
Published as a conference paper at ICLR 2023

SIGN AND BASIS INVARIANT NETWORKS FOR
SPECTRAL GRAPH REPRESENTATION LEARNING

Derek Lim∗, Joshua Robinson∗

MIT CSAIL
{dereklim, joshrob}@mit.edu

Lingxiao Zhao
Carnegie Mellon University

Tess Smidt
MIT EECS & MIT RLE

Suvrit Sra
MIT LIDS

Haggai Maron
NVIDIA Research

Stefanie Jegelka
MIT CSAIL

ABSTRACT

We introduce SignNet and BasisNet—new neural architectures that are invariant
to two key symmetries displayed by eigenvectors: (i) sign flips, since if v is an
eigenvector then so is −v; and (ii) more general basis symmetries, which occur in
higher dimensional eigenspaces with infinitely many choices of basis eigenvectors.
We prove that under certain conditions our networks are universal, i.e., they can
approximate any continuous function of eigenvectors with the desired invariances.
When used with Laplacian eigenvectors, our networks are provably more expressive
than existing spectral methods on graphs; for instance, they subsume all spectral
graph convolutions, certain spectral graph invariants, and previously proposed
graph positional encodings as special cases. Experiments show that our networks
significantly outperform existing baselines on molecular graph regression, learning
expressive graph representations, and learning neural fields on triangle meshes. Our
code is available at https://github.com/cptq/SignNet-BasisNet.

1 INTRODUCTION

Numerous machine learning models process eigenvectors, which arise in various settings including
principal component analysis, matrix factorizations, and operators associated to graphs or manifolds.
An important example is the use of Laplacian eigenvectors to encode information about the structure
of a graph or manifold (Belkin & Niyogi, 2003; Von Luxburg, 2007; Lévy, 2006). Positional
encodings that involve Laplacian eigenvectors have recently been used to generalize Transformers
to graphs (Kreuzer et al., 2021; Dwivedi & Bresson, 2021), and to improve the expressive power
and empirical performance of graph neural networks (GNNs) (Dwivedi et al., 2022). Furthermore,
these eigenvectors are crucial for defining spectral operations on graphs that are foundational to graph
signal processing and spectral GNNs (Ortega et al., 2018; Bruna et al., 2014).

However, there are nontrivial symmetries that should be accounted for when processing eigenvectors,
as has been noted in many fields (Eastment & Krzanowski, 1982; Rustamov et al., 2007; Bro et al.,
2008; Ovsjanikov et al., 2008). For instance, if v is an eigenvector, then so is −v, with the same
eigenvalue. More generally, if an eigenvalue has higher multiplicity, then there are infinitely many
unit-norm eigenvectors that can be chosen. Indeed, a full set of linearly independent eigenvectors
is only defined up to a change of basis in each eigenspace. In the case of sign invariance, for any
k eigenvectors there are 2k possible choices of sign. Accordingly, prior works on graph positional
encodings randomly flip eigenvector signs during training in order to approximately learn sign
invariance (Kreuzer et al., 2021; Dwivedi et al., 2020; Kim et al., 2022). However, learning all
2k invariances is challenging and limits the effectiveness of Laplacian eigenvectors for encoding
positional information. Sign invariance is a special case of basis invariance when all eigenvalues are
distinct, but general basis invariance is even more difficult to deal with. In Appendix C.2, we show
that higher dimensional eigenspaces are abundant in real datasets; for instance, 64% of molecule
graphs in the ZINC dataset have a higher dimensional eigenspace.

∗Equal contribution.

1

https://github.com/cptq/SignNet-BasisNet

Published as a conference paper at ICLR 2023

In this work, we address the sign and basis ambiguity problems by developing new neural networks—
SignNet and BasisNet. Under certain conditions, our networks are universal and can approximate
any continuous function of eigenvectors with the proper invariances. Moreover, our networks are
theoretically powerful for graph representation learning—they can provably approximate and go
beyond both spectral graph convolutions and powerful spectral invariants, which allows our networks
to express graph properties like subgraph counts that message passing neural networks cannot.
Laplacian eigenvectors with SignNet and BasisNet can provably approximate many previously
proposed graph positional encodings, so our networks are general and remove the need for choosing
one of the many positional encodings in the literature. Experiments on molecular graph regression
tasks, learning expressive graph representations, and texture reconstruction on triangle meshes
illustrate the empirical benefits of our models’ approximation power and invariances.

2 SIGN AND BASIS INVARIANT NETWORKS

𝑛

𝑛×𝑛 permutation matrix 𝑘×𝑘 block diagonal
orthogonal matrix

𝑘 eigenvectors
partitioned

by eigenvalue

⋅ ⋅

𝑄!

𝑄"
𝑄!

𝑃 𝑉! 𝑉" 𝑉#

Figure 1: Symmetries of eigenvectors of a sym-
metric matrix with permutation invariances (e.g. a
graph Laplacian). A neural network applied to the
eigenvectors matrix (middle) should be invariant or
equivariant to permutation of the rows (left product
with a permutation matrix P) and invariant to the
choice of eigenvectors in each eigenbasis (right
product with a block diagonal orthogonal matrix
Diag(Q1, Q2, Q3)).

For an n× n symmetric matrix, let λ1 ≤ . . . ≤
λn be the eigenvalues and v1, . . . , vn the corre-
sponding eigenvectors, which we may assume
to form an orthonormal basis. For instance, we
could consider the normalized graph Laplacian
L = I − D−1/2AD−1/2, where A ∈ Rn×n

is the adjacency matrix and D is the diagonal
degree matrix of some underlying graph. For
undirected graphs, L is symmetric. Nonsymmet-
ric matrices can be handled very similarly, as we
show in Appendix B.1.

Motivation. Our goal is to parameterize a class
of models f(v1, . . . , vk) taking k eigenvectors
as input in a manner that respects the eigenvec-
tor symmetries. This is because eigenvectors
capture much information about data; for in-
stance, Laplacian eigenvectors of a graph cap-
ture clusters, subgraph frequencies, connectivity,
and many other useful properties (Von Luxburg,
2007; Cvetković et al., 1997).

A major motivation for processing eigenvector input is for graph positional encodings, which are
additional features appended to each node in a graph that give information about the position of that
node in the graph. These additional features are crucial for generalizing Transformers to graphs,
and also have been found to improve performance of GNNs (Dwivedi et al., 2020; 2022). Figure 2
illustrates a standard pipeline and the use of our SignNet within it: the input adjacency, node features,
and eigenvectors of a graph are used to compute a prediction about the graph. Laplacian eigenvectors
are processed before being fed into this prediction model. Laplacian eigenvectors have been widely
used as positional encodings, and many works have noted that sign and/or basis invariance should be
addressed in this case (Dwivedi & Bresson, 2021; Beaini et al., 2021; Dwivedi et al., 2020; Kreuzer
et al., 2021; Mialon et al., 2021; Dwivedi et al., 2022; Kim et al., 2022).

Sign invariance. For any eigenvector vi, the sign flipped −vi is also an eigenvector, so a function
f : Rn×k → Rdout (where dout is an arbitrary output dimension) should be sign invariant:

f(v1, . . . , vk) = f(s1v1, . . . , skvk) (1)

for all sign choices si ∈ {−1, 1}. That is, we want f to be invariant to the product group {−1, 1}k.
This captures all eigenvector symmetries if the eigenvalues λi are distinct and the eigenvectors are
unit-norm.

Basis invariance. If the eigenvalues have higher multiplicity, then there are further symmetries.
Let V1, . . . , Vl be bases of eigenspaces—i.e., Vi =

[
vi1 . . . vidi

]
∈ Rn×di has orthonormal

columns and spans the eigenspace associated with the shared eigenvalue µi = λi1 = . . . = λidi .
Any other orthonormal basis that spans the eigenspace is of the form ViQ for some orthogonal
Q ∈ O(di) ⊆ Rdi×di (see Appendix F.2). Thus, a function f : Rn×

∑l
i=1 di → Rdout that is invariant

2

Published as a conference paper at ICLR 2023

to changes of basis in each eigenspace satisfies

f(V1, . . . , Vl) = f(V1Q1, . . . , VlQl), Qi ∈ O(di). (2)

In other words, f is invariant to the product group O(d1)× . . .×O(dl). The number of eigenspaces
l and the dimensions di may vary between matrices; we account for this in Section 2.2. As O(1) =
{−1, 1}, sign invariance is a special case of basis invariance when all eigenvalues are distinct.

Permutation equivariance. For GNN models that output node features or node predictions, one
typically further desires f to be invariant or equivariant to permutations of nodes, i.e., along the
rows of each vector. Thus, for f : Rn×d → Rn×dout , we typically require f(PV1, . . . , PVl) =
Pf(V1, . . . , Vl) for any permutation matrix P ∈ Rn×n. Figure 1 illustrates all of the symmetries.

Universal Approximation. We desire universal models, which can approximate any function in
a target class. Formally, we say that a class of functions Fmodel of domain X and output space Y
universally approximates a class of functions Ftarget if for any ϵ > 0, any compact Ω ⊆ X , and any
target function f̃ ∈ Ftarget, there exists an f ∈ Fmodel such that ∥f(x)− f̃(x)∥ < ϵ for all x ∈ Ω.

Adjacency
Matrix

Node
Features

Laplacian
Eigenvectors SignNet

Prediction
Model

(e.g. GNN,
Transformer)

Compute
Eigvecs

Input Graph Model

Figure 2: Pipeline for using node positional encodings. After processing by our SignNet, the learned
positional encodings from the Laplacian eigenvectors are added as additional node features of an
input graph ([X,SignNet(V)] denotes concatenation). These positional encodings along with the
graph adjacency and original node features are passed to a prediction model (e.g. a GNN). Not shown
here, SignNet can also take in eigenvalues, node features and adjacency information if desired.

2.1 WARMUP: NEURAL NETWORKS ON ONE EIGENSPACE

Before considering the general setting, we design neural networks that take a single eigenvector or
eigenspace as input and are sign or basis invariant. These single subspace architectures will become
building blocks for the general architectures. For one subspace, a sign invariant function is merely an
even function, and is easily parameterized.
Proposition 1. A continuous function h : Rn → Rdout is sign invariant if and only if

h(v) = ϕ(v) + ϕ(−v) (3)

for some continuous ϕ : Rn → Rdout . A continuous h : Rn → Rn is sign invariant and permutation
equivariant if and only if (3) holds for a continuous permutation equivariant ϕ : Rn → Rn.

In practice, we parameterize ϕ by a neural network. Any architecture choice will ensure sign invari-
ance, while permutation equivariance can be achieved using elementwise MLPs, DeepSets (Zaheer
et al., 2017), Transformers (Vaswani et al., 2017), or most GNNs (Gilmer et al., 2017).

Next, we address basis invariance for a single d-dimensional subspace, i.e., we aim to parameterize
maps h : Rn×d → Rn that are (a) invariant to right multiplication by Q ∈ O(d), and (b) equivariant
to permutations along the row axis. For (a), we use the mapping V 7→ V V ⊤ from V to the
orthogonal projector of its column space, which is O(d) invariant. Mapping V 7→ V V ⊤ does not lose
information if we treat V as equivalent to V Q for any Q ∈ O(d). This is justified by the classical first
fundamental theorem of O(d) (Kraft & Procesi, 1996), which has recently been applied in machine
learning by Villar et al. (2021).

3

Published as a conference paper at ICLR 2023

Regarding (b), permuting the rows of V permutes rows and columns of V V ⊤ ∈ Rn×n. Hence, we
desire the function ϕ : Rn×n → Rn on V V ⊤ to be equivariant to simultaneous row and column
permutations: ϕ(PV V ⊤P⊤) = Pϕ(V V ⊤). To parameterize such a mapping from matrices to
vectors, we use an invariant graph network (IGN) (Maron et al., 2018)—a neural network mapping
to and from tensors of arbitrary order Rnd1 → Rnd2 that has the desired permutation equivariance.
We thus parameterize a family with the requisite invariance and equivariance as follows:

h(V) = IGN(V V ⊤). (4)

Proposition 2 states that this architecture universally approximates O(d) invariant and permutation
equivariant functions. The full approximation power requires high order tensors to be used for the
IGN; in practice, we restrict the tensor dimensions for efficiency, as discussed in the next section.
Proposition 2. Any continuous, O(d) invariant h : Rn×d → Rdout is of the form h(V) = ϕ(V V ⊤)
for a continuous ϕ. For a compact Z ⊆ Rn×d, maps of the form V 7→ IGN(V V ⊤) universally
approximate continuous h : Z ⊆ Rn×d → Rn that are O(d) invariant and permutation equivariant.

2.2 NEURAL NETWORKS ON MULTIPLE EIGENSPACES

To develop a method for processing multiple eigenvectors (or eigenspaces), we first prove a general
decomposition theorem (see Appendix A for more details). Our result reduces invariance for a large
product group G1 × . . .×Gk to the much simpler invariances for the smaller constituent groups Gi.
Theorem 1 (Informal). Let a product of groups G = G1 × . . . × Gk act on X1 × . . . × Xk.
Under mild conditions, any continuous G-invariant function f can be written f(x1, . . . , xk) =
ρ(ϕ1(x1), . . . , ϕk(xk)), where ϕi is Gi invariant, and ϕi and ρ are continuous If Xi = Xj and
Gi = Gj , then we can take ϕi = ϕj .

The key consequence of this result is that if we know how to design invariant models for the
smaller groups Gi (of size 2 for sign invariance), then we can combine them in a simple way to
get invariant models for the larger and more complex G (of size 2k for sign invariance), without
losing any expressive power. For eigenvector data, the ith eigenvector (or eigenspace) is in Xi,
and its symmetries are described by Gi. Thus, we can reduce the multiple-eigenspace case to the
single-eigenspace case, and leverage the models we developed in the previous section.

SignNet. We parameterize our sign invariant network f : Rn×k → Rdout on eigenvectors
v1, . . . , vk as:

f(v1, . . . , vk) = ρ
(
[ϕ(vi) + ϕ(−vi)]ki=1

)
, (5)

where ϕ and ρ are unrestricted neural networks, and [·]i denotes concatenation of vectors. The form
ϕ(vi)+ϕ(−vi) induces sign invariance for each eigenvector. Since we do not yet impose permutation
equivariance here, we term this model Unconstrained-SignNet.

To obtain a sign invariant and permutation equivariant f that outputs vectors in Rn×dout , we restrict
ϕ and ρ to be permutation equivariant networks from vectors to vectors, such as elementwise MLPs,
DeepSets (Zaheer et al., 2017), Transformers (Vaswani et al., 2017), or most standard GNNs. We
name this permutation equivariant version SignNet. If desired, we can use eigenvalues λi, an
adjacency matrix A ∈ Rn×n, and node features X ∈ Rn×dfeat by adding them as arguments to ϕ:

f(v1, . . . , vk, λ1, . . . , λk, X) = ρ
(
[ϕ(vi, λi, A,X,) + ϕ(−vi, λi, A,X)]ki=1

)
. (6)

BasisNet. For basis invariance, let Vi ∈ Rn×di be an orthonormal basis of a di dimensional
eigenspace. Then we parameterize our Unconstrained-BasisNet f by

f(V1, . . . , Vl) = ρ
(
[ϕdi(ViV

⊤
i)]li=1

)
, (7)

where each ϕdi is shared amongst all subspaces of the same dimension di, and l is the number of
eigenspaces (i.e., number of distinct eigenvalues, which can differ from the number of eigenvectors
k). As l differs between graphs, we may use zero-padding or a sequence model like a Transformer to
parameterize ρ. Again, ϕdi

and ρ are generally unrestricted neural networks. To obtain permutation
equivariance, we make ρ permutation equivariant and let ϕdi

= IGNdi
: Rn2 → Rn be IGNs from

matrices to vectors. For efficiency, we will only use matrices and vectors in the IGNs (that is, no
tensors in Rnp

for p > 2), i.e., we use 2-IGN (Maron et al., 2018). Our resulting BasisNet is

f(V1, . . . , Vl) = ρ
(
[IGNdi(ViV

⊤
i)]li=1

)
. (8)

4

Published as a conference paper at ICLR 2023

Expressive-BasisNet. While we restrict SignNet to only use vectors and BasisNet to only use vectors
and matrices, higher order tensors are generally required for universally approximating permutation
equivariant or invariant functions (Keriven & Peyré, 2019; Maron et al., 2019; Maehara & NT,
2019). Thus, we will consider a theoretically powerful but computationally impractical variant of
our model, in which we replace ρ and IGNdi

in BasisNet with IGNs of arbitrary tensor order. We
call this variant Expressive-BasisNet. Universal approximation requires O(nn) sized intermediate
tensors (Ravanbakhsh, 2020). We study Expressive-BasisNet due to its theoretical interest, and to
juxtapose with the computational efficiency and strong expressive power of SignNet and BasisNet.

In the multiple subspace case, we can prove universality for some instances of our models through
our decomposition theorem—see Section A for details. For a summary of properties and more details
about our models, see Appendix B.

3 THEORETICAL POWER FOR GRAPH REPRESENTATION LEARNING

Next, we establish that our SignNet and BasisNet can go beyond useful basis invariant and permutation
equivariant functions on Laplacian eigenvectors for graph representation learning, including: spectral
graph convolutions, spectral invariants, and existing graph positional encodings. Expressive-BasisNet
can of course compute these functions, but this section shows that the practical invariant architectures
SignNet and BasisNet can compute them as well.

3.1 SIGNNET AND BASISNET STRICTLY GENERALIZE SPECTRAL GRAPH CONVOLUTION

For node features X ∈ Rn×dfeat and an eigendecomposition V ΛV ⊤, a spectral graph convolution
takes the form f(V,Λ, X) =

∑n
i=1 θiviv

⊤
i X = VDiag(θ)V ⊤X , for some parameters θi, that may

optionally be continuous functions h(λi) = θi of the eigenvalues (Bruna et al., 2014; Defferrard et al.,
2016). This family includes important functions like heat kernels and generalized PageRanks on
graphs (Li et al., 2019). A spectral GNN is defined as multiple layers of spectral graph convolutions
and node-wise linear maps, e.g. VDiag(θ2)V

⊤σ
(
VDiag(θ1)V

⊤XW1

)
W2 is a two layer spectral

GNN. It can be seen (in Appendix H.1) that spectral graph convolutions are permutation equivariant
and sign invariant, and if θi = h(λi) (i.e. the transformation applied to the diagonal elements is
parametric) they are additionally invariant to a change of bases in each eigenspace.

