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Abstract

A numerical method for obtaining a crystalline flow starting from a general polygon is presented. A
crystalline flow is a polygonal flow and can be regarded as a discrete version of a classical curvature
flow. In some cases, new facets may be created instantaneously and their facet lengths are governed
by a system of singular ordinary differential equations (ODEs). The proposed method solves the
system of the ODEs numerically by using expanding selfsimilar solutions for newly created facets.
The computation method is applied to a multi-scale analysis of a contour figure.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A curvature flow is widely used for a multi-scale analysis of a contour figure in an image
[1,15,18–20,22,24,27]. A curvature flow is a family of evolving contours, in which every
point of the contour moves toward its normal direction with the velocity that is determined
by the curvature.Fig. 1shows an example of a curvature flow, in which the normal velocity
is equal to the curvature. This flow is called a curve shortening flow. As a contour evolves,
local details in the contour are smoothed out, and it is proved that, in a curve shortening
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Fig. 1. An example of a curve shortening flow.

flow, any simple closed curve becomes convex in finite time, and shrinks to a point; the
way of shrinking is asymptotically close to that of a shrinking circle. A method for a multi-
scale analysis, in general, specifies a shape component from a given contour and finds each
component’s size by observing how the contour shape becomes close to a circle in the flow.
The method records the time at which each shape component disappears in the flow for
finding its size.

In many cases, a contour figure in an image is described as a polygon. In a curve shortening
flow, it is proved that any given simple polygon becomes an analytic curve immediately
after it starts evolving. Several methods have been proposed for computing the flow, and
those methods usually describe an evolving smooth contour in a discrete way.

The Gaussian-based method[22], for example, describes an evolving contour figure by
a set of points that are equally spaced in the contour. The coordinates of theith point are
represented as(x(i�), y(i�)) where� denotes the interval between adjacent points. The
method iterates two processes: (i) smoothing bothx andy with a small scale Gaussian
filter, and (ii) resampling the resulted contour at equal intervals after the smoothing. The
resampling process is needed because the arc length changes as the contour evolves. It
should be noted that the interval� of the resampling changes at each iteration because�
must aliquot of the total peripheral length, but it is not realizable. These things make it
difficult to compute a curve shortening flow precisely. In addition, the resampling process
makes it difficult to track each point in the evolving contour through the process. Many
multi-scale methods needs to track a point in the evolving contour for finding the time at
which a shape component disappears, therefore, such a resampling process is not desirable.

A level set method[5,6,23] is a powerful tool for obtaining an evolving interface. The
method represents an evolving interface as the zero level set of an auxiliary function�.
For example, an evolving contour in thex–y plane is represented as the zero level set of
the evolving function�(x, y; t). To compute the curve shortening flow, we only need to
solve the level set equation�t + �|∇�| = 0. Because no arc length parameter along the
contour is needed for computation, no resampling along the contour is needed. Moreover,
the method can compute an evolving interface even if its topology changes as it evolves. In
the computation, though, the function� is discretely represented on fixed pixels, and finite
difference operators are used for computing the spatial derivatives. The operators’ width
is usually two or three pixels. If there exists a small part in the evolving contour that is
comparable to the operators’ width, then, the computed values do not approximate well the
spatial derivatives. This inaccuracy causes a serious problem to compute the accurate value
of the curvature�. Unless we know the accurate value of�, it is, for example, difficult to
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choose inflection point of an evolving curve, which is important in a multi-scale contour
figure analysis (see, e.g.[15,18,19,22,24,27]).

In [2,26], a crystalline flow is proposed to analyze motion of crystals in material sci-
ences. A crystalline flow is a special family of evolving polygons, which is often called an
admissible evolving crystal. It can be regarded as a discrete version of a curvature flow. In
an evolving process of the crystalline flow, a given polygon remains polygonal through the
evolving process, each facet (side) of evolving contour moves keeping its normal direction,
and every corner in the contour moves at leastC1 in time (provided that no facets disap-
pear). These features help to track each facet through the evolving process, so that the flow
is useful for the multi-scale analysis. The velocity is determined by the non-local curva-
ture, which depends on the length of the facet. Polygons are well represented in a discrete
manner. Different from a classical curvature flow, it is easy to compute the accurate value
of non-local curvature, and to obtain the crystalline flow if an appropriate initial polygon is
given.

