
LaM-SLidE: Latent Space Modeling of Spatial
Dynamical Systems via Linked Entities

Anonymous Author(s)
Affiliation
Address
email

Abstract

Generative models are spearheading recent progress in deep learning, showcasing1

strong promise for trajectory sampling in dynamical systems as well. However,2

whereas latent space modeling paradigms have transformed image and video3

generation, similar approaches are more difficult for most dynamical systems.4

Such systems – from chemical molecule structures to collective human behav-5

ior – are described by interactions of entities, making them inherently linked to6

connectivity patterns, entity conservation, and the traceability of entities over7

time. Our approach, LAM-SLIDE (Latent Space Modeling of Spatial Dynamical8

Systems via Linked Entities), bridges the gap between: (1) keeping the trace-9

ability of individual entities in a latent system representation, and (2) leveraging10

the efficiency and scalability of recent advances in image and video generation,11

where pre-trained encoder and decoder enable generative modeling directly in12

latent space. The core idea of LAM-SLIDE is the introduction of identifier rep-13

resentations (IDs) that enable the retrieval of entity properties and entity com-14

position from latent system representations, thus fostering traceability. Exper-15

imentally, across different domains, we show that LAM-SLIDE performs fa-16

vorably in terms of speed, accuracy, and generalizability. Code is available at17

https://anonymous.4open.science/r/lam-slide-B38B.18

1 Introduction19

Understanding dynamical systems represents a fundamental challenge across numerous scientific and20

engineering domains [44, 43, 67]. In this work, we address spatial dynamical systems, characterized21

by scenes of distinguishable entities at defined spatial coordinates. Modeling temporal trajectories22

of such entities quickly becomes challenging, especially when stochasticity is involved. A prime23

example is molecular dynamics [44].24

A conventional approach to predict spatial trajectories of entities is to represent scenes as neighbor-25

hood graphs and to subsequently process these graphs with graph neural networks (GNNs). When26

using GNNs [75, 59, 32, 11], each entity is usually represented by a node, and the spatial entities27

nearby are connected by an edge in the neighborhood graph. Neighborhood graphs have extensively28

been used for trajectory prediction tasks [48], especially for problems with a large number of indis-29

tinguishable entities, [e.g., 73, 58]. Recently, GNNs have been integrated into generative modeling30

frameworks to effectively capture the behavior of stochastic systems [87, 22].31

Despite their widespread use in modeling spatial trajectories, GNNs hardly follow recent trends in32

latent space modeling, where unified representations [42] together with universality and scalability33

of transformer blocks [82] offer simple application across datasets and tasks, a behavior commonly34

observed in computer vision and language processing [24, 25]. Notably, recent breakthroughs in35

image and video generation can be accounted to latent space generative modeling [36, 15]. In such36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://anonymous.4open.science/r/lam-slide-B38B

paradigms, pre-trained encoders and decoders are employed to map data into a latent space, where37

subsequent modeling is performed, leveraging the efficiency and expressiveness of this representation.38

This poses the question:39

Can we leverage recent techniques from generative latent space modeling to boost the
modeling of stochastic trajectories of dynamical systems with varying number of entities?

40

Recently, it has been shown [5] that it is possible to model the bulk behavior of large particle systems41

purely in the latent space, at the cost of sacrificing the traceability of individual particles, which is42

acceptable or even favorable for systems where particles are indistinguishable, but challenging for,43

e.g., molecular dynamics, where understanding the dynamics of individual atoms is essential.44

Figure 1: Overview of our approach. Left: Conventional graph neural networks (GNNs) model time-
evolving systems (e.g., molecular dynamics) by representing entities as nodes and iteratively updating
node embeddings and positions to capture system dynamics across timesteps. Right: Latent diffusion
models employ an encoder-decoder architecture to compress input data into a lower-dimensional
latent space where generative modeling is performed. Latent diffusion models, frequently enhanced
with conditional information like text, excel at generative tasks, but due to the fixed input/output
structure, are not directly adaptable to physical systems with varying number of entities. Middle:
Our proposed approach LAM-SLIDE bridges these paradigms by: (1) introducing identifiers that
allow traceability of individual entities, and (2) leveraging a latent system representation.

In order to leverage a latent systems representation, we need to be able to trace individual entities of45

the system. The core idea of our approach LAM-SLIDE is the introduction of identifiers (IDs) that46

allow for retrieval of entity properties, e.g. entity coordinates, from the latent system representation.47

Consequently, we can train generative models, like flow-matching [50, 53, 2], purely in latent space,48

where pre-trained decoder blocks map the generated representations back to the physics domain. An49

overview is given in Fig. 1. For more background information, please refer to App. A.50

2 LaM - SLidE51

We introduce an identifier pool and an identifier assignment function which allow us to effectively52

map and retrieve entities to and from a latent system representation. The ID components preserve the53

relationships between entities, making them traceable across time-steps. LAM-SLIDE follows an54

encoder E - approximator A - decoder D paradigm.55

2.1 Problem Formulation56

State space. We consider spatial dynamics. Our states s ∈ S describe the configuration of entities57

within the scene together with their individual features. We assume that a scene consists of N entities58

ei with i ∈ 1, . . . , N . An entity ei is described by its spatial location xi ∈ RDx and some further59

properties mi ∈ RDm (e.g., atom type, etc.), we denote the set of entities as E = {e1, . . . , en}. We60

consider states st at discretized timepoints t. Analogously, we use xti, m
t
i to describe coordinates61

and properties at time t, respectively. We refer to the coordinate concatenation [xt1, ..,x
t
N] of the N62

entities in st as Xt ∈ RN×Dx . Analogously, we use Mt ∈ RN×Dm to denote [mt
1, ..,m

t
N]. When63

2

Pos

IDC
ro

ss
 -

A
tt

en
tio

n

C
ro

ss
 -

A
tt

en
tio

n

K

K
Q

QV

V

La
ye

rN
or

m

La
ye

rN
or

m

Encoder Decoder Input Token

latents

input 
tokens Features

Figure 2: Architecture of our encoder-decoder structure (First Stage): Left: The encoder maps N
input tokens to a latent system representation by cross-attending to L learned latent query tokens.
The decoder reconstructs the input data from the latent representation using the assigned IDs. Right:
Structure of the input token, consisting of an ID, spatial information and features (see also App.
Fig. 3).

properties are conserved over time, i.e., Mt = M1, we just skip the time index and the time-wise64

repetition of states and use M ∈ RN×Dm . We concatenate sequences of coordinate states Xt with65

t ∈ 1 .. T to a tensor X ∈ RT×N×Dx , which describes a whole sampled coordinate trajectory of a66

system with T time points and N entities. An example for such trajectories from dynamical systems67

are molecular dynamics trajectories (e.g. App. Fig. 9). Notation is summarized in App. B.68

Prediction task. We predict a trajectory of entity coordinates X[To+1: T] =69

[XTo+1, . . . ,Xt, . . . ,XT] ∈ R(T−To)×N×Dx , given a short (observed) initial trajectory X[1 : To] =70

[X1, . . . ,Xt, . . . ,XTo] ∈ RTo×N×Dx together with general (time-invariant) entity properties M.71

Here, To denotes the length of the observed trajectory and Tf = T − To the prediction horizon.72

2.2 Entity Structure Preservation73

We aim to preserve the integrity of individual entities in a latent system representation. More74

specifically, we aim to preserve both the number of entities as well as their structure. For example, in75

the case of molecules, we want to preserve both the number of atoms and the atom composition. We76

therefore assign identifiers from an identifier pool to each entity, which allows us to trace the entities77

by the assigned identifiers. The two key components are: (i) creating a fixed, finite pool of identifiers78

(IDs) and (ii) defining an unique mapping between entities and identifiers.79

Definition 2.1. For a fixed u ∈ N, let I = {0, 1, . . . , u− 1} be the identifier pool. An identifier i is80

an element of the set I.81

Definition 2.2. Let E be a finite set of entities and I an identifier pool. The identifier assignment82

pool is the set of all injective functions from E to I:83

I = {ida(·) : E 7→ I | ∀ei, ej ∈ E : ei ̸= ej =⇒ ida(ei) ̸= ida(ej)}, (1)
An identifier assignment function ida(·) is an element of the set I .84

Proposition 2.3. Given an identifier pool I and a finite set of entities E, an identifier assignment85

pool I as defined by Definition 2.2 is non-empty if and only if |E| ⩽ |I|.86

Proposition 2.4. Given an identifier pool I and a finite set of entities E such that |E| ⩽ |I|, the87

identifier assignment pool I as defined by Definition 2.2 contains finitely many injective functions.88

Notably, since ida(·) may be selected randomly - the specific choice of the mapping ida(·) can89

be arbitrary, the only requirement is that an injective mapping between entities and identifiers is90

established, i.e. each entity is uniquely assigned to an identifier, but not all identifiers need to be91

assigned to an entity. Further, Proposition 2.3 suggests to use an identifier pool which is large enough,92

such that a model learned on this identifier pool can generalize across systems with varying numbers93

of entities. For proofs and an example, we refer to App. C.94

2.3 Model Architecture95

Since predicting continuations of system trajectories is a conceptually similar task to generating96

videos from an initial sequence of images, we took inspiration from Blattmann et al. [15] in using a97

3

latent diffusion architecture. We also took inspiration from Jaegle et al. [40] to decompose our model98

architecture as follows: To map the state of the system composed of N entities to a latent space99

containing L learned latent tokens (∈ RDz), we use a cross-attention mechanism. In the resulting100

latent space, we aim to train an approximator to predict future latent states based on the embedded101

initial states. Inversely to the encoder, we again use a cross-attention mechanism to retrieve the102

physical information of the individual entities of the system from the latent system representation. To103

wrap it up, LAM-SLIDE , is built up by an encoder E - approximator A - decoder D architecture,104

D ◦ A ◦ E . A detailed composition of E and D is shown in Fig. 2.105

Encoder. The encoder E aims to encode a state of the system such that the properties of each106

individual entity en can be decoded (retrieved) later. At the same time the structure of the latent state107

representation Zt ∈ RL×Dz is constant and should not depend on the different number N of entities.108

This contrasts with GNNs, where the number of the latent vectors depends on the number of nodes.109

To allow for traceability of the entities, we first embed each identifier i in the space RDu by a learned110

embedding IDEmb : I 7→ RDu . We map all (n = 1, . . . , N) system entities en to un ∈ RDu as111

follows:112

ida(·) (arbitrary identifier assignment) (2)
un = IDEmb(ida(en)) ∀n ∈ 1, . . . , N (3)

The inputs to the encoder comprise the time dependent location xtn ∈ RDx , properties mn ∈ RDx ,113

and identity representation un ∈ RDx of each entity en, as visualized in the right part of Fig. 2. We114

concatenate the different types of features across all entities of the system: Xt = [xt1, ..,x
t
N], M =115

[m1, ..,mN] and U = [u1, ..,uN].116

The encoder E maps the input to a latent system representation via117

E : [Xt,M,U] ∈ RN×(Dx+Dm+Du) 7→ Zt ∈ RL×Dz ,

realized by cross-attention [82, 69] between the input tensor ∈ RN×(Dx+Dm+Du), which serves as118

keys and values, and a fixed number of L learned latent vectors ∈ RDz [40], which serve as the119

queries. The encoding process is depicted on the left side of Fig. 2.120

Decoder. The aim of the decoder D is to retrieve the system state information Xt and M from the121

latent state representation Zt using the encoded entity identifier embeddings U. The decoder D maps122

the latent system representation back into the coordinates and properties of each entity via123

D : Zt ∈ RL×Dz ×U ∈ RL×Du 7→ [Xt,M] ∈ RN×(Dx+Dm).

