
Number of attention heads 2
Number of cross attention layers 16
Loss Weight
Lpos(X, X) 1
Lint (X, X) 1
Lcp(-,-) — Atom type 1
Training
Learning rate le-4
Batch size 256
Epochs 3K
Precision 32-Full
Second Stage
Setup
Condition 10 Frames
Prediction 20 Frames
Network
Hidden dimension 128
Number of Layers 6
Auxiliary - Loss Weight
Lpos (X, X) 0.25
Lint (X, X) 0.25
Training
Learning rate le-3

Learning rate scheduler

CosineAnnealing(min_Ir=1e-7)

Batch size 64

Epochs 2K

Precision BF16-Mixed
Inference

Integrator Euler

ODE steps 10
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Table 6: Hyperparameter configuration for the Tetrapeptides experiments.

First Stage

Network

Encoder

Number of latents L

Number of entity embeddings
Number of attention heads
Number of cross attention layers

Dimension latents D, 96
Dimension entity embedding 128
Dimension attention head 16
Decoder
Number of attention heads 2
Number of cross attention layers 1
Dimension attention head 16
Loss Weight
Lpos(X, X) 1
Lint(X, X) R 1
L frame (P(A 3 X) 1
Liors (X, X) 0.1
Lcp(-,-) — Residue type 0.001
Training
Learning rate le-4
Batch size 16
Epochs 200K
Precision 32-Full
Second Stage
Setup
Condition 1 Frame
Prediction 10,000 Frames (10x rollouts)
Network
Hidden dimension 384
Number of Layers 6
Auxiliary - Loss Weight
Lpos (X, X) 0.25
Lint (X, X) 0.25
Lframe(X, X) 0.25
Training
Learning rate le-3
Optimizer AdamW
Batch size 64
Epochs 1.5K
Precision BF16-Mixed
Inference
Integrator Dopri5 [20]
ODE steps adaptive
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Table 7: Hyperparameter configuration for the N-Body experiments (App. .

First Stage
Network
Encoder
Number of latents L 16
Number of entity embeddings 10
Number of attention heads 2
Number of cross attention layers 1
Dimension latents D, 32
Dimension entity embedding 128
Dimension attention head 16
Decoder
Number of cross attention layers 1
Number of attention heads 2
Number of cross attention layers 16
Loss Weight
Lpos(X,X) 1
Lint (X, X) 1
Training
Learning rate le-3
Batch size 128
Epochs 2K
Precision 32-Full
Second Stage
Setup
Condition 10 Frames
Prediction 20 Frames
Network
Hidden dimension 256
Number of Layers 6
Auxiliary - Loss Weight
Lpos(X, X) 0.0
Lint (X, X) 0.0
Training
Learning rate le-3
Learning rate scheduler CosineAnnealing(min_Ir=1e-7)
Batch size 64
Epochs 1K
Precision BF16-Mixed
Inference
Integrator Euler
ODE steps 10
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F Additional Experiments

We conducted additional experiments to investigate how well our method works on a different dynamic
system and to investigate its computational efficiency and its sensitivity to different hyperparameter
settings.

F.1 N-Body System Dynamics (Particle Systems)

We evaluate LAM-SLIDE across three distinct N-Body simulation scenarios: a) Charged Particles:
comprising particles with randomly assigned charges +1/—1 interacting via Coulomb forces [48], [74]];
b) Spring Dynamics: consisting of N = 5 particles with randomized masses connected by springs
with a probability 0.5 between particle pairs [48]]; and ¢) Gravitational Systems: containing N = 10
particles with randomized masses and initial velocities governed by gravitational interactions [17]].
For all three scenarios, we consider 10 conditioning frames and 20 frames for prediction. In line
with Han et al. [33]], we use 3000 trajectories for training and 2000 trajectories for validation and
testing, we report ADE/FDE averaged over K = 5 runs.

LAM-SLIDE achieves the best performance in terms of ADE/FDE for the Charged Particles and Grav-
ity scenarios and competitive second-rank performance in the Spring Dynamics scenario, see App.
Tab.[§] Unlike compared methods, LAM-SLIDE achieves these results without computing intermedi-
ate physical quantities such as velocities or accelerations. We present sampled trajectories in App.

Fig.

Table 8: Results on generation on N-body dataset, in terms of ADF/FDE averaged over 5 runs.

Particle Spring Gravity
ADE FDE ADE FDE ADE FDE
RF [49]* 0.479 1.050 0.0145 0.0389 0.791 1.630

TFN [80)* 0.330 0.754 0.1013 0.2364 0.327 0.761
SE(3)-Tr [30]* 0.395 0.936 0.0865 0.2043 0.338 0.830
EGNN [74]*  0.186 0.426 0.0101 0.0231 0.310 0.709

EqMotion [84]* 0.141 0.310 0.0134 0.0358 0.302 0.671
SVAE [85]* 0.378 0.732 0.0120 0.0209 0.582 1.101
GeoTDM [33]* 0.110 0.258 0.0030 0.0079 0.256 0.613

LAM-SLIDE 0.104 0.238 0.0070 0.0135 0.157 0.406
# Results from Han et al. [33].
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F.2 Computational Efficiency and Scaling Behavior

We conduct a comparative analysis on computational efficiency by measuring the number of function
evaluations (NFEs) required to achieve the performance results reported in the main section of our
publication. As shown in App. Tab.[9] our approach demonstrates remarkable efficiency compared to
the previous state-of-the-art method, GeoTDM [33]], across MD17 molecular dynamics and N-Body
simulations experiments. Our model consistently requires significantly fewer NFEs than GeoTDM to
reach comparable or superior performance levels.