As already observed in[2,26], a crystalline flow can be interpreted as a curvature flow
with anisotropic interfacial energy density. The governing equation is formally written as
a partial differential equation (PDE) of the second order: like a curve shortening equation.
However, the quantity like nonlocal curvature is not an infinitesimal quantity, so it is not a
conventional PDE. In[3], a nonlinear partial differential equation is obtained from dilation
and erosion processes. However, the PDE derived in[3] is of the first order and anisotropy
arises in the first-order term; see also[25]. The effect of the anisotropy obtained by a
crystalline arises in the curvature term and is quite different from the anisotropy of[3,25].
For relations of morphological operations and curvature effects, the reader is referred to a
recent book of Cao[4].

In [2,26], evolving curves for crystalline flow are restricted in a special class of evolving
polygons. In particular, only a special polygon is allowed to be an initial data. In[9,10],
a level set formulation was extended to handle a curvature flow with singular interfacial
energy, including a crystalline flow. Moreover, one is allowed to take an arbitrary curve
as initial data for unique global-in-time solvability[10]. However, its explicit form was not
clear even if an initial data is a polygonal contour. In some cases, new facets are expected
to be created at corners of a given polygon instantaneously. Once new facets are created, no
new facet is created any more, and the number of facets decreases monotonically as time
increases, unless evolving polygon degenerates. It turns out that if the speeds of both facets
bounding newly created facets are zero, then these new facets expand selfsimilarly, and their
lengths solve a system of singular ordinary differential equations. The unique existence of
such a selfsimilar solution has been established by solving a system of algebraic equations
[11,12]. (The explicit values of the solution is not given in[11,12].)We summarise this result
in Section 2, while in 3, we give a numerical way to find selfsimilar expanding solutions.
In Section 2, we introduce a new notion ‘essential admissible crystal’ which is a slight
extension of ‘admissible crystal (polygon)’ in[2,26], to treat general initial polygon.

In this paper, we present a numerical method to obtain a crystalline flow fromarbitrary
given polygon. A numerical length of each newly created facet is calculated by using the
expanding selfsimilar solution. The proposed method enables us to use any convex polygon
as the Wulff shape, which controls the nonlocal curvature of each facet. The Wulff shape
substitutes the disk in the sense that its nonlocal curvature is constant. If the Wulff shape
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is different, then the crystalline flow is also different for the same initial data (Fig.9). In
particular, if we rotate the Wulff shape, the flow may be different. However, approximating
the disk by a polygonal Wulff shape, one is able to approximate a curve shortening flow
(which is rotationally invariant) by a crystalline flow (see, e.g.[10]).

In this paper, we apply the proposed method for computing the crystalline flow to ex-
tracting a set of dominant facets from a given contour figure. As mentioned above, in the
crystalline flow, it is easy to track each facet through the process; in particular, it is easy
to distinguish convex part, concave part, and inflection part of evolving polygons. The
proposed method tracks each facet in a given polygon through the evolving process, and
extracts facets that remain existing for a long time. In[16], the first and the last authors firstly
applied a crystalline flow to a multi-scale contour figure analysis. However, the proposed
method in[16] did not create new facets systematically. To overcome this inconvenience, in
this paper, the length of each new facet is approximated by expanding selfsimilar solutions
obtained in[11,12]. Note that our method does not include any approximation error caused
by spatial grid size, which is an advantage over finite difference method for calculating
curvature flows.

This paper is organized as follows: In Section 2, we outline mathematical backgrounds
of a crystalline flow with expanding selfsimilar solutions, which may appear as newly
created facets. In Section 3, we present a numerical method for computing a crystalline
flow. Sections 4 and 5 show some experimental results and conclusions, respectively. A
preliminary version of this paper has been published in[17].

