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Abstract

A numerical method for obtaining a crystalline flow starting from a general polygon is presented. A
crystalline flow is a polygonal flow and can be regarded as a discrete version of a classical curvature
flow. In some cases, new facets may be created instantaneously and their facet lengths are governed
by a system of singular ordinary differential equations (ODESs). The proposed method solves the
system of the ODEs numerically by using expanding selfsimilar solutions for newly created facets.
The computation method is applied to a multi-scale analysis of a contour figure.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A curvature flow is widely used for a multi-scale analysis of a contour figure in animage
[1,15,18-20,22,24,27A curvature flow is a family of evolving contours, in which every
point of the contour moves toward its normal direction with the velocity that is determined
by the curvaturelrig. 1shows an example of a curvature flow, in which the normal velocity
is equal to the curvature. This flow is called a curve shortening flow. As a contour evolves,
local details in the contour are smoothed out, and it is proved that, in a curve shortening
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Fig. 1. An example of a curve shortening flow.

flow, any simple closed curve becomes convex in finite time, and shrinks to a point; the
way of shrinking is asymptotically close to that of a shrinking circle. A method for a multi-
scale analysis, in general, specifies a shape component from a given contour and finds each
component’s size by observing how the contour shape becomes close to a circle in the flow.
The method records the time at which each shape component disappears in the flow for
finding its size.

In many cases, a contour figure inanimage is described as a polygon. In a curve shortening
flow, it is proved that any given simple polygon becomes an analytic curve immediately
after it starts evolving. Several methods have been proposed for computing the flow, and
those methods usually describe an evolving smooth contour in a discrete way.

The Gaussian-based methi@2], for example, describes an evolving contour figure by
a set of points that are equally spaced in the contour. The coordinatesitf hant are
represented a&c(i4), y(i4)) whered denotes the interval between adjacent points. The
method iterates two processes: (i) smoothing bodndy with a small scale Gaussian
filter, and (ii) resampling the resulted contour at equal intervals after the smoothing. The
resampling process is needed because the arc length changes as the contour evolves. It
should be noted that the intervalof the resampling changes at each iteration because
must aliquot of the total peripheral length, but it is not realizable. These things make it
difficult to compute a curve shortening flow precisely. In addition, the resampling process
makes it difficult to track each point in the evolving contour through the process. Many
multi-scale methods needs to track a point in the evolving contour for finding the time at
which a shape component disappears, therefore, such a resampling process is not desirable.

A level set method5,6,23]is a powerful tool for obtaining an evolving interface. The
method represents an evolving interface as the zero level set of an auxiliary fupction
For example, an evolving contour in they plane is represented as the zero level set of
the evolving functionp(x, y; t). To compute the curve shortening flow, we only need to
solve the level set equatiap, + x|V¢| = 0. Because no arc length parameter along the
contour is needed for computation, no resampling along the contour is needed. Moreover,
the method can compute an evolving interface even if its topology changes as it evolves. In
the computation, though, the functigns discretely represented on fixed pixels, and finite
difference operators are used for computing the spatial derivatives. The operators’ width
is usually two or three pixels. If there exists a small part in the evolving contour that is
comparable to the operators’ width, then, the computed values do not approximate well the
spatial derivatives. This inaccuracy causes a serious problem to compute the accurate value
of the curvaturec. Unless we know the accurate valuexgfit is, for example, difficult to
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choose inflection point of an evolving curve, which is important in a multi-scale contour
figure analysis (see, e.[1.5,18,19,22,24,27]

In [2,26], a crystalline flow is proposed to analyze motion of crystals in material sci-
ences. A crystalline flow is a special family of evolving polygons, which is often called an
admissible evolving crystal. It can be regarded as a discrete version of a curvature flow. In
an evolving process of the crystalline flow, a given polygon remains polygonal through the
evolving process, each facet (side) of evolving contour moves keeping its normal direction,
and every corner in the contour moves at le@stn time (provided that no facets disap-
pear). These features help to track each facet through the evolving process, so that the flow
is useful for the multi-scale analysis. The velocity is determined by the non-local curva-
ture, which depends on the length of the facet. Polygons are well represented in a discrete
manner. Different from a classical curvature flow, it is easy to compute the accurate value
of non-local curvature, and to obtain the crystalline flow if an appropriate initial polygon is
given.

As already observed if2,26], a crystalline flow can be interpreted as a curvature flow
with anisotropic interfacial energy density. The governing equation is formally written as
a partial differential equation (PDE) of the second order: like a curve shortening equation.
However, the quantity like nonlocal curvature is not an infinitesimal quantity, so it is not a
conventional PDE. Iffi3], a nonlinear partial differential equation is obtained from dilation
and erosion processes. However, the PDE deriv§8]iis of the first order and anisotropy
arises in the first-order term; see al@b]. The effect of the anisotropy obtained by a
crystalline arises in the curvature term and is quite different from the anisotrdfy2&i.