It is worth noting that flow-based models generally require fewer NFEs compared to diffusion-based
approaches like GeoTDM. However, this efficiency advantage does not come at the expense of
performance quality [27]. Indeed, the relationship between NFEs and performance is not strictly
monotonic, as demonstrated in other domains. For instance, Esser et al. [27] achieved optimal image
generation results in terms of FID [34] with 25 NFEs, showing that computational efficiency and
high performance can be simultaneously achieved with properly designed architectures.

Further, in the case of the Tetrapeptides (4AA) experiments shown in the main part of the paper, we
use an adaptive step size solver to reach the reported performance, which achieved better results than
a Euler solver. We use Dopri5 as implemented in the torchdiffeq package [20].

Table 9: Comparison of the number of functions evaluations (NFEs) for LAM-SLIDE and GeoTDM.

N-Body MDI17
GeoTDM [33]* 1000 1000
LAM-SLIDE 10 10
2 Results from Han et al. [33]].

We conducted scaling experiments on both the MD17 and the Tetrapeptides (4AA) datasets to evaluate
how LAM-SLIDE ’s performance scales with model size. On MD17, we evaluate LAM-SLIDE
using model variants with 1.7M, 2.1M, and 2.5M parameters. Our results show that, for nearly all
molecules, performance improves with parameter count in terms of ADE/FDE, see App. Tab.
Similarly, on the Tetrapeptides dataset, we evaluate using model variants with 4M, 7M, 11M, and 28M
parameters. All performance metrics show consistent improvement with increased model capacity,
see App. Tab.[T1] These findings indicate favorable scaling behavior of our method and suggests that
LAM-SLIDE benefits from larger model capacity and could potentially achieve even better results
with additional computational resources.
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Table 10: Method comparison for forecasting MD trajectories of small molecules. Compared
methods predict atom positions for 20 frames, conditioned on 10 input frames. Results are reported
in terms of ADE/FDE, averaged over 5 sampled trajectories.

Aspirin Benzene Ethanol ~ Malonaldehyde Naphthalene  Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE
RF [49]° 0.303 0.442 0.120 0.194 0.374 0.515 0.297 0.454 0.168 0.185 0.261 0.343 0.199 0.249 0.239 0.272
TEN [801* 0.133 0.268 0.024 0.049 0.201 0.414 0.184 0.386 0.072 0.098 0.115 0.223 0.090 0.150 0.090 0.159
SE(3)-Tr. [301* 0.294 0.556 0.027 0.056 0.188 0.359 0.214 0.456 0.069 0.103 0.189 0.312 0.108 0.184 0.107 0.196
EGNN [74]* 0.267 0.564 0.024 0.042 0.268 0.401 0.393 0.958 0.095 0.133 0.159 0.348 0.207 0.294 0.154 0.282
EgMotion [84]° 0.185 0.246 0.029 0.043 0.152 0.247 0.155 0.249 0.073 0.092 0.110 0.151 0.097 0.129 0.088 0.116
SVAE [85]* 0.301 0.428 0.114 0.133 0.387 0.505 0.287 0.430 0.124 0.135 0.122 0.142 0.145 0.171 0.145 0.156
GeoTDM 1.9M* 0.107 0.193 0.023 0.039 0.115 0.209 0.107 0.176 0.064 0.087 0.083 0.120 0.083 0.121 0.074 0.099
GeoTDM 1.9M (all—seach) 0.091 0.164 0.024 0.040 0.104 0.191 0.097 0.164 0.061 0.092 0.074 0.114 0.073 0.112 0.070 0.102
LAM-SLIDE 2.5M 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074
LAM-SLIDE 2.1M 0.064 0.104 0.023 0.033 0.097 0.182 0.084 0.141 0.044 0.067 0.053 0.081 0.054 0.086 0.054 0.079
LAM-SLIDE 1.7M 0.074 0.117 0.025 0.037 0.110 0.195 0.097 0.159 0.053 0.074 0.063 0.091 0.064 0.094 0.064 0.089

# Results from Han et al. [33].

Table 11: Method comparison for predicting MD trajectories of tetrapeptides. The columns
denote the JSD between distributions of forsion angles (backbone (BB), side-chain (SC) and all
angles), the TICA, the MSM metric, and the number of parameters.