2. Crystalline flow

2.1. Weighted curvature flow

First, we recall the notion of the weighted curvature. Let� be a continuous, convex
function onR2 which is positively homogeneous of degree one, i.e.,�(�p)= ��(p) for all p
∈ R2, �>0. Assume that�(p)>0 for p �= 0. For a moment assume that� is smooth (except
the origin).Fig. 2shows an example of the graph of�(p). For an oriented curveSwith the
orientationn, which is a unit normal, we call��(n)= −div(�(n)) theweighted curvature
of Sin the direction ofn, where�=∇�. We note that the weighted curvature ofSis the first
variation ofI (S) with respect to a variation of the area enclosed byS; hereI (S) is defined
by

I (S)=
∫
S

�(n)ds, (1)

where dsdenotes the line element;I (S) is called theinterfacial energywith an interfacial
energy density�. We recall that the Wulff shape defined by

W� =
⋂

|m|=1

{x ∈ R2; x · m��(m)}

is the unique minimizer ofI (S) among allSwhose enclosed area is the same asW� (see,
e.g. [14]). If �(p) = |p|, thenI (S) is equal to the total peripheral length ofS, �� is the
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Fig. 3. Crystalline energy density and its Frank diagram.

usual curvature, andW� is nothing but a unit disk. For any� the weighted curvature of�W�
always equals−1, soW� plays the role of a unit disk for the usual curvature.

We consider a motion of an evolving curve�t governed by theanisotropic curvature
flow equationof the form

V = ��(n) (2)

on�t , whereV denotes the normal velocity of{�t } in the direction ofn. When�(p)= |p|,
Eq. (2) becomes the curve shortening equation.

There are several methods to track evolution of�t ; one of a typical method is the level-
set method (see[5–7,23]). If � is C2 except the origin, global unique solvability for (2) is
established by Chen et al.[5] (see also[13]). However, when� has corners, conventional
notion of a solution including viscosity solutions does not apply to (2).

If Frank diagram of�:

Frank� = {p ∈ R2; �(p)�1}
is a convex polygon,� is called acrystalline energy(density) (seeFig. 3), and a notion of
solution for (2) is proposed by Angenent and Gurtin[2] and Taylor[26] independently by
restricting{�t } as a special family of evolving polygonal curves called admissible. Even
for more general� with corners not necessarily crystalline energy, the level-set approach
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for (2) and more general equations is successfully extended by Giga and Giga[10] (see also
[9]), although the problem has nonlocal nature. They introduced a new notion of solution
consistent with that in[2,26], and proved the global unique solvability at least for ageneral
initial simple curve (not necessarily admissible). However, for a general initial polygon, the
explicit form of a solution was not discussed in[9,10] when� is crystalline.

2.2. Crystalline flow

Here and hereafter we assume that� is a crystalline energy, i.e., Frank� is a convexM-
polygon. In this section we introduce an evolving polygonal curve called a crystalline flow
governed by (2). To track such an evolving polygon, we shall derive a system of ordinary
differential equations (ODEs) for the length of sides (facets) of the polygon. For this purpose
we need to prepare several notions.

Let qi (i=1, . . . ,M) be vertices of Frank� as shown inFig. 3. We call a simple oriented
polygonal curveSas anessentially admissible crystalif the outward unit normal vectorn
andn̂ of any adjacent segments (facets) ofSsatisfy

(1 − �)n + �n̂
|(1 − �)n + �n̂| /∈N (3)

for any � ∈ (0,1), whereN = {qi/|qi |; i = 1, . . . ,M}. Let J be a time interval. We
say that a family of polygon{S(t)}t∈J is anessentially admissible evolving crystalif S(t)
is an essentially admissible crystal for allt ∈ J and each corner moves continuously
differentiably in time. These conditions imply that the orientation of each facet is preserved
in J. By definitionS(t) is of the formS(t)=⋃r

j=1Sj (t)whereSj (t) is a maximal, nontrivial,
closed segment and its unit outward normal vector isnj . Here we number facets clockwise.
Then we obtain a transport equation forLj (t) which is the length ofSj (t):

dLj (t)

dt
= (cot �j + cot �j+1)Vj − 1

sin �j
Vj−1 − 1

sin �j+1
Vj+1 (4)

for j = 1, . . . , r ; index j is considered modulor. Here�j = 	j − 	j−1 (modulo 2
 ) with
nj = (cos	j , sin 	j ), andVj denotes the normal velocity ofSj (t) in the direction ofnj .