For relations of morphological operations and curvature effects, the reader is referred to a
recent book of Ca@4].

In [2,26], evolving curves for crystalline flow are restricted in a special class of evolving
polygons. In particular, only a special polygon is allowed to be an initial datg,19],

a level set formulation was extended to handle a curvature flow with singular interfacial
energy, including a crystalline flow. Moreover, one is allowed to take an arbitrary curve
as initial data for unique global-in-time solvabilifyd]. However, its explicit form was not

clear even if an initial data is a polygonal contour. In some cases, new facets are expected
to be created at corners of a given polygon instantaneously. Once new facets are created, no
new facet is created any more, and the number of facets decreases monotonically as time
increases, unless evolving polygon degenerates. It turns out that if the speeds of both facets
bounding newly created facets are zero, then these new facets expand selfsimilarly, and their
lengths solve a system of singular ordinary differential equations. The unique existence of
such a selfsimilar solution has been established by solving a system of algebraic equations
[11,12] (The explicit values of the solution is not giver{iri,12]) We summarise this result

in Section 2, while in 3, we give a numerical way to find selfsimilar expanding solutions.

In Section 2, we introduce a new notion ‘essential admissible crystal’ which is a slight
extension of ‘admissible crystal (polygon)’[8,26], to treat general initial polygon.

In this paper, we present a numerical method to obtain a crystalline flowdrbitrary
given polygon. A numerical length of each newly created facet is calculated by using the
expanding selfsimilar solution. The proposed method enables us to use any convex polygon
as the Wulff shape, which controls the nonlocal curvature of each facet. The Wulff shape
substitutes the disk in the sense that its nonlocal curvature is constant. If the Wulff shape
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is different, then the crystalline flow is also different for the same initial data @ign
particular, if we rotate the Wulff shape, the flow may be different. However, approximating
the disk by a polygonal Wulff shape, one is able to approximate a curve shortening flow
(which is rotationally invariant) by a crystalline flow (see, §1d]).

In this paper, we apply the proposed method for computing the crystalline flow to ex-
tracting a set of dominant facets from a given contour figure. As mentioned above, in the
crystalline flow, it is easy to track each facet through the process; in particular, it is easy
to distinguish convex part, concave part, and inflection part of evolving polygons. The
proposed method tracks each facet in a given polygon through the evolving process, and
extracts facets that remain existing for a long timg181, the first and the last authors firstly
applied a crystalline flow to a multi-scale contour figure analysis. However, the proposed
method in16] did not create new facets systematically. To overcome this inconvenience, in
this paper, the length of each new facet is approximated by expanding selfsimilar solutions
obtained i11,12] Note that our method does not include any approximation error caused
by spatial grid size, which is an advantage over finite difference method for calculating
curvature flows.

This paper is organized as follows: In Section 2, we outline mathematical backgrounds
of a crystalline flow with expanding selfsimilar solutions, which may appear as newly
created facets. In Section 3, we present a numerical method for computing a crystalline
flow. Sections 4 and 5 show some experimental results and conclusions, respectively. A
preliminary version of this paper has been publisheld .

2. Crystalline flow
2.1. Weighted curvature flow

First, we recall the notion of the weighted curvature. Lheie a continuous, convex
function onR? which is positively homogeneous of degree one, j€.p) = Ay(p) for all p
€ R?, ).> 0. Assume that(p) > 0 for p # 0. For amoment assume thds smooth (except
the origin).Fig. 2shows an example of the graph)@p). For an oriented curvBwith the
orientationn, which is a unit normal, we call, (n) = —div(£(n)) theweighted curvature
of Sin the direction oh, whereZ = Vy. We note that the weighted curvatureSis the first
variation of (S) with respect to a variation of the area enclose&byerel (S) is defined

by
1(S)= /S () ds, @)

where @& denotes the line element(S) is called thenterfacial energywith aninterfacial
energy density. We recall that the Wulff shape defined by

W, = () {x € R%: x- m<yp(m))
Imj=1

is the unique minimizer of (§) among allSwhose enclosed area is the samélagsee,
e.g.[14]). If y(p) = Ipl, thenI(S) is equal to the total peripheral length 8f A, is the
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Fig. 2. Interfacial energy density

Fig. 3. Crystalline energy density and its Frank diagram.

usual curvature, an@,, is nothing but a unit disk. For anythe weighted curvature afv,
always equals-1, soW, plays the role of a unit disk for the usual curvature.

We consider a motion of an evolving cur¥g governed by thenisotropic curvature
flow equatiorof the form

V= Ay(n) (2)

onI;, whereV denotes the normal velocity ¢f;} in the direction oin. Wheny(p) = |p|,
Eqg. (2) becomes the curve shortening equation.

There are several methods to track evolutio'gfone of a typical method is the level-
set method (sef5—7,23). If y is C? except the origin, global unique solvability for (2) is
established by Chen et 8] (see alsd13]). However, whery has corners, conventional
notion of a solution including viscosity solutions does not apply to (2).