Torsions TICA MSM  Params Time

BB SC All 0 0,1 joint ™M)
100 ns* 103 .055 .076  .201 268 208 ~ 3h
MDGen* 130 093 109 230 316 235 34 ~ 60s

LAM-SLIDE .128 0.122 0.125 .227 315 224 28 ~ 53s
LAM-SLIDE .152  .151 152239 331 226 11
LAM-SLIDE .183 .191 187 .26 .356 235 7
LAM-SLIDE 284 331 311 .339 461 237 4

4 Results from Jing et al. [41].
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F.3 Number of Learned Latent Vectors

We conducted experiments to quantify the relationship between model performance and the number
of latent vectors L using the MD17 dataset. As shown in App. Tab. performance increases with
the number of latent vectors L. Of particular significance is the performance at L = 21, which
corresponds to the maximum number of entities, allowing us to investigate whether this constitutes
an upper bound on model capacity. Notably, performance continues to improve at L = 32, indicating
that model capacity scales favorably even beyond the number of entities. Still at L = 16, representing
a compressed latent representation, our model remains competitive with the second best method
GeoTDM [33]].

We further analyze if the improvement by increasing L is due to the reconstruction performance
of the encoder-decoder only. App. Fig.[§]shows the reconstruction error for varying number of
latent vectors L. Even with substantially fewer latent vectors than entities, the model achieves good
reconstruction performance. This gap suggests, that the performance gains from increasing L are
not due to improved reconstruction, but from the ability of the model to leverage the enlarged latent
space representation better.

Table 12: Model performance in terms of ADF/FDE with respect to different number of latent
vectors L.

Aspirin Benzene Ethanol ~ Malonaldehyde Naphthalene  Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE
LAM-SLIDE (L =4) 0.354 0.483 0.213 0.264 0.420 0.541 0.366 0.537 0.210 0.223 0.253 0.286 0.316 0.418 0.243 0.275
LAM-SLIDE (L =8) 0.234 0.315 0.114 0.135 0.242 0.361 0.201 0.300 0.157 0.163 0.179 0.201 0.206 0.250 0.158 0.180
LAM-SLIDE (L = 16) 0.099 0.146 0.039 0.049 0.108 0.187 0.095 0.149 0.070 0.089 0.075 0.101 0.073 0.103 0.071 0.093
LAM-SLIDE (L = 21) 0.078 0.118 0.031 0.041 0.097 0.175 0.082 0.135 0.054 0.074 0.059 0.085 0.057 0.085 0.059 0.083
LAM-SLIDE (L = 32) 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074
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F.4 Identifier Pool Size

We evaluate the impact of identifier pool size using the MD17 dataset. This dataset contains at most
21 atoms, so in general an identifier pool of |Z| = 21 would be enough. However, for the results
shown in the main paper, we used |Z| = 32. To investigate the impact of a larger identifier pool Z, we
conduct additional experiments by training multiple first-stage models with varying identifier pool
sizes and report the reconstruction error measured by Euclidean distance. App. Fig.|7|shows that the
reconstruction error increases with the size of the identifier pool, since a larger pool results in fewer
updates to each entity embedding during training.

0.054

0.04 1

Reconstruction Error in A
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Figure 7: Reconstruction error in A for the MD17 dataset. We report the reconstruction error for
the encoder-decoder model for different identifier pool sizes. The error bars show the standard
deviation across five runs with different random ID assignments.
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F.5 Identifier Assignment

To assess the impact of different ID assignments on reconstruction performance, we run our model
five times with different random ID assignments and measure the standard deviation across these
assignments in terms of reconstruction error in A. Results are shown in App. Figures|7/and |8 The
low standard deviation across different ID assignments demonstrates the robustness of our model
with respect to random ID assignment.
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Number of latent vectors

Figure 8: Reconstruction error in A for the MD17 dataset. We report the reconstruction error for the
encoder-decoder model for different number of latent vectors L. The error bars show the standard
deviation across five runs with different random ID assignments.
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G Extended Discussion

Our experiments indicate that our architecture is applicable to a diverse set of problems; however, a
few limitations provide opportunities for future improvement. While our current approach successfully
allows to compress entities with beneficial reconstruction performance, our experiments indicate a
tradeoff between the number of latent space vectors to encode system states and the performance of
our latent model, for experimental details on this see App.[F3]
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Figure 9: Molecular dynamics trajectories from the MD17 dataset, showing time-evolved struc-
tural predictions for each molecule. For every compound, we display four distinct trajectory pre-
dictions, with each prediction comprising 20 superimposed time frames to illustrate the range of
conformational changes.
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Figure 10: Torsion angle distributions of the six backbone torsion angles, comparing molecular
dynamics (MD) trajectories (orange) and sampled trajectories (blue); and Free energy surfaces pro-
jected onto the top two time-lagged independent component analysis (TICA) components, computed
from both backbone and sidechain torsion angles.
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Figure 11: Molecular Dynamics trajectories from the Tetrapeptides (4AA) dataset, showing
time-evolved structural predictions for ten frames at an interval of 1000 frames. Top: SDFS (Serine
- Aspartic Acid - Phenylalanine - Serine) peptide. Bottom: CPEE peptide (Cysteine - Proline -
Glutamic Acid - Glutamic Acid).
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Figure 12: Trajectories from the N-Body dataset, predicted vs ground truth trajectories. Left: Charged
particles. Middle: Spring dynamics. Right: Gravitational system.
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