As shown in the middle part of Fig. 2, D is realized by cross-attention layers. The latent space124

representation Zt serves as the keys and values in the cross-attention mechanism, while the embedded125

identifier un acts as the query. Applied to to all (n = 1, . . . , N) system entities en, this results in the126

retrieved system state information Xt and M. Using the learned identifier embeddings as queries can127

be interpreted as a form of content-based retrieval and associative memory [6, 38, 69].128

Approximator. Finally, the approximator models the system’s time evolution in latent space, i.e., it129

predicts a series of future latent system states Z[To+1: T] = [ZTo+1, . . . ,Zt, . . . ,ZT], given a series130

of initial latent system states Z[1 : To] = [Z1, . . . ,Zt, . . . ,ZTo],131

A : Z[1 : To] ∈ RTo×L×Dz 7→ Z[To+1: T] ∈ RTf×L×Dz .

Given the analogy of predicting the time evolution of a dynamical system to the task of synthesizing132

videos, we realized A by a flow-based model (specifically it’s based on the stochastic interpolants133

framework [2, 56]).134

Further architecture details and general training details can be found in App. D, concrete experimental135

implementation details and details to datasets related to Sect. 3 are in App. E.136

3 Experiments137

We evaluate LAM-SLIDE on two molecular dynamics datasets: the well established MD17 [21]138

dataset and on a tetrapeptides dataset (4AA) [41] to investigate its long prediction horizons. We139

further provide results on n-body system dynamics in App. F.1.140

4

The MD17 dataset contains simulated molecular dynamics trajectories of 8 small molecules. The size141

of those molecules ranges from 9 atoms (Ethanol and Malonaldehyde) to 21 atoms (Aspirin). We use142

10 frames as conditioning, 20 frames for prediction and report ADE/FDE averaged over K = 5 runs.143

The 4AA dataset contains explicit-solvent molecular dynamics trajectories simulated using144

OpenMM [26]. The dataset comprises 3,109 training, 100 validation and 100 test peptides. We use145

a single conditioning frame to predict 10,000 consecutive frames. The predictions are structured146

as a sequence of ten cascading 1,000-step rollouts, where each subsequent rollout is conditioned147

on the final frame of the previous. Note that, in contrast to the MD17 dataset, the methods predict148

trajectories of unseen molecules.149

Tab. 1 shows the performances of LAM-SLIDE and the performances of compared methods on150

the MD17 benchmark. LAM-SLIDE achieves the lowest ADE/FDE of all methods and for all151

molecules. These results are particularly remarkable considering that: (1) our model operates without152

explicit definition molecular bond information, and (2) it surpasses the performance of all equivariant153

baselines, an inductive bias we intentionally omitted in LAM-SLIDE .154

Notably, we train a single model on all molecules – a feat that is structurally encouraged by the155

design of LAM-SLIDE . For ablation, we also train GeoTDM [33] on all molecules and evaluate the156

performance on each one of them (“all→each” in the App. Tab. 10). Interestingly, we also observe157

consistent improvements in the GeoTDM performance; however, GeoTDM’s performance does not158

reach the one of LAM-SLIDE . We also note that our latent model is trained for 2000 epochs, while159

GeoTDM was trained for 5000 epochs. Trajectories are shown in App. Fig. 9.160

Table 1: Results on the MD17 dataset. Compared methods have to predict atom positions of 20
frames, conditioned on 10 input frames. Results in terms of ADE/FDE, averaged over 5 runs.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

RF [49]a 0.303 0.442 0.120 0.194 0.374 0.515 0.297 0.454 0.168 0.185 0.261 0.343 0.199 0.249 0.239 0.272
TFN [80]a 0.133 0.268 0.024 0.049 0.201 0.414 0.184 0.386 0.072 0.098 0.115 0.223 0.090 0.150 0.090 0.159
SE(3)-Tr. [30]a 0.294 0.556 0.027 0.056 0.188 0.359 0.214 0.456 0.069 0.103 0.189 0.312 0.108 0.184 0.107 0.196
EGNN [74]a 0.267 0.564 0.024 0.042 0.268 0.401 0.393 0.958 0.095 0.133 0.159 0.348 0.207 0.294 0.154 0.282
EqMotion [84]a 0.185 0.246 0.029 0.043 0.152 0.247 0.155 0.249 0.073 0.092 0.110 0.151 0.097 0.129 0.088 0.116
SVAE [85]a 0.301 0.428 0.114 0.133 0.387 0.505 0.287 0.430 0.124 0.135 0.122 0.142 0.145 0.171 0.145 0.156
GeoTDM [33] a 0.107 0.193 0.023 0.039 0.115 0.209 0.107 0.176 0.064 0.087 0.083 0.120 0.083 0.121 0.074 0.099

LAM-SLIDE 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074
a Results from Han et al. [33].

Table 2: Results on the Tetrapeptide
dataset: Columns denote the JSD be-
tween distributions of torsion angles
(backbone (BB), side-chain (SC), all an-
gles), the TICA, and the MSM metric.

Torsions TICA MSM Time

BB SC All 0 0,1 joint

100ns a .103 .055 .076 .201 .268 .208 ∼ 3h

MDGen[41]a .130 .093 .109 .230 .316 .235 ∼ 60s

LAM-SLIDE .128 .122 .125 .227 .315 .224 ∼ 53s
a Results from Jing et al. [41].

Tab. 2 compares performances of MDGen [41] and LAM-161

SLIDE (for details on used metrics see App. E.6). App.162

Fig. 10 shows the distribution of backbone torsions an-163

gles, and the free energy surfaces of the first two TICA164

components, for ground truth vs simulated trajectories.165

LAM-SLIDE performs competitively with the current166

state-of-the-art method MDGen with respect to torsion167

angles, which is a notable achievement given that MD-168

Gen operates in torsion space only. With respect to the169

TICA and MSM metrics, LAM-SLIDE even outperforms170

MDGen. Sampled trajectories are shown in App. Fig. 11.171

We assess the computational efficiency and scalability of172

LAM-SLIDE in App. F.2. LAM-SLIDE requires up to 10x-100x fewer function evaluations.173

4 Conclusion174

LAM-SLIDE is a novel approach for modeling spatial dynamical systems consisting of a variable175

number of entities within a fixed-size latent system representation, where assignable identifiers allow176

traceability of individual entities. LAM-SLIDE matches or exceeds specialized methods and offers177

promising scalability properties. It’s minimal reliance on prior knowledge makes it suitable for many178

tasks, suggesting its potential as a foundational architecture for dynamical systems. We refer to179

additional experiments in App. F for further concluding insights, for limitations, see App. G.180

5

References181

[1] Abramson, J., Adler, J., Dunger, J., Evans, R., Green, T., Pritzel, A., Ronneberger, O., Willmore,182

L., Ballard, A. J., Bambrick, J., et al. Accurate structure prediction of biomolecular interactions183

with alphafold 3. Nature, pp. 1–3, 2024.184

[2] Albergo, M., Boffi, N., and Vanden-Eijnden, E. Stochastic interpolants: A unifying framework185

for flows and diffusions, 2023. ArXiv preprint ArXiv230308797, 2023.186

[3] Albergo, M. S. and Vanden-Eijnden, E. Building normalizing flows with stochastic interpolants.187

arXiv preprint arXiv:2209.15571, 2022.188

[4] Alkin, B., Fürst, A., Schmid, S. L., Gruber, L., Holzleitner, M., and Brandstetter, J. Universal189

physics transformers: A framework for efficiently scaling neural operators. In The Thirty-eighth190

Annual Conference on Neural Information Processing Systems, 2024.191

[5] Alkin, B., Kronlachner, T., Papa, S., Pirker, S., Lichtenegger, T., and Brandstetter, J. Neuraldem-192

real-time simulation of industrial particulate flows. arXiv preprint arXiv:2411.09678, 2024.193

[6] Amari, S.-I. Learning patterns and pattern sequences by self-organizing nets of threshold194

elements. IEEE Transactions on computers, 100(11):1197–1206, 1972.195

[7] Ansel, J., Yang, E., He, H., Gimelshein, N., Jain, A., Voznesensky, M., Bao, B., Bell, P., Berard,196

D., Burovski, E., Chauhan, G., Chourdia, A., Constable, W., Desmaison, A., DeVito, Z., Ellison,197

E., Feng, W., Gong, J., Gschwind, M., Hirsh, B., Huang, S., Kalambarkar, K., Kirsch, L., Lazos,198

M., Lezcano, M., Liang, Y., Liang, J., Lu, Y., Luk, C., Maher, B., Pan, Y., Puhrsch, C., Reso, M.,199

Saroufim, M., Siraichi, M. Y., Suk, H., Suo, M., Tillet, P., Wang, E., Wang, X., Wen, W., Zhang,200

S., Zhao, X., Zhou, K., Zou, R., Mathews, A., Chanan, G., Wu, P., and Chintala, S. PyTorch201

2: Faster Machine Learning Through Dynamic Python Bytecode Transformation and Graph202

Compilation. In 29th ACM International Conference on Architectural Support for Programming203

Languages and Operating Systems, Volume 2 (ASPLOS ’24). ACM, April 2024. doi: 10.1145/204

3620665.3640366. URL https://docs.pytorch.org/assets/pytorch2-2.pdf.205

[8] Arnold, L. Random Dynamical Systems. Monographs in Mathematics. Springer, 1998. ISBN206

9783540637585.207

[9] Arriola, M., Gokaslan, A., Chiu, J. T., Yang, Z., Qi, Z., Han, J., Sahoo, S. S., and Kuleshov, V.208