We say that an essentially admissible crystal{S(t)}t∈J is a�-regular flowof (2) if

Vj (t)= �j
�(nj )
Lj (t)

(5)

for j = 1,2, . . . , r. Here�(nj )= �̃′(	j + 0)− �̃′(	j − 0) with nj = (cos	j , sin 	j ) and
�̃(	)= �(cos	, sin 	). We note that�(nj ) is the length of facet ofW� with outward normal
nj if nj ∈ N (seeFig. 4), otherwise�(nj ) = 0. The quantity�j is called a transition
number, and takes +1 (resp.−1) if S(t) is concave (resp. convex) aroundjth facet in the
direction ofnj , otherwise�j = 0. We call the quantity�j ≡ �j�(nj )/Lj (t) as anonlocal
weighted curvatureof thejth facet with respect to�. (We use the convention that 1/Lj (t)=0
if Lj (t) = ∞.) Thus we get a system of ODEs (4) and (5) forLj (t)’s. For a moment we
assume thatS(0) is anessentially admissible closed curve, that is to say, a closed curve
which is an essentially admissible crystal.
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Fig. 4. Frank� and the corresponding Wulff shape. Each facet of the Wulff shape has the length�(mi ), where
mi = qi /|qi |.

A fundamental theory of ODE yields the (local in time) unique solvability of (4) and (5).
UnlessS(t) shrinks to a point, self-intersects, or develops degenerate pinching at most two
consecutive facets with zero nonlocal weighted curvatures may disappear (i.e., the length
of a facet tends to zero) at some timeT∗. However,S(T∗) remains essentially admissible,
so that we can continue calculating the ODE system (4),(5) fort > T∗ starting with initial
dataS(T∗) (see[26,9]).

We say that{S(t)}t∈J is a crystalline flowwith initial dataS(0), if there is somet0 =
0< t1< t2< · · ·< tl , such that{S(t)}t∈Jh is a�-regular flow forJh = [th, th+1) with initial
dataS(th) (h=0,1, . . . , l−1), andS(t) → S(th+1) in the sense of the Hausdorff distance
topology ast ↑ th+1 and some facets disappear atth+1 (h=0,1, . . . , l−2). By a similar ar-
gument as in[9], we see that a crystalline flow{S(t)}t∈J starting with essentially admissible
closed curveS(0) shrinks to a point and does not intersect nor develop degenerate pinching
provided thatW� is rotationally symmetric with respect to some point. A crystalline flow
{S(t)}t∈J agrees with a solution by level-set approach for (2) introduced in[10], by a sim-
ilar argument as in[9] (see also[8]). The discussion in[9] is for an admissible evolving
crystal but it is easy to extend to an essentially admissible evolving crystal. For convenience
we recall the notion of an admissible evolving crystal. An essentially admissible crystalS
is called anadmissible crystalif the outward unit normal vectorm of each segment ofS
belongs toN. We say{S(t)}t∈J is anadmissible evolving crystalif S(t) is an admissible
crystal for eacht ∈ J .

2.3. General polygonal initial curve

In the previous section we restricted an initial curve to an essentially admissible crystals.
Here we shall focus on a simple, closed, polygonal initial curveS(0), which is not necessarily
an essentially admissible crystal. In[10], it is shown that there exists a unique level-set flow
(solution) for (2) with a crystalline energy� starting with a general polygonal initial curve.
However, it is not clear a priori whether or not the solution is described by an ODE system,
since new facets whose orientation belongs toN are expected to be created instantaneously
at the place where property (3) is violated onS(0). Moreover, it is not clear how to solve
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Fig. 5. Creation of a set of new facets. All facets with orientation inM are expected to be created betweenSj (0)
andSj+1(0) just aftert = 0. It should be noted that the length of each new facet should satisfy the ODE system
of (4) and (5).

the expected ODE system since it is singular at newly created facets. In this section we give
a heuristic argument to solve such a singular ODE system.