If Frank diagram ofy:

Frank = {p € R? y(p) <1}

is a convex polygony is called acrystalline energydensity (seeFig. 3), and a notion of
solution for (2) is proposed by Angenent and Gufthand Taylor[26] independently by
restricting{I’,} as a special family of evolving polygonal curves called admissible. Even
for more generaj with corners not necessarily crystalline energy, the level-set approach
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for (2) and more general equations is successfully extended by Giga anflLGji¢see also

[9]), although the problem has nonlocal nature. They introduced a new notion of solution
consistent with that if2,26], and proved the global unique solvability at least fgeaeral

initial simple curve (not necessarily admissible). However, for a general initial polygon, the
explicit form of a solution was not discussed®10] wheny is crystalline.

2.2. Crystalline flow

Here and hereafter we assume thét a crystalline energy, i.e., Franks a convexvi-
polygon. In this section we introduce an evolving polygonal curve called a crystalline flow
governed by (2). To track such an evolving polygon, we shall derive a system of ordinary
differential equations (ODESs) for the length of sides (facets) of the polygon. For this purpose
we need to prepare several notions.

Letqg; (i =1,..., M) be vertices of Frankas shown irFig. 3. We call a simple oriented
polygonal curveSas anessentially admissible crystdlthe outward unit normal vectar
andi of any adjacent segments (facets)Ssfatisfy

(1—-A)n+ 20

—_— ¢ N 3

Kl—bn+im¢ 3)
for any 2 € (0,1), where /" ={q;/|0;|; i =1,..., M}. LetJ be a time interval. We

say that a family of polygotiS(¢)},.; is anessentially admissible evolving crysthlS(r)

is an essentially admissible crystal for alle J and each corner moves continuously
differentiably in time. These conditions imply that the orientation of each facet is preserved
in J. By definitionS(r) is of the formS(t):U;zlSj (r) whereS (¢) is amaximal, nontrivial,
closed segment and its unit outward normal vectarisHere we number facets clockwise.
Then we obtain a transport equation foy(z) which is the length of; (¢):

dL; (1) 1

ar (co l//j + CO l//].;_]_) J sin lﬁj j—1 sin lﬂj+1 j+1 ( )
for ] =1,...,r;indexj is considered modulno Herey ; = 0; ] 1 (Mmodulo 2t ) with

= (Cos 01, sin 0;), andV; denotes the normal velocity cS‘f (t) in the direction ofn;.
We say that an essentlally admissible cry$sl)}, . ; is ay-regular flowof (2) if

A(N;)

(5)

for j=1,2,...,r.Hered(n;) =7 (0; + 0) — 7'(0; — 0) with n; = (cosb;, sin 6,) and
7(0) =y(cos 0, sin ). We note thatl(n;) is the length of facet of, with outward normal
n; if n; € A" (seeFig. 4), otherwise4(n;) = 0. The quantityy; is called a transition
number, and takes +1 (respl) if S(¢) is concave (resp. convex) aroujit facet in the
direction ofn;, otherwisey ; = 0. We call the quantityl; = y;4(n;)/L;(¢) as anonlocal
weighted curvaturef thEJth facet with respect tp. (We use the convention thatil; (1) =0

if L;(t) = 00.) Thus we get a system of ODEs (4) and (5) fof(r)'s. For a moment we
assume thaf(0) is anessentially admissible closed curthat is to say, a closed curve
which is an essentially admissible crystal.
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Franky Wulff shape

Fig. 4. Frank and the corresponding Wulff shape. Each facet of the Wulff shape has the l¢@uih, where
m; =0; /I

A fundamental theory of ODE yields the (local in time) unique solvability of (4) and (5).
UnlessS(¢) shrinks to a point, self-intersects, or develops degenerate pinching at most two
consecutive facets with zero nonlocal weighted curvatures may disappear (i.e., the length
of a facet tends to zero) at some tirfie However,S(T,) remains essentially admissible,
so that we can continue calculating the ODE system (4),(5) fof,. starting with initial
dataS(T;) (se€[26,9)]).

We say thaf{S(r)},.; is acrystalline flowwith initial data S(0), if there is someg =
O<ti<tp<---<,suchtha{S(t)},e,, is ay-regular flow forJ, = [t;, tp+1) with initial
dataS(t;) (h=0,1,...,1—1),andS(t) — S(#;+1) in the sense of the Hausdorff distance
topology as 1 ;,+1 and some facets disappearat; (=0, 1,...,/—2). By asimilar ar-
gumentas iffid], we see that a crystalline floi§ (r)}, . ; starting with essentially admissible
closed curves(0) shrinks to a point and does not intersect nor develop degenerate pinching
provided thatW, is rotationally symmetric with respect to some point. A crystalline flow
{S(n)},c; agrees with a solution by level-set approach for (2) introducgtidh by a sim-
ilar argument as 9] (see alsd8]). The discussion ifi9] is for an admissible evolving
crystal but it is easy to extend to an essentially admissible evolving crystal. For convenience
we recall the notion of an admissible evolving crystal. An essentially admissible c8ystal
is called anadmissible crystaif the outward unit normal vectanm of each segment d®
belongs ta/”". We say{S(t)},; is anadmissible evolving crystél S(¢) is an admissible
crystal for eacht € J.