Block diffusion: Interpolating between autoregressive and diffusion language models. arXiv209

preprint arXiv:2503.09573, 2025.210

[10] Ba, J. L. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.211

[11] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,212

M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. Relational inductive biases, deep213

learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.214

[12] Biewald, L. Experiment tracking with weights and biases, 2020. URL https://www.wandb.215

com/. Software available from wandb.com.216

[13] Black, K., Brown, N., Driess, D., Esmail, A., Equi, M., Finn, C., Fusai, N., Groom, L., Hausman,217

K., Ichter, B., et al. π_0: A vision-language-action flow model for general robot control. arXiv218

preprint arXiv:2410.24164, 2024.219

[14] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2023.220

[15] Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S. W., Fidler, S., and Kreis, K. Align221

your latents: High-resolution video synthesis with latent diffusion models. In Proceedings of222

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22563–22575,223

2023.224

[16] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M. S.,225

Bohg, J., Bosselut, A., Brunskill, E., et al. On the opportunities and risks of foundation models.226

arXiv preprint arXiv:2108.07258, 2021.227

6

https://docs.pytorch.org/assets/pytorch2-2.pdf
https://www.wandb.com/
https://www.wandb.com/
https://www.wandb.com/
https://github.com/black-forest-labs/flux

[17] Brandstetter, J., Hesselink, R., van der Pol, E., Bekkers, E. J., and Welling, M. Geometric and228

physical quantities improve e (3) equivariant message passing. arXiv preprint arXiv:2110.02905,229

2021.230

[18] Case, D., Aktulga, H., Belfon, K., Ben-Shalom, I., Berryman, J., Brozell, S., Cerutti, D.,231

Cheatham, T., III, Cisneros, G., Cruzeiro, V., Darden, T., Forouzesh, N., Ghazimirsaeed, M.,232

Giambaşu, G., Giese, T., Gilson, M., Gohlke, H., Goetz, A., Harris, J., Huang, Z., Izadi, S.,233

Izmailov, S., Kasavajhala, K., Kaymak, M., Kovalenko, A., Kurtzman, T., Lee, T., Li, P., Li,234

Z., Lin, C., Liu, J., Luchko, T., Luo, R., Machado, M., Manathunga, M., Merz, K., Miao, Y.,235

Mikhailovskii, O., Monard, G., Nguyen, H., O’Hearn, K., Onufriev, A., Pan, F., Pantano, S.,236

Rahnamoun, A., Roe, D., Roitberg, A., Sagui, C., Schott-Verdugo, S., Shajan, A., Shen, J.,237

Simmerling, C., Skrynnikov, N., Smith, J., Swails, J., Walker, R., Wang, J., Wang, J., Wu, X.,238

Wu, Y., Xiong, Y., Xue, Y., York, D., Zhao, C., Zhu, Q., and Kollman, P. Amber 2024, 2024.239

[19] Chen, R. T. and Lipman, Y. Riemannian flow matching on general geometries. arXiv e-prints,240

pp. arXiv–2302, 2023.241

[20] Chen, R. T. Q. torchdiffeq, 2018. URL https://github.com/rtqichen/torchdiffeq.242

[21] Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schütt, K. T., and Müller, K.-R.243

Machine learning of accurate energy-conserving molecular force fields. Science advances, 3(5):244

e1603015, 2017.245

[22] Costa, A. d. S., Mitnikov, I., Pellegrini, F., Daigavane, A., Geiger, M., Cao, Z., Kreis, K.,246

Smidt, T., Kucukbenli, E., and Jacobson, J. Equijump: Protein dynamics simulation via so247

(3)-equivariant stochastic interpolants. arXiv preprint arXiv:2410.09667, 2024.248

[23] Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P., Heek, J., Gilmer, J., Steiner, A. P.,249

Caron, M., Geirhos, R., Alabdulmohsin, I., et al. Scaling vision transformers to 22 billion250

parameters. In International Conference on Machine Learning, pp. 7480–7512. PMLR, 2023.251

[24] Devlin, J. Bert: Pre-training of deep bidirectional transformers for language understanding.252

arXiv preprint arXiv:1810.04805, 2018.253

[25] Dosovitskiy, A. An image is worth 16x16 words: Transformers for image recognition at scale.254

arXiv preprint arXiv:2010.11929, 2020.255

[26] Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang,256

L.-P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., et al. Openmm 7: Rapid development257

of high performance algorithms for molecular dynamics. PLoS computational biology, 13(7):258

e1005659, 2017.259

[27] Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y., Lorenz, D., Sauer,260

A., Boesel, F., et al. Scaling rectified flow transformers for high-resolution image synthesis,261

2024. URL https://arxiv. org/abs/2403.03206, 2, 2024.262

[28] Falcon, W. and The PyTorch Lightning team. PyTorch Lightning, March 2019. URL https:263

//github.com/Lightning-AI/lightning.264

[29] Ford, G., Kac, M., and Mazur, P. Statistical mechanics of assemblies of coupled oscillators.265

Journal of Mathematical Physics, 6(4):504–515, 1965.266

[30] Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M. Se (3)-transformers: 3d roto-translation267

equivariant attention networks. arXiv preprint arXiv:2006.10503, 2020.268

[31] Gardner Jr, E. S. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):1–28,269

1985.270

[32] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing271

for quantum chemistry. In International conference on machine learning, pp. 1263–1272.272

PMLR, 2017.273

[33] Han, J., Xu, M., Lou, A., Ye, H., and Ermon, S. Geometric trajectory diffusion models. arXiv274

preprint arXiv:2410.13027, 2024.275

7

https://github.com/rtqichen/torchdiffeq
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning
https://github.com/Lightning-AI/lightning

[34] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two276

time-scale update rule converge to a local nash equilibrium. Advances in neural information277

processing systems, 30, 2017.278

[35] Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. Advances in neural279

information processing systems, 33:6840–6851, 2020.280

[36] Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D. P., Poole, B.,281

Norouzi, M., Fleet, D. J., et al. Imagen video: High definition video generation with diffusion282

models. arXiv preprint arXiv:2210.02303, 2022.283

[37] Hoel, H. and Szepessy, A. Classical langevin dynamics derived from quantum mechanics. arXiv284

preprint arXiv:1906.09858, 2019.285

[38] Hopfield, J. J. Neural networks and physical systems with emergent collective computational286

abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.287

[39] Huguet, G., Vuckovic, J., Fatras, K., Thibodeau-Laufer, E., Lemos, P., Islam, R., Liu, C.-H.,288

Rector-Brooks, J., Akhound-Sadegh, T., Bronstein, M., et al. Sequence-augmented se (3)-flow289

matching for conditional protein backbone generation. arXiv preprint arXiv:2405.20313, 2024.290

[40] Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C., Ionescu, C., Ding, D., Koppula, S., Zoran,291

D., Brock, A., Shelhamer, E., et al. Perceiver io: A general architecture for structured inputs &292

outputs. arXiv preprint arXiv:2107.14795, 2021.293

[41] Jing, B., Stärk, H., Jaakkola, T., and Berger, B. Generative modeling of molecular dynamics294

trajectories. arXiv preprint arXiv:2409.17808, 2024.295

[42] Joshi, C. K., Fu, X., Liao, Y.-L., Gharakhanyan, V., Miller, B. K., Sriram, A., and Ulissi, Z. W.296

All-atom diffusion transformers: Unified generative modelling of molecules and materials.297

arXiv preprint arXiv:2503.03965, 2025.298

[43] Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,299

K., Bates, R., Žídek, A., Potapenko, A., et al. Highly accurate protein structure prediction with300

alphafold. nature, 596(7873):583–589, 2021.301

[44] Karplus, M. and Petsko, G. A. Molecular dynamics simulations in biology. Nature, 347(6294):302

631–639, 1990.303

[45] Kingma, D. and Gao, R. Understanding diffusion objectives as the elbo with simple data304

augmentation. Advances in Neural Information Processing Systems, 36, 2024.305

[46] Kingma, D. P. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.306

[47] Kingma, D. P. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,307

2014.308

[48] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for309

interacting systems. In International conference on machine learning, pp. 2688–2697. PMLR,310

2018.311

[49] Köhler, J., Klein, L., and Noé, F. Equivariant flows: sampling configurations for multi-body312

systems with symmetric energies. arXiv preprint arXiv:1910.00753, 2019.313

[50] Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le, M. Flow matching for generative314

modeling. arXiv preprint arXiv:2210.02747, 2022.315

[51] Lipman, Y., Havasi, M., Holderrieth, P., Shaul, N., Le, M., Karrer, B., Chen, R. T., Lopez-Paz,316

D., Ben-Hamu, H., and Gat, I. Flow matching guide and code. arXiv preprint arXiv:2412.06264,317

2024.318

[52] Liu, J., Yang, C., Lu, Z., Chen, J., Li, Y., Zhang, M., Bai, T., Fang, Y., Sun, L., Yu, P. S., et al.319

Towards graph foundation models: A survey and beyond. arXiv preprint arXiv:2310.11829,320

2023.321

8

[53] Liu, X., Gong, C., and Liu, Q. Flow straight and fast: Learning to generate and transfer data322

with rectified flow. arXiv preprint arXiv:2209.03003, 2022.323

[54] Loshchilov, I., Hutter, F., et al. Fixing weight decay regularization in adam. arXiv preprint324

arXiv:1711.05101, 5, 2017.325

[55] Lou, A., Meng, C., and Ermon, S. Discrete diffusion modeling by estimating the ratios of the326

data distribution. URL https://arxiv. org/abs/2310.16834, 2024.327

[56] Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-Eijnden, E., and Xie, S. Sit:328

Exploring flow and diffusion-based generative models with scalable interpolant transformers.329

arXiv preprint arXiv:2401.08740, 2024.330

[57] Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T., Shah, N., Galkin, M., and Tang, J.331

Position: Graph foundation models are already here. In Forty-first International Conference on332

Machine Learning, 2024.333

[58] Mayr, A., Lehner, S., Mayrhofer, A., Kloss, C., Hochreiter, S., and Brandstetter, J. Boundary334

graph neural networks for 3d simulations. Proceedings of the AAAI Conference on Artificial335

Intelligence, 37(8):9099–9107, Jun. 2023. doi: 10.1609/aaai.v37i8.26092.336

[59] Micheli, A. Neural network for graphs: A contextual constructive approach. IEEE Transactions337

on Neural Networks, 20(3):498–511, 2009. doi: 10.1109/TNN.2008.2010350.338

[60] Noé, F., Wu, H., Prinz, J.-H., and Plattner, N. Projected and hidden markov models for339

calculating kinetics and metastable states of complex molecules. The Journal of chemical340

physics, 139, 2013.341

[61] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,342

Gimelshein, N., Antiga, L., et al. Pytorch: An imperative style, high-performance deep learning343

library. Advances in neural information processing systems, 32, 2019.344

[62] Peebles, W. and Xie, S. Scalable diffusion models with transformers. In Proceedings of the345

IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.346

[63] Perez, E., Strub, F., De Vries, H., Dumoulin, V., and Courville, A. Film: Visual reasoning with347

a general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,348

volume 32, 2018.349

[64] Pérez-Hernández, G., Paul, F., Giorgino, T., De Fabritiis, G., and Noé, F. Identification of slow350

molecular order parameters for markov model construction. The Journal of chemical physics,351

139(1), 2013.352

[65] Polyak, A., Zohar, A., Brown, A., Tjandra, A., Sinha, A., Lee, A., Vyas, A., Shi, B., Ma,353

C.-Y., Chuang, C.-Y., et al. Movie gen: A cast of media foundation models. arXiv preprint354

arXiv:2410.13720, 2024.355

[66] Ponder, J. W. and Case, D. A. Force fields for protein simulations. Advances in protein356

chemistry, 66:27–85, 2003. ISSN 0065-3233. doi: 10.1016/S0065-3233(03)66002-X.357

[67] Price, I., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R., El-Kadi, A., Masters, D., Ewalds,358

T., Stott, J., Mohamed, S., Battaglia, P., et al. Probabilistic weather forecasting with machine359

learning. Nature, 637(8044):84–90, 2025.360

[68] Prinz, J.-H., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schütte, C.,361

and Noé, F. Markov models of molecular kinetics: Generation and validation. The Journal of362

chemical physics, 134(17), 2011.363

[69] Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Gruber, L., Holzleitner, M., Adler,364

T., Kreil, D., Kopp, M. K., G, K., and Hochreiter, S. Hopfield networks is all you need.365

International Conference on Learning Representations, 2021.366

[70] Rogozhnikov, A. Einops: Clear and reliable tensor manipulations with einstein-like notation. In367

International Conference on Learning Representations, 2021.368

9

[71] Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image369

synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer370

vision and pattern recognition, pp. 10684–10695, 2022.371

[72] Sahoo, S., Arriola, M., Schiff, Y., Gokaslan, A., Marroquin, E., Chiu, J., Rush, A., and Kuleshov,372

V. Simple and effective masked diffusion language models. Advances in Neural Information373

Processing Systems, 37:130136–130184, 2024.374

[73] Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., and Battaglia, P. Learning375

to simulate complex physics with graph networks. In International conference on machine376

learning, pp. 8459–8468. PMLR, 2020.377

[74] Satorras, V. G., Hoogeboom, E., and Welling, M. E(n) equivariant graph neural networks. In378

Meila, M. and Zhang, T. (eds.), Proceedings of the 38th International Conference on Machine379

Learning, volume 139 of Proceedings of Machine Learning Research, pp. 9323–9332. PMLR,380

18–24 Jul 2021.381

[75] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural382

network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi: 10.1109/383

TNN.2008.2005605.384

[76] Scherer, M. K., Trendelkamp-Schroer, B., Paul, F., Pérez-Hernández, G., Hoffmann, M., Plattner,385

N., Wehmeyer, C., Prinz, J.-H., and Noé, F. Pyemma 2: A software package for estimation,386

validation, and analysis of markov models. Journal of chemical theory and computation, 11387

(11):5525–5542, 2015.388

[77] Seidman, J., Kissas, G., Perdikaris, P., and Pappas, G. J. Nomad: Nonlinear manifold decoders389

for operator learning. Advances in Neural Information Processing Systems, 35:5601–5613,390

2022.391

[78] Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and Ganguli, S. Deep unsupervised learning392

using nonequilibrium thermodynamics. In International conference on machine learning, pp.393

2256–2265. PMLR, 2015.394

[79] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. Score-based395

generative modeling through stochastic differential equations. In International Conference on396

Learning Representations, 2021.397

[80] Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L., Kohlhoff, K., and Riley, P. Tensor field398

networks: Rotation-and translation-equivariant neural networks for 3d point clouds. arXiv399

preprint arXiv:1802.08219, 2018.400

[81] Van Den Oord, A., Vinyals, O., et al. Neural discrete representation learning. Advances in401

neural information processing systems, 30, 2017.402

[82] Vaswani, A. Attention is all you need. Advances in Neural Information Processing Systems,403

2017.404

[83] Vyas, A., Shi, B., Le, M., Tjandra, A., Wu, Y.-C., Guo, B., Zhang, J., Zhang, X., Adkins, R.,405

Ngan, W., et al. Audiobox: Unified audio generation with natural language prompts. arXiv406

preprint arXiv:2312.15821, 2023.407

[84] Xu, C., Tan, R. T., Tan, Y., Chen, S., Wang, Y. G., Wang, X., and Wang, Y. Eqmotion:408

Equivariant multi-agent motion prediction with invariant interaction reasoning. In Proceedings409

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1410–1420,410

2023.411

[85] Xu, P., Hayet, J.-B., and Karamouzas, I. Socialvae: Human trajectory prediction using timewise412

latents. In European Conference on Computer Vision, pp. 511–528. Springer, 2022.413

[86] Yadan, O. Hydra - a framework for elegantly configuring complex applications. Github, 2019.414

URL https://github.com/facebookresearch/hydra.415

10

https://github.com/facebookresearch/hydra

[87] Yu, Z., Huang, W., and Liu, Y. Force-guided bridge matching for full-atom time-coarsened416

dynamics of peptides. arXiv preprint arXiv:2408.15126, 2024.417

[88] Zhang, B. and Wonka, P. Lagem: A large geometry model for 3d representation learning and418

diffusion. arXiv preprint arXiv:2410.01295, 2024.419

[89] Zhang, B., Tang, J., Niessner, M., and Wonka, P. 3dshape2vecset: A 3d shape representation for420

neural fields and generative diffusion models. ACM Transactions on Graphics (TOG), 42(4):421

1–16, 2023.422

[90] Zwanzig, R. Nonlinear generalized langevin equations. Journal of Statistical Physics, 9(3):423

215–220, 1973.424

11

425

Appendix426

Table of Contents
427
428

A Background & Related Work 13429

A.1 Dynamical systems . 13430

A.2 Generative modeling . 13431

A.3 Latent space modeling . 13432

A.4 Molecular Dynamics (MD) . 13433

A.5 Relationship to Graph Foundation Models . 14434

A.6 Relationship to Video and Language Diffusion Models 15435

B Notation 16436

C Proofs and Example for Terminology 17437

C.1 Proof of Proposition 2.3 . 17438

C.2 Proof of Proposition 2.4 . 17439

C.3 Example: Aspirin . 17440

D Architecture and Training Details 18441

D.1 Architecture Overview in Detail . 18442

D.2 Training Procedure . 18443

D.3 Identifier Assignment . 19444

D.4 Encoder and Decoder . 19445

D.5 Approximator . 20446

D.6 Additional Information on our Parametrization 22447

E Experimental Details 23448

E.1 Datasets . 23449

E.2 Condition and Prediction Horizon . 23450

E.3 Loss Functions . 23451

E.4 Implementation Details . 24452

E.5 Hyperparameters . 24453

E.6 Evaluation Details . 25454

E.7 Computational Resources . 25455

E.8 Software . 25456

F Additional Experiments 29457

F.1 N-Body System Dynamics (Particle Systems) 29458

F.2 Computational Efficiency and Scaling Behavior 30459

F.3 Number of Learned Latent Vectors . 32460

F.4 Identifier Pool Size . 33461

F.5 Identifier Assignment . 34462

G Extended Discussion 35463

H Visualizations 36464
465
466467

12

A Background & Related Work468

A.1 Dynamical systems469

Formally, we consider a random dynamical system to be defined by a state space S , representing all470

possible configurations of the system, and an evolution rule Φ : R× S 7→ S that determines how a471

state s ∈ S evolves over time, and which exhibits the following properties for the time differences472

0, t̂1, and, t̂2:473

Φ(0, s) = s (4)

Φ(t̂2,Φ(t̂1, s)) = Φ(t̂1 + t̂2, s) (5)

We note that Φ does not necessarily need to be defined on the whole space R×S , but we assume this474

for notational simplicity. The exact formal definition of random dynamical systems is more involved475

and consists of a base flow (noise) and a cocycle dynamical system defined on a physical phase476

space [8]. We skip the details, but assume to deal with random dynamical systems for the remainder477

of the paper. The non-deterministic behavior of such dynamical systems suggests generative modeling478

approaches.479

A.2 Generative modeling480

Recent developments in generative modeling have captured widespread interest. The breakthroughs481

of the last years were mainly driven by diffusion models [78, 79, 35], a paradigm that transforms a482

simple distribution into a target data distribution via iterative refinement steps. Flow Matching [50,483

53, 2] has emerged as a powerful alternative to diffusion models, enable simulation-free training484

between arbitrary start and target distributions [51] and were also extended to data manifolds [19].485

This approach comes with straighter paths, offering faster integration, and has been successfully486

applied across different domains like images [27], audio [83], videos [65], protein design [39] and487

robotics [13].488

A.3 Latent space modeling489

Latent space modeling has achieved remarkable success at image and video generation [15, 27],490

where pre-trained encoders and decoders map data into a latent space, and back into the physics491

space. The latent space aims to preserve the essential structure and features of the original data,492

often following a compositional structure D ◦ A ◦ E [77, 4, 5], where the encoder E maps the input493

signal into the latent space, the approximator A models a process, and the decoder maps back to494

the original space. Examples of approximators are conditional generative modeling techniques, e.g.,495

generating an image given a text prompt (condition) [71]. This framework was recently used for 3D496

shape generation, which are generated in latent space, the final shape in the spatial domain is then497

constructed by querying the latent representations over a fixed spatial grid [89, 88].498

A.4 Molecular Dynamics (MD)499

The most fundamental concepts nowadays to describe the dynamics of molecules are given by500

the laws of quantum mechanics. The Schrödinger equation is a partial differential equation, that501

gives the evolution of the complex-valued wave function ψ over time t: iℏ
∂ψ

∂t
= Ĥ(t)ψ. Here i502

is the imaginary unit with i2 = −1, ℏ is reduced Planck constant, and, Ĥ(t) is the Hamiltonian503

operator at time t, which is applied to a function ψ and maps to another function. It determines how504

a quantum system evolves with time and its eigenvalues correspond to measurable energy values505

of the quantum system. The solution to Schrödinger’s equation in the many-body case (particles506

1, . . . , N) is the wave function ψ(x1, . . . ,xN , t) :×N

i=1
R3 × R → C which we abbreviate as507

ψ({x} , t). It’s the square modulus |ψ({x} , t)|2 = ψ∗({x} , t)ψ({x} , t) is usually interpreted as508

a probability density to measure the positions x1, . . . ,xN at time t, whereby the normalization509

condition
∫
. . .
∫
|ψ({x} , t)|2dx1 . . . dxN = 1 holds for the wave function ψ.510