Let n andn̂ be the orientation of any adjacent facetsSj (0) andSj+1(0) of S(0). If

M ≡
{
(1 − �)n + �n̂
|(1 − �)n + �n̂| ∈ N; 0< �<1

}

is not the empty set, all facets (say,R1(t), . . . , Rn(t), numbered clockwisely) with ori-
entation inM are expected to be created betweenSj (0) andSj+1(0) just aftert = 0, so
that the transition number of eachRi(t) is 1 (resp.−1) for small t >0 if the bounded
polygon enclosed byS(0) is concave (resp. convex) nearSj (0) ∩ Sj+1(0) (seeFig. 5). By
inserting these newly created facets, our solutionS(t) should become essentially admissible
instantaneously. This observation should be justified by approximatingS(0) by essentially
admissible crystals from inside and from outside with comparison principle[10].

For a given initial polygonS(0) one is able to find the place, the orientation and the
transition number of the all facets that are expected to be newly created at initial time. For
later convenience, we shall re-number clockwisely all facets ofS(0) and all facets that are
expected to be created att=0, i.e., the length of a newly created facet equals 0 att=0. Then
the expected ODE system for a simple, closed, polygonal initial curveS(0) again becomes
(4) and (5) ; however, the initial dataLj (0) may be 0. The ODE system is of the form

dLj (t)

dt
= p̃j

Lj (t)
+ q̃j−1

Lj−1(t)
+ r̃j+1

Lj+1(t)
, (6)

where p̃j = (cot�j + cot�j+1)�j�(nj ), q̃j−1 = −�j−1�(nj−1)/ sin �j , and r̃j+1 =
−�j+1�(nj+1)/ sin �j+1 for j=1, . . . , r ′ ; indexj is considered modulor ′. Here numbers
p̃j , q̃j , r̃j are determined uniquely by (4) and (5), since the transition number and the
orientation of a newly created facet are known.
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To solve Eq. (6) we consider Puiseux series

Lj (t)=
∞∑
k=0

ajkt
k/2, (7)

with real numberajk . Clearly, for j with Lj (0) = 0 the coefficientaj0 must be zero.
Suppose thatn consecutive facets, sayS1(t), . . . , Sn(t) are created att = 0, i.e.L1(0) =
· · · = Ln(0)= 0 andL0(0), Ln+1(0)>0.We plug (7) into (6) and multiplyt1/2 with both
sides of (6). Comparing both sides we observe that all coefficients are determined. The first
coefficients{aj1}nj=1 have a significant meaning. If the nonlocal curvature ofS0(0) and

Sn+1(0) equals zero, thenLj (t)= aj1t1/2 for j = 1, . . . , n exactly solves the ODE system
(6) with j = 1, . . . , n (as long as bothS0(t) andSn+1(t) exist), since it is decoupled from
the whole system (6) withj = 1, . . . , r ′ by the factq̃0 = 0= r̃n+1. In this case the solution
{aj1}nj=1 represents a selfsimilar expanding solution of the problem in the next section.

2.4. Selfsimilar expanding solutions

Let {S(t)}t>0 be an essentially admissible evolving crystal of the formS(t)=⋃n+1
j=0Sj (t)

with nonparallel half linesS0(t) andSn+1(t). We say that{S(t)}t>0 is selfsimilar if there
exists an essentially admissible crystalS∗ such that

S(t)= t1/2S∗ = {t1/2x; x ∈ S∗}, t >0.

If {S(t)}t>0 solves (6), we call{S(t)}t>0 aselfsimilar expandingsolutionof (2). By definition
S(+0)= lim t↓0 S(t) consists of two (nonparallel) half lines emanated from the origin. We
also observe that

⋃n
j=1Sj (t) is admissible for allt >0 and that the transition number ofSj (t)

is independent ofj=1, . . . , nandt >0; it must be either−1 or +1. It turns out that{S(t)}t>0
is a selfsimilar expanding solution if and only if the lengthLj (t) of Sj (t) (j = 1, . . . , n)
solves the ODE system (6) fort >0 and forj = 1, . . . , n with q̃0 = 0= r̃n+1. Note thataj1
of Lj (t)= aj1t1/2 represents the length ofjth facet ofS∗ for j = 1, . . . , n.

Theorem 1. For a given oriented closed cone C(with connected interior) there exists a
unique selfsimilar expanding solutionS(t) such thatS(+0) agrees with the boundary of C
(see[11,12]).