Our SignNet and BasisNet can be viewed as generalizations of spectral graph convolutions, as our
networks universally approximate all spectral graph convolutions of the above form. For instance,
SignNet with ρ(a1, . . . , ak) =

∑k
i=1 ak and ϕ(vi, λi, X) = 1

2θiviv
⊤
i X directly yields the spectral

graph convolution. This is captured in Theorem 2, which we prove in Appendix H.1. In fact, we may
expect SignNet to learn spectral graph convolutions well, according to the principle of algorithmic
alignment (Xu et al., 2020) (see Appendix H.1); this is supported by numerical experiments in
Appendix J.3, in which our networks outperform baselines in learning spectral graph convolutions.
Theorem 2. SignNet universally approximates all spectral graph convolutions. BasisNet universally
approximates all parametric spectral graph convolutions.

In fact, SignNet and BasisNet are strictly stronger than spectral graph convolutions; there are functions
computable by SignNet and BasisNet that cannot be approximated by spectral graph convolutions or
spectral GNNs. This is captured in Proposition 3: our networks can distinguish bipartite graphs from
non-bipartite graphs, but spectral GNNs cannot for certain choices of graphs and node signals.1

Proposition 3. There exist infinitely many pairs of non-isomorphic graphs that SignNet and BasisNet
can distinguish, but spectral graph convolutions or spectral GNNs cannot distinguish.

3.2 BASISNET CAN COMPUTE SPECTRAL INVARIANTS

Many works measure the expressive power of graph neural networks by comparing their power for
testing graph isomorphism (Xu et al., 2019; Sato, 2020), or by comparing their ability to compute
certain functions on graphs like subgraph counts (Chen et al., 2020; Tahmasebi et al., 2020). These
works often compare GNNs to combinatorial invariants on graphs, especially the k-Weisfeiler-Leman
(k-WL) tests of graph isomorphism (Morris et al., 2021).

1A function class Fmodel distinguishes graphs G1, G2 if there is an f ∈ Fmodel such that f(G1) ̸= f(G2).

5

Published as a conference paper at ICLR 2023

While we may also compare with these combinatorial invariants, as other GNN works that use spectral
information have done (Beaini et al., 2021), we argue that it is more natural to analyze our networks
in terms of spectral invariants, which are computed from the eigenvalues and eigenvectors of graphs.
There is a rich literature of spectral invariants from the fields of spectral graph theory and complexity
theory (Cvetković et al., 1997). For a spectral invariant to be well-defined, it must be invariant to
permutations and changes of basis in each eigenspace, a characteristic shared by our networks.

The simplest spectral invariant is the multiset of eigenvalues, which we give as input to our networks.
Another widely studied, powerful spectral invariant is the collection of graph angles, which are
defined as the values αij = ∥ViV ⊤

i ej∥2, where Vi ∈ Rn×di is an orthonormal basis for the ith
adjacency matrix eigenspace, and ej is the jth standard basis vector, which is zero besides a one in
the jth component. These are easily computed by our networks (Appendix H.3), so our networks
inherit the strength of these invariants. We capture these results in the following theorem, which also
lists a few properties that graph angles determine (Cvetković, 1991).
Theorem 3. BasisNet universally approximates the graph angles αij . The eigenvalues and graph
angles (and thus BasisNet) can determine the number of length 3, 4, or 5 cycles, whether a graph is
connected, and the number of length k closed walks from any vertex to itself.

Relation to WL and message passing. In contrast to this result, message passing GNNs are not able
to express any of these properties (see (Arvind et al., 2020; Garg et al., 2020) and Appendix H.3).
Although spectral invariants are strong, Fürer (2010) shows that the eigenvalues and graph angles—as
well as some strictly stronger spectral invariants—are not stronger than the 3-WL test (or, equivalently,
the 2-Folklore-WL test). Using our networks for node positional encodings in message passing GNNs
allows us to go beyond graph angles, as message passing can distinguish all trees, but there exist
non-isomorphic trees with the same eigenvalues and graph angles (Fürer, 2010; Cvetković, 1988).

3.3 SIGNNET AND BASISNET GENERALIZE EXISTING GRAPH POSITIONAL ENCODINGS

Many graph positional encodings have been proposed, without any clear criteria on which to choose
for a particular task. We prove (in Appendix H.2) that our efficient SignNet and BasisNet can
approximate many previously used graph positional encodings, as we unify these positional encodings
by expressing them as either a spectral graph convolution matrix or the diagonal of a spectral graph
convolution matrix.
Proposition 4. SignNet and BasisNet can approximate node positional encodings based on heat
kernels (Feldman et al., 2022) and random walks (Dwivedi et al., 2022). BasisNet can approximate
diffusion and p-step random walk relative positional encodings (Mialon et al., 2021), and generalized
PageRank and landing probability distance encodings (Li et al., 2020).

4 EXPERIMENTS

We demonstrate the strength of our networks in various experiments. Appendix B shows simple
pseudo-code and Figure 2 is a diagram detailing the use of SignNet as a node positional encoding.

4.1 GRAPH REGRESSION

We study the effectiveness of SignNet for learning positional encodings (PEs) from the eigenvectors
of the graph Laplacian on the ZINC dataset of molecule graphs (Irwin et al., 2012) (using the
subset of 12,000 graphs from Dwivedi et al. (2020)). We primarily consider three settings: 1) No
positional encoding, 2) Laplacian PE (LapPE)—the k eigenvectors of the graph Laplacian with
smallest eigenvalues are concatenated with existing node features, 3) SignNet positional features—
passing the eigenvectors through a SignNet and concatenating the output with node features. We
parameterize SignNet by taking ϕ to be a GIN (Xu et al., 2019) and ρ to be an MLP. We sum over
ϕ outputs before the MLP when handling variable numbers of eigenvectors, so the SignNet is of
the form MLP

(∑l
i=1 ϕ(vi) + ϕ(−vi)

)
(see Appendix K.2 for further details). We consider four

different base models that process the graph data and positional encodings: GatedGCN (Bresson &
Laurent, 2017), a Transformer with sparse attention only over neighbours (Kreuzer et al., 2021), PNA
(Corso et al., 2020), and GIN (Xu et al., 2019) with edge features (i.e. GINE) (Hu et al., 2020b). The
total number of parameters of the SignNet and the base model is kept within a 500k budget.

6

Published as a conference paper at ICLR 2023

Table 1: Results on the ZINC dataset with a 500k parameter budget. All models use edge features
besides the Sparse Transformer. Numbers are the mean and standard deviation over 4 runs, each with
different seeds.

Base model Positional encoding k #param Test MAE (↓)

GatedGCN

No PE N/A 492k 0.252±0.007

LapPE (flip) 8 492k 0.198±0.011

LapPE (abs.) 8 492k 0.204±0.009

LapPE (can.) 8 505k 0.298±0.019

SignNet (ϕ(v) only) 8 495k 0.148±0.007

SignNet 8 495k 0.121±0.005

SignNet All 491k 0.100±0.007

Sparse Transformer

No PE N/A 473k 0.283±0.030

LapPE (flip) 16 487k 0.223±0.007

SignNet 16 479k 0.115±0.008

SignNet All 486k 0.102±0.005

GINE

No PE N/A 470k 0.170±0.002

LapPE (flip) 16 470k 0.178±0.004

SignNet 16 470k 0.147±0.005

SignNet All 417k 0.102±0.002

PNA

No PE N/A 474k 0.133±0.011

LapPE (flip) 8 474k 0.132±0.010

SignNet 8 476k 0.105±0.007

SignNet All 487k 0.084±0.006

Table 2: Comparison with SOTA methods on graph-level regression tasks. Numbers are test MAE, so
lower is better. Best models within a standard deviation are bolded.

ZINC (10K) ↓ ZINC-full ↓ Alchemy (10k) ↓
GIN (Xu et al., 2019) .170±.002 .088±.002 .180±.006

δ-2-GNN (Morris et al., 2020b) .374±.022 .042±.003 .118±.001

δ-2-LGNN (Morris et al., 2020b) .306±.044 .045±.006 .122±.003

SpeqNet (Morris et al., 2022) — — .115±.001

GNN-IR (Dupty & Lee, 2022) .137±.010 — .119±.002

PF-GNN (Dupty et al., 2021) .122±.01 — .111±.01

Recon-GNN (Cotta et al., 2021) .170±.006 — .125±.001

SignNet (ours) .084±.006 .024±.003 .113±.002

Table 1 shows the results. For all 4 base models, the PE learned with SignNet yields the best test
MAE (mean absolute error)—lower MAE is better. This includes the cases of PNA and GINE, for
which Laplacian PE with random sign flipping was unable to improve performance over using no PE.
Our best model is a PNA model combined with SignNet, which achieves 0.084 test MAE. Besides
SignNet, we consider two non-learned approaches to resolving eigenvector sign ambiguity—sign
canonicalization and element-wise absolute values (see Appendix K.2 for details). Results with
GatedGCN show that these alternatives are not more effective than random sign flipping. We also
consider an ablation of our SignNet architecture where we remove the sign invariance, using simply
MLP([ϕ(vi)]

k
i=1). Although the resulting architecture is no longer sign invariant, ϕ still processes

eigenvectors independently, meaning that only two invariances (±1) need be learned, significantly
fewer than the 2k total sign flip configurations. Accordingly, this non-sign-invariant learned positional
encoding achieves a test MAE of 0.148, improving over the Laplacian PE (0.198) but falling short
of the fully sign invariant SignNet (0.121). In all cases, using all available eigenvectors in SignNet
significantly improves performance over using a fixed number of eigenvectors; this is notable as other
works typically truncate to a fixed number of eigenvectors.

Efficiency. These significant performance improvements from SignNet come with only a slightly
higher computational cost. For example, GatedGCN with no PE takes about 8.2 seconds per training
iteration on ZINC, while GatedGCN with 8 eigenvectors and SignNet takes about 10.6 seconds;

7

Published as a conference paper at ICLR 2023

Table 3: Test results for texture reconstruction experiment on cat and human models, following the
experimental setting of (Koestler et al., 2022). We use 1023 eigenvectors of the cotangent Laplacian.

Cat Human

Method Params PSNR ↑ DSSIM ↓ LPIPS ↓ PSNR ↑ DSSIM ↓ LPIPS ↓
Intrinsic NF 329k 34.25 .099 .189 32.29 .119 .330
Absolute value 329k 34.67 .106 .252 32.42 .132 .363
Sign flip 329k 23.15 1.28 2.35 21.52 1.05 2.71
SignNet 324k 34.91 .090 .147 32.43 .125 .316

this is only a 29% increase in time, for a reduction of test MAE by over 50%. Also, eigenvector
computation time is neglible, as we need only precompute and save the eigenvectors once, and it only
takes 15 seconds to do this for the 12,000 graphs of ZINC.

Comparison with SOTA. In Table 2, we compare SignNet with other domain-agnostic state-of-the-
art methods on graph-level molecular regression tasks on ZINC (10,000 training graphs), ZINC-full
(about 250,000 graphs), and Alchemy (Chen et al., 2019a) (10,000 training graphs). SignNet
outperforms all methods on ZINC and ZINC-full. Our mean score is the second best on Alchemy,
and is within a standard deviation of the best. We perform much better on ZINC (.084) than other
state-of-the-art positional encoding methods, like GNN-LSPE (.090) (Dwivedi et al., 2022), SAN
(.139) (Kreuzer et al., 2021), and Graphormer (.122) (Ying et al., 2021).

4.2 COUNTING SUBSTRUCTURES AND REGRESSING GRAPH PROPERTIES

Triangle Tailed Tri. 4-Cycle Star
Counting Substructures

0.0

0.1

0.2

0.3

Te
st

 M
AE

NoPE
LapPE
SignNet

IsConnected Diameter Radius
Graph properties

−4

−2

0

lo
g 1

0(
Te

st
 M

SE
)

Figure 3: Counting substructures and regressing graph properties (lower is better). With Laplacian
PEs, SignNet improves performance, while sign flip data augmentation (LapPE) is less consistent.
Mean and standard deviations are reported on 3 runs. All runs use the same 4-layer GIN base model.

Substructure counts (e.g. of cycles) and global graph properties (e.g. connectedness, diameter, radius)
are important graph features that are known to be informative for problems in biology, chemistry, and
social networks (Chen et al., 2020; Holland & Leinhardt, 1977). Following the setting of Zhao et al.
(2022), we show that SignNet with Laplacian positional encodings boosts the ability of simple GNNs
to count substructures and regress graph properties. We take a 4-layer GIN as the base model for
all settings, and for SignNet we use GIN as ϕ and a Transformer as ρ to handle variable numbers of
eigenvectors (see Appendix K.4 for details). As shown in Figure 3, Laplacian PEs with sign-flip data
augmentation improve performance for counting substructures but not for regressing graph properties,
while Laplacian PEs processed by SignNet significantly boost performance on all tasks.

4.3 NEURAL FIELDS ON MANIFOLDS

Discrete approximations to the Laplace-Beltrami operator on manifolds have proven useful for
processing data on surfaces, such as triangle meshes (Lévy, 2006). Recently, Koestler et al. (2022)
propose intrinsic neural fields, which use eigenfunctions of the Laplace-Beltrami operator as positional
encodings for learning neural fields on manifolds. For generalized eigenfunctions v1, . . . , vk, at
a point p on the surface, they parameterize functions f(p) = MLP(v1(p), . . . , vk(p)). As these
eigenfunctions have sign ambiguity, we use our SignNet to parameterize f(p) = MLP(ρ([ϕ(vi(p))+
ϕ(−vi(p))]i=1,...,k)), with ρ and ϕ being MLPs.

Table 3 shows our results for texture reconstruction experiments on all models from Koestler et al.
(2022). The total number of parameters in our SignNet-based model is kept below that of the original
model. We see that the SignNet architecture improves over the original Intrinsic NF model and over

8

Published as a conference paper at ICLR 2023

other baselines — especially in the LPIPS metric, which is often a better perceptual metric than
PSNR or DSSIM (Zhang et al., 2018a). While we have not yet tested this, we believe that SignNet
would allow even more improvement when learning over eigenfunctions of different models, as it
could improve transfer and generalization. See Appendix D.1 for visualizations and Appendix K.5
for more details.

4.4 VISUALIZATION OF LEARNED POSITIONAL ENCODINGS

Eigvec 11 ϕ(v11) + ϕ(−v11) Eigvec 14 ϕ(v14) + ϕ(−v14)

Figure 4: Cotangent Laplacian eigenvectors of the cat model and first principal component of
ϕ(v) + ϕ(−v) from our trained SignNet. Our SignNet encodes bilateral symmetry, which is useful
for reconstruction of the bilaterally symmetric texture.

To better understand SignNet, we plot the first principal component of ϕ(v) + ϕ(−v) for two
eigenvectors on the cat model in Figure 4. We see that SignNet encodes bilateral symmetry and
structural information on the cat model. See Appendix D for more visualizations and further details.

5 RELATED WORK

In this section, we review selected related work. A more thorough review is deferred to Appendix E.

Laplacian eigenvectors in GNNs. Various recently proposed methods in graph deep learning
have directly used Laplacian eigenvectors as node positional encodings that are input to a message
passing GNN (Dwivedi et al., 2020; 2022), or some variant of a Transformer that is adapted to
graphs (Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Mialon et al., 2021; Dwivedi et al., 2022;
Kim et al., 2022). None of these methods address basis invariance, and they only partially address
sign invariance for node positional encodings by randomly flipping eigenvector signs during training.

Graph positional encodings. Other recent methods use positional encodings besides Laplacian
eigenvectors. These include positional encodings based on random walks (Dwivedi et al., 2022;
Mialon et al., 2021; Li et al., 2020), diffusion kernels on graphs (Mialon et al., 2021; Feldman
et al., 2022), shortest paths (Ying et al., 2021; Li et al., 2020), and unsupervised node embedding
methods (Wang et al., 2022). In particular, Wang et al. (2022) use Laplacian eigenvectors for relative
positional encodings in an invariant way, but they focus on robustness, so they have stricter invariances
that significantly reduce expressivity (see Appendix E.2 for more details). These previously used
positional encodings are mostly ad-hoc, less general since they can be provably expressed by SignNet
and BasisNet (see Section 3.3), and/or are expensive to compute (e.g., all pairs shortest paths).

6 CONCLUSION AND DISCUSSION

SignNet and BasisNet are novel architectures for processing eigenvectors that are invariant to sign
flips and choices of eigenspace bases, respectively. Both architectures are provably universal under
certain conditions. When used with Laplacian eigenvectors as inputs they provably go beyond
spectral graph convolutions, spectral invariants, and a number of other graph positional encodings.
These theoretical results are supported by experiments showing that SignNet and BasisNet are highly
expressive in practice, and learn effective graph positional encodings that improve the performance
of message passing graph neural networks. Initial explorations show that SignNet and BasisNet can
be useful beyond graph representation learning, as eigenvectors are ubiquitous in machine learning.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

We thank anonymous reviewers of this work, especially those of the Topology, Algebra, and Geometry
Workshop at ICML 2022, for providing useful feedback and suggestions. We thank Leonardo Cotta
for a discussion about automorphism symmetries in real-world and random graphs (Appendix C.3
and C.4). We thank Truong Son Hy for sending us some useful PyTorch codes for invariant graph
networks. Stefanie Jegelka and Suvrit Sra acknowledge support from NSF CCF-2112665 (TILOS AI
Research Institute) and NSF BIGDATA IIS-1741341. Stefanie Jegelka also acknowledges support
from NSF Award 2134108 and NSF Convergence Accelerator Track D 2040636 and NSF C-ACCEL
D636 - CRIPT Phase 2. Suvrit Sra acknowledges support from NSF CAREER grant (IIS-1846088).
Joshua Robinson is partially supported by a Two Sigma fellowship. Derek Lim is supported by an
NSF Graduate Fellowship.

REFERENCES

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. In Journal of Computer and System
Sciences, volume 113, pp. 42–59. Elsevier, 2020.

László Babai, Dmitry Y Grigoryev, and David M Mount. Isomorphism of graphs with bounded
eigenvalue multiplicity. In Proceedings of the fourteenth annual ACM symposium on Theory of
computing, pp. 310–324, 1982.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
Int. Conference on Learning Representations (ICLR), volume 8, 2020.

Fabian Ball and Andreas Geyer-Schulz. How symmetric are real-world graphs? a large-scale study.
Symmetry, 10(1):29, 2018.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In Int. Conference on Machine Learning (ICML), pp. 748–758.
PMLR, 2021.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data
representation. Neural computation, 15(6):1373–1396, 2003.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In Int. Conference on Learning Representations (ICLR), volume 10, 2022.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. In IEEE transactions on pattern analysis and machine intelligence.
IEEE, 2021.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021.

Xavier Bresson and Thomas Laurent. Residual gated graph ConvNets. In preprint arXiv:1711.07553,
2017.

Rasmus Bro, Evrim Acar, and Tamara G Kolda. Resolving the sign ambiguity in the singular value
decomposition. Journal of Chemometrics: A Journal of the Chemometrics Society, 22(2):135–140,
2008.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and deep locally
connected networks on graphs. In Int. Conference on Learning Representations (ICLR), volume 2,
2014.