Analytic solutions of ψ for specific operators ˆH(t) are hardly known and are only available for simple511

systems like free particles or hydrogen atoms. In contrast to that are proteins with many thousands of512

13

atoms. However, already for much smaller quantum systems approximations are needed. A famous513

example is the Born–Oppenheimer approximation, where the wave function of the multi-body system514

is decomposed into parts for heavier atom nuclei and the light-weight electrons, which usually move515

much faster. In this case, one obtains a Schrödinger equation for electron movement and another516

Schrödinger equation for nuclei movement. A much faster option than solving a second Schrödinger517

equation for the motion of the nuclei is to use the laws from classical Newtonian dynamics. The518

solution of the first Schrödinger equation defines an energy potential, which can be utilized to obtain519

forces Fi on the nuclei and to update nuclei positions according to Newton’s equation of motion:520

Fi = mi q̈i(t) (with mi being the mass of particle i and qi(t) describing the motion trajectory of521

particle i over time t).522

Additional complexity in studying molecule dynamics is introduced by environmental conditions523

surrounding molecules. Maybe the most important is temperature. For bio-molecules it is often of524

interest to assume that they are dissolved in water. To model temperature, a usual strategy is to assume525

a system of coupled harmonic oscillators to model a heat bath, from which Langevin dynamics can526

be derived [29, 90]. The investigation of the relationship between quantum-mechanical modeling of527

heat baths and Langevin dynamics still seems to be a current research topic, where there there are528

different aspects like the coupling of the oscillators or Markovian properties when stochastic forces529

are introduced. For instance, Hoel & Szepessy [37], studies how canonical quantum observables530

are approximated by molecular dynamics. This includes the definition of density operators, which531

behave according to the quantum Liouville-von Neumann equation.532

The forces in molecules are usually given as the negative derivative of the (potential) energy: Fi =533

−∇E. In the context of molecules, E is usually assumed to be defined by a force field, which is a534

parameterized sum of intra- and intermolecular interaction terms. An example is the Amber force535

field [66, 18]:536

E =
∑

bonds r

kb(r − r0)2 +
∑

angles θ

kθ(θ − θ0)2+ (6)

∑
dihedrals ϕ

Vn(1 + cos(nϕ− γ)) +
N−1∑
i=1

N∑
j=i+1

(
Aij
R12
ij

− Bij
R6
ij

+
qiqj
ϵRij

)

Here kb, r0, kθ, θ0, Vn, γ, Aij , Bij , ϵ, qi, qj serve as force field parameters, which are found either537

empirically or which might be inspired by theory.538

Newton’s equations of motions for all particles under consideration form a system of ordinary539

differential equations (ODEs), to which different numeric integration schemes like Euler, Leapfrog,540

or, Verlet can be applied to obtain particle position trajectories for given initial positions and initial541

velocities. In case temperature is included, the resulting Langevin equations form a system of542

stochastic differential equations (SDEs), and Langevin integrators can be used. It should be mentioned,543

that it is often necessary to use very small integration timesteps to avoid large approximation errors.544

This, however, increases the time needed to find new stable molecular configurations.545

A.5 Relationship to Graph Foundation Models546

From our perspective, LAM-SLIDE bears a relationship to graph foundation models [GFMs; 52, 57].547

Bommasani et al. [16] consider foundation models to be trained on broad data at scale and to be548

adaptable to a wide range of downstream tasks. Mao et al. [57] argue, that graphs are more diverse549

than natural language or images, and therefore there are quite unique challenges for GFMs. Especially550

they mention that none of the current GFM have the capability to transfer across all graph tasks and551

datasets from all domains. It is for sure true that LAM-SLIDE is not a GFM in this sense. However,552

it might be debatable whether LAM-SLIDE might serve as a domain- or task-specfic GFM. While553

we mainly focused on a trajectory prediction task and are from that point of view task-specific, we554

observed that our trained models can generalize across different molecules or differently taken scenes,555

which might seem quite remarkable given that it is common practice to train specific trajectory556

prediction models for single molecules or single scenes. Nevertheless, it was not our aim in this557

research to provide a GFM, since we believe that this would require more investigation into further558

domains and could also require, for instance, checking whether emergent abilities might arise with559

larger models and more training data [52].560

14

A.6 Relationship to Video and Language Diffusion Models561

We want to elaborate our perspective on the relationship between LAM-SLIDE and recent advances562

in video [15] and language diffusion models [72, 55]. At their core, these approaches share a563

fundamental similarity: they can be conceptualized as a form of unmasking.564

In video diffusion models, the model unmasks future frames; in language diffusion models, the model565

unmasks unknown tokens. Both paradigms learn to recover information that is initially obscured in566

the sequence, and importantly, both methods do that in parallel over the whole input sequence [9],567

compared to autoregressive models which predict a single frame or a single token at a time.568

Similarly, LAM-SLIDE represents each timestep as a set of latent tokens (or alternatively, as a single569

token when concatenated). This perspective allows us to seamlessly incorporate recent advances from570

both video and language diffusion research into our modeling paradigm.571

15

B Notation572

Table 3: Overview of used symbols and notations.

Definition Symbol/Notation Type

continuous time t̂ R
overall number of (sampled) time steps T N
number of observed time steps (when predicting later ones) To N
number of future time steps (prediction horizon) Tf = T − To N
time index for sequences of time steps t N
system state space S application-dependent set, to be further defined
system state s S
entity e symbolic
number of entities N N
entity index n 1 .. N
set of entities E {e1, . . . , en}
spatial entity dimensionality Dx N
entity feature dimensionality Dm N
entity location (coordinate) x RDx

entity properties (entity features) m RDm

identifier representation dimensionality Du N
number of latent vectors L N
latent vector dimensionality Dz N

trajectory of a system (locations of entities over time) X RTo×N×Dx

entity locations at t Xt RN×Dx

entity i of trajectory at t Xt
i RDx

trajectory in latent space Z RTo×L×Dz

latent system state at t Zt RL×Dz

time invariant features of entities M RN×Dm

matrix of identifier embeddings U RN×Du

projection matrices Q,K,V not specified; depends on number of heads etc.

identifier assignment function ida(·) E 7→ I
encoder E(.) RN×(Du+Dx+Dm) 7→ RL×Dz

decoder D(.) RL×Dz × RN×Du 7→ RN×(Dx+Dm)

approximator (time dynamics model) A(.) RT×L×Dz 7→ RT×L×Dz

loss function L(., .) var.

time parameter of the flow-based model τ [0, 1]
noise distribution o0 RT×L×Dz

de-noised de-masked trajectory o1 = Z RT×L×Dz

flow-based model "velocity prediction" (neural net) vθ(oτ , τ) RT×L×Dz × R 7→ RT×L×Dz

flow-based model "data prediction" (neural net) oθ(oτ , τ) RT×L×Dz × R 7→ RT×L×Dz

neural network parameters θ undef.

16

C Proofs and Example for Terminology573

C.1 Proof of Proposition 2.3574

The proof is rather simple, but we include it for completeness.575

Proposition 2.3. Given an identifier pool I and a finite set of entities E, an identifier assignment576

pool I as defined by Definition 2.2 is non-empty if and only if |E| ⩽ |I|.577

Proof. Assume |E| > |I|. By pigeonhole principle, any function f : E 7→ I must map at least two578

distinct elements of E to the same element in I , Therefore f cannot be injective.579

Conversely, if |E| ⩽ |I|, we can construct an injective function from E to I by assigning each580

element in E a unique element in I, which is possible because I has at least as many elements as E.581

Therefore, an injective identifier assignment function ida(·) ∈ I only exists if |E| ⩽ |I|. Hence the582

set I is non-empty in this case and empty otherwise.583

C.2 Proof of Proposition 2.4584

Proposition 2.4. Given an identifier pool I and a finite set of entities E such that |E| ⩽ |I|, the585

identifier assignment pool I as defined by Definition 2.2 contains finitely many injective functions.586

Let n = |E| and m = |I|, then the set of infective functions I is bounded and finite:587

|I| = (m− 1) . . . (m− n+ 1) =
m!

(m− n)!
= (m)n ⩽ inf (7)

Where (m)n is commonly referred as falling factorials, the number of injective functions from a set588

of size n to a set of size m.589

C.3 Example: Aspirin590

Figure 3: Example aspirin: IDs are assigned to the atoms of the molecule.

Aspirin C9H8O4 consists of 21 atoms, thus the identifier pool I needs to have at least 21 unique591

identifiers. We select an assignment function ida(·), arbitrary, and use it to assign each atom592

an unique identifier. Notably, e.g. for molecules, we do not explicitly model molecular bond593

information, as the spatial relationship between atoms (interatomic distances) implicitly capture this594

information. App. Fig. 3 shows an arbitrary but fixed identifier assignment for aspirin, we illustrate595

different IDs by colored fingerprint symbols.596

17

D Architecture and Training Details597

D.1 Architecture Overview in Detail598

App. Fig. 4 shows an expanded view of our architecture, and how the different components of599

LAM-SLIDE interact. For architectural details on the identifier assignment, the encoder and decoder,600

and, the approximator we refer to App. D.3, App. D.4, and, App. D.5.601

Figure 4: Expanded architectural overview. First Stage: The model is trained to reconstruct the
encoded system, by querying the latent system representation by IDs. Second Stage: Latent flow-
based model is trained to predict multiple masked future timesteps. The predicted system states are
decoded by the frozen decoder.