From ODE system (6) we see that this problem is equivalent to the unique solvability of
algebraic equation




an
an−1
an−2
...

a2
a1




= 2




p̃n q̃n−1
r̃n p̃n−1 q̃n−2 0

r̃n−1 p̃n−2 q̃n−3
. . .

. . .
. . .

0 r̃3 p̃2 q̃1
r̃2 p̃1







1/an
1/an−1
1/an−2
...

1/a2
1/a1




(8)
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for aj = aj1>0 (j = 1,2, . . . , n). We proved the existence of a solution of this alge-
braic equation by a method of continuity while we proved its uniqueness by a geometric
observation[11,12].

3. Numerical method for obtaining a crystalline flow

In this section, we describe a numerical method for obtaining a crystalline flow starting
from a given polygon that is not necessarily an essentially admissible crystal. Using the
Euler method, we compute the approximated solution of the system of (4) and (5). If the
given polygon is not essentially admissible, our method firstly creates new facets. When the
new facets are created, the length of any facet in a given polygon is not updated. After the
new facets are created, then we update the lengths of all facets to compute the approximated
solution.

3.1. New facet creation

For each adjacent facets with orientationm and m̂ of the initial polygon, ifM �= ∅
then all facets with orientation inM should be newly created instantaneously, so that the
given polygon becomes essentially admissible instantaneously. Once the polygon becomes
essentially admissible, no new facet is needed to be created.

Given a nonessentially admissible polygon, the method creates new facets at first time.
For creating new facets, we should numerically calculate the solution of (8) in order to
obtain the lengths of them. Let the time step be denoted as�t . We set the length of each
new facet toaj

√
�t , whereaj is a numerical solution of (8).

To solve (8) numerically, as in[11,12]we rewrite (8) with�j = 1/aj :




1/�n
1/�n−1
...

1/�2
1/�1


 =Hn




�n
�n−1
...

�2
�1


 , whereHn =



pn qn−1
rn pn−1 qn−2 0

. . .
. . .

. . .

0 r3 p2 q1
r2 p1


 , (9)

wherepj = 2p̃j , qj = 2q̃j , andrj = 2r̃j . We introduce extra parameters ∈ [0,1] by
replacingHn byKn(s) in (9) so that�j depends ons.

Kn(s)=



pn sqn−1
srn pn−1 sqn−2 0

. . .
. . .

. . .

0 sr3 p2 sq1
sr2 p1


 . (10)

Evidently [1/�j (0)] = Kn(0)[�j (0)] can be easily solved, and{�j (1)}nj=1 is the solution
of (9): �j (0) = 1/

√
pj . Referring the idea of[11,12], we calculate the numerical solution
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of (9) using the Newton–Rapson method as follows.

(1) Set�j=1/
√
pj for initial values of the iteration, wherepj=2[cot�j+cot�j+1]�j�(nj ).

(2) Apply the Newton–Rapson method to obtain the numerical solution of�j .

Finally, we calculateaj = 1/�j , and set the length of each new facet toaj
√

�t . Note that
Lj (t)= aj t1/2 is the exact solution if the velocities of both facets bounding newly created
facets are zero. The polygon obtained by the new facet creation is expected to approximate
well the solution of the system of (4) and (5) corresponding tot = �t , though we have not
proved it rigorously.

3.2. Computing crystalline flow

As described in the previous subsection, if a given polygon is not essentially admissible,
then the new facets are created. The resulted polygon is essentially admissible. Given the
Wulff shape and a simple initial polygon, our method computes the solution of the system
of (4) and (5) using the Euler method.

(1) Create new facets as described in the previous subsection, if a given initial polygon is
not essentially admissible. The length of a facet in the given polygon is not updated in
this step.

(2) Update the length of every facet in the polygon asLj (t0 + �t) = Lj (t0) + �t ·
dLj (t)/dt |t=t0.

(3) Iterate step (2) till the polygon becomes convex, or some facet with� = ±1 becomes
smaller than a prescribed value, say
0>0.

Note that the evolving polygon becomes convex provided that theWulff shape is rotationally
symmetric with respect to some point[9].