10

Published as a conference paper at ICLR 2023

Chen Cai and Yusu Wang. Convergence of invariant graph networks. In preprint arXiv:2201.10129,
2022.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. In preprint arXiv:2005.03675, 2020.

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao,
Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset
for benchmarking ai models. arXiv preprint arXiv:1906.09427, 2019a.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with GNNs. In Advances in Neural Information
Processing Systems (NeurIPS), volume 32, pp. 1589–15902, 2019b.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pp.
10383–10395, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In Int. Conference on Learning Representations (ICLR), volume 9, 2021.

Fan Chung. Spectral graph theory. American Mathematical Soc., 1997.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 13260–13271, 2020.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph rep-
resentations. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,
2021.

Dragoš Cvetković. Constructing trees with given eigenvalues and angles. Linear Algebra and its
Applications, 105:1–8, 1988.

Dragoš Cvetković. Some comments on the eigenspaces of graphs. Publ. Inst. Math.(Beograd), 50
(64):24–32, 1991.

Dragoš Cvetković, Peter Rowlinson, and Slobodan Simic. Eigenspaces of graphs. Number 66 in
Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1997.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems
(NeurIPS), volume 29, pp. 3844–3852, 2016.

Mohammed Haroon Dupty and Wee Sun Lee. Graph representation learning with individualization
and refinement. arXiv preprint arXiv:2203.09141, 2022.

Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee. Pf-gnn: Differentiable particle fil-
tering based approximation of universal graph representations. In Int. Conference on Learning
Representations (ICLR), 2021.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs. In
AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. In preprint arXiv:2003.00982, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph
neural networks with learnable structural and positional representations. In Int. Conference on
Learning Representations (ICLR), volume 10, 2022.

HT Eastment and WJ Krzanowski. Cross-validatory choice of the number of components from a
principal component analysis. Technometrics, 24(1):73–77, 1982.

11

Published as a conference paper at ICLR 2023

Paul Erdos and Alfréd Rényi. Asymmetric graphs. Acta Math. Acad. Sci. Hungar, 14(295-315):3,
1963.

Or Feldman, Amit Boyarski, Shai Feldman, Dani Kogan, Avi Mendelson, and Chaim Baskin.
Weisfeiler and leman go infinite: Spectral and combinatorial pre-colorings. In preprint
arXiv:2201.13410, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. In
ICLR (Workshop on Representation Learning on Graphs and Manifolds), volume 7, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical inter-message passing for learning on
molecular graphs. arXiv preprint arXiv:2006.12179, 2020.

Martin Fürer. On the power of combinatorial and spectral invariants. Linear algebra and its
applications, 432(9):2373–2380, 2010.

Jean Gallier and Jocelyn Quaintance. Differential geometry and Lie groups: a computational
perspective, volume 12. Springer Nature, 2020.

V. K. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph neural
networks. In Int. Conference on Machine Learning (ICML), 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Juan A Navarro González and Juan B Sancho de Salas. C∞-differentiable spaces, volume 1824.
Springer, 2003.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

Will Hamilton. Graph representation learning. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159, 2020.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters
via bernstein approximation. In Advances in Neural Information Processing Systems (NeurIPS),
volume 34, 2021.

Paul W Holland and Samuel Leinhardt. A method for detecting structure in sociometric data. In
Social networks, pp. 411–432. Elsevier, 1977.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Advances
in Neural Information Processing Systems (NeurIPS), volume 33, pp. 22118–22133, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In Int. Conference on Learning Representations
(ICLR), volume 8, 2020b.

Leo Huang, Andrew J Graven, and David Bindel. Density of states graph kernels. In Proceedings of
the 2021 SIAM International Conference on Data Mining (SDM), pp. 289–297. SIAM, 2021.

John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a
free tool to discover chemistry for biology. Journal of chemical information and modeling, 52(7):
1757–1768, 2012.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Advances in Neural Information Processing Systems (NeurIPS), volume 32, 2019.

12

Published as a conference paper at ICLR 2023

Jinwoo Kim, Saeyoon Oh, and Seunghoon Hong. Transformers generalize deepsets and can be
extended to graphs & hypergraphs. In Advances in Neural Information Processing Systems
(NeurIPS), volume 34, 2021.

Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and
Seunghoon Hong. Pure transformers are powerful graph learners. arXiv preprint arXiv:2207.02505,
2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Int. Conference on Learning Representations (ICLR), volume 5, 2017.

Lukas Koestler, Daniel Grittner, Michael Moeller, Daniel Cremers, and Zorah Lähner. Intrinsic neural
fields: Learning functions on manifolds. arXiv preprint arXiv:2203.07967, 2022.

Hanspeter Kraft and Claudio Procesi. Classical invariant theory, a primer. Lecture Notes., 1996.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Re-
thinking graph transformers with spectral attention. In Advances in Neural Information Processing
Systems (NeurIPS), volume 34, 2021.

John M Lee. Smooth manifolds. In Introduction to Smooth Manifolds. Springer, 2013.

F. Thomson Leighton and Gary l. Miller. Certificates for graphs with distinct eigen values. Orginal
Manuscript, 1979.

Ron Levie, Federico Monti, Xavier Bresson, and Michael M Bronstein. Cayleynets: Graph con-
volutional neural networks with complex rational spectral filters. IEEE Transactions on Signal
Processing, 67(1):97–109, 2018.

Bruno Lévy. Laplace-beltrami eigenfunctions towards an algorithm that" understands" geometry. In
IEEE International Conference on Shape Modeling and Applications 2006 (SMI’06), pp. 13–13.
IEEE, 2006.

Pan Li, Eli Chien, and Olgica Milenkovic. Optimizing generalized pagerank methods for seed-
expansion community detection. In Advances in Neural Information Processing Systems (NeurIPS),
volume 32, 2019.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design prov-
ably more powerful neural networks for graph representation learning. In Advances in Neural
Information Processing Systems (NeurIPS), volume 33, pp. 4465–4478, 2020.

Takanori Maehara and Hoang NT. A simple proof of the universality of invariant/equivariant graph
neural networks. arXiv preprint arXiv:1910.03802, 2019.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In Int. Conference on Learning Representations (ICLR), volume 6, 2018.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. In Int. Conference on Machine Learning (ICML), pp. 4363–4371. PMLR, 2019.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. GraphiT: Encoding graph
structure in transformers. In preprint arXiv:2106.05667, 2021.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML
workshop on Graph Representation Learning and Beyond, 2020a.

13

Published as a conference paper at ICLR 2023

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and leman go sparse: Towards
scalable higher-order graph embeddings. Advances in Neural Information Processing Systems, 33:
21824–21840, 2020b.

Christopher Morris, Yaron Lipman, Haggai Maron, Bastian Rieck, Nils M Kriege, Martin Grohe,
Matthias Fey, and Karsten Borgwardt. Weisfeiler and leman go machine learning: The story so far.
arXiv preprint arXiv:2112.09992, 2021.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. arXiv preprint arXiv:2203.13913, 2022.

Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In 2009 30th IEEE
symposium on security and privacy, pp. 173–187. IEEE, 2009.

Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre Vandergheynst.
Graph signal processing: Overview, challenges, and applications. Proceedings of the IEEE, 106
(5):808–828, 2018.

Maks Ovsjanikov, Jian Sun, and Leonidas Guibas. Global intrinsic symmetries of shapes. In
Computer graphics forum, volume 27, pp. 1341–1348. Wiley Online Library, 2008.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast
and scalable system for fraud detection in online auction networks. In Proceedings of the 16th
international conference on World Wide Web, pp. 201–210, 2007.

Pál András Papp, Karolis Martinkus, Lukas Faber, and Roger Wattenhofer. Dropgnn: random
dropouts increase the expressiveness of graph neural networks. Advances in Neural Information
Processing Systems, 34, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems (NeurIPS), pp. 8024–8035.
Curran Associates, Inc., 2019.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

Omri Puny, Matan Atzmon, Heli Ben-Hamu, Edward J Smith, Ishan Misra, Aditya Grover, and Yaron
Lipman. Frame averaging for invariant and equivariant network design. In Int. Conference on
Learning Representations (ICLR), volume 10, 2022.

Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. In International Conference on
Machine Learning, pp. 7996–8006. PMLR, 2020.

Kaspar Riesen and Horst Bunke. Iam graph database repository for graph based pattern recognition
and machine learning. In Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 287–297. Springer,
2008.

Raif M Rustamov et al. Laplace-beltrami eigenfunctions for deformation invariant shape representa-
tion. In Symposium on geometry processing, volume 257, pp. 225–233, 2007.

Horst Sachs and M Stiebitz. Automorphism group and spectrum of a graph. In Studies in pure
mathematics, pp. 587–604. Springer, 1983.

Ryoma Sato. A survey on the expressive power of graph neural networks. In preprint
arXiv:2003.04078, 2020.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. In Int. Conference on
Learning Representations (ICLR), volume 7, 2019.

14

Published as a conference paper at ICLR 2023

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. In NeurIPS Workshop on Relational Representation Learning,
2018.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. In Int. Conference on Learning Representations
(ICLR), 2019.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A
deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
graph neural networks: Possibility and impossibility results. In preprint arXiv:2012.03174, 2020.

Edric Tam and David Dunson. Multiscale graph comparison via the embedded laplacian distance. In
preprint arXiv:2201.12064, 2022.

Terence Tao and Van Vu. Random matrices have simple spectrum. Combinatorica, 37(3):539–553,
2017.

Yasuo Teranishi. Eigenvalues and automorphisms of a graph. Linear and Multilinear Algebra, 57(6):
577–585, 2009.

Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50. SIAM, 1997.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.
Netlsd: hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2347–2356, 2018.

Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature Machine Intelligence, 4(3):189–191, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), volume 30, pp. 5998–6008, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In Int. Conference on Learning Representations (ICLR),
volume 6, 2018.

Saurabh Verma and Zhi-Li Zhang. Hunt for the unique, stable, sparse and fast feature learning on
graphs. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, pp. 88–98,
2017.

Soledad Villar, David Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars are
universal: Equivariant machine learning, structured like classical physics. In Advances in Neural
Information Processing Systems (NeurIPS), volume 34, 2021.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395–416,
2007.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In Int. Conference on Learning Representations (ICLR),
volume 10, 2022.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315, 2019.

Hassler Whitney. The self-intersections of a smooth n-manifold in 2n-space. In Annals of Mathemat-
ics, pp. 220–246, 1944.

15

Published as a conference paper at ICLR 2023

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Int. Conference on Learning Representations (ICLR), volume 7, 2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
What can neural networks reason about? In Int. Conference on Learning Representations (ICLR),
volume 8, 2020.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1365–1374, 2015.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In Advances in
Neural Information Processing Systems (NeurIPS), volume 34, 2021.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph neural
networks. In Association for the Advancement of Artificial Intelligence (AAAI), volume 35, pp.
10737–10745, 2021.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. In Advances in Neural Information Processing Systems (NeurIPS),
volume 30, pp. 3391–3401, 2017.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-BERT: Only attention is needed
for learning graph representations. In preprint arXiv:2001.05140, 2020.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018a.

Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. RetGK: Graph kernels
based on return probabilities of random walks. In Advances in Neural Information Processing
Systems (NeurIPS), volume 31, pp. 3964–3974, 2018b.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any GNN
with local structure awareness. In Int. Conference on Learning Representations (ICLR), volume 10,
2022.

16

Published as a conference paper at ICLR 2023

A UNIVERSALITY FOR MULTIPLE SPACES

While the networks introduced in the Section 2.2 possess the desired invariances, it is not immediately
obvious whether they are powerful enough to express all functions with these invariances. Under
certain conditions, the universality of our architectures follows as a corollary of the following general
decomposition result, which may enable construction of universal architectures for other invariances
as well.

Theorem 4 (Decomposition Theorem). Let X1, . . . ,Xk be topological spaces, and let Gi be a
group acting on Xi for each i. We assume mild topological conditions on Xi and Gi hold. For any
continuous f : X = X1 × . . .×Xk → Rdout that is invariant to the action of G = G1 × . . .×Gk,
there exists continuous ϕi and a continuous ρ : Z ⊆ Ra → Rdout such that

f(v1, . . . , vk) = ρ(ϕ1(v1), . . . , ϕk(vk)). (9)

Furthermore: (1) each ϕi can be taken to be invariant to Gi, (2) the domain Z of ρ is compact if each
Xi is compact, (3) if Xi = Xj and Gi = Gj , then ϕi can be taken to be equal to ϕj .

This result says that when a product of groups G acts on a product of spaces X , for invariance to the
product group G it suffices to individually process each smaller group Gi on Xi and then aggregate
the results. Along with the proof of Theorem 4, the mild topological assumptions are explained in
Appendix G.1. The assumptions hold for sign invariance and basis invariance, when not enforcing
permutation equivariance. By applying this theorem, we can prove universality of some instances of
our networks:

Corollary 1. Unconstrained-SignNet can represent any sign invariant function and Unconstrained-
BasisNet can represent any basis invariant function. Expressive-BasisNet is a universal approximator
of functions that are both basis invariant and permutation equivariant.

This result shows that Unconstrained-SignNet, Unconstrained-BasisNet, and Expressive-BasisNet
take the correct functional form for their respective invariances (proofs in Appendix G.2). Note
that Expressive-BasisNet approximates all sign invariant functions as a special case, by treating
all inputs as one dimensional eigenspaces. Further, note that we require Expressive-BasisNet’s
high order tensors to achieve universality when enforcing permutation equivariance. Universality
under permutation equivariance is generally difficult to achieve when dealing with matrices with
permutation symmetries (Maron et al., 2019; Keriven & Peyré, 2019), but it may be possible that
more efficient architectures can achieve it in our setting.

Accompanying the decomposition result, we show a corresponding universal approximation result
(proof in Appendix G.3). Similarly to Theorem 4, the problem of approximating G = G1 × . . .×Gk

invariant functions is reduced to approximating several Gi-invariant functions.

B MORE DETAILS ON SIGNNET AND BASISNET

Table 4: Properties of our architectures: Unconstrained-SignNet, SignNet, Unconstrained-BasisNet,
and Expressive-BasisNet. The properties are: permutation equivariance, universality (for the proper
class of continuous invariant functions), and computational tractability.

Unconstr.-SignNet SignNet Unconstr.-BasisNet BasisNet Expr.-BasisNet

Perm. equivariant × ✓ × ✓ ✓
Universal ✓ × ✓ × ✓
Tractable ✓ ✓ ✓ ✓ ×

In Figure 2, we show a diagram that describes how SignNet is used as a node positional encoding
for a graph machine learning task. In Table 4, we compare and contrast properties of the neural
architectures that we introduce. In Figure 5, we give pseudo-code of SignNet for learning node
positional encodings with a GNN prediction model.

17

Published as a conference paper at ICLR 2023

PyTorch-like pseudo-code for SignNet
class SignNetGNN(nn.Module):

def __init__(self, d, k, D1, D2, out_dim):
self.phi = GIN(1, D1) # in dim=1, out dim=D1
self.rho = MLP(k∗D1, D2)
self.base_model = GNN(d+D2, out_dim)

def forward(self, g, x, eigvecs):
g contains graph information
x shape: n x d
eigvecs shape: n x k

n, k = eigvecs.shape
eigvecs = eigvecs.reshape(n, k, 1)
pe = self.phi(g, eigvecs) + self.phi(g, −eigvecs)
pe = pe.reshape(n, −1) # n x k x D1 −> n x k∗D1
pe = self.rho(pe)

return self.base_model(g, x, pe)

Figure 5: PyTorch-like pseudo-code for using SignNet with a GNN prediction model, where ϕ = GIN
and ρ = MLP as in the ZINC molecular graph regression experiments. Reshaping eigenvectors
from n× k to n× k × 1 allows ϕ to process each eigenvector (and its negation) independently in
PyTorch-like deep learning libraries.

B.1 GENERALIZATION BEYOND SYMMETRIC MATRICES

In the main paper, we assume that the eigenspaces come from a symmetric matrix. This holds for many
cases of practical interest, as e.g. the Laplacian matrix of an undirected graph is symmetric. However,
we may also want to process directed graphs, or other data that have associated nonsymmetric matrices.
Our SignNet and BasisNet generalize in a straightforward way to handle nonsymmetric diagonalizable
matrices, as we detail here. Let A ∈ Rn×n be a matrix with a diagonalization A = V ΛV −1, where
Λ = Diag(λ1, . . . , λn) contains the eigenvalues λi, and the columns of V = [v1 . . . vn] are
eigenvectors. Suppose we want to learn a function on the eigenvectors v1, . . . , vk. Unlike in the
symmetric matrix case, the eigenvectors are not necessarily orthonormal, and both the eigenvalues
and eigenvectors can be complex.

Real eigenvectors. First, we assume the eigenvectors vi are all real vectors in Rn. We can take the
eigenvectors to be real if A is symmetric, or if A has real eigenvalues (see Horn & Johnson (2012)
Theorem 1.3.29). Also, suppose that we choose the real numbers R as our base field for the vector
space in which eigenvectors lie. Note that for any scaling factor c ∈ R \ {0} and eigenvector v,
we have that cv is an eigenvector of the same eigenvalue. If the eigenvalues are distinct, then the
eigenvectors of the form cv are the only other eigenvectors in the same eigenspace as v. Thus, we
want a function to be invariant to scalings:

f(v1, . . . , vk) = f(c1v1, . . . , ckvk) ci ∈ R \ {0}. (10)

This can be handled by SignNet, by giving unit normalized vector inputs:

f(v1, . . . , vk) = ρ
(
[ϕ(vi/∥vi∥) + ϕ(−vi/∥vi∥)]i=1,...,k

)
. (11)

Now, say have bases of eigenspaces V1, . . . , Vl with dimensions d1, . . . , dl. For a basis Vi, we have
that any other basis of the same space can be obtained as ViW for some W ∈ GLR(di), the set of
real invertible matrices in Rdi×di . Indeed, the orthonormal projector for the space spanned by the
columns of Vi is given by Vi(V ⊤

i Vi)
−1V ⊤

i . Thus, if Z ∈ Rn×di is another basis for the column
space of Vi, we have that Vi(V ⊤

i Vi)
−1V ⊤

i = Z(Z⊤Z)−1Z⊤, so

Vi(V
⊤
i Vi)

−1V ⊤
i Z = Z(Z⊤Z)−1Z⊤Z = Z, (12)

so let W = (V ⊤
i Vi)

−1V ⊤
i Z ∈ Rdi×di . Note that W is invertible, because it has inverse

(Z⊤Z)−1Z⊤Vi, so indeed ViW = Z for W ∈ GLR(di). Thus, basis invariance in this case is
of the form

f(V1 . . . , Vl) = f(V1W1, . . . , VlWl) Wi ∈ GLR(di). (13)

18

Published as a conference paper at ICLR 2023

Note that the distinct eigenvalue invariance is a special case of this invariance, as GR(1) = R \ {0}.
We can again achieve this basis invariance by using a BasisNet, where the inputs to the ϕdi

are
orthogonal projectors of the corresponding eigenspace:

f(V1, . . . , Vl) = ρ
([
ϕdi(Vi(V

⊤
i Vi)

−1V ⊤
i)
]
i=1,...,l

)
. (14)

Recall that if Vi is an orthonormal basis, then the orthogonal projector is just ViV ⊤
i , so this is a direct

generalization of BasisNet in the symmetric case.