2.3. General polygonal initial curve

In the previous section we restricted an initial curve to an essentially admissible crystals.
Here we shall focus on a simple, closed, polygonalinitial c§1i@, which is not necessarily
an essentially admissible crystal.[ltD], it is shown that there exists a unique level-set flow
(solution) for (2) with a crystalline energystarting with a general polygonal initial curve.
However, it is not clear a priori whether or not the solution is described by an ODE system,
since new facets whose orientation belonggt@re expected to be created instantaneously
at the place where property (3) is violated §®). Moreover, it is not clear how to solve
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Si+1 (0) S (0) Ry (t)

. " "

Wulff Shape

Fig. 5. Creation of a set of new facets. All facets with orientatiovirare expected to be created betwéer0)
ands;1(0) just afterr = 0. It should be noted that the length of each new facet should satisfy the ODE system
of (4) and (5).

the expected ODE system since it is singular at newly created facets. In this section we give
a heuristic argument to solve such a singular ODE system.
Letn andi be the orientation of any adjacent fac8tg0) andsS;1(0) of S(0). If

_ | @=-Hn+in ;
{meat, O<i<1

is not the empty set, all facets (sa¥i(¢), ..., R,(z), numbered clockwisely) with ori-
entation in./# are expected to be created betwee(0) andS;1(0) just afterr = 0, so
that the transition number of eadt) () is 1 (resp.—1) for smalls > 0 if the bounded
polygon enclosed by (0) is concave (resp. convex) ne®i(0) N S;1(0) (seeFig. 5. By
inserting these newly created facets, our solufign should become essentially admissible
instantaneously. This observation should be justified by approxim&tibgoy essentially
admissible crystals from inside and from outside with comparison pringiple

For a given initial polygonS(0) one is able to find the place, the orientation and the
transition number of the all facets that are expected to be newly created at initial time. For
later convenience, we shall re-number clockwisely all facet$(@f and all facets that are
expected to be createdrat 0, i.e., the length of a newly created facet equals@dl. Then
the expected ODE system for a simple, closed, polygonal initial ci@eagain becomes
(4) and (5) ; however, the initial dafa; (0) may be 0. The ODE system is of the form

dL;() _ b, qj-1 Fj+1
dr Lijt) Lj_1(t) Ly’

(6)

where p; = (cotyy; + cotyy; 1)y;4N}), gj—1 = —y;_14(N;—1)/siny;, and7j1 =
—1j+14(Njy1)/siny;q for j=1,...,r";indexj is considered moduld. Here numbers
Pj,qj,7; are determined uniquely by (4) and (5), since the transition number and the
orientation of a newly created facet are known.
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To solve Eq. (6) we consider Puiseux series
o
Lit)y=) ajt*/?, (7)
k=0

with real numberaj, . Clearly, forj with L;(0) = 0 the coefficientz ;o0 must be zero.
Suppose thah consecutive facets, sa(¢), ..., S,(t) are created at=0, i.e. L1(0) =
.++=L,(0) =0 andLq(0), L,,1(0) > 0. We plug (7) into (6) and multiply’/2 with both

sides of (6). Comparing both sides we observe that all coefficients are determined. The first
coe1‘ficients{aj1}’}:1 have a significant meaning. If the nonlocal curvatureSgf) and
Sn+1(0) equals zero, theh ; (1) = ajltl/z for j =1,..., n exactly solves the ODE system

(6) with j =1, ..., n (as long as botlSo(r) andS,+1(r) exist), since it is decoupled from

the whole system (6) withi =1, ..., r’ by the factjo = 0 = 7,+1. In this case the solution
{Clj]_}’}:l represents a selfsimilar expanding solution of the problem in the next section.

2.4. Selfsimilar expanding solutions

Let{S(¢)},.o be an essentially admissible evolving crystal of the féi(m = U;?:éSj 2]
with nonparallel half linesSo(r) and S,,1(¢). We say tha{S(¢)},. o is selfsimilarif there

exists an essentially admissible crysfalsuch that
S@t) =128, = {tY*x;x € S,}, t>0.

If {S(r)},~¢Solves (6), we callS(r)},- g aselfsimilar expanding solutiaof (2). By definition
S(+0) =lim; 0 S(¢) consists of two (nonparallel) half lines emanated from the origin. We
also observe that)_, S; (1) is admissible for all > 0 and that the transition numbersf(r)
isindependentof=1, ..., nand: > O; itmust be either1 or +1. It turns out thaS(¢)},. o

is a selfsimilar expanding solution if and only if the lendth(r) of S;(+) (j =1,...,n)
solves the ODE system (6) for- 0 and forj =1, ..., n with go =0=7,41. Note that ;1

of L;(t) = a;1tY/? represents the length ih facet ofS, for j = 1,..., .