D.2 Training Procedure602

The training process follows a two-stage approach similar to latent diffusion models [71]. First603

Stage: We train the encoder E and decoder D, to reconstruct entities from latent space using assigned604

IDs, see Fig. 2). Second Stage: We train the approximator A on the latent system representations605

produced by the frozen encoder E (details in App. E.4).606

18

D.3 Identifier Assignment607

We provide pseudocode for the identifier creation in App. Algorithm 1. This algorithm prevents the608

reuse of already assigned IDs, maintaining unique IDs across all entities. From a practical perspective609

we sample IDs randomly, so that all entity embeddings receive gradient updates.610

Algorithm 1: Identifier Construction
Input :number of entities N ; identifier pool size |I| where N ⩽ |I|; embedding dimension Du

Output :U ∈ RN×Du

1 U← empty matrix of size N ×Du

2 S ← {} // track assigned identifiers
3 for i← 1 to N do
4 r ← RandomSample(I \ S)
5 S ← S ∪ {r}
6 er ← Embedding(r) // learnable embeddings
7 U[i]← er

8 return U

D.4 Encoder and Decoder611

We provide pseudocode of the forward passes for encoding (E) to and decoding (D) from the latent612

system space of LAM-SLIDE in App. Algorithm 2 and App. Algorithm 3 respectively. In general,613

encoder and decoder blocks follow the standard Transformer architecture [82] with feedforward and614

normalization layers. To simplify the explanation, we omitted additional implementation details here615

and refer readers to our provided source code.616

Algorithm 2: Encoder Function E (Cross-Attention)

Input : input data XMU = [X,M,U] ∈ RN×(Dx+Dm+Du)

Output : latent system state Z ∈ RL×Dz

Internal parameters : learned latent queries Zinit ∈ RL×Dz

1 K← Linear(XMU)
2 V← Linear(XMU)
3 Q← Linear(Zinit)

4 return LayerNorm
(
Attention(Q,K,V)

)
// without learnable affine parameters

Algorithm 3: Decoder Function D (Cross-Attention)

Input : latent system representation Z ∈ RL×Dz ; entity representation u ∈ RDu drawn from
U ∈ RN×Du

Output : [x,m] ∈ RDx+Dm

1 Z← LayerNorm(Z) // without learnable affine parameters
2 K← Linear(Z)
3 V← Linear(Z)
4 q← Linear(u)

5 return Attention
(
[q], K, V

)
For the decoding functionality presented in App. Algorithm 3, we made use of multiple specific617

decoder blocks depending on the actual task (e.g., for the molecules dataset, we use one decoder618

block for atom positions and one decoder block for atom types).619

19

D.5 Approximator620

To realize the latent approximator, we are interested in time-dependent processes, which interpolate621

between data o1 ∼ p1 from a target data distribution p1 and noise ϵ ∼ p0 := N (0, I):622

oτ = ατo1 + στ ϵ, (8)

where τ ∈ [0, 1] is the time parameter of the flow (to be distinguished from system times t). ατ623

and στ are differentiable functions in τ , which have to fulfill α2
τ + σ2

τ > 0 ∀τ ∈ [0, 1], and,624

further α0 = σ1 = 0, and, α1 = σ0 = 1. The goal is to learn a parametric model vθ(o, τ), s.t.,625 ∫ 1

0
E[||vθ(oτ , τ)− α̇τo1 − σ̇τ ϵ||2] dτ is minimized. Within the stochastic interpolants framework,626

we identify o1 with a whole trajectory Z = Z[1 : T] = [Z[1 : To],Z[To+1: T]] ∈ RT×L×Dz .627

Figure 5: Left: The latent model receives
conditioning via known tokens (observed
timesteps) and mask tokens (for prediction).
This example shows conditioning on one time-
frame to predict three future ones. Right:
ID-based decoding, where the predicted atom
positions are decoded by the assigned IDs.

Since the generated trajectories should be condi-628

tioned on the latent system representations of ini-629

tial time frames Z[1 : To], we extend vθ with a con-630

ditioning argument C ∈ RT×L×Dz , making it ef-631

fectively a conditional vector field vθ : RT×L×Dz ×632

[0, 1] × RT×L×Dz 7→ RT×L×Dz . The tensor struc-633

ture of C is the same as the one for Z. For the634

first time steps, both tensors have equal values, i.e.,635

C[1 : To] = Z[1 : To]. The remaining tensor entries636

C[To+1: T] are filled up with mask tokens, see App.637

Fig. 5.638

The latent model is structured as series transformer639

blocks [81, 62], alternating between the spatial and640

the temporal dimension. We parametrized our model641

via a data prediction objective [51]. Pseudocode of642

the data prediction network oθ forward pass is provided in App. Algorithm 4. The latent layer643

functionality is given by App. Algorithm 5. The architecture of the latent layers (i.e., our flow model)644

is based on Dehghani et al. [23], with the additional usage of adaptive layer norm (adaLN) [63] as645

also used for Diffusion Transformers [62]. The implementation is based on ParallelMLP block codes646

from Black Forest Labs [14], which was adopted to use it along the latent dimension as well as along647

the temporal dimension (see App. Fig. 6). The velocity model is obtained via reparameterization as648

outlined in App. D.6.649

Algorithm 4: Latent Flow Model oθ (data prediction network)

Input :noise-interpolated data ointer ∈ RT×L×Dz ; diffusion time τ used for interpolation;
conditioning C ∈ RT×L×Dz ; conditioning mask B ∈ {0, 1}T×L×Dz

Output :prediction of original data (not interpolated with noise) o ∈ RT×L×Dz

1 τ ← Embed(τ)
2 o← Linear(ointer) + Linear(C) + Embed(B)
3 for i← 1 to num_layers do
4 o← LatentLayer(o, τ)

5 α, β, γ ← Linear(SiLU(τ))

6 return o+ γ ⊙MLP
(
α⊙ LayerNorm(o) + β

)

Algorithm 5: LatentLayer

Input :o ∈ RT×L×C ; diffusion time embedding τ
Output :updated o ∈ RT×L×C

1 o += ParallelMLPAttentionWithRoPE(o, τ , dim = 0)
2 o += ParallelMLPAttentionWithRoPE(o, τ , dim = 1)
3 return o

20

Figure 6: Left: LatentLayer of our method, consisting of a latent and a temporal ParallelMLP block.
Right: Zoomed in view of the ParalellMLP block

Using einops [70] notation, the latent layer in App. Fig. 6 can be expressed as:650

o′ ← rearrange(o, (B L) T Dz → (B T) L Dz)

o′ ← liψ(o
′, τ)

o′ ← rearrange(o′, (B T) L Dz → (B L) T Dz)

o′ ← liϕ(o
′, τ)

with parameters sets ψ and ϕ, where for the latent block the time dimension gets absorbed into651

the batch dimension and for the temporal block the latent dimension gets absorbed into the batch652

dimension.653

21

D.6 Additional Information on our Parametrization654

General interpolants. The stochastic interpolants framework [2, 3, 56] is defined without reference655

to an forward SDE, which allows a lot of flexibility, any choice of αt an σt, satisfying the following656

conditions is possible:657

1. α2
τ + σ2

τ > 0;658

2. ατ and στ are differentiable for all τ ∈ [0, 1]659

3. α0 = σ1 = 0 and α1 = σ0 = 1660

Interpolants. Two common choices for αt and σt are the Linear and a Generalized Variance-661

Preserving (GVP) path:662

Linear: ατ = τ, στ = 1− τ (9)

GVP: ατ = sin

(
1

2
πτ

)
, στ = cos

(
1

2
πτ

)
(10)

Parametrization. Our latent flow-based model is implemented via data prediction objective [51, 45],663

with the aim to have small differences:664

||ôθ(o; τ)− o1||2 . (11)

The velocity model v̂θ is obtained by reparameterization according to Lipman et al. [51]:665

v̂θ(o, τ) = ŝθ(o; τ)

(
α̇τσ

2
τ

ατ
− στ σ̇τ

)
+
α̇τ
ατ

o (12)

where666

ŝθ(o; τ) = −σ−2
τ (o− ατ ôθ(o; τ)) . (13)

For integration, we employed the torchdiffeq package [20], which provides solvers for differential667

equations.668

22

E Experimental Details669

E.1 Datasets670

Small Molecules (MD17). The MD17 dataset is available at http://www.sgdml.org/#datasets.671

Preprocessing and dataset splits follow Han et al. [33] and can be accessed through their GitHub672

repository at https://github.com/hanjq17/GeoTDM. The dataset comprises, 5,000 training,673

1000 validation and 1000 test trajectories for each molecule.674

Tetrapeptides. The dataset, including the full simulation parameters for ground truth simulations,675

is sourced from Jing et al. [41] and is publicly available in their GitHub repository at https:676

//github.com/bjing2016/mdgen. The dataset comprises 3,109 training, 100 validation and 100677

test peptides.678

N-Body. The dataset creation scripts, along with its predefined splits is available at https:679

//github.com/hanjq17/GeoTDM.680

E.2 Condition and Prediction Horizon681

App. Tab. 4 shows the conditioning and prediction horizon for the individual experiments. For the682

Tetrapeptides experiments we predicted 1000 steps in parallel and reconditioned the model ten times683

on the last frame for each predicted block, this concept is similar to Arriola et al. [9].684

Table 4: Number of conditioning and predicted frames for the different experiments.

Experiment Conditioning Frames Predicted Frames Total Frames

Molecular Dynamics (MD17) 10 20 30
Molecular Dynamics - Tetrapeptides (4AA) 1 9 999 10 000

N-Body 10 20 30

E.3 Loss Functions685

This section defines the losses, which we use throughout training:686

Position Loss.687

Lpos(X
t, X̂t) =

1

N

N∑
i=1

||Xt
i − X̂t

i||22 (14)

Inter-distance Loss.688

Lint(X
t, X̂t) =

1

N2

N∑
i=1

N∑
j=1

(Dij(X
t)−Dij(X̂

t))2 (15)

with689

Dij(X
t) = ||Xt

i −Xt
j ||2 (16)

Cross-Entropy Loss. Depending on the experiment we have different CE losses depending on the690

problem see App. E.5.691

LCE =
1

N

(
−

K∑
k=1

yk log(pk)

)
(17)

Frame and Torsion Loss. For the Tetrapeptide experiments, we employ two additional auxiliary692

loss functions tailored to better capture unique geometric constraints of proteins, complementing693

our primary optimization objectives: a frame loss Lframe, which is based on representing all atoms694

withing a local reference frame [1, Algorithm 29], and a torsion loss torsion loss Ltors inspired695

by Jumper et al. [43].696

23

http://www.sgdml.org/#datasets
https://github.com/hanjq17/GeoTDM
https://github.com/bjing2016/mdgen
https://github.com/bjing2016/mdgen
https://github.com/bjing2016/mdgen
https://github.com/hanjq17/GeoTDM
https://github.com/hanjq17/GeoTDM
https://github.com/hanjq17/GeoTDM

E.4 Implementation Details697

Training procedure. (i) First Stage. In the first stage we train the encoding and decoding functions698

E and D in an auto-encoding fashion, i.e., we optimize for a precise reconstruction of the original699

system state representation from its latent representation well. For discrete features (e.g., atom type,700

residue type) we tend to use a cross-entropy loss, whereas for continuous features we use a regression701

loss (e.g., position, distance). The loss functions for each individual task are summarized in App. E.5.702

Notably, also the entity identifier assignment is random. (ii) Second Stage. In the second stage, we703

freeze the encoder and train the approximator to model the temporal dynamics via the encoded latent704

system representations. To learn a consistent behavior over time, we pass U from the encoder E to705

the decoder D. To avoid high variance latent spaces we used layer-normalization [10] (see. App. E.4).706