4. Experimental results

4.1. Computation of a crystalline flow

In the first experiment, we used a regular 16-polygon as the Wulff shape, and a sector
as an initial contour as shown inFig. 6. Let mi (i = 1,2, . . . ,16) denote the outward unit
normals of the Wulff shape; the facet numberi is indexed clockwisely. We set that the
argument ofmi equals
−
(i− 1)/8. LetSj denote thejth facet of the initial contour, and
nj (j = 1,2,3,4) be the outward unit normal ofSj . Assume that argnj =
−
(j − 1)/2.
Then, three new facets sprout out at each corner of the square. For example, betweenS1
(arg n1 = 
) andS2 (argn2 = 
/2) of the given square, three facets sprout out of which
normals are parallel tom2, m3, andm4, respectively. We note thatn1 (resp.n2) of the sector
(A) in Fig. 7equalsm1 (resp.m5). However, the weighted curvatures of two half linesS1
andS2 are zero, since the length ofS1 andS2 is infinite.
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m4m3
m2
m1

m16

Wulff shape

S1

S2n1

n2

Initial
Contour

Facet Insertion

Fig. 6. An example of the Wulff shape and an initial contour. An analytic solution can be calculated in this case.
Three new facets are created at the beginning as shown in this figure. It should be noted that the middle facet is
shorter than side ones.

n2

n1

(A) (B) (C) (D) (E) (F)

Fig. 7. An example of the set of given rotated sectors. The arguments ofn1 are (A)
, (B) 
+
/80, (C)
+2
/80,
(D) 
 + 3
/80, (E)
 + 4
/80, and (F)
 + 5
/80, respectively.

In order to obtain the quantities ofaj , we solve next equations that correspond to (8).[
a4
a3
a2

]
=

[
p q 0
q p q

0 q p

] [1/a4
1/a3
1/a2

]
,

wherep = 4/ tan(
/8) and q = −2/ sin(
/8). (11)

Let � = 1/a2 = 1/a4 and� = 1/a3. Eq. (11) can be solved analytically:

� = −(p� − 1/�)/2q,

� =
[
(p2 + q2)+

√
(p2 + q2)2 − p2(p2 − 2q2)

]1/2
/ [

p(p2 − 2q2)
]1/2

. (12)

We can calculate the quantitiesaj ’s usinga2=a4=1/� anda3=1/�. The valuespandq in
(12) are known as shown in (11). The values area2=a4 � 1.68 anda3 � 1.29, respectively.
Three facets sprout out with symmetric shape in this case. It should be noted that the shape
of newly created facets is not the same as the shape of the corresponding part of the Wulff
shape. In this case, the middle facet is shorter than the neighbours, although the Wulff shape
is regular.Table 1(A) shows the quantitiesaj ’s of Eq.(11) computed numerically by the
method described in Section 3.1. The computed quantities well approximate the solution.

If a given initial contour is rotated, then the shape of new facets changes. We applied the
proposed method for each sector shown inFig. 7. The sector is rotated with increments of

/80. The length of each new facet is denoted byaj . Table 1shows the calculated values
of aj , which correspond to the new facets betweenS1 andS2. In case of sector (A) three
facets sprout out betweenS1 andS2. On the other hand, for the other sectors four facets
sprout out betweenS1 andS2, because argn2<argm1<argn1. Fig. 8shows the shape of
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Table 1
Experimental results obtained from the rotated sectors shown inFig. 7

(A) (B) (C) (D) (E) (F)

Arg n1 
 
 + 
/80 
 + 2
/80 
 + 3
/80 
 + 4
/80 
 + 5
/80
Arg n2 
/2 
/2 + 
/80 
/2 + 2
/80 
/2 + 3
/80 
/2 + 4
/80 
/2 + 5
/80
a1 — 5.891 3.924 3.090 2.614 2.303
a2 1.682 1.464 1.382 1.326 1.286 1.257
a3 1.287 1.232 1.223 1.225 1.287 1.257
a4 1.682 1.719 1.806 1.925 2.085 2.303

The numerically calculated solutionsaj are shown. The quantityaj
√

�t represents the length of the newly
createdjth facet.