Theorem 1. For a given oriented closed cone @ith connected interigrthere exists a
unique selfsimilar expanding solutidiiz) such thatS(+0) agrees with the boundary of C
(se€[11,12).

From ODE system (6) we see that this problem is equivalent to the unique solvability of
algebraic equation

an Pn Gn-1 1/ay,

ap—-1 Pn ﬁn—l én—Z 0 l/a,1

fln72 5 Fn—1 15.;172 qn-3 .l/an72 @®
as 0 3 p2 q1 || Yaz

ap F2 p1d L1/ay
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foraj =a;1>0(j =1,2,...,n). We proved the existence of a solution of this alge-
braic equation by a method of continuity while we proved its uniqueness by a geometric
observatiofiL1,12]

3. Numerical method for obtaining a crystalline flow

In this section, we describe a numerical method for obtaining a crystalline flow starting
from a given polygon that is not necessarily an essentially admissible crystal. Using the
Euler method, we compute the approximated solution of the system of (4) and (5). If the
given polygon is not essentially admissible, our method firstly creates new facets. When the
new facets are created, the length of any facet in a given polygon is not updated. After the
new facets are created, then we update the lengths of all facets to compute the approximated
solution.

3.1. New facet creation

For each adjacent facets with orientationand rh of the initial polygon, if.# # @
then all facets with orientation it/ should be newly created instantaneously, so that the
given polygon becomes essentially admissible instantaneously. Once the polygon becomes
essentially admissible, no new facet is needed to be created.

Given a nonessentially admissible polygon, the method creates new facets at first time.
For creating new facets, we should numerically calculate the solution of (8) in order to
obtain the lengths of them. Let the time step be denotetl:agve set the length of each
new facet talj\/A_t, wherea; is a numerical solution of (8).

To solve (8) numerically, as ifi1,12] we rewrite (8) witho; = 1/a;:

1/ On Oln Pn 4n-1

l/fxnfl On—1 'n  Pn-1 {n-2 0

: =H,|: ., whereH, = , (9
1oz o2 0 r3 p2 q1

l/ocl o1 rp Pl

wherep; = 2p;, q; = 2G;, andr; = 27;. We introduce extra parametere [0, 1] by
replacingH, by K, (s) in (9) so thatx; depends oss.

Pn  Sq,_1
Stn  Pn-1 Sq,_2 0
Ku(s) = . (10)
0 sr3 p2 sqy

Sr2 Pl

Evidently [1/o;(0)] = K,,(0)[«;(0)] can be easily solved, ar{dj(l)}’]?:l is the solution
of (9): «;(0) = 1/./p;. Referring the idea ofl1,12] we calculate the numerical solution
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of (9) using the Newton—Rapson method as follows.

(1) Setr;j=1/,/p;forinitial values ofthe iteration, wheyg;=2[coty ;+-coty; 11y, 4(n;).
(2) Apply the Newton—Rapson method to obtain the numerical solution.of

Finally, we calculater; = 1/;, and set the length of each new facetja/Ar. Note that

L;(t) =a;t¥? s the exact solution if the velocities of both facets bounding newly created
facets are zero. The polygon obtained by the new facet creation is expected to approximate
well the solution of the system of (4) and (5) corresponding-=toA¢, though we have not
proved it rigorously.

3.2. Computing crystalline flow

As described in the previous subsection, if a given polygon is not essentially admissible,
then the new facets are created. The resulted polygon is essentially admissible. Given the
Wulff shape and a simple initial polygon, our method computes the solution of the system
of (4) and (5) using the Euler method.

(1) Create new facets as described in the previous subsection, if a given initial polygon is
not essentially admissible. The length of a facet in the given polygon is not updated in
this step.

(2) Update the length of every facet in the polygoniagity + At) = L;(to) + At -

dL; () /0|1

(3) Iterate step (2) till the polygon becomes convex, or some facetyitht1l becomes

smaller than a prescribed value, say- 0.

Note that the evolving polygon becomes convex provided that the Wulff shape is rotationally
symmetric with respect to some pol[8{.

4. Experimental results
4.1. Computation of a crystalline flow

In the first experiment, we used a regular 16-polygon as the Wulff shape, and a sector
as an initial contour as shown kig. 6. Letm; (i =1, 2, ..., 16) denote the outward unit
normals of the Wulff shape; the facet numbds indexed clockwisely. We set that the
argument ofm; equalst — n(i — 1)/8. LetS; denote thgth facet of the initial contour, and
n; (j =1, 2, 3, 4) be the outward unit normal of;. Assume thatarg; =7 — n(j — 1)/2.