Complex eigenvectors. More generally, suppose V ∈ Cn×n are complex eigenvectors, and we take
the base field of the vector space to be C. The above arguments generalize to the complex case; in
the case of distinct eigenvalues, we want

f(v1, . . . , vk) = f(c1v1, . . . , ckvk) ci ∈ C \ {0}. (15)

However, this symmetry can not be as easily reduced to a unit normalization and a discrete sign
invariance, as it can be in the real case. Nonetheless, the basis invariant architecture directly
generalizes, so we can handle the case of distinct eigenvalues by a more general basis invariant
architecture as well. The basis invariance is

f(V1, . . . , Vl) = f(V1W1, . . . , VlWl) Wi ∈ GLC(di). (16)

The orthogonal projector of the image of Vi is Vi(V ∗
i Vi)

−1V ∗
i , where there are now conjugate

transposes replacing the transposes. Thus, BasisNet takes the form:

f(V1, . . . , Vl) = ρ
([
ϕdi

(Vi(V
∗
i Vi)

−1V ∗
i)
]
i=1,...,l

)
. (17)

B.2 BROADER IMPACTS

We believe that our models and future sign invariant or basis invariant networks could be useful in a
wide variety of applications. As eigenvectors arise in many domains, it is difficult to predict the uses
of these models. We test on several molecular property prediction tasks, which have the potential
for much positive impact, such as in drug discovery (Stokes et al., 2020). However, recent work
has found that the same models that we use for finding beneficial drugs can also be used to design
biochemical weapons (Urbina et al., 2022). Another major application of graph machine learning
is in social network analysis, where positive (e.g. malicious node detection (Pandit et al., 2007))
and negative (e.g. deanonymization (Narayanan & Shmatikov, 2009)) uses of machine learning are
possible. Even if there is no negative intent, bias in learned models can differentially impact particular
subgroups of people. Thus, academia, industry, and policy makers must be aware of such potential
negative uses, and work towards reducing the likelihood of them.

B.3 COMPLEXITY OF SIGNNET AND BASISNET

Here, we give a simplified but intuitive analysis of the complexity of SignNet and BasisNet. Suppose
we have a graph of n nodes, with k eigenvectors v1, . . . , vk.

A standard GNN that naively inputs the eigenvectors as node features forms tensors of size O(nk +
nd), where d is the hidden dimension of the learned node features.

SignNet forms tensors of size O(nkd), where d is the hidden dimension or output dimension of ϕ.
This is because for each of the 2k eigenvectors vi and −vi, we must put it through our ϕ network.

Similarly, BasisNet forms tensors of size O(n2ld), where l is the number of eigenspaces and d is the
hidden dimension or output dimension of the ϕdi . Thus, there is an extra multiplicative factor of n
when compared with SignNet. If we instead use p-IGNs with order p tensors, then the complexity is
O(npld).

Moreover, note that a naive version of BasisNet requires a separate IGN to be learned for each
multiplicity di. This may be intractable for datasets with eigenspaces of many sizes. One way to
get around this would be to parameterize a single IGN, and define ϕdi

(ViV
⊤
i) = IGN(ViV

⊤
i , di);

in other words, we simply input the dimension to the shared IGN. We have not tested the learning
capabilities of this more efficient model in this work, but it could be promising for future work.

19

Published as a conference paper at ICLR 2023

B.4 OTHER ARCHITECTURAL NOTES

There are several alternatives available in the design of SignNet and BasisNet that we now discuss.
Our approach, as outlined in Figure 2, processes the eigenvectors independently to compute learned
positional encodings and then uses these learned positional encodings along with the node features X
in a final base model (say, a GNN) to get a prediction. Another possibility is to process eigenvectors
and node features jointly. One way to do this is to add X as input to ϕ, so for instance SignNet would
include ϕ(vi, X) + ϕ(−vi, X). However, this requires processing X 2k times with ϕ, which may be
inefficient.

Another possibility to parameterize a sign invariant architecture is through taking elementwise abso-
lute values of eigenvectors, and then composing with arbitrary functions, e.g. MLP(|v1|, . . . , |vk|),
where the MLP acts independently on each node. Empirically, this often does not work well (see our
results on ZINC as well as those of Dwivedi et al. (2020)). Intuitively, these elementwise absolute
values remove distance information, since for instance nodes i and j in which v(i)2 = −v(j)2 are
typically far in the graph, but they will have the same value in this eigenvector under the absolute
value mapping. Nonetheless, if the ϕ in SignNet is taken to be an elementwise function, meaning
ϕ : Rn → Rn×d satisfies ϕ(v)i = ψ(vi) for some ψ applied independently to each node, then
SignNet is equivalent in expressiveness to MLP(|v1|, . . . , |vk|), where the MLP acts independently
on each node.

C MORE ON EIGENVALUE MULTIPLICITIES

In this section, we study the properties of eigenvalues and eigenvectors computed by numerical
algorithms on real-world data.

C.1 SIGN AND BASIS AMBIGUITIES IN NUMERICAL EIGENSOLVERS

When processing real-world data, we use eigenvectors that are computed by numerical algorithms.
These algorithms return specific eigenvectors for each eigenspace, so there is some choice of sign
or basis of each eigenspace. The general symmetric matrix eigensolvers numpy.linalg.eigh
and scipy.linalg.eigh both call LAPACK routines. They both proceed as follows: for a
symmetric matrix A, they first decompose it as A = QTQ⊤ for orthogonal Q and tridiagonal
T , then they compute the eigendecomposition of T = WΛW⊤, so the eigendecomposition of
A is A = (QW)Λ(W⊤Q⊤). There are multiple ambiguities here: for diagonal sign matrices
S = Diag(s1, . . . , sn) and S′ = Diag(s′1, . . . , s

′
n), where si, s′i ∈ {−1, 1}, we have that A =

QS(STS)SQ⊤ is also a valid tridiagonalization, as QS is still orthogonal, SS = I , and STS is
still tridiagonal. Also, T = (WS′)Λ(S′W⊤) is a valid eigendecomposition of T , as WS′ is still
orthogonal.

In practice, we find that the general symmetric matrix eigensolvers numpy.linalg.eigh and
scipy.linalg.eigh differ between frameworks but are consistent with the same framework.
More specifically, for a symmetric matrix A, we find that the eigenvectors computed with the default
settings in numpy tend to differ by a choice of sign or basis from those that are computed with the
default settings in scipy. On the other hand, the called LAPACK routines are deterministic, so the
eigenvectors returned by numpy are the same in each call, and the eigenvectors returned by scipy are
likewise the same in each call.

Eigensolvers for sparse symmetric matrices like scipy.linalg.eigsh are required for large
scale problems. This function calls ARPACK, which uses an iterative method that starts with a
randomly sampled initial vector. Due to this stochasticity, the sign and basis of eigenvectors returned
differs between each call.

Bro et al. (2008) develop a data-dependent method to choose signs for each singular vector of a
singular value decomposition. Still, in the worst case the signs chosen will be arbitrary, and they do
not handle basis ambiguities in higher dimensional eigenspaces. Other works have made choices
of sign, such as by picking the sign so that the eigenvector’s entries are in the largest lexicographic
order (Tam & Dunson, 2022). This choice of sign may work poorly for learning on graphs, as it is
sensitive to permutations on nodes. For some graph regression experiments in Section 4.1, we try a
choice of sign that is permutation invariant, but we find it to work poorly.

20

Published as a conference paper at ICLR 2023

Table 5: Eigenspace statistics for datasets of multiple graphs. From left to right, the columns are:
dataset name, number of graphs, range of number of nodes per graph, largest multiplicity, and percent
of graphs with an eigenspace of dimension > 1.

Dataset Graphs # Nodes Max. Mult % Graphs mult. > 1

ZINC 12,000 9-37 9 64.1
ZINC-full 249,456 6-38 10 63.8
ogbg-molhiv 41,127 2 - 222 42 68.0
IMDB-M 1,500 7 - 89 37 99.9
COLLAB 5,000 32 - 492 238 99.1
PROTEINS 1,113 4 - 620 20 77.3
COIL-DEL 3,900 3 - 77 4 4.00

Table 6: Eigenspace statistics for single graphs. From left to right, the columns are: dataset name,
number of nodes, distinct eigenvalues (i.e. distinct eigenspaces), number of unique multiplicities,
largest multiplicity, and percent of eigenvectors belonging to an eigenspace of dimension > 1.

Dataset Nodes Distinct λ # Mult. Max Mult. % Vecs mult. > 1

32× 32 image 1,024 513 3 32 96.9
Cora 2,708 2,187 11 300 19.7
Citeseer 3,327 1,861 12 491 44.8
Amazon Photo 7,650 7,416 8 136 3.71

C.2 HIGHER DIMENSIONAL EIGENSPACES IN REAL GRAPHS

Here, we investigate the normalized Laplacian eigenspace statistics of real-world graph data. For
any graph that has distinct Laplacian eigenvalues, only sign invariance is required in processing
eigenvectors. However, we find that graph data tends to have higher multiplicity eigenvalues, so basis
invariance would be required for learning symmetry-respecting functions on eigenvectors.

Indeed, we show statistics for multi-graph datasets in Table 5 and for single-graph datasets with more
nodes per graph in Table 6. For multi-graph datasets, we consider :

• Molecule graphs: ZINC (Irwin et al., 2012; Dwivedi et al., 2020), ogbg-molhiv (Wu et al.,
2018; Hu et al., 2020a)

• Social networks: IMDB-M, COLLAB (Yanardag & Vishwanathan, 2015; Morris et al.,
2020a),

• Bioinformatics graphs: PROTEINS (Morris et al., 2020a)

• Computer vision graphs: COIL-DEL (Riesen & Bunke, 2008; Morris et al., 2020a).

For single-graph datasets, we consider:

• The 32× 32 image grid as in Section J.3

• Citation networks: Cora, Citeseer (Sen et al., 2008)

• Co-purchasing graphs with Amazon Photo (McAuley et al., 2015; Shchur et al., 2018).

We see that these datasets all contain higher multiplicity eigenspaces, so sign invariance is insufficient
for fully respecting symmetries. The majority of graphs in each multi-graph dataset besides COIL-
DEL contain higher multiplicity eigenspaces. Also, the dimension of these eigenspaces can be
quite large compared to the size of the graphs in the dataset. The single-graph datasets have a large
proportion of their eigenvectors belonging to higher dimensional eigenspaces. Thus, basis invariance
may play a large role in processing spectral information from these graph datasets.

21

Published as a conference paper at ICLR 2023

C.3 RELATIONSHIP TO GRAPH AUTOMORPHISMS

Higher multiplicity eigenspaces are related to automorphism symmetries in graphs. For an adjacency
matrix A, the permutation matrix P is an automorphism of the graph associated to A if PAP⊤ = A.
If P is an automorphism, then for any eigenvector v of A with eigenvalue λ, we have

APv = PAP⊤Pv = PAv = Pλv = λPv, (18)

so Pv is an eigenvector of A with the same eigenvalue λ. If Pv and v are linearly independent, then
λ has a higher dimensional eigenspace. Thus, under certain additional conditions, automorphism
symmetries of graphs lead to repeated eigenvalues (Sachs & Stiebitz, 1983; Teranishi, 2009).

C.4 MULTIPLICITIES IN RANDOM GRAPHS

It is known that almost all random graphs under the Erdős-Renyi model have no repeated eigenvalues
in the infinite number of nodes limit (Tao & Vu, 2017). Likewise, almost all random graphs under
the Erdős-Renyi model are asymmetric in the sense of having no nontrivial automorphism symme-
tries (Erdos & Rényi, 1963). These results contrast sharply with the high eigenvalue multiplicities
that we see in real-world data in Section C.2. Likewise, many types of real-world graph data have
been found to possess nontrivial automorphism symmetries (Ball & Geyer-Schulz, 2018). This
demonstrates a potential downside of using random graph models to study real-world data: the
eigenspace dimensions and automorphism symmetries of random graphs may not agree with those of
real-world data.

22

Published as a conference paper at ICLR 2023

D VISUALIZATION OF SIGNNET OUTPUT

D.1 CAT MODEL VISUALIZATION

Eigenvector 1 ϕ(v1) + ϕ(−v1)

Eigenvector 9 ϕ(v9) + ϕ(−v9)

Eigenvector 11 ϕ(v11) + ϕ(−v11)

Eigenvector 14 ϕ(v14) + ϕ(−v14)

Eigenvector 1023 ϕ(v1023) + ϕ(−v1023)

Figure 6: (Left) Cotangent Laplacian eigenvectors of the cat model. (Right) First principal component
of ϕ(v) + ϕ(−v) from our trained SignNet.

In Figure 6, we plot the eigenvectors of the cotangent Laplacian on a cat model, as well as the first
principal component of the corresponding learned ϕ(v) + ϕ(−v) from our SignNet model that was
trained on the texture reconstruction task. Interestingly, this portion of our SignNet encodes bilateral
symmetry; for instance, while some eigenvectors differ between left feet and right feet, this portion of
our SignNet gives similar values for the left and right feet. This is useful for the texture reconstruction
task, as the texture regression target has bilateral symmetry.

23

Published as a conference paper at ICLR 2023

Figure 7: First three principal components of the full SignNet output on the cat model.

We also show principal components of outputs for the full SignNet model in Figure 7. This is not
as interpretable, as the outputs are high frequency and appear to be close to the texture that is the
regression target. If instead we trained the network on a task involving eigenvectors of multiple
models, then we may expect the SignNet to learn more structurally interpretable mappings (as in the
case of the molecule tasks).

D.2 MOLECULE VISUALIZATION

To better understand SignNet, in Figure 9 we visualize the learned positional encodings of a SignNet
with ϕ = GIN, ρ = MLP (with a summation to handle variable eigenvector numbers) trained on
ZINC as in Section 4.1. SignNet learns interesting structural information such as cut nodes (PC 3)
and appendage atoms (PC 2) that qualitatively differ from any single eigenvector of the graph.

For this visualization we use a SignNet trained with a GatedGCN base model on ZINC, as in
Section 4.1. This SignNet uses GIN as ϕ and ρ as an MLP (with a sum before it to handle variable
numbers of eigenvectors), and takes in all eigenvectors of each graph. See Figure 8 for all of the
eigenvectors of fluorescein.

E MORE RELATED WORK

E.1 GRAPH POSITIONAL ENCODINGS

Various graph positional encodings have been proposed, which have been motivated for increasing ex-
pressive power or practical performance of graph neural networks, and for generalizing Transformers
to graphs. Positional encodings are related to so-called position-aware network embeddings (Chami
et al., 2020), which capture distances between nodes in graphs. These include network embedding
methods like Deepwalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016), which have
been recently integrated into GNNs that respect their invariances by Wang et al. (2022). Further, Li
et al. (2020) studies the theoretical and practical benefits of incorporating distance features into graph
neural networks. Dwivedi et al. (2022) proposes a method to inject learnable positional encodings into
each layer of a graph neural network, and uses a simple random walk based node positional encoding.
You et al. (2021) proposes a node positional encoding diag(Ak), which captures the number of
closed walks from a node to itself. Dwivedi et al. (2020) propose to use Laplacian eigenvectors as
positional encodings in graph neural networks, with sign ambiguities alleviated by sign flipping data
augmentation. Srinivasan & Ribeiro (2019) theoretically analyze node positional embeddings and
structural representations in graphs, and show that most-expressive structural representations contain
the information of any node positional embedding.

While positional encodings in sequences as used for Transformers (Vaswani et al., 2017) are able
to leverage the canonical order in sequences, there is no such useful canonical order for nodes in
a graph, due in part to permutation symmetries. Thus, different permutation equivariant positional
encodings have been proposed to help generalize Transformers to graphs. Dwivedi & Bresson (2021)
directly add in linearly projected Laplacian eigenvectors to node features before processing these
features with a graph Transformer. Kreuzer et al. (2021) propose an architecture that uses attention
over Laplacian eigenvectors and eigenvalues to learn node or edge positional encodings. Mialon
et al. (2021) uses spectral kernels such as the diffusion kernel to define relative positional encodings
that modulate the attention matrix. Ying et al. (2021) achieve state-of-the-art empirical performance

24

Published as a conference paper at ICLR 2023

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 1

−0.3

−0.2

−0.1

0.0

0.1

0.2

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 2

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 3

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 5

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 6

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 7

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 8

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 9

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 10

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 11

0.4

0.2

0.0

0.2

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 12

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 13

0.2

0.0

0.2

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 14

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 15

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 16

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 17

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 18

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 19

−0.3

−0.2

−0.1

0.0

0.1

0.2

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 20

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 21

−0.4

−0.2

0.0

0.2

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 22

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 23

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 24

−0.2

−0.1

0.0

0.1

0.2

0.3

Figure 8: All normalized Laplacian eigenvectors of the fluorescein graph. The first principal
components of SignNet’s learned positional encodings do not exactly match any eigenvectors.

with simple Transformers that incorporate shortest-path based relative positional encodings. Zhang
et al. (2020) also utilize shortest-path distances for positional encodings in their graph Transformer.
Kim et al. (2021) develop higher-order transformers (that generalize invariant graph networks),
which interestingly perform well on graph regression using sparse higher-order transformers without
positional encodings.