Data Augmentation. To compensate for the absence of built-in inductive biases such as equivari-707

ance/invariance with respect to spatial transformations, we apply random rotations and translations to708

the input coordinates.709

Identifiers. For the embedding of the identifiers we use a torch.nn.Embedding [61] layer, where710

we assign a random subset of the possible embeddings to the entities in each training step. See711

also App. Algorithm 1.712

Latent space regularization. To avoid high variance latent spaces, Rombach et al. [71] relies713

on KL-reg., imposing a small KL-penalty towards a standard normal on the latent space, as used in714

VAE [46]. Recent work [88] has shown that layer normalization [10] can achieve similar regulatory715

effects without requiring an additional loss term and simplifying training procedure, we adapt this716

approach in our method (see left part of Fig. 2).717

Latent Model. For the latent Flow Model we additionally apply auxiliary losses for the individual718

tasks, as shown in App. E.5. Where we decode the the predicted latent system representations and719

back-propagate through the frozen decoder to the latent model.720

MD17. We train a single model on all molecules – a feat that is structurally encouraged by the721

design of LAM-SLIDE . For ablation, we also train GeoTDM [33] on all molecules and evaluate the722

performance on each one of them (“all→each” in the App. Tab. 10). Interestingly, we also observe723

consistent improvements in the GeoTDM performance; however, GeoTDM’s performance does not724

reach the one of LAM-SLIDE .725

Tetrapeptides. For the experiments on tetrapeptides, we employ the Atom14 representation as used726

in AlphaFold [1]. In this representation, each entity corresponds to one amino acid of the tetrapeptide,727

where multiple atomic positions are encoded into a single vector of dimension Dx = 3× 14. Masked728

atomic positions are excluded from gradient computation during model updates. This representation729

is computationally more efficient.730

E.5 Hyperparameters731

App. Tables 5 to 7 show the hyperparameters for the individual tasks, loss functions are as defined732

in App. E.3. For all trained models we use the AdamW [47, 54] optimizer and use EMA [31] in each733

update step with a decay parameter of β = 0.999.734

24

E.6 Evaluation Details735

Prediction Performance for MD17 and N-Body. For MD17 and the n-body experiments, we736

utilized the Average Discrepancy Error (ADE) and the Final Discrepancy Error (FDE), defined as737

ADE(X, X̂) = 1
(T−To)N

∑T
t=To+1

∑N
i=1 ∥Xt

i − X̂t
i∥2, FDE(X, X̂) = 1

N

∑N
i=1 ∥XT

i − X̂T
i ∥2, cap-738

turing model performance across predicted future time steps and the model performance specifically739

for the last predicted frame, respectively. These metrics represent well-established evaluation criteria740

in trajectory forecasting [84, 85].741

Prediction Performance for Tetrapeptides. Our analysis of the Tetrapeptide trajectories utilized742

PyEMMA [76] and followed the procedure as Jing et al. [41]. For the MD experiments on peptides743

(Tetrapeptides), we use Jensen-Shannon divergence (JSD), evaluating the distribution of torsion744

angles, considering both, backbone (BB) and side chain (SC) angles. In order to capture long745

temporal behavior, we use Time-lagged Independent Component Analysis (TICA) [64], focusing746

on the slowest components TIC 0 and TIC 1. To investigate metastable state transitions we make747

use of Markov State Models (MSMs) [68, 60]. For the evaluation of these metrics we relied on the748

implementations provided by [41].749

Time and Scalability. For inference time and scalability, we assess the number of function750

evaluations (NFE) and report performance of our method for different model sizes.751

E.7 Computational Resources752

Our experiments were conducted using a system with 128 CPU cores and 2048GB of system memory.753

Model training was performed on 4 NVIDIA H200 GPUs, each equipped with 140GB of VRAM. In754

total, roughly 5000 GPU hours were used in this work.755

E.8 Software756

We used PyTorch 2 [7] for the implementation of our models. Our training pipeline was struc-757

tured with PyTorch Lightning [28]. We used Hydra [86] to run our experiments with different758

hyperparameter settings. Our experiments were tracked with Weights & Biases [12].759

25

Table 5: Hyperparameter configuration for the small molecule (MD17) experiments.

First Stage

Network
Encoder
Number of latents L 32
Number of entity embeddings 8
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 32
Dimension entity embedding 128
Dimension attention head 16

Decoder
Number of cross attention layers 1
Number of attention heads 2
Number of cross attention layers 16

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1
LCE(·, ·) − Atom type 1

Training
Learning rate 1e-4
Batch size 256
Epochs 3K
Precision 32-Full

Second Stage

Setup
Condition 10 Frames
Prediction 20 Frames

Network
Hidden dimension 128
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.25
Lint(X, X̂) 0.25

Training
Learning rate 1e-3
Learning rate scheduler CosineAnnealing(min_lr=1e-7)
Batch size 64
Epochs 2K
Precision BF16-Mixed

Inference
Integrator Euler
ODE steps 10

26

Table 6: Hyperparameter configuration for the Tetrapeptides experiments.

First Stage

Network
Encoder
Number of latents L 5
Number of entity embeddings 8
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 96
Dimension entity embedding 128
Dimension attention head 16

Decoder
Number of attention heads 2
Number of cross attention layers 1
Dimension attention head 16

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1
Lframe(X, X̂) 1
Ltors(X, X̂) 0.1
LCE(·, ·) − Residue type 0.001

Training
Learning rate 1e-4
Batch size 16
Epochs 200K
Precision 32-Full

Second Stage

Setup
Condition 1 Frame
Prediction 10,000 Frames (10x rollouts)

Network
Hidden dimension 384
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.25
Lint(X, X̂) 0.25
Lframe(X, X̂) 0.25

Training
Learning rate 1e-3
Optimizer AdamW
Batch size 64
Epochs 1.5K
Precision BF16-Mixed

Inference
Integrator Dopri5 [20]
ODE steps adaptive

27

Table 7: Hyperparameter configuration for the N-Body experiments (App. F.1).

First Stage

Network
Encoder
Number of latents L 16
Number of entity embeddings 10
Number of attention heads 2
Number of cross attention layers 1
Dimension latents Dz 32
Dimension entity embedding 128
Dimension attention head 16

Decoder
Number of cross attention layers 1
Number of attention heads 2
Number of cross attention layers 16

Loss Weight

Lpos(X, X̂) 1
Lint(X, X̂) 1

Training
Learning rate 1e-3
Batch size 128
Epochs 2K
Precision 32-Full

Second Stage

Setup
Condition 10 Frames
Prediction 20 Frames

Network
Hidden dimension 256
Number of Layers 6

Auxiliary - Loss Weight

Lpos(X, X̂) 0.0
Lint(X, X̂) 0.0

Training
Learning rate 1e-3
Learning rate scheduler CosineAnnealing(min_lr=1e-7)
Batch size 64
Epochs 1K
Precision BF16-Mixed

Inference
Integrator Euler
ODE steps 10

28

F Additional Experiments760

We conducted additional experiments to investigate how well our method works on a different dynamic761

system and to investigate its computational efficiency and its sensitivity to different hyperparameter762

settings.763

F.1 N-Body System Dynamics (Particle Systems)764

We evaluate LAM-SLIDE across three distinct N-Body simulation scenarios: a) Charged Particles:765

comprising particles with randomly assigned charges +1/−1 interacting via Coulomb forces [48, 74];766

b) Spring Dynamics: consisting of N = 5 particles with randomized masses connected by springs767

with a probability 0.5 between particle pairs [48]; and c) Gravitational Systems: containing N = 10768

particles with randomized masses and initial velocities governed by gravitational interactions [17].769

For all three scenarios, we consider 10 conditioning frames and 20 frames for prediction. In line770

with Han et al. [33], we use 3000 trajectories for training and 2000 trajectories for validation and771

testing, we report ADE/FDE averaged over K = 5 runs.772

LAM-SLIDE achieves the best performance in terms of ADE/FDE for the Charged Particles and Grav-773

ity scenarios and competitive second-rank performance in the Spring Dynamics scenario, see App.774

Tab. 8. Unlike compared methods, LAM-SLIDE achieves these results without computing intermedi-775

ate physical quantities such as velocities or accelerations. We present sampled trajectories in App.776

Fig. 12.777

Table 8: Results on generation on N-body dataset, in terms of ADF/FDE averaged over 5 runs.

Particle Spring Gravity

ADE FDE ADE FDE ADE FDE

RF [49]a 0.479 1.050 0.0145 0.0389 0.791 1.630
TFN [80]a 0.330 0.754 0.1013 0.2364 0.327 0.761
SE(3)-Tr [30]a 0.395 0.936 0.0865 0.2043 0.338 0.830
EGNN [74]a 0.186 0.426 0.0101 0.0231 0.310 0.709

EqMotion [84]a 0.141 0.310 0.0134 0.0358 0.302 0.671
SVAE [85]a 0.378 0.732 0.0120 0.0209 0.582 1.101
GeoTDM [33]a 0.110 0.258 0.0030 0.0079 0.256 0.613

LAM-SLIDE 0.104 0.238 0.0070 0.0135 0.157 0.406
a Results from Han et al. [33].

29

F.2 Computational Efficiency and Scaling Behavior778

We conduct a comparative analysis on computational efficiency by measuring the number of function779

evaluations (NFEs) required to achieve the performance results reported in the main section of our780

publication. As shown in App. Tab. 9, our approach demonstrates remarkable efficiency compared to781

the previous state-of-the-art method, GeoTDM [33], across MD17 molecular dynamics and N-Body782

simulations experiments. Our model consistently requires significantly fewer NFEs than GeoTDM to783

reach comparable or superior performance levels.784

It is worth noting that flow-based models generally require fewer NFEs compared to diffusion-based785

approaches like GeoTDM. However, this efficiency advantage does not come at the expense of786

performance quality [27]. Indeed, the relationship between NFEs and performance is not strictly787

monotonic, as demonstrated in other domains. For instance, Esser et al. [27] achieved optimal image788

generation results in terms of FID [34] with 25 NFEs, showing that computational efficiency and789

high performance can be simultaneously achieved with properly designed architectures.790

Further, in the case of the Tetrapeptides (4AA) experiments shown in the main part of the paper, we791

use an adaptive step size solver to reach the reported performance, which achieved better results than792

a Euler solver. We use Dopri5 as implemented in the torchdiffeq package [20].793

Table 9: Comparison of the number of functions evaluations (NFEs) for LAM-SLIDE and GeoTDM.

N-Body MD17

GeoTDM [33]a 1000 1000

LAM-SLIDE 10 10
a Results from Han et al. [33].