Then, three new facets sprout out at each corner of the square. For example, b&tween
(argny = ) and S» (argn; = ©t/2) of the given square, three facets sprout out of which
normals are parallel ton,, mz, andma, respectively. We note thag (respny) of the sector

(A) in Fig. 7equalsm; (resp.ms). However, the weighted curvatures of two half lifas
andS, are zero, since the length 8f andS; is infinite.
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Fig. 6. An example of the Wulff shape and an initial contour. An analytic solution can be calculated in this case.

Three new facets are created at the beginning as shown in this figure. It should be noted that the middle facet is
shorter than side ones.

Ny
EEEEES
(A) (B) © (D) (E) (F

Fig. 7. An example of the set of given rotated sectors. The argumenisaoé (A)~, (B) ©+ /80, (C)r+ 27/80,
(D) © + 3n/80, (E)x + 47/80, and (F)t + 57/80, respectively.

In order to obtain the quantities of, we solve next equations that correspond to (8).

as p q 07[1/as
a3 |=|q p q||1as]|,
az 0 ¢ pillja
wherep =4/tan(z/8) and ¢g = —2/sin(n/8). (12)
Letoa=1/az = 1/as andf = 1/az. Eq. (11) can be solved analytically:

a=—(pp—1/p)/2q,
172 1/2
p= [(p2 +4?) + (02 + g2 — p2(p2 — ZqZ)} / [p(p2 - 2612)] . (12)

We can calculate the quantitiegs usinga, =as =1/x andaz=1/p. The valuep andqin

(12) are known as shown in (11). The values@are as ~ 1.68 andaz >~ 1.29, respectively.

Three facets sprout out with symmetric shape in this case. It should be noted that the shape

of newly created facets is not the same as the shape of the corresponding part of the Wulff

shape. In this case, the middle facet is shorter than the neighbours, although the Wulff shape

is regular.Table 1(A) shows the quantities;’s of Eq.(11) computed numerically by the

method described in Section 3.1. The computed quantities well approximate the solution.
If a given initial contour is rotated, then the shape of new facets changes. We applied the

proposed method for each sector showfrig. 7. The sector is rotated with increments of

7/80. The length of each new facet is denotedibyTable 1shows the calculated values

of a;, which correspond to the new facets betwsgrand S;. In case of sector (A) three

facets sprout out betweefy and S». On the other hand, for the other sectors four facets

sprout out betweefi; andS», because arg; < argm; < argns. Fig. 8shows the shape of
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Table 1
Experimental results obtained from the rotated sectors showiyiry

() (B) © ) B F

Arg nq T n+ /80 7+ 21/80 n + 31/80 n + 41/80 7 + 51/80
Arg no /2 n/2+ 1/80 n/2+ 21/80 n/2+ 3n/80 /2 + 41/80 n/2+ 51/80
al — 5.891 3.924 3.090 2.614 2.303

as 1.682 1.464 1.382 1.326 1.286 1.257

as 1.287 1.232 1.223 1.225 1.287 1.257

ag 1.682 1.719 1.806 1.925 2.085 2.303

The numerically calculated solutiomg are shown. The quantity;+/Ar represents the length of the newly

createdth facet.
() (®) ©

©) B F

Fig. 8. The shape of new facets that corresporfigo 7 andTable 1 The thick lines indicate the new facets.

the new facets. For sector (B) the normalis almost parallel to the new facet’s nornmad,
anday is large.

Fig. 9shows some experimental results of crystalline flow. The initial contour is common
to all, but the Wulff shape is different. As described earlier, the Wulff shape plays the role
of a unit circle for a classical curve shortening flow. Because the proposed method gives
a crystalline flow numerically from a non essentially admissible crystal, any simple and
convex polygon can be used for the Wulff shape. A given initial contour becomes essentially
admissible instantaneously, and since then no new facet is created. If the Wulff shape is

rotationally symmetric with respect to some point, then any contour becomes convex in
finite time[9].

4.2. Dominant facet extraction using a crystalline flow

As mentioned above, in a crystalline flow, any simple closed curve becomes convex at
finite time, and it is easy to track each facet in the evolving contour. Those features of a
crystalline flow are useful for a multi-scale analysis of a contour figure. In the following,
we apply the crystalline flow to a multi-scale method that extracts dominant facets from
a given polygon. The presented method is analogous to classical multi-scale methods for
corner extraction (see, e [@4]).