E.2 EIGENVECTOR SYMMETRIES IN GRAPH REPRESENTATION LEARNING

Many works that attempt to respect the invariances of eigenvectors solely focus on sign invariance
(by using data augmentation) (Dwivedi et al., 2020; Dwivedi & Bresson, 2021; Dwivedi et al., 2022;
Kreuzer et al., 2021). This may be reasonable for continuous data, where eigenvalues of associated
matrices may be usually distinct and separated (e.g. Puny et al. (2022) finds that this empirically
holds for covariance matrices of n-body problems). However, discrete graph Laplacians are known
to have higher multiplicity eigenvalues in many cases, and in Appendix C.2 we find this to be true in
various types of real-world graph data. Graphs without higher multiplicity eigenspaces are easier
to deal with; in fact, graph isomorphism can be tested in polynomial time on graphs of bounded

25

Published as a conference paper at ICLR 2023

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 1

−0.3

−0.2

−0.1

0.0

0.1

0.2

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 2

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 23

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

Eigenvector 24

−0.2

−0.1

0.0

0.1

0.2

0.3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

SignNet PC 1

−4

−2

0

2

4

6

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

SignNet PC 2

−2

−1

0

1

2

3

4

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

SignNet PC 3

−1

0

1

2

3

C

C
C

C

C
C

C

O

O

C
C

C
C

C

C
C

O
C

C
C

C
C C

O

O

SignNet PC 4

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 9: Normalized Laplacian eigenvectors and learned positional encodings for the graph of
fluorescein. (Top row) From left to right: smallest and second smallest nontrivial eigenvectors,
then second largest and largest eigenvectors. (Bottom row) From left to right: first four principal
components of the output ρ([ϕ(vi) + ϕ(−vi)]i=1,...,n) of SignNet.

multiplicity for adjacency matrix eigenvalues (Babai et al., 1982; Leighton & l. Miller, 1979), with a
time complexity that is lower for graphs with lower maximum multiplicities.

A recent work of Wang et al. (2022) proposes full orthogonal group invariance for functions that
process positional encodings. In particular, for positional encodings Z ∈ Rn×k, they parameterize
functions f(Z) such that f(Z) = f(ZQ) for all Q ∈ O(k). This indeed makes sense for network
embeddings like node2vec (Grover & Leskovec, 2016), as their objective functions are based on inner
products and are thus orthogonally invariant. While they prove stability results when enforcing full
orthogonal invariance for eigenvectors, this is a very strict constraint compared to our basis invariance.
For instance, when k = n and all eigenvectors are used in V , the condition f(V) = f(V Q)
implies that f is a constant function on orthogonal matrices, since any orthogonal matrix W can
be obtained as W = V Q for Q = V ⊤W ∈ O(n). In other words, for bases of eigenspaces
V1, . . . , Vl and V = [V1 . . . Vl], Wang et al. (2022) enforces V Q ∼= V , while we enforce
VDiag(Q1, . . . , Ql) ∼= V . While the columns of VDiag(Q1, . . . , Ql) are still eigenvectors, the
columns of V Q generally are not.

E.3 GRAPH SPECTRA AND LEARNING ON GRAPHS

More generally, graph spectra are widely used in analyzing graphs, and spectral graph theory (Chung,
1997) studies the connection between graph properties and graph spectra. Different graph kernels
have been defined based on graph spectra, which use robust and discriminative notions of generalized
spectral distance (Verma & Zhang, 2017), the spectral density of states (Huang et al., 2021), random
walk return probabilities (Zhang et al., 2018b), or the trace of the heat kernel (Tsitsulin et al., 2018).
Graph signal processing relies on spectral operations to define Fourier transforms, frequencies,
convolutions, and other useful concepts for processing data on graphs (Ortega et al., 2018). The
closely related spectral graph neural networks (Wu et al., 2020; Balcilar et al., 2020) parameterize
neural architectures that are based on similar spectral operations.

F DEFINITIONS, NOTATION, AND BACKGROUND

F.1 BASIC TOPOLOGY AND ALGEBRA DEFINITIONS

We will use some basic topology and algebra for our theoretical results. A topological space (X , τ)
is a set X along with a family of subsets τ ⊆ 2X satisfying certain properties, which gives useful
notions like continuity and compactness. From now on, we will omit mention of τ , and refer to a
topological space as the set X itself. For topological spaces X and Y , we write X ∼= Y and say that

26

Published as a conference paper at ICLR 2023

X is homeomorphic to Y if there exists a continuous bijection with continuous inverse from X to
Y . We will say X = Y if the underlying sets and topologies are equal as sets (we will often use this
notion of equality for simplicity, even though it can generally be substituted with homeomorphism).
For a function f : X → Y between topological spaces X and Y , the image imf is the set of values
that f takes, imf = {f(x) : x ∈ X}. This is also denoted f(X). A function f : X → Y is called a
topological embedding if it is a homeomorphism from X to its image.

A group G is a set along with a multiplication operation G × G → G, such that multiplication is
associative, there is a multiplicative identity e ∈ G, and each g ∈ G has a multiplicative inverse g−1.
A topological group is a group that is also a topological space such that the multiplication and inverse
operations are continuous.

A group G may act on a set X by a function · : G × X → X . We usually denote g · x as gx. A
topological group is said to act continuously on a topological space X if · is continuous. For any
group G and topological space X , we define the coset Gx = {gx : g ∈ G}, which can be viewed as
an equivalance class of elements that can be transformed from one to another by a group element.
The quotient space X/G = {Gx : x ∈ X} is the set of all such equivalence classes, with a topology
induced by that of X . The quotient map π : X → X/G is a surjective continuous map that sends x
to its coset, π(x) = Gx.

For x ∈ Rd, ∥x∥2 denotes the standard Euclidean norm. By the ∞ norm of functions f : Z → Rd

from a compact Z to a Euclidean space Rd, we mean ∥f∥∞ = supz∈Z∥f(z)∥2.

F.2 BACKGROUND ON EIGENSPACE INVARIANCES

Let V = [v1 . . . vd] and W = [w1 . . . wd] ∈ Rn×d be two orthonormal bases for the same
d dimensional subspace of Rn. Since V and W span the same space, their orthogonal projectors
are the same, so V V ⊤ = WW⊤. Also, since V and W have orthonormal columns, we have
V ⊤V =W⊤W = I ∈ Rd×d. Define Q = V ⊤W . Then Q is orthogonal because

Q⊤Q =W⊤V V ⊤W =W⊤WW⊤W = I (19)

Moreover, we have that
V Q = V V ⊤W =WW⊤W =W (20)

Thus, for any orthonormal bases V and W of the same subspace, there exists an orthogonal Q ∈ O(d)
such that V Q =W .

For another perspective on this, define the Grassmannian Gr(d, n) as the smooth manifold consisting
of all d dimensional subspaces of Rn. Further define the Stiefel manifold St(d, n) as the set
of all orthonormal tuples [v1 . . . vd] ∈ Rn×d of d vectors in Rn. Letting O(d) act by right
multiplication, it holds that St(d, n)/O(d) ∼= Gr(d, n). This implies that any O(d) invariant function
on St(d, n) can be viewed as a function on subspaces. See e.g. Gallier & Quaintance (2020) Chapter
5 for more information on this. We will use this relationship in our proofs of universal representation.

When we consider permutation invariance or equivariance, the permutation acts on dimensions of size
n. Then a tensor X ∈ Rnk×d is called an order k tensor with respect to this permutation symmetry,
where order 0 are called scalars, order 1 tensors are called vectors, and order 2 tensors are called
matrices. Note that this does not depend on d; in this work, we only ever consider vectors and scalars
with respect to the O(d) action.

G PROOFS OF UNIVERSALITY

We begin by proving the two propositions for the single subspace case from Section 2.1.
Proposition 1. A continuous function h : Rn → Rdout is sign invariant if and only if

h(v) = ϕ(v) + ϕ(−v) (3)

for some continuous ϕ : Rn → Rdout . A continuous h : Rn → Rn is sign invariant and permutation
equivariant if and only if (3) holds for a continuous permutation equivariant ϕ : Rn → Rn.

Proof. If h(v) = ϕ(v) + ϕ(−v), then h is obviously sign invariant. On the other hand, if h is sign
invariant, then letting ϕ(v) = h(v)/2 gives that h(v) = ϕ(v)+ϕ(−v), and ϕ is of course continuous.

27

Published as a conference paper at ICLR 2023

If h(v) = ϕ(v) + ϕ(−v) for a permutation equivariant ϕ, then h(−Pv) = ϕ(−Pv) + ϕ(Pv) =
Pϕ(−v) +Pϕ(v) = P (ϕ(v) + ϕ(−v)) = Ph(v), so h is permutation equivariant and sign invariant.
If h is permutation equivariant and sign invariant, then define ϕ(v) = h(v)/2 again; it is clear that ϕ
is continuous and permutation equivariant.

Proposition 2. Any continuous, O(d) invariant h : Rn×d → Rdout is of the form h(V) = ϕ(V V ⊤)
for a continuous ϕ. For a compact domain Z ⊆ Rn×d, maps of the form V 7→ IGN(V V ⊤)
universally approximate continuous functions h : Z ⊆ Rn×d → Rn that are O(d) invariant and
permutation equivariant.

Proof. The case without permutation equivariance holds by the First Fundamental Theorem of O(d)
(Lemma 2).

For the permutation equivariant case, let Z ′ = {V V ⊤ : V ∈ Z} and let ϵ > 0. Note that Z ′

is compact, as it is the continuous image of a compact set. Since h is O(d) invariant, the first
fundamental theorem of O(d) shows that there exists a continuous function ϕ : Z ′ ⊆ Rn×n → Rn

such that h(V) = ϕ(V V ⊤). Since h is permutation equivariant, for any permutation matrix P we
have that

h(PV) = P · h(V) (21)

ϕ(PV V ⊤P⊤) = P · ϕ(V V ⊤), (22)

so ϕ is a continuous permutation equivariant function from matrices to vectors. Then note that Keriven
& Peyré (2019) show that invariant graph networks (of generally high tensor order in hidden layers)
universally approximate continuous permutation equivariant functions from matrices to vectors on
compact sets of matrices. Thus, an IGN can ϵ-approximate ϕ, and hence V 7→ IGN(V V ⊤) can
ϵ-approximate h.

G.1 PROOF OF DECOMPOSITION THEOREM

X1 × . . .×Xk

(X1/G1)× . . .× (Xk/Gk) Rdout

Z = im(ψ) ⊆ Ra

π = π1 × . . . πk
f = f̃ ◦ πϕ = ψ ◦ π

ψ = ψ1 × . . .× ψk

f̃ψ−1

ρ = f̃ ◦ ψ−1

Figure 10: Commutative diagram for our proof of Theorem 4. Black arrows denote functions from
topological constructions, and red dashed lines denote functions that we parameterize by neural
networks (ϕ = ϕ1 × . . .× ϕk and ρ).

Here, we give the formal statement of Theorem 4, which provides the necessary topological assump-
tions for the theorem to hold. In particular, we only require the Gi be a topological group that acts
continuously on Xi for each i, and that there exists a topological embedding of each quotient space
into some Euclidean space. That the group action is continuous is a very mild assumption, and it
holds for any finite or compact matrix group, which all of the invariances we consider in this paper
can be represented as.

A topological embedding of the quotient space into a Euclidean space is desired, as we know how to
parameterize neural networks with Euclidean outputs and inputs, whereas dealing with a quotient
space is generally difficult. Many different conditions can guarantee existence of such an embedding.
For instance, if the quotient space is a smooth manifold, then the Whitney Embedding Theorem

28

Published as a conference paper at ICLR 2023

(Lemma 5) guarantees such an embedding. Also, if the base space Xi is a Euclidean space and Gi is
a finite or compact matrix Lie group, then a map built from G-invariant polynomials gives such an
embedding (González & de Salas (2003) Lemma 11.13).

Figure 10 provides a commutative diagram representing the constructions in our proof.

Theorem 4 (Decomposition Theorem). Let X1, . . . ,Xk be topological spaces, and let Gi be a
topological group acting continuously on Xi for each i. Assume that there is a topological embedding
ψi : Xi/Gi → Rai of each quotient space into a Euclidean space Rai for some dimension ai. Then,
for any continuous function f : X = X1 × . . . × Xk → Rdout that is invariant to the action of
G = G1 × . . . × Gk, there exists continuous functions ϕi : Xi → Rai and a continuous function
ρ : Z ⊆ Ra → Rdout , where a =

∑
i ai such that

f(v1, . . . , vk) = ρ(ϕ1(v1), . . . , ϕk(vk)). (23)

Furthermore: (1) each ϕi can be taken to be invariant to Gi, (2) the domain Z is compact if each Xi

is compact, (3) if Xi = Xj and Gi = Gj , then ϕi can be taken to be equal to ϕj .

Proof. Let πi : Xi → Xi/Gi denote the quotient map for Xi/Gi. Since each Gi acts continuously,
Lemma 3 gives that the quotient of the product space is the product of the quotient spaces, i.e. that

(X1 × . . .×Xk)/(G1 × . . . Gk) ∼= (X1/G1)× . . .× (Xk/Gk), (24)

and the corresponding quotient map π : X/G is given by

π = π1 × . . .× πk, π(x1, . . . , xk) = (π1(x1), . . . , πk(xk)). (25)

By passing to the quotient (Lemma 1), there exists a continuous f̃ : X/G→ Rdout on the quotient
space such that f = f̃ ◦ π. By Lemma 4, each Xi/Gi is compact if Xi is compact. Defining the
image Zi = ψi(Xi/Gi) ⊆ Rai , we thus know that Zi is compact if Xi is compact.

Moreover, as ψi is a topological embedding, it has a continuous inverse ψ−1
i on its image Zi. Further,

we have a topological embedding ψ : X/G → Z = Z1 × . . . × Zk given by ψ = ψ1 × . . . × ψk,
with continuous inverse ψ−1 = ψ−1

1 × . . .× ψ−1
k .

Note that
f = f̃ ◦ π = (f̃ ◦ ψ−1) ◦ (ψ ◦ π). (26)

So we define

ρ = f̃ ◦ ψ−1 ρ : Z → Rdout (27)
ϕi = ψi ◦ πi ϕi : Xi → Zi (28)
ϕ = ψ ◦ π = ϕ1 × . . .× ϕk ϕ : X → Z (29)

Thus, f = ρ ◦ϕ = ρ ◦ (ϕ1 × . . .×ϕk), so equation (9) holds. Moreover, the ρ and ϕi are continuous,
as they are compositions of continuous functions. Furthermore, (1) holds as each ϕi is invariant
to Gi because each πi is invariant to Gi. Since each Zi is compact if Xi is compact, the product
Z = Z1 × . . .×Zk is compact if each Xi is compact, thus proving (2).

To show the last statement (3), note simply that if Xi = Xj and Gi = Gj , then the quotient maps are
equal, i.e. πi = πj . Moreover, we can choose the embeddings to be equal, so say ψi = ψj . Then,
ϕi = ψi ◦ πi = ψj ◦ πj = ϕj , so we are done.

G.2 UNIVERSALITY OF SIGNNET AND BASISNET

Here, we prove Corollary 1 on the universal representation and approximation capabilities of our
Unconstrained-SignNets, Unconstrained-BasisNets, and Expressive-BasisNets. We proceed in sev-
eral steps, first proving universal representation of continuous functions when we do not require
permutation equivariance, then proving universal approximation when we do require permutation
equivariance.

29

Published as a conference paper at ICLR 2023

G.2.1 SIGN INVARIANT UNIVERSAL REPRESENTATION

Recall that Sn−1 denotes the unit sphere in Rn. As we normalize eigenvectors to unit norm, the
domain of our functions on k eigenvectors are on the compact space (Sn−1)k.

Corollary 2 (Universal Representation for SignNet). A continuous function f : (Sn−1)k → Rdout

is sign invariant, i.e. f(s1v1, . . . , skvk) = f(v1, . . . , vk) for any si ∈ {−1, 1}, if and only if there
exists a continuous ϕ : Rn → R2n−2 and a continuous ρ : R(2n−2)k → Rdout such that

f(v1, . . . , vk) = ρ
(
[ϕ(vi) + ϕ(−vi)]ki=1

)
. (30)

Proof. It can be directly seen that any f of the above form is sign invariant.

Thus, we show that any sign invariant f can be expressed in the above form. First, we show that
we can apply the general Theorem 4. The group Gi = {1,−1} acts continuously and satisfies that
Sn−1/{1,−1} = RPn−1, where RPn−1 is the real projective space of dimension n − 1. Since
RPn−1 is a smooth manifold of dimension n− 1, Whitney’s embedding theorem states that there
exists a (smooth) topological embedding ψi : RPn−1 → R2n−2 (Lemma 5).

Thus, we can apply the general theorem to see that f = ρ ◦ ϕ̃k for some continuous ρ and ϕ̃k. Note
that each ϕ̃i = ϕ̃ is the same, as each Xi = Sn−1 and Gi = {1,−1} is the same. Also, Theorem 4
says that we may assume that ϕ̃ is sign invariant, so ϕ̃(x) = ϕ̃(−x). Letting ϕ(x) = ϕ̃(x)/2, we are
done with the proof.

G.2.2 SIGN INVARIANT UNIVERSAL REPRESENTATION WITH EXTRA FEATURES

Recall that we may want our sign invariant functions to process other data besides eigenvectors, such
as eigenvalues or node features associated to a graph. Here, we show universal representation for
when we have this other data that does not possess sign symmetry. The proof is a simple extension of
Corollary 2, but we provide the technical details for completeness.

Corollary 3 (Universal Representation for SignNet with features). For a compact space of features
Ω ⊆ Rd, let f(v1, . . . , vk, x1, . . . , xk) be a continuous function f : (Sn−1 × Ω)k → Rdout .

Then f is sign invariant for the inputs on the sphere, i.e.

f(s1v1, . . . , skvk, x1, . . . , xk) = f(v1, . . . , vk, x1, . . . , xk) si ∈ {1,−1}, (31)

if and only if there exists a continuous ψ : Rn+d → R2n−2+d and a continuous ρ : R(2n−2+d)k →
Rdout such that

f(v1, . . . , vk) = ρ (ϕ(v1, x1) + ϕ(−v1, x1), . . . , ϕ(vk, xk) + ϕ(−vk, xk)) . (32)

Proof. Once again, the sign invariance of any f in the above form is clear.

We follow very similar steps to the proof of Corollary 2 to show that we may apply Theorem 4. We
can view Ω as a quotient space, after quotienting by the trivial group that does nothing, Ω ∼= Ω/{1}.
The corresponding quotient map is idΩ, the identity map. Also, Ω trivially topologically embeds in
Rd by the inclusion map.

As Gi = {−1, 1} × {1} acts continuously, by Lemma 3 we have that

(Sn−1 × Ω)/({1,−1} × {1}) ∼= (Sn−1/{1,−1})× (Ω/{1}) ∼= RPn−1 × Ω, (33)

with corresponding quotient map π × idΩ, where π is the quotient map to RPn−1.

Letting ψ̃ be the embedding of RPn−1 → R2n−2 guaranteed by Whitney’s embedding theorem
(Lemma 5), we have that ψ = ψ̃ × idΩ is an embedding of RPn−1 × Ω → R2n−2+d. Thus, we can
apply Theorem 4 to write f = ρ ◦ ϕ̃k for ϕ̃ = (ψ̃ × idΩ) ◦ (π × idΩ), so

ϕ̃(vi, xi) = (ψ̃(vi), xi), (34)

where ϕ̃(vi, xi) = ϕ̃(−vi, xi). Letting ϕ(vi, xi) = ϕ̃(vi, xi)/2, we are done.