We conducted scaling experiments on both the MD17 and the Tetrapeptides (4AA) datasets to evaluate794

how LAM-SLIDE ’s performance scales with model size. On MD17, we evaluate LAM-SLIDE795

using model variants with 1.7M, 2.1M, and 2.5M parameters. Our results show that, for nearly all796

molecules, performance improves with parameter count in terms of ADE/FDE, see App. Tab. 10.797

Similarly, on the Tetrapeptides dataset, we evaluate using model variants with 4M, 7M, 11M, and 28M798

parameters. All performance metrics show consistent improvement with increased model capacity,799

see App. Tab. 11. These findings indicate favorable scaling behavior of our method and suggests that800

LAM-SLIDE benefits from larger model capacity and could potentially achieve even better results801

with additional computational resources.802

30

Table 10: Method comparison for forecasting MD trajectories of small molecules. Compared
methods predict atom positions for 20 frames, conditioned on 10 input frames. Results are reported
in terms of ADE/FDE, averaged over 5 sampled trajectories.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE

RF [49]a 0.303 0.442 0.120 0.194 0.374 0.515 0.297 0.454 0.168 0.185 0.261 0.343 0.199 0.249 0.239 0.272
TFN [80]a 0.133 0.268 0.024 0.049 0.201 0.414 0.184 0.386 0.072 0.098 0.115 0.223 0.090 0.150 0.090 0.159
SE(3)-Tr. [30]a 0.294 0.556 0.027 0.056 0.188 0.359 0.214 0.456 0.069 0.103 0.189 0.312 0.108 0.184 0.107 0.196
EGNN [74]a 0.267 0.564 0.024 0.042 0.268 0.401 0.393 0.958 0.095 0.133 0.159 0.348 0.207 0.294 0.154 0.282

EqMotion [84]a 0.185 0.246 0.029 0.043 0.152 0.247 0.155 0.249 0.073 0.092 0.110 0.151 0.097 0.129 0.088 0.116
SVAE [85]a 0.301 0.428 0.114 0.133 0.387 0.505 0.287 0.430 0.124 0.135 0.122 0.142 0.145 0.171 0.145 0.156
GeoTDM 1.9Ma 0.107 0.193 0.023 0.039 0.115 0.209 0.107 0.176 0.064 0.087 0.083 0.120 0.083 0.121 0.074 0.099
GeoTDM 1.9M (all→each) 0.091 0.164 0.024 0.040 0.104 0.191 0.097 0.164 0.061 0.092 0.074 0.114 0.073 0.112 0.070 0.102

LAM-SLIDE 2.5M 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074
LAM-SLIDE 2.1M 0.064 0.104 0.023 0.033 0.097 0.182 0.084 0.141 0.044 0.067 0.053 0.081 0.054 0.086 0.054 0.079
LAM-SLIDE 1.7M 0.074 0.117 0.025 0.037 0.110 0.195 0.097 0.159 0.053 0.074 0.063 0.091 0.064 0.094 0.064 0.089

a Results from Han et al. [33].

Table 11: Method comparison for predicting MD trajectories of tetrapeptides. The columns
denote the JSD between distributions of torsion angles (backbone (BB), side-chain (SC) and all
angles), the TICA, the MSM metric, and the number of parameters.

Torsions TICA MSM Params Time

BB SC All 0 0,1 joint (M)

100 nsa .103 .055 .076 .201 .268 .208 ∼ 3h

MDGena .130 .093 .109 .230 .316 .235 34 ∼ 60s

LAM-SLIDE .128 0.122 0.125 .227 .315 .224 28 ∼ 53s
LAM-SLIDE .152 .151 .152 .239 .331 .226 11
LAM-SLIDE .183 .191 .187 .26 .356 .235 7
LAM-SLIDE .284 .331 .311 .339 .461 .237 4
a Results from Jing et al. [41].

31

F.3 Number of Learned Latent Vectors803

We conducted experiments to quantify the relationship between model performance and the number804

of latent vectors L using the MD17 dataset. As shown in App. Tab. 12, performance increases with805

the number of latent vectors L. Of particular significance is the performance at L = 21, which806

corresponds to the maximum number of entities, allowing us to investigate whether this constitutes807

an upper bound on model capacity. Notably, performance continues to improve at L = 32, indicating808

that model capacity scales favorably even beyond the number of entities. Still at L = 16, representing809

a compressed latent representation, our model remains competitive with the second best method810

GeoTDM [33].811

We further analyze if the improvement by increasing L is due to the reconstruction performance812

of the encoder-decoder only. App. Fig. 8 shows the reconstruction error for varying number of813

latent vectors L. Even with substantially fewer latent vectors than entities, the model achieves good814

reconstruction performance. This gap suggests, that the performance gains from increasing L are815

not due to improved reconstruction, but from the ability of the model to leverage the enlarged latent816

space representation better.817

Table 12: Model performance in terms of ADF/FDE with respect to different number of latent
vectors L.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic Toluene Uracil

ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE ADE FDE
LAM-SLIDE (L = 4) 0.354 0.483 0.213 0.264 0.420 0.541 0.366 0.537 0.210 0.223 0.253 0.286 0.316 0.418 0.243 0.275
LAM-SLIDE (L = 8) 0.234 0.315 0.114 0.135 0.242 0.361 0.201 0.300 0.157 0.163 0.179 0.201 0.206 0.250 0.158 0.180
LAM-SLIDE (L = 16) 0.099 0.146 0.039 0.049 0.108 0.187 0.095 0.149 0.070 0.089 0.075 0.101 0.073 0.103 0.071 0.093
LAM-SLIDE (L = 21) 0.078 0.118 0.031 0.041 0.097 0.175 0.082 0.135 0.054 0.074 0.059 0.085 0.057 0.085 0.059 0.083
LAM-SLIDE (L = 32) 0.059 0.098 0.021 0.032 0.087 0.167 0.073 0.124 0.037 0.058 0.047 0.074 0.045 0.075 0.050 0.074

32

F.4 Identifier Pool Size818

We evaluate the impact of identifier pool size using the MD17 dataset. This dataset contains at most819

21 atoms, so in general an identifier pool of |I| = 21 would be enough. However, for the results820

shown in the main paper, we used |I| = 32. To investigate the impact of a larger identifier pool I , we821

conduct additional experiments by training multiple first-stage models with varying identifier pool822

sizes and report the reconstruction error measured by Euclidean distance. App. Fig. 7 shows that the823

reconstruction error increases with the size of the identifier pool, since a larger pool results in fewer824

updates to each entity embedding during training.825

32 64 128 256 512
Size of Identifier Pool

0.00

0.01

0.02

0.03

0.04

0.05

Re
co

ns
tru

ct
io

n
Er

ro
r i

n
Å

0.0018 (0.000003) 0.0029 (0.000004)

0.0085 (0.000163)

0.0202 (0.000220)

0.0325 (0.000526)

Figure 7: Reconstruction error in Å for the MD17 dataset. We report the reconstruction error for
the encoder-decoder model for different identifier pool sizes. The error bars show the standard
deviation across five runs with different random ID assignments.

33

F.5 Identifier Assignment826

To assess the impact of different ID assignments on reconstruction performance, we run our model827

five times with different random ID assignments and measure the standard deviation across these828

assignments in terms of reconstruction error in Å. Results are shown in App. Figures 7 and 8. The829

low standard deviation across different ID assignments demonstrates the robustness of our model830

with respect to random ID assignment.831

32 21 16 8 4
Number of latent vectors

0.00

0.01

0.02

0.03

0.04

0.05

Re
co

ns
tru

ct
io

n
Er

ro
r i

n
Å

0.0018 (0.000003) 0.0028 (0.000002) 0.0017 (0.000002)

0.0088 (0.000070)

0.0563 (0.000417)

Figure 8: Reconstruction error in Å for the MD17 dataset. We report the reconstruction error for the
encoder-decoder model for different number of latent vectors L. The error bars show the standard
deviation across five runs with different random ID assignments.

34

G Extended Discussion832

Our experiments indicate that our architecture is applicable to a diverse set of problems; however, a833

few limitations provide opportunities for future improvement. While our current approach successfully834

allows to compress entities with beneficial reconstruction performance, our experiments indicate a835

tradeoff between the number of latent space vectors to encode system states and the performance of836

our latent model, for experimental details on this see App. F.3.837

35

H Visualizations838

Figure 9: Molecular dynamics trajectories from the MD17 dataset, showing time-evolved struc-
tural predictions for each molecule. For every compound, we display four distinct trajectory pre-
dictions, with each prediction comprising 20 superimposed time frames to illustrate the range of
conformational changes.

36

AP
W

F

BB torsions MD FES Sample FES

CP
EE

SD
FS

SS
NN

SF
CH

PN
HP

BB torsions MD FES Sample FES

PI
DV

DQ
KV

GG
HN

HE
LI

Figure 10: Torsion angle distributions of the six backbone torsion angles, comparing molecular
dynamics (MD) trajectories (orange) and sampled trajectories (blue); and Free energy surfaces pro-
jected onto the top two time-lagged independent component analysis (TICA) components, computed
from both backbone and sidechain torsion angles.

37

Figure 11: Molecular Dynamics trajectories from the Tetrapeptides (4AA) dataset, showing
time-evolved structural predictions for ten frames at an interval of 1000 frames. Top: SDFS (Serine
- Aspartic Acid - Phenylalanine - Serine) peptide. Bottom: CPEE peptide (Cysteine - Proline -
Glutamic Acid - Glutamic Acid).

38

Figure 12: Trajectories from the N-Body dataset, predicted vs ground truth trajectories. Left: Charged
particles. Middle: Spring dynamics. Right: Gravitational system.

39

839

40

	Introduction
	LaM - SLidE
	Problem Formulation
	Entity Structure Preservation
	Model Architecture

	Experiments
	Conclusion
	Appendix
	 Appendix
	Background & Related Work
	Dynamical systems
	Generative modeling
	Latent space modeling
	Molecular Dynamics (MD)
	Relationship to Graph Foundation Models
	Relationship to Video and Language Diffusion Models

	Notation
	Proofs and Example for Terminology
	Proof of IAFprop
	Proof of propkfin
	Example: Aspirin

	Architecture and Training Details
	Architecture Overview in Detail
	Training Procedure
	Identifier Assignment
	Encoder and Decoder
	Approximator
	Additional Information on our Parametrization

	Experimental Details
	Datasets
	Condition and Prediction Horizon
	Loss Functions
	Implementation Details
	Hyperparameters
	Evaluation Details
	Computational Resources
	Software

	Additional Experiments
	N-Body System Dynamics (Particle Systems)
	Computational Efficiency and Scaling Behavior
	Number of Learned Latent Vectors
	Identifier Pool Size
	Identifier Assignment

	Extended Discussion
	Visualizations