In general, it is necessary to interact with a figure using some operators in order to
detect features from it. The size of an operator is callsdale An operator suppresses
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Fig. 9. Examples of the crystalline flow. The initial contour shown in the second column is common to all, and its
evolution is shown from left to right. The Wulff shapes are shown in the left column: (A) a square, (B) a regular
pentagon, (C) a regular hexagon, (D) a regular 9-polygon, (E) a 10-polygon which has two longer facets, (F) a
regular 32-polygon, and (G) a 32-polygon in which each facet has same length.

features smaller than its scale, and detects features comparable in size to tfi203cate
suppress small details, many multi-scale methods computes a curve shortening flow of a
given contour. Those multi-scale methods interact with the evolving contour at every time
using a small (fixed size) operator to detect features of the given contour at multiple scales.
The time parametdrin a curve shortening flow represents the scale. Identical to a curve
shortening flow, we regard the time parameteia crystalline flow as a scale parameter. The
proposed method detects a shape feature at multiple scales by detecting the shape feature
of three adjacent facets in the evolving polygon.

As mentioned in Section 2, each facet in an evolving polygon has a transition number
¥, Which represents the shape around the facet. It specifies whether the shape is convex,
concave, or otherwise around the facet, which is a fundamental shape feature of a contour
figure. If the shape is convex around some facet in a evolving polygon at some large scale,
then we may interpret that the shape of the given contour is ‘almost convex with small size
disturbance’in a large area around the corresponding facet of the given contour. We call the
facets in a given polygon whose transition numbers do not change through a long range of
the scale in the crystalline flow as dominant facets.

In order to extract dominant facets, we make a scale-space represef#tdtioha given
polygon using a crystalline flow. Theaxis of the scale-space shows the indicekearly
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Wulff Initial Early Stage
Shape Contour Contour

Fig. 10. An initial contourS(0) and the corresponding early stage cont®ap.

stage contour defined below, and thaxis shows the time As time increases, each facet

of the early stage contour moves, and is contained in some (nontrivial) facet in the evolved
polygon S(¢). The value of a pointf, ¢) in the scale-space shows the transition number

of the facet inS(r) which includes the facgtin the early stage contour. Referring to this
scale-space representation, the proposed method extracts dominant facets whose transition
numbers are inherited for a long time interval in the evolving process.

Let us consider crystalline floW(z) starting from initial contouss (0) which is a general
simple polygon. As we mentioned in Section 2, some facets may be created at some corners
spontaneously, so that the initial polygon becomes essentially admissible right-after
As time evolves, no more facets are created other than=a0; however, at most two
consecutive facets with zero transition number may disadpégar

We say thatS(7) is anearly stage contouif no facet disappears and no degenerate
pinching and no selfintersection occurs forradl (0, 7] (seeFig. 10. We index all facets of
an early stage contour by=1, 2, ..., r, clockwisely. The totality of indices denotes,
we consider this set modutoWe shall assign a subsét, () of consecutive indices itf
to each facef}, (r) of S(¢) = U’Z=1Fh (t) and divide.# into disjoint subset§ 7}, (t)}];l:l in
the following inductive way. We cal¥;, (¢) the set of early stage indices Bf (r). Suppose
that all sets of early stage indices$(f) are already known.

Suppose thaF;(7) disappears at > ¢ and that no facet disappearssat (z, #1). Then,
we sets;(s) = F,(¢t) for s € (¢, t1). We shall construct the set of early stage indices at
as follows. If bothF;_; and F;; 1 do not disappear at, then we add?;_1(¢), .#,(t), and
J141(1) to the set of early stage indices of a (merged) fdG&t;) containing the limit of
Fi_1(s) and F;11(s) ass 1 1. Fig. 11(A) shows an example: At time= t1, the facetF,
disappears. Assume tha (¢) = {/} for t < 1. Then, in this case as shownhig. 11(A),

J3(t1) = (3,4, 5}.

If two consecutive facets;_1 (resp.F;+1) and F; disappear at;, then we add?#,(¢) to
the set of early stage indices of a faégtr1) containing the limitF; 1 (s) (resp.F;_1(s)) as
s 1 1. Fig. 11(B) shows an example: At=11, the facetf’; and F3 disappear simultaneously.
Assume that?,(¢) = {I} for t < t1. Then, in this case as shown in Fig.11(Bx(1) ={1, 2}
and.#3(t1) = {3, 4}.

By this procedure, the set of early stage indices is uniquely determined for each facet
of S(¢) as far asS(¢) is essentially admissible. (Note thatis divided into sets of early



280 H. Hontani et al. / Discrete Applied Mathematics 147 (2005) 265—285

1

10
et 3 , hw=u2
. Iy () = {3.4.5) 3 Lo
8

5

i

(0 ={1}
I, (0 =12}
I3 (1) = {3}
la (0 = {4}

S 0=
1,0 =14}
Is (0 =5}

Q) (B)

Fig. 11. Construction of indiceg; (¢). (A): A facet F4(¢) disappears at . (B): Two consecutive facet&,(r) and
F3(t) disappear simultaneously at 71. (We use | instead o¥ in this figure. The same convention applies to
Figs. 12 14, 15, and16.)

i Index in T
Fa@® F@® F.® F.(®

Index in T

F(© Fa(t)  Fu(0
(A) (B)

Fig. 12. A scale-space representation of the transition number. It is proved thiag; il,, then all disappearing
facet have zero transition number, and at most two consecutive facets disappeaaxifhieepresents the index
of facet in the early stage contour, and thaxis represents the tinie

stage indices at> 0.) Different from Section 2, one face}, (r) may have several indices of
Jn(t). Lety(j, ) denote the transition number of the faé&(r) such that#; () contains

j- As is shown inFig. 12 the transition number is plot at the corresponding position in the
scale-space. This representation is analogous to a usual curvature scale-space.