30

Published as a conference paper at ICLR 2023

G.2.3 BASIS INVARIANT UNIVERSAL REPRESENTATION

Recall that St(d, n) is the Stiefel manifold of d-tuples of vectors (v1, . . . , vd) where vi ∈ Rn

and v1, . . . , vd are orthonormal. This is where our inputs lie, as our eigenvectors are unit norm and
orthogonal. We will also make use of the Grassmannian Gr(d, n), which consists of all d-dimensional
subspaces in Rn. This is because the Grassmannian is the quotient space for the group action we
want, Gr(d, n) ∼= St(d, n)/O(d), where Q ∈ O(d) acts on V ∈ St(d, n) ⊆ Rn×d by mapping V to
V Q (Gallier & Quaintance, 2020).

Corollary 4 (Universal Representation for BasisNet). For dimensions d1, . . . , dl ≤ n let f be a
continuous function on St(d1, n)× . . .× St(dl, n). Further assume that f is invariant to O(d1)×
. . .×O(dl), where O(di) acts on St(di, n) by multiplication on the right.

Then there exist continuous ρ : R
∑l

i=1 2di(n−di) → Rdout and continuous ϕi : St(di, n) →
R2di(n−di) such that

f(V1, . . . , Vl) = ρ (ϕ1(V1), . . . , ϕl(Vl)) , (35)

where the ϕi are O(di) invariant functions, and we can take ϕi = ϕj if di = dj .

Proof. Letting Xi = St(di, n) and Gi = O(di), it can be seen that Gi acts continuously on Xi. Also,
we have that the quotient space St(di, n)/O(di) = Gr(di, n) is the Grassmannian of di dimensional
subspaces in Rn, which is a smooth manifold of dimension di(n−di). Thus, the Whitney embedding
theorem (Lemma 5) gives a topological embedding ψi : Gr(di, n) → R2di(n−di).

Hence, we may apply Theorem 4 to obtain continuous O(di) invariant ϕi : St(di, n) → R2di(n−di)

and continuous ρ : R
∑l

i=1 2di(n−di) → Rdout , such that f = ρ ◦ (ϕ1 × . . .× ϕl). Also, if di = dj ,
then Xi = Xj and Gi = Gj , so we can take ϕi = ϕj .

G.2.4 BASIS INVARIANT AND PERMUTATION EQUIVARIANT UNIVERSAL APPROXIMATION

With the restriction that f(V1, . . . , Vl) : Rn×
∑

i di → Rn be permutation equivariant and basis invari-
ant, we need to use the impractically expensive Expressive-BasisNet to approximate f . Universality
of permutation invariant or equivariant functions from matrices to scalars or matrices to vectors is
difficult to achieve in a computationally tractable manner (Maron et al., 2019; Keriven & Peyré,
2019; Maehara & NT, 2019). One intuitive reason to expect this is that universally approximating
such functions allows solution of the graph isomorphism problem (Chen et al., 2019b), which is a
computationally difficult problem. While we have exact representation of basis invariant functions
by continuous ρ and ϕi when there is no permutation equivariance constraint, we can only achieve
approximation up to an arbitrary ϵ > 0 when we require permutation equivariance.

Corollary 5 (Universal Approximation for Expressive-BasisNets). Let f(V1, . . . , Vl) : St(d1, n)×
. . .× St(dl, n) → Rn be continuous, O(d1)× . . .×O(dl) invariant, and permutation equivariant.
Then f can be ϵ-approximated by an Expressive-BasisNet.

Proof. By invariance, Corollary 4 of the decomposition theorem shows that f can be written as

f(V1, . . . , Vl) = ρ (φd1
(V1), . . . , φdl

(Vl)) (36)

for some continuous O(di) invariant φdi
and continuous ρ. By the first fundamental theorem of O(d)

(Lemma 2), each φdi
can be written as φdi

(Vi) = ϕdi
(ViV

⊤
i) for some continuous ϕdi

. Let

Z = {(V1V ⊤
1 , . . . , VlV

⊤
l) : Vi ∈ St(di, n)} ⊆ Rn2×l, (37)

which is compact as it is the image of the compact space St(d1, n)×. . .×St(dl, n) under a continuous
function. Define h : Z ⊆ Rn2×l → Rn by

h(V1V
⊤
1 , . . . , VlV

⊤
l) = ρ

(
ϕd1

(V1V
⊤
1), . . . , ϕdl

(VlV
⊤
l)
)
. (38)

Then note that h is continuous and permutation equivariant from matrices to vectors, so it can be
ϵ-approximated by an invariant graph network (Keriven & Peyré, 2019), call it ĨGN. If we define

31

Published as a conference paper at ICLR 2023

ρ̃ = ĨGN and IGNdi
(ViV

⊤
i) = ViV

⊤
i (this identity operation is linear and permutation equivariant,

so it can be exactly expressed by an IGN), then we have ϵ-approximation of f by

ĨGN(V1V
⊤
1 , . . . , VlV

⊤
l) = ρ̃

(
IGNd1(V1V

⊤
1), . . . , IGNdl

(VlV
⊤
l)
)
. (39)

G.3 PROOF OF UNIVERSAL APPROXIMATION FOR GENERAL DECOMPOSITIONS

Theorem 5. Consider the same setup as Theorem 4, where Xi are also compact. Let Φi be a
family of Gi-invariant functions that universally approximate Gi-invariant continuous functions
Xi → Rai , and let R be a set of continuous function that universally approximate continuous
functions Z ⊆ Ra → Rdout for every compact Z , where a =

∑
i ai. Then for any ε > 0 and any

G-invariant continuous function f : X1 × . . .×Xk → Rdout there exists ϕ ∈ Φ and ρ ∈ R such that
∥f − ρ(ϕ1, . . . , ϕk)∥∞ < ε.

Proof. Consider a particular G-invariant continuous function f : X1 × . . . × Xk → Rdout . By
Theorem 4 there exists Gi-invariant continuous functions ϕ′i : Xi → Rai and a continuous function
ρ′ : Z ⊆ Ra → Rdout (where a =

∑
i ai) such that

f(v1, . . . , vk) = ρ′(ϕ′1(v1), . . . , ϕ
′
k(vk)).

Now fix an ε > 0. For any ρ ∈ R and any ϕi ∈ Φi (i = 1, . . . k) we may bound the difference from
f as follows (suppressing the vi’s for brevity),

∥f − ρ(ϕ1, . . . , ϕk)∥∞
= ∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ1, . . . , ϕk)∥∞
= ∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ′1, . . . , ϕ

′
k) + ρ(ϕ′1, . . . , ϕ

′
k)− ρ(ϕ1, . . . , ϕk)∥∞

≤ ∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ′1, . . . , ϕ
′
k)∥∞ + ∥ρ(ϕ′1, . . . , ϕ′k)− ρ(ϕ1, . . . , ϕk)∥∞

= I + II

Now let K ′ =
∏k

i=1 imϕ′i. Since each ϕ′i is continuous and defined on a compact set Xi we know
that imϕ′i is compact, and so the product K is also compact. Since K ′ is compact, it is contained in a
closed ball B(r) of radius r > 0 centered at the origin. Let K be the closed ball B(r + 1) of radius
r + 1 centered at the origin, so K contains K ′ and a ball of radius 1 around each point of K ′. We
may extend ρ′ continuously to K as needed, so assume ρ′ : K → Rdout . By universality of R we
may pick a particular ρ : K → Rdout , ρ ∈ R such that

I = sup
{vi∈Xi}k

i=1

∥ρ′(ϕ′1, . . . , ϕ′k)− ρ(ϕ′1, . . . , ϕ
′
k)∥∞ ≤ sup

z∈K
∥ρ′(z)− ρ(z)∥2 < ε/2.

Keeping this choice of ρ, it remains only to bound II. As ρ is continuous on a compact domain, it
is in fact uniformly continuous. Thus, we can choose a δ′ > 0 such that if ∥y − z∥2 ≤ δ′, then
∥ρ(y)− ρ(z)∥∞ < ϵ/2, and then we define δ = min(δ′, 1).

Since Φi universally approximates ϕ′i we may pick ϕi ∈ Φi such that ∥ϕi − ϕ′i∥∞ < δ/
√
k, and

thus ∥(ϕ1, . . . , ϕk) − (ϕ′1, . . . ϕ
′
k)∥∞ ≤ δ. With this choice of ϕi, we know that

∏k
i=1 imϕi ⊆ K

(because each ϕi(xi) is within distance 1 of ϕ′i(xi)). Thus, ρ(ϕ1(x1), . . . , ϕk(xk)) is well-defined,
and we have

II = ∥ρ(ϕ′1, . . . , ϕ′k)− ρ(ϕ1, . . . , ϕk)∥∞
= sup

{xi∈Xi}k
i=1

∥ρ(ϕ′1(x1), . . . , ϕ′k(xk))− ρ(ϕ1(x1), . . . , ϕk(xk))∥2

< ε/2

due to our choice of δ, which completes the proof.

32

Published as a conference paper at ICLR 2023

H BASIS INVARIANCE FOR GRAPH REPRESENTATION LEARNING

H.1 SPECTRAL GRAPH CONVOLUTION

In this section, we consider spectral graph convolutions, which for node features X ∈ Rn×dfeat take
the form f(V,Λ, X) =

∑n
i=1 θiviv

⊤
i X for some parameters θi. We can optionally take θi = h(λi)

for some continuous function h : R → R of the eigenvalues. This form captures most popular
spectral graph convolutions in the literature (Bruna et al., 2014; Hamilton, 2020; Bronstein et al.,
2017); often, such convolutions are parameterized by taking h to be some analytic function such as a
simple affine function (Kipf & Welling, 2017), a linear combination in a polynomial basis (Defferrard
et al., 2016; Chien et al., 2021), or a parameterization of rational functions (Levie et al., 2018; Bianchi
et al., 2021).

First, it is well known and easy to see that spectral graph convolutions are permutation equivariant, as
for a permutation matrix P we have

f(PV,Λ, PX) =
∑
i

θiPviv
⊤
i P

⊤PX =
∑
i

θiPviv
⊤
i X = Pf(V,Λ, X). (40)

Also, it is easy to see that they are sign invariant, as (−vi)(−vi)⊤ = viv
⊤
i . However, if the θi do not

depend on the eigenvalues, then the spectral graph convolution is not necessarily basis invariant. For
instance, if v1 and v2 are in the same eigenspace, and we change basis by permuting v′1 = v2 and
v′2 = v1, then if θ1 ̸= θ2 the spectral graph convolution will generally change as well.

On the other hand, if θi = h(λi) for some function h : R → R, then the spectral graph convolution
is basis invariant. This is because if vi and vj belong to the same eigenspace, then λi = λj so
h(λi) = h(λj). Thus, if vi1 , . . . , vid are eigenvectors of the same eigenspace with eigenvalue λ,
we have that

∑d
l=1 h(λil)vilv

⊤
il
= h(λ)

∑d
l=1 vilv

⊤
il

. Now, note that
∑d

l=1 vilv
⊤
il

is the orthogonal
projector onto the eigenspace (Trefethen & Bau III, 1997). A change of basis does not change this
orthogonal projector, so such spectral graph convolutions are basis invariant.

Another way to see this basis invariance is with a simple computation. Let V1, . . . , Vl be the
eigenspaces of dimension d1, . . . , dl, where Vi ∈ Rn×di . Let the corresponding eigenvalues be
µ1, . . . , µl. Then for any orthogonal matrices Qi ∈ O(di), we have

n∑
i=1

h(λi)viv
⊤
i =

l∑
j=1

Vjh(µj)Idj
V ⊤
j (41)

=

l∑
j=1

Vjh(µj)Idj
QjQ

⊤
j V

⊤
j (42)

=

l∑
j=1

(VjQj)h(µj)Idj (VjQj)
⊤, (43)

so the spectral graph convolution is invariant to substituting VjQj for Vj .

Now, we give the proof that shows SignNet and BasisNet can universally approximate spectral graph
convolutions.
Theorem 2 (Learning Spectral Graph Convolutions). Suppose the node features X ∈ Rn×dfeat take
values in compact sets. Then SignNet can universally approximate any spectral graph convolution,
and both BasisNet and Expressive-BasisNet can universally approximate any parametric spectral
graph convolution.

Proof. Note that eigenvectors and eigenvalues of normalized Laplacian matrices take values in
compact sets, since the eigenvalues are in [0, 2] and we take eigenvectors to have unit-norm. Thus,
the whole domain of the spectral graph convolution is compact.

Let ε > 0. First, consider a spectral graph convolution f(V,Λ, X) =
∑n

i=1 θiviv
⊤
i X . For SignNet,

let ϕ(vi, λi, X) approximate the function ϕ̃(vi, λi, X) = θiviv
⊤
i X to within ε/n error, which

DeepSets can do since this is a continuous permutation equivariant function from vectors to vectors

33

Published as a conference paper at ICLR 2023

(Segol & Lipman, 2019) (note that we can pass λi as a vector in Rn by instead passing λi1, where
1 is the all ones vector). Then ρ =

∑n
i=1 is a linear permutation equivariant operation that can

be exactly expressed by DeepSets, so the total error is within ε. The same argument applies when
θi = h(λi) for some continuous function h.

For the basis invariant case, consider a parametric spectral graph convolution f(V,Λ, X) =∑n
i=1 h(λi)viv

⊤
i X . Note that if the eigenspace bases are V1, . . . , Vl with eigenvalues µ1, . . . , µl, we

can write the f(V,Λ, X) =
∑l

i=1 h(µj)VjV
⊤
j X . Again, we will let ρ =

∑l
i=1 be a sum function,

which can be expressed exactly by DeepSets. Thus, it suffices to show that h(µj)VjV
⊤
j X can be ϵ/n

approximated by a 2-IGN (i.e. an IGN that only uses vectors and matrices).

Note that since h is continuous, we can use an elementwise MLP (which IGNs can learn) to
approximate f1(µ11⊤, V V ⊤, X) = (h(µ)11⊤, V V ⊤, X) to arbitrary precision (note that we rep-
resent the eigenvalue µ as a constant matrix µ11⊤). Also, since a 2-IGN can learn matrix vector
multiplication (Cai & Wang (2022) Lemma 10), we can approximate f2(h(µ)11⊤, V V ⊤, X) =

(h(µ)11⊤, V V ⊤X), as ViV ⊤
i ∈ Rn2

is a matrix and X ∈ Rn×dfeat is a vector with respect to permu-
tation symmetries. Finally, we use an elementwise MLP to approximate the scalar-vector multiplica-
tion f3(h(µ)11⊤, V V ⊤, X) = h(µ)V V ⊤X . Since f3 ◦ f2 ◦ f1(µ11⊤, V V ⊤, X) = h(µ)V V ⊤X ,
and since 2-IGNs universally approximate each fi, applying Lemma 6 shows that a 2-IGN can
approximate h(µ)V V ⊤X to ϵ/n accuracy, so we are done. Since Expressive-BasisNet is stronger
than BasisNet, it can also universally approximate these functions.

From the proof, we can see that SignNet and BasisNet need only learn simple functions for the ρ and
ϕ when h is simple, or when the filter is non-parametric and we need only learn θi. Xu et al. (2020)
propose the principle of algorithmic alignment, and show that if separate modules of a neural network
each need only learn simple functions (that is, functions that are well-approximated by low-order
polynomials with small coefficients), then the network may be more sample efficient. If we do not
require permutation equivariance, and parameterize SignNet and BasisNet with simple MLPs, then
algorithmic alignment may suggest that our models are sample efficient. Indeed, ρ =

∑
is a simple

linear function with coefficients 1, and ϕ(V, λ,X) = h(λ)V V ⊤X is quadratic in V and linear in X ,
so it is simple if h is simple.
Proposition 3. There exist infinitely many pairs of non-isomorphic graphs that SignNet and BasisNet
can distinguish, but spectral graph convolutions or spectral GNNs cannot distinguish.

Proof. The idea is as follows: we will take graphs G and give them the node feature matrix XG =
D1/21, i.e. each node has as feature the square root of its degree. Then any spectral graph convolution
(or, the first layer of any spectral GNN) will map VDiag(θ)V ⊤X to something that only depends on
the degree sequence and number of nodes. Thus, any spectral graph convolution or spectral GNN
will have the same output (up to permutation) for any such graphs G with node features XG and the
same number of nodes and same degree sequence. On the other hand, SignNet and BasisNet can
distinguish between infinitely many pairs of graphs (G(1), G(2)) with node features (XG(1) , XG(2))
and the same number of nodes and degree sequence; this is because SignNet and BasisNet can tell
when a graph is bipartite.

For each n ≥ 5, we will define G(1) and G(2) as connected graphs with n nodes, with the same

degree sequence. Also, we define G(1) to have node features X(1)
i =

√
d
(1)
i , where d(1)i is the degree

of node i in G(1), and similarly G(2) has node features X(2)
i =

√
d
(2)
i . Now, note that X(1) is an

eigenvector of the normalized Laplacian of G(1), and it has eigenvalue 0. As we take the eigenvectors
to be orthonormal (since the normalized Laplacian is symmetric), for any spectral graph convolution
we have that

n∑
i=1

θiviv
⊤
i X

(1) = θ1v1v
⊤
1 X

(1) = θ1D
1/2
1 1(D

1/2
1 1)⊤D

1/2
1 1 = θ1

n∑
j=1

(d
(1)
j)D

1/2
1 1. (44)

Where D1 is the diagonal degree matrix of G(1). Likewise, any spectral graph convolution outputs
θ1
∑

j(d
(2)
j)D

1/2
2 1 for G(2). Since D1 and D2 are the same up to a permutation, we have that any

spectral graph convolution has the same output for G(1) and G(2), up to a permutation. In fact, this

34

Published as a conference paper at ICLR 2023

w1

w2 w3

w4 w5

G(1)

v1

v2

v3

v4

v5

G(2)

Figure 11: Illustration of our constructed G(1) and G(2) for n = 5, as used in the proof of Proposi-
tion 3.

w1

w2 w3

w4 w5 w6

G(1)

v1

v2

v3

v4

v5v6

G(2)

Figure 12: Illustration of our constructed G(1) and G(2) for n = 6, as used in the proof of Proposi-
tion 3.

also holds for spectral GNNs, as the first layer will always have the same output (up to a permutation)
on G(1) and G(2), so the latter layers will also have the same output up to a permutation.

Now, we concretely define G(1) and G(2). This is illustrated in Figure 11 and Figure 12. For n = 5,
let G(1) contain a triangle with nodes w1, w2, w3, and have a path of length 2 coming out of one of
the nodes in the triangle, say w1 connects to w4, and w4 connects to w5. This is not bipartite, as there
is a triangle. Let G(2) be a bipartite graph that has 2 nodes on the left (v1, v2) and 3 nodes on the
right (v3, v4, v5). Connect v1 with all nodes on the right, and connect v2 with v3 and v4.

Note that both G(1) and G(2) have the same number of nodes and the same degree sequence
{3, 2, 2, 2, 1}. Thus, spectral graph convolutions or spectral GNNs cannot distinguish them. How-
ever, SignNet and BasisNet can distinguish them, as they can tell whether a graph is bipartite by
checking the highest eigenvalue of the normalized Laplacian. This is because the multiplicity of
the eigenvalue 2 is the number of bipartite components. In particular, SignNet can approximate
the function ϕ(vi, λi, X) = λi and ρ ≈ maxni=1. Likewise, BasisNet can approximate the function
ϕdi

(ViV
⊤
i , λi) = λi and ρ ≈ maxli=1.

This in fact gives an infinite family of graphs that SignNet / BasisNet can distinguish, but spectral
graph convolutions or spectral graph GNNs cannot. To see why, suppose we have G(1) and G(2) for
some n ≥ 5. Then we construct a pair of graphs on n+ 1 nodes with the same degree sequence. To
do this, we add another node to the path of G(1), thus giving it degree sequence {3, 2, . . . , 2, 1}. For
G(2), we add a node vn+1 to the side that vn is not contained on (e.g. for n = 5, we add v6 to the left
side, as v5 was on the right), then connect vn to vn+1 to also give a degree sequence {3, 2, . . . , 2, 1}.
Note that the non-bipartiteness of G(1) and bipartiteness of G(2) are preserved.

35

Published as a conference paper at ICLR 2023

H.2 EXISTING POSITIONAL ENCODINGS

Here, we show that our SignNets and BasisNets universally approximate various types of existing
graph positional encodings. The key is to show that these positional encodings are related to spectral
graph convolution matrices and the diagonals of these matrices, and to show that our networks can
approximate these matrices and diagonals.

Proposition 5. If the eigenvalues take values in a compact set, SignNets and BasisNets universally ap-
proximate the diagonal of any spectral graph convolution matrix f(V,Λ) = diag

(∑n
i=1 h(λi)viv

⊤
i

)
.

BasisNets can additionally universally approximate any spectral graph convolution matrix f(V,Λ) =∑n
i=1 h(λi)viv

⊤
i .

Proof. Note that the vi come from a compact set as they are of unit norm. The λi are from a compact
set by assumption; this assumption holds for the normalized Laplacian, as λi ∈ [0, 2]. Also, as diag
is linear, the spectral graph convolution diagonal can be written

∑n
i=1 h(λi)diag(viv

⊤
i).

Let ϵ > 0. For SignNet, let ρ =
∑n

i=1, which can be exactly expressed as it is a permutation
equivariant linear operation from vectors to vectors. Then ϕ(vi, λi) can approximate the function
λidiag(viv

⊤
i) to arbitrary precision, as it is a permutation equivariant function from vectors to

vectors (Segol & Lipman, 2019). Thus, letting ϕ approximate the function to ϵ/n accuracy, SignNet
can approximate f to ϵ accuracy.

Let l be the number of eigenspaces V1, . . . , Vl, so f(V,Λ) =
∑l

i=1 h(µi)ViV
⊤
i . For BasisNet, we

need only show that it can approximate the spectral graph convolution matrix to ϵ/l accuracy, as a
2-IGN can exactly express the diag function in each ϕdi , since it is a linear permutation equivariant
function from matrices to vectors. A 2-IGN can universally approximate the function f1(µi, ViV

⊤
i) =

(h(µi), ViV
⊤
i), as it can express any elementwise MLP. Also, a 2-IGN can universally approximate

the scalar-matrix multiplication f2(h(µi), ViV
⊤
i) = h(µi)ViV

⊤
i by another elementwise MLP.

Since h(µi)ViV
⊤
i = f2 ◦ f1(µi, ViV

⊤
i), Lemma 6 shows that a single 2-IGN can approximate this

composition to ϵ/l accuracy, so we are done.

Proposition 4. SignNet and BasisNet can approximate node positional encodings based on heat
kernels (Feldman et al., 2022) and random walks (Dwivedi et al., 2022). BasisNet can approximate
diffusion and p-step random walk relative positional encodings (Mialon et al., 2021), and generalized
PageRank and landing probability distance encodings (Li et al., 2020).

Proof. We will show that we can apply the above Proposition 5, by showing that all of these
positional encodings are spectral graph convolutions. The heat kernel embeddings are of the form
diag

(∑n
i=1 exp(−tλi)viv⊤i

)
for some choices of the parameter t, so they can be approximated by

SignNets or BasisNets. Also, the diffusion kernel (Mialon et al., 2021) is just the matrix of this
heat kernel, and the p-step random walk kernel is

∑n
i=1(1− γλi)

pviv
⊤
i for some parameter γ, so

BasisNets can universally approximate both of these.

For the other positional encodings, we let vi be the eigenvectors of the random walk Laplacian
I −D−1A instead of the normalized Laplacian I −D−1/2AD−1/2. The eigenvalues of these two
Laplacians are the same, and if ṽi is an eigenvector of the normalized Laplacian then D−1/2ṽi is an
eigenvector of the random walk Laplacian with the same eigenvalue (Von Luxburg, 2007).

Then with vi as the eigenvectors of the random walk Laplacian, the random walk positional encodings
(RWPE) in Dwivedi et al. (2022) take the form

diag
(
(D−1A)k

)
= diag

(
n∑

i=1

(1− λi)
kviv

⊤
i

)
, (45)

for any choices of integer k.

The distance encodings proposed in Li et al. (2020) take the form

f3(AD
−1, (AD−1)2, (AD−1)3, . . .), (46)

36

Published as a conference paper at ICLR 2023

for some function f3. We restrict to continuous f3 here; shortest path distances can be obtained by a
discontinuous f3 that we discuss below. Their generalized PageRank based distance encodings can
be obtained by

n∑
i=1

∑
k≥1

γk(1− λi)
k

 viv
⊤
i (47)

for some γk ∈ R, so this is a spectral graph convolution. They also define so-called landing probability
based positional encodings, which take the form

n∑
i=1

(1− λi)
kviv

⊤
i , (48)

for some choices of integer k. Thus, BasisNets can approximate these distance encoding matrices.

Another powerful class of positional encodings is based on shortest path distances between nodes
in the graph (Ying et al., 2021; Li et al., 2020). Shortest path distances can be expressed in a
form similar to the spectral graph convolution, but require a highly discontinuous function. If we
define f3(x1, . . . , xn) = mini:xi ̸=0 i to be the lowest index such that xi is nonzero, then we can
write the shortest path distance matrix as f3(D−1A, (D−1A)2, . . . , (D−1A)n), where f3 is applied
elementwise to return an n× n matrix. As (D−1A)k =

∑n
i=1(1− λi)

kviv
⊤
i , BasisNets can learn

the inside arguments, but cannot learn the discontinuous function f3.

H.3 SPECTRAL INVARIANTS

Here, we consider the graph angles αij = ∥ViV ⊤
i ej∥2, for i = 1, . . . , l where l is the number of

eigenspaces, and j = 1, . . . , n. It is clear that graph angles are permutation equivariant and basis
invariant. These graph angles have been extensively studied, so we cite a number of interesting
properties of them. That graph angles determine the number of length 3, 4 and 5 cycles, the
connectivity of a graph, and the number of length k closed walks is all shown in Chapter 4 of Cvetković
et al. (1997). Other properties may be of use for graph representation learning as well. For instance,
the eigenvalues of node-deleted subgraphs of a graph G are determined by the eigenvalues and graph
angles of G; this may be useful in extending recent graph neural networks that are motivated by node
deletion and the reconstruction conjecture (Cotta et al., 2021; Bevilacqua et al., 2022; Papp et al.,
2021; Tahmasebi et al., 2020).

Now, we prove that BasisNet can universally approximate the graph angles. The graph properties we
consider in the theorem are all integer valued (e.g. the number of cycles of length 3 in a graph is an
integer). Thus, any two graphs that differ in these properties will differ by at least 1, so as long as
we have approximation to ε < 1/2, we can distinguish any two graphs that differ in these properties.
Recall the statement of Theorem 3.

Theorem 3. BasisNet can universally approximate the graph angles αij . The eigenvalues and graph
angles (and thus BasisNets) can determine the number of length 3, 4, and 5 cycles, whether a graph
is connected, and the number of length k closed walks from any vertex to itself.

Proof. Note that the graph angles satisfy

αij = ∥ViV ⊤
i ej∥2 =

√
e⊤j ViV

⊤
i ViV

⊤
i ej =

√
e⊤j ViV

⊤
i ej , (49)

where Vi is a basis for the ith adjacency matrix eigenspace, and e⊤j ViV
⊤
i ej is the (j, j)-entry of ViV ⊤

i .
These graph angles are just the elementwise square roots of the diagonals of the matrices ViV ⊤

i .
As f1(ViV ⊤

i) = diag(ViV
⊤
i) is a permutation equivariant linear function from matrices to vectors,

2-IGN on ViV ⊤
i can exactly compute this with 0 error. Then a 2-IGN can learn an elementwise

MLP to approximate the elementwise square root f2(diag(ViV ⊤
i)) =

√
diag(ViV ⊤

i) to arbitrary
precision. Finally, there may be remaining operations f3 that are permutation invariant or permutation
equivariant from vectors to vectors; for instance, the αij are typically gathered into a matrix of size
l × n where the columns are lexicographically sorted (l is the number of eigenspaces) (Cvetković
et al., 1997), or we may have a permutation invariant readout to compute a subgraph count. A

37

Published as a conference paper at ICLR 2023

DeepSets can approximate f3 without any higher order tensors besides vectors (Zaheer et al., 2017;
Segol & Lipman, 2019).

As 2-IGNs can approximate each fi individually, a single 2-IGN can approximate f3 ◦ f2 ◦ f1 by
Lemma 6. Also, since the graph properties considered in the theorem are integer-valued, BasisNet
can distinguish any two graphs that differ in one of these properties.

To see that message passing graph neural networks (MPNNs) cannot determine these quantities, we
use the fact that MPNNs cannot distinguish between two graphs that have the same number of nodes
and where each node (in both graphs) has the same degree. For k ≥ 3, let Ck denote the cycle graph
of size k, and Ck + Ck denote the graph that is the union of two disjoint cycle graphs of size k.
MPNNs cannot distinguish between C2k and Ck +Ck for k ≥ 3, because they have the same number
of nodes, and each node has degree 2. Thus, MPNNs cannot tell whether a graph is connected, as
C2k is but Ck + Ck is not. Also, it cannot count the number of 3, 4, or 5 cycles, as Ck + Ck has two
k cycles while C2k has no k cycles. Likewise, any node in Ck + Ck has more length k closed walks
than any node in C2k. This is because any length k closed walk in C2k has an analogous closed walk
in Ck + Ck, but the nodes in Ck + Ck also have a closed walk that completely goes around a cycle.

I USEFUL LEMMAS

In this section, we collect useful lemmas for our proofs. These lemmas generally only require basic
tools to prove. Our first lemma is a crucial property of quotient spaces.

Lemma 1 (Passing to the quotient). Let X and Y be topological spaces, and let X/G be a quotient
space, with corresponding quotient map π. Then for every continuous G-invariant function f : X →
Y , there is a unique continuous f̃ : X/G→ Y such that f = f̃ ◦ π.

Proof. For z ∈ X/G, by surjectivity of π we can choose an xz ∈ X such that π(xz) = z. Define
f̃ : X/G→ Y by f̃(z) = f(xz). This is well-defined, since if π(xz) = π(x) for any other x ∈ X ,
then gxz = x for some g ∈ G, so

f(x) = f(gxz) = f(xz) = f̃(z), (50)

where the second equality uses the G-invariance of f . Note that f̃ is continuous by the universal
property of quotient spaces. Also, f̃ is the unique function such that f = f̃ ◦ π; if there were another
function h : X/G→ Y with h(z) ̸= f̃(z), then h(z) ̸= f(xz), so h(π(xz)) = h(z) ̸= f(xz).

Next, we give the First Fundamental Theorem of O(d), a classical result that has been recently used
for machine learning by Villar et al. (2021). This result shows that an orthogonally invariant f(V)
can be expressed as a function h(V V ⊤). We give a proof that if f is continuous, then h is also
continuous.

Lemma 2 (First Fundamental Theorem of O(d)). A continuous function f : Rn×d → Rdout is
orthogonally invariant, i.e. f(V Q) = f(V) for all Q ∈ O(d), if and only if f(V) = h(V V ⊤) for
some continuous h.

Proof. If f(V) = h(V V ⊤), then we have f(V Q) = h(V QQ⊤V ⊤) = h(V V ⊤) so f is orthogonally
invariant.

For the other direction, invariant theory shows that the O(d) invariant polynomials are generated
by the inner products v⊤i vj , where vi ∈ Rd are the rows of V (Kraft & Procesi, 1996). Let
p : Rn×d → Rn×n be the map p(V) = V V ⊤. Then González & de Salas (2003) Lemma 11.13 shows
that the quotient space Rn×d/O(d) is homeomorphic to a closed subset p(Rn×d) = Z ⊆ Rn×n.
Let p̃ refer to this homeomorphism, and note that p̃ ◦ π = p by passing to the quotient (Lemma 1).
Then any continuous O(d) invariant f passes to a unique continuous f̃ : Rn×d/O(d) → Rdout

(Lemma 1), so f = f̃ ◦ π where π is the quotient map. Define h : Z → Rdout by h = f̃ ◦ p̃−1, and
note that h is a composition of continuous functions and hence continuous. Finally, we have that
h(V V ⊤) = h(p̃ ◦ π(V)) = f̃ ◦ π(V) = f(V), so we are done.

38

Published as a conference paper at ICLR 2023

The next lemma allows us to decompose a quotient of a product space into a product of smaller
quotient spaces.

Lemma 3. Let X1, . . . ,Xk be topological spaces and G1, . . . , Gk be topological groups such that
each Gi acts continuously on Xi. Denote the quotient maps by πi : Xi → Xi/Gi. Then the quotient
of the product is the product of the quotient, i.e.

(X1 × . . .×Xk)/(G1 × . . .×Gk) ∼= (X1/G1)× . . .× (Xk/Gk), (51)

and π1 × . . .× πk : X1 × . . .Xk → (X1/G1)× . . .× (Xk/Gk) is quotient map.

Proof. First, we show that π1 × . . . × πk is a quotient map. This is because 1. the quotient map
of any continuous group action is an open map, so each πi is an open map, 2. the product of open
maps is an open map, so π1 × . . .× πk is an open map and 3. a continuous surjective open map is a
quotient map, so π1 × . . .× πk, which is continuous and surjective, is a quotient map.

Now, we need only apply the theorem of uniqueness of quotient spaces to show (51) (see e.g. Lee
(2013), Theorem A.31). Letting q : X1 × . . . × Xk → (X1 × . . . × Xk)/(G1 × . . . × Gk) denote
the quotient map for this space, it is easily seen that q(x1, . . . , xk) = q(y1 . . . , yk) if and only if
π1 × . . .× πk(x1, . . . , xk) = π1 × . . .× πk(y1, . . . , yk), since either of these is true if and only if
there exist gi ∈ Gi such that xi = giyi for each i. Thus, we have an isomorphism of these quotient
spaces.

The following lemma shows that quotients of compact spaces are also compact, which is useful for
universal approximation on quotient spaces.

Lemma 4 (Compactness of quotients of compact spaces). Let X be a compact space. Then the
quotient space X/G is compact.

Proof. Denoting the quotient map by π : X → X/G and letting {Uα}α be an open cover of X/G,
we have that {π−1(Uα)}α is an open cover of X . By compactness of X , we can choose a finite
subcover {π−1(Uαi

)}i=1,...,n. Then {π(π−1(Uαi
))}i=1,...,n = {Uαi

}i=1,...,n by surjectivity, and
{Uαi

}i=1,...,n is thus an open cover of X/G.

The Whitney embedding theorem gives a nice condition that we apply to show that the quotient
spaces X/G that we deal with embed into Euclidean space. It says that when X/G is a smooth
manifold, then it can be embedded into a Euclidean space of double the dimension of the manifold.
The proof is outside the scope of this paper.

Lemma 5 (Whitney Embedding Theorem (Whitney, 1944)). Every smooth manifold M of dimension
n > 0 can be smoothly embedded in R2n.

Finally, we give a lemma that helps prove universal approximation results. It says that if functions
f that we want to approximate can be written as compositions f = fL ◦ . . . ◦ f1, then it suffices
to universally approximate each fi and compose the results to universally approximate the f . This
is especially useful for proving universality of neural networks, as we may use some layers to
approximate each fi, then compose these layers to approximate the target function f .

Lemma 6 (Layer-wise universality implies universality). Let Z ⊆ Rd0 be a compact domain, let
F1, . . . ,FL be families of continuous functions where Fi consists of functions from Rdi−1 → Rdi

for some d1, . . . , dL. Let F be the family of functions {fL ◦ . . . f1 : Z → RdL , fi ∈ Fi} that are
compositions of functions fi ∈ Fi.

For each i, let Φi be a family of continuous functions that universally approximates Fi. Then the
family of compositions Φ = {ϕL ◦ . . . ◦ ϕ1 : ϕi ∈ Φi} universally approximates F .

Proof. Let f = fL ◦ . . . ◦ f1 ∈ F . Let Z̃1 = Z , and then for i ≥ 2 let Z̃i = fi−1(Z̃i−1). Then each
Z̃i is compact by continuity of the fi. For 1 ≤ i < L, let Zi = Z̃i, and for i = L let ZL be a compact
set containing Z̃L such that every ball of radius one centered at a point in Z̃L is still contained in ZL.

Let ϵ > 0. We will show that there is a ϕ ∈ Φ such that ∥f −ϕ∥∞ < ϵ by induction on L. This holds
trivially for L = 1, as then Φ = Φ1.

39

Published as a conference paper at ICLR 2023

Now, let L ≥ 2, and suppose it holds for L− 1. By universality of ΦL, we can choose a ϕL : ZL →
RdL ∈ ΦL such that ∥ϕL − fL∥∞ < ϵ/2. As ϕL is continuous on a compact domain, it is also
uniformly continuous, so we can choose a δ̃ > 0 such that ∥y− z∥2 < δ̃ =⇒ ∥ϕL(y)− ϕL(z)∥2 <
ϵ/2.