Fig. 13 presents an example of a crystalline flow numerically obtained with a regular
octagon as a Wulff shape. Aéncreases, the number of (non-trivial) facets in an evolving
contour decreases. The evolving polygon becomes an octagon in finite time. When the
evolving contour becomes an octagon, the transition numbers of all facets becbme
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JhS Yo

Fig. 13. An example of a crystalline flow. The Wulff shape is a regular octagon.

Index in |

i i

Fig. 14. The scale-space representation that correspoifit. tb3 The white area represents = —1, black one
1 =+1 and the gray ong; =0. The facets whose indices dgeand j, are shown irFig. 13

Fig. 14 shows the scale-space representation corresponds to the crystalline sh&gn in
13. The horizontal axis indicates indices.#f

Referring to the scale-space representation of the transition number, we extract dominant
facets whose transition numbers are not 0 and the values of the transition numbers are
inherited for a long time interval in the evolving process. Our algorithm is as follows.

(1) Make the scale-space representation of the transition nupther), wherej is in .7
andt is the time.

(2) Divide the scale-space into areas, so that each area has the uniform valyerpf
inside, and has different value from the neighbouring areas. Let denote such the area as
Ar, wherek =1, 2, ..., nis the serial number.

(3) Setthe base scalg and draw a line=rg in the scale space. Then, find a set of numbers
U4, SO that the ared contains the line = 1o and thaty(j, 1) # 0 onAy, if k € U,,.

(4) Extractallindices fronv (the set of all indices of early stage contour) that are included
in the aread,(7) for somek € %,,. Here, Ax(7) is the cross-section of; at the
time7 at whichS(7) is an early stage contour. We call facets of an early stage contour
corresponding to such extracted indicksminant facetst 1o. Each of these indices
corresponds to a facet of the early stage contour whose transition number is inherited
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Fig. 15. Dominant facet extraction using the scale-space representation. The facets in an initialcgnfare
extracted, if they can be tracked to the base sgale

to the evolving contour ap. In Fig. 15 the indices of the dominant facets are indicated
by up-arrows.

(5) Increase the base scaldy small amouni\¢, and repeat (3),(4), and (5) tifis smaller
than the scale at which the evolving contour becomes convex (provided that the evolving
contour is essentially admissible).

We note that the set of all dominant facets may differ for different base scdfeg < 71,
then,%,, > %,,. As the result, the number of the dominant facets does not increage as
increases.

Fig. 16shows an experimental result of dominant facet extraction. The early stage contour
has 310 facets. By changing the base sggleve obtain several sets of dominant facets.
Five contours irFig. 16are obtained by linking the dominant facets of early stage contour.
Although a dominant facet is a segment of finite length, the dominant facets look like black
points inFig. 16 since the length of dominant facets is small. We call such shapes an
extracted contouat the base scalg. As shown inFig. 16 fewer facets were extracted for
higher value of the base scalgg. 17 shows the graph of the number of dominant facets
with respect to the change of the base scale. The graph has a staircase pattern. The set
of dominant facets which survives in a long interval of base scales yields a typical shape
neglecting small details of the original contour.

5. Conclusion

A numerical method for obtaining a crystalline flow starting from a given polygon that
is not essentially admissible is presented. The method enables us to use any convex poly-
gon as the Wulff shape. In many cases, a contour in an image is given as a polygon. For
example, a contour represented with a chain-code is a polygon that consists of short facets.
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Fig. 16. An experimental result of dominant facet extraction. The corresponding base scales are shown with lines
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_ // el

LN

o] " s .

=
o

Number of dominant Facet

250
Base Scale

Fig. 17. The change of the dominant facets with respect to the basegcale
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Since the nonlocal curvature, is determined by the facet length, we can calculate the
nonlocal curvature without any numerical approximation. In a crystalline flow, each facet
moves with keeping its direction, so it is not difficult to track every facet in scale-space
through the evolving process. In particular, it is easy to track the place of a curve where
the shape is concave in scale-space compared with other numerical methods approximating
conventional curvature flows. We apply a crystalline flow for the multi-scale analysis of a
contour figure in an image. We track each facet of an evolving polygon and provide the
scale-space representation for a given contour. At several base scales (times), we construct
an extracted contour, which are important to represent the shape of a given contour, for
example, in image recognitid21]. Note that one is able to take any convex polygon as a
Wulff shape. We believe that this freedom is useful for a multi-scale analysis of a contour
figure.
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