Let δ = min(δ̃, 1). By induction, we can choose ϕL−1 ◦ . . . ◦ ϕ1, ϕi ∈ Φi such that
∥ϕL−1 ◦ . . . ◦ ϕ1 − fL−1 ◦ . . . ◦ f1∥∞ < δ. (52)

Note that ϕL−1 ◦ . . . ◦ ϕ1(Z) ⊆ ZL, because for each x ∈ Z , ϕL−1 ◦ . . . ◦ ϕ1(x) is within δ ≤ 1

Euclidean distance to fL−1 ◦ . . . ◦ f1(x) ∈ Z̃L, so it is contained in ZL by construction. Thus, we
may define ϕ = ϕL ◦ . . . ◦ ϕ1 : Z → RdL , and compute that

∥ϕ− f∥∞ ≤ ∥ϕ− ϕL ◦ fL−1 ◦ . . . ◦ f1∥∞ + ∥ϕL ◦ fL−1 ◦ . . . ◦ f1 − f∥∞ (53)
< ∥ϕ− ϕL ◦ fL−1 ◦ . . . ◦ f1∥∞ + ϵ/2, (54)

since ∥ϕL − fL∥∞ < ϵ/2. To bound this other term, let x ∈ Z , and for y = ϕL−1 ◦ . . . ◦ ϕ1(x)
and z = fL−1 ◦ . . . ◦ f1(x), we know that ∥y − z∥2 < δ, so ∥ϕL(y)− ϕL(z)∥2 < ϵ/2 by uniform
continuity. As this holds for all x, we have ∥ϕ− ϕL ◦ fL−1 ◦ . . . ◦ f1∥∞ ≤ ϵ/2, so ∥ϕ− f∥∞ < ϵ
and we are done.

J FURTHER EXPERIMENTS

J.1 GRAPH REGRESSION WITH NO EDGE FEATURES

Table 7: Results on the ZINC dataset with 500k parameter budget and no edge features. Numbers are
the mean and standard deviation over 4 runs each with different seeds.

Base model Positional encoding k #params Test MAE (↓)

GIN
No PE 16 497k 0.348±0.014

LapPE (flip) 16 498k 0.341±0.011

SignNet 16 500k 0.238±0.012

GAT
No PE 16 501k 0.464±0.011

LapPE (flip) 16 502k 0.462±0.013

SignNet 16 499k 0.243±0.008

All graph regression models in Table 1 use edge features for learning and inference. To show that
SignNet is also useful when no edge features are available, we ran ZINC experiments without edge
features as well. The results are displayed in Table 7. In this setting, SignNet still significantly
improves the performance over message passing networks without positional encodings, and over
Laplacian positional encodings with sign flipping data augmentation.

J.2 COMPARISON WITH DOMAIN SPECIFIC MOLECULAR GRAPH REGRESSION MODELS

Table 8: Comparison with domain specific methods on graph-level regression tasks. Numbers are test
MAE, so lower is better. Best models within a standard deviation are bolded.

ZINC (10K) ↓ ZINC-full ↓
HIMP † (Fey et al., 2020) .151±.006 .036±.002

CIN-small † (Bodnar et al., 2021) .094±.004 .044±.003

CIN † (Bodnar et al., 2021) .079±.006 .022±.002

SignNet (ours) .084±.006 .024±.003

In Table 8, we compare our model against methods that have domain-specific information about
molecules built into them: HIMP (Fey et al., 2020) and CIN (Bodnar et al., 2021). We see that
SignNet is better than HIMP and CIN-small on these tasks, and is within a standard deviation of CIN.
The SignNet models are the same as the ones reported in Table 2. Once again, we emphasize that
SignNet is domain-agnostic.

40

Published as a conference paper at ICLR 2023

J.3 LEARNING SPECTRAL GRAPH CONVOLUTIONS

Table 9: Sum of squared errors for spectral graph convolution regression (with no test set). Lower is
better. Numbers are mean and standard deviation over 50 images from He et al. (2021).

Low-pass High-pass Band-pass Band-rejection Comb

GCN .111±.068 3.092±5.11 1.720±3.15 1.418±1.03 1.753±1.17

GAT .113±.065 .954±.696 1.105±.964 .543±.340 .638±.446

GPR-GNN .033±.032 .012±.007 .137±.081 .256±.197 .369±.460

ARMA .053±.029 .042±.024 .107±.039 .148±.089 .202±.116

ChebNet .003±.002 .001±.001 .005±.003 .009±.006 .022±.016

BernNet .001±.002 .001±.001 .000±.000 .048±.042 .027±.019

Transformer 3.662±1.97 3.715±1.98 1.531±1.30 1.506±1.29 3.178±1.93

Transformer Eig Flip 4.454±2.32 4.425±2.38 1.651±1.53 2.567±1.73 3.720±1.94

Transformer Eig Abs 2.727±1.40 3.172±1.61 1.264±.788 1.445±.943 2.607±1.32

DeepSets SignNet .004±.013 .086±.405 .021±.115 .008±.037 .003±.016

Transformer SignNet .003±.016 .004±.025 .001±.004 .006±.023 .093±.641

DeepSets BasisNet .009±.018 .003±.015 .008±.030 .004±.011 .015±.060

Transformer BasisNet .079±.471 .014±.038 .005±.018 .006±.016 .014±.051

To numerically test the ability of our basis invariant networks for learning spectral graph convolutions,
we follow the experimental setups of Balcilar et al. (2020); He et al. (2021). We take the dataset of
50 images in He et al. (2021) (originally from the Image Processing Toolbox of MATLAB), and resize
them from 100×100 to 32×32. Then we apply the same spectral graph convolutions on them as in
He et al. (2021), and train neural networks to learn these as regression targets. As in prior work, we
report sum of squared errors on the training set to measure expressivity.

We compare against message passing GNNs (Kipf & Welling, 2017; Veličković et al., 2018) and
spectral GNNs (Chien et al., 2021; Bianchi et al., 2021; Defferrard et al., 2016; He et al., 2021).
Also, we consider standard Transformers with only node features, with eigenvectors and sign flip
augmentation, and with absolute values of eigenvectors. These models are all approximately sign
invariant (they either use eigenvectors in a sign invariant way or do not use eigenvectors). We use
DeepSets (Zaheer et al., 2017) in SignNet and 2-IGN (Maron et al., 2018) in BasisNet for ϕ, use
a DeepSets for ρ in both cases, and then feed the features into another DeepSets or a standard
Transformer (Vaswani et al., 2017) to make the final predictions. That is, we are only given graph
information through the eigenvectors and eigenvalues, and we do not use message passing.

Table 9 displays the results, which validate our theoretical results in Section 3.1. Without any message
passing, SignNet and BasisNet allow DeepSets and Transformers to perform strongly, beating the
spectral GNNs GPR-GNN and ARMA on all tasks. Also, our networks outperform all other methods
on the band-rejection and comb filters, and are mostly close to the best model on the other filters.

Runtimes. In these experiments, for 100 epochs on the same machine, GCN takes .435 seconds,
ChebNet takes .675, DeepSets SignNet takes 3.741 seconds, and DeepSets BasisNet takes 6.196
seconds. SignNet and BasisNet are significantly more expensive than the GNN methods in this
experiment, in large part because we use all 1024 eigenvectors of the 1024 node graph here. In
contrast, recall that in Section 4.1, SignNet does not have much overhead over base GNNs on the
task with smaller molecular graphs.

K FURTHER EXPERIMENTAL DETAILS

K.1 HARDWARE, SOFTWARE, AND DATA DETAILS

All experiments could fit on one GPU at a time. Most experiments were run on a server with 8
NVIDIA RTX 2080 Ti GPUs. We run all of our experiments in Python, using the PyTorch (Paszke
et al., 2019) framework (license URL). We also make use of Deep Graph Library (DGL) (Wang et al.,
2019) (Apache License 2.0), and PyTorch Geometric (PyG) (Fey & Lenssen, 2019) (MIT License)
for experiments with graph data.

41

https://github.com/pytorch/pytorch/blob/master/LICENSE

Published as a conference paper at ICLR 2023

The data we use are all freely available online. The datasets we use are ZINC (Irwin et al., 2012),
Alchemy (Chen et al., 2019a), the synthetic counting substructures dataset (Chen et al., 2020), the
multi-task graph property regression synthetic dataset (Corso et al., 2020) (MIT License), the images
dataset used by Balcilar et al. (2020) (GNU General Public License v3.0), the cat mesh from free3d.
com/3d-model/cat-v1--522281.html (Personal Use License), and the human mesh from
turbosquid.com/3d-models/water-park-slides-3d-max/1093267 (TurboSquid
3D Model License). If no license is listed, this means that we cannot find a license for the dataset.
As they appear to be freely available with permissive licenses or no licenses, we do not ask for
permission from the creators or hosts of the data.

We do not believe that any of this data contains offensive content or personally identifiable information.
The 50 images used in the spectral graph convolution experiments are mostly images of objects, with
a few low resolution images of humans that do not appear to have offensive content. The only other
human-related data appears to be the human mesh, which appears to be from a 3D scan of a human.

K.2 GRAPH REGRESSION DETAILS

ZINC. In Section 4.1 we study the effectiveness of SignNet for learning positional encodings to
boost the expressive power, and thereby generalization, on the graph regression problem ZINC. In
all cases we take our ϕ encoder to be an 8 layer GIN with ReLU activation. The input eigenvector
vi ∈ Rn, where n is the number of nodes in the graph, is treated as a single scalar feature for each
node. In the case of using a fixed number of eigenvectors k, the aggregator ρ is taken to be an 8
layer MLP with batch normalization and ReLU activation. The aggregator ρ is applied separately to
the concatenatation of the k different embeddings for each node in a graph, resulting in one single
embedding per node. This embedding is concatenated to the node features for that node, and the result
passed as input to the base (predictor) model. We also consider using all available eigenvectors in
each graph instead of a fixed number k. Since the total number of eigenvectors is a variable quantity,
equal to the number of nodes in the underlying graph, an MLP cannot be used for ρ. To handle the
variable sized input in this case, we take ρ to be an MLP preceded by a sum over the ϕ outputs. In
other words, the SignNet is of the form MLP

(∑k
i=1 ϕ(vi) + ϕ(−vi)

)
in this case.

As well as testing SignNet, we also checked whether simple transformations that resolve the sign
ambiguity of the Laplacian eigenvectors p = (v1, . . . , vk) could serve as effective positional encoding.
We considered three options. First is to randomly flip the sign of each ±vi during training. This
is a common heuristic used in prior work on Laplacian positional encoding (Kreuzer et al., 2021;
Dwivedi et al., 2020). Second, take the element-wise absolute value |vi|. This is a non-injective
map, creating sign invariance at the cost of destroying positional information. Third is a different
canonicalization that avoids stochasticity and use of absolute values by selecting the sign of each
vi so that the majority of entries are non-negative, with ties broken by comparing the ℓ1-norm of
positive and negative parts. When the tie-break also fails, the sign is chosen randomly. Results for
GatedGCN base model on ZINC in Table 1 show that all three of these approaches are significantly
poorer positional encodings compared to SignNet.

Our training pipeline largely follows that of Dwivedi et al. (2022), and we use the GatedGCN
and PNA base models from the accompanying implementation (see https://github.com/
vijaydwivedi75/gnn-lspe). The Sparse Transformer base model architecture we use, which
like GAT computes attention only across neighbouring nodes, is introduced by Kreuzer et al. (2021).
Finally, the GINE implementation is based on the PyTorch Geometric implementation (Fey &
Lenssen, 2019). For the state-of-the-art comparison, all baseline results are from their respective
papers, except for GIN, which we run.

We used edge features for all models except the Sparse Transformer. For the Sparse Transformer,
we found our method of using edge features to somewhat increase training instability, so standard
deviation was higher, though mean test MAE was mostly similar to the runs without edge features.

ZINC-full. We also run our method on the full ZINC dataset, termed ZINC-full. The result we
report for SignNet is a larger version of the GatedGCN base model with a SignNet that takes in
all eigenvectors. This model has 994,113 parameters in total. All baseline results are from their
respective papers, except for GIN, which is from (Bodnar et al., 2021).

42

free3d.com/3d-model/cat-v1--522281.html
free3d.com/3d-model/cat-v1--522281.html
turbosquid.com/3d-models/water-park-slides-3d-max/1093267
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://blog.turbosquid.com/turbosquid-3d-model-license/
https://github.com/vijaydwivedi75/gnn-lspe
https://github.com/vijaydwivedi75/gnn-lspe

Published as a conference paper at ICLR 2023

Alchemy. We run our method and compare with the state-of-the-art on Alchemy (with 10,000
training graphs). We use the same data split as Morris et al. (2020b). Our base model is a GIN
that takes in edge features (i.e. a GINE). The SignNet consists of GIN for ϕ and a Transformer for
ρ, as in the counting substructures and graph property regression experiments in Section 4.2. The
model has 907,371 parameters in total. Our training setting is very similar to that of Morris et al.
(2022), as we build off of their code. We train with an Adam optimizer (Kingma & Ba, 2014) with a
starting learning rate of .001, and a minimum learning rate of .000001. The learning rate schedule
cuts the learning rate in half with a patience of 20 epochs, and training ends when we reach the
minimum learning rate. All baseline results are from their respective papers, except for GIN, which
is from (Morris et al., 2022).

K.3 SPECTRAL GRAPH CONVOLUTION DETAILS

In Appendix J.3, we conduct node regression experiments for learning spectral graph convolutions.
The experimental setup is mostly taken from He et al. (2021). However, we resize the 100 × 100
images to 32× 32. Thus, each image is viewed as a 1024-node graph. The node features X ∈ Rn

are the grayscale pixel intensities of each node. Just as in He et al. (2021), we only train and
evaluate on nodes that are not connected to the boundary of the grid (that is, we only evaluate on the
28× 28 middle section). For all experiments we limit each model to 50,000 parameters. We use the
Adam (Kingma & Ba, 2014) optimizer for all experiments. For each of the GNN baselines (GCN,
GAT, GPR-GNN, ARMA, ChebNet, BernNet), we select the best performing out of 4 hyperparameter
settings: either 2 or 4 convolution layers, and a hidden dimension of size 32 or D, where D is just
large enough to stay with 50,000 parameters (for instance, D = 128 for GCN, GPR-GNN, and
BernNet).

We use DeepSets or standard Transformers as our prediction network. This takes in the output of
SignNet or BasisNet and concatenates it with the node features, then outputs a scalar prediction for
each node. We use a 3 layer output network for DeepSets SignNet, and 2 layer output networks for
all other configurations. All networks use ReLU activations.

For SignNet, we use DeepSets for both ϕ and ρ. Our ϕ takes in eigenvectors only, then our ρ takes
the outputs of ϕ and the eigenvalues. We use three layers for ϕ and ρ.

For BasisNet, we use the same DeepSets for ρ as in SignNet, and 2-IGNs for the ϕdi
. There are three

distinct multiplicities for the grid graph (1, 2, and 32), so we only need 3 separate IGNs. Each IGN
consists of an Rn2×1 → Rn×d′

layer and two Rn×d′′ → Rn×d′′′
layers, where the d′ are hidden

dimensions. There are no matrix to matrix operations used, as the memory requirements are intensive
for these ≥ 1000 node graphs. The ϕdi

only take in ViV ⊤
i from the eigenspaces, and the ρ takes the

output of the ϕdi
as well as the eigenvalues.

K.4 SUBSTRUCTURES AND GRAPH PROPERTIES REGRESSION DETAILS

We use the random graph dataset from Chen et al. (2020) for counting substructures and the synthetic
dataset from Corso et al. (2020) for regressing graph properties. For fair comparison we fix the base
model as a 4-layer GIN model with hidden size 128. We choose ϕ as a 4-layer GIN (independently
applied to every eigenvector) and ρ as a 1-layer Transformer (independently applied to every node).
Combined with proper batching and masking, we have a SignNet that takes Laplacian eigenvectors
V ∈ Rn×n and outputs fixed size sign-invariant encoding node features f(V,Λ, X) ∈ Rn×d, where
n varies between graphs but d is fixed. We use this SignNet in our experiments and compare with
other methods of handling PEs.

K.5 TEXTURE RECONSTRUCTION DETAILS

Table 10: Parameter settings for the texture reconstruction experiments.

Params Base MLP width Base MLP layers ϕ out dim ρ out dim ρ, ϕ width

Intrinsic NF 328,579 128 6 — — —
SignNet 323,563 108 6 4 64 8

43

Published as a conference paper at ICLR 2023

We closely follow the experimental setting of Koestler et al. (2022) for the texture reconstruction
experiments. In this work, we use the cotangent Laplacian (Rustamov et al., 2007) of a triangle mesh
with the lowest 1023 eigenvectors besides the trivial eigenvector of eigenvalue 0. We implemented
SignNet in the authors’ original code, which was privately shared with us. Both ρ and ϕ are taken
to be MLPs. Hyperparameter settings and number of parameters are given in Table 10. We chose
hyperparameters so that the total number of parameters in the SignNet model was no larger than that
of the original model.

44

	Introduction
	Sign and Basis Invariant Networks
	Warmup: Neural Networks on One Eigenspace
	Neural Networks on Multiple Eigenspaces

	Theoretical Power for Graph Representation Learning
	SignNet and BasisNet strictly Generalize Spectral Graph Convolution
	BasisNet can Compute Spectral Invariants
	SignNet and BasisNet Generalize Existing Graph Positional Encodings

	Experiments
	Graph Regression
	Counting Substructures and Regressing Graph Properties
	Neural Fields on Manifolds
	Visualization of Learned Positional Encodings

	Related Work
	Conclusion and Discussion
	Universality for Multiple Spaces
	More Details on SignNet and BasisNet
	Generalization Beyond Symmetric Matrices
	Broader Impacts
	Complexity of SignNet and BasisNet
	Other Architectural Notes

	More on Eigenvalue Multiplicities
	Sign and Basis Ambiguities in Numerical Eigensolvers
	Higher Dimensional Eigenspaces in Real Graphs
	Relationship to Graph Automorphisms
	Multiplicities in Random Graphs

	Visualization of SignNet output
	Cat Model Visualization
	Molecule visualization

	More Related Work
	Graph Positional Encodings
	Eigenvector Symmetries in Graph Representation Learning
	Graph Spectra and Learning on Graphs

	Definitions, Notation, and Background
	Basic Topology and Algebra Definitions
	Background on Eigenspace Invariances

	Proofs of Universality
	Proof of Decomposition Theorem
	Universality of SignNet and BasisNet
	Sign Invariant Universal Representation
	Sign Invariant Universal Representation with Extra Features
	Basis Invariant Universal Representation
	Basis Invariant and Permutation Equivariant Universal Approximation

	Proof of Universal Approximation for General Decompositions

	Basis Invariance for Graph Representation Learning
	Spectral Graph Convolution
	Existing Positional Encodings
	Spectral Invariants

	Useful Lemmas
	Further Experiments
	Graph Regression with no Edge Features
	Comparison with Domain Specific Molecular Graph Regression Models
	Learning Spectral Graph Convolutions

	Further Experimental Details
	Hardware, Software, and Data Details
	Graph Regression Details
	Spectral Graph Convolution Details
	Substructures and Graph Properties Regression Details
	Texture Reconstruction Details