(A) (B) (C) (D) (E) (F)

Fig. 8. The shape of new facets that correspond toFig. 7andTable 1. The thick lines indicate the new facets.

the new facets. For sector (B) the normaln1 is almost parallel to the new facet’s normalm1,
anda1 is large.

Fig. 9shows some experimental results of crystalline flow. The initial contour is common
to all, but the Wulff shape is different. As described earlier, the Wulff shape plays the role
of a unit circle for a classical curve shortening flow. Because the proposed method gives
a crystalline flow numerically from a non essentially admissible crystal, any simple and
convex polygon can be used for the Wulff shape.A given initial contour becomes essentially
admissible instantaneously, and since then no new facet is created. If the Wulff shape is
rotationally symmetric with respect to some point, then any contour becomes convex in
finite time[9].

4.2. Dominant facet extraction using a crystalline flow

As mentioned above, in a crystalline flow, any simple closed curve becomes convex at
finite time, and it is easy to track each facet in the evolving contour. Those features of a
crystalline flow are useful for a multi-scale analysis of a contour figure. In the following,
we apply the crystalline flow to a multi-scale method that extracts dominant facets from
a given polygon. The presented method is analogous to classical multi-scale methods for
corner extraction (see, e.g.[24]).

In general, it is necessary to interact with a figure using some operators in order to
detect features from it. The size of an operator is called ascale. An operator suppresses
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(A)

(B)

(C)

(D)

(E)

(F)

(G)

Fig. 9. Examples of the crystalline flow. The initial contour shown in the second column is common to all, and its
evolution is shown from left to right. The Wulff shapes are shown in the left column: (A) a square, (B) a regular
pentagon, (C) a regular hexagon, (D) a regular 9-polygon, (E) a 10-polygon which has two longer facets, (F) a
regular 32-polygon, and (G) a 32-polygon in which each facet has same length.

features smaller than its scale, and detects features comparable in size to the scale[20]. To
suppress small details, many multi-scale methods computes a curve shortening flow of a
given contour. Those multi-scale methods interact with the evolving contour at every time
using a small (fixed size) operator to detect features of the given contour at multiple scales.
The time parametert in a curve shortening flow represents the scale. Identical to a curve
shortening flow, we regard the time parametert in a crystalline flow as a scale parameter. The
proposed method detects a shape feature at multiple scales by detecting the shape feature
of three adjacent facets in the evolving polygon.

As mentioned in Section 2, each facet in an evolving polygon has a transition number
�, which represents the shape around the facet. It specifies whether the shape is convex,
concave, or otherwise around the facet, which is a fundamental shape feature of a contour
figure. If the shape is convex around some facet in a evolving polygon at some large scale,
then we may interpret that the shape of the given contour is ‘almost convex with small size
disturbance’ in a large area around the corresponding facet of the given contour. We call the
facets in a given polygon whose transition numbers do not change through a long range of
the scale in the crystalline flow as dominant facets.

In order to extract dominant facets, we make a scale-space representation[27] of a given
polygon using a crystalline flow. Thex-axis of the scale-space shows the indicesj of early



H. Hontani et al. / Discrete Applied Mathematics 147 (2005) 265–285 279

Wulff
Shape

Initial
Contour

Early Stage
Contour

Fig. 10. An initial contourS(0) and the corresponding early stage contourS(t̃).

stage contour defined below, and they-axis shows the timet. As time increases, each facet
of the early stage contour moves, and is contained in some (nontrivial) facet in the evolved
polygonS(t). The value of a point (j, t) in the scale-space shows the transition number
of the facet inS(t) which includes the facetj in the early stage contour. Referring to this
scale-space representation, the proposed method extracts dominant facets whose transition
numbers are inherited for a long time interval in the evolving process.

Let us consider crystalline flowS(t) starting from initial contourS(0) which is a general
simple polygon. As we mentioned in Section 2, some facets may be created at some corners
spontaneously, so that the initial polygon becomes essentially admissible right aftert = 0.
As time evolves, no more facets are created other than att = 0; however, at most two
consecutive facets with zero transition number may disappear[8].

We say thatS(t̃) is anearly stage contourif no facet disappears and no degenerate
pinching and no selfintersection occurs for allt ∈ (0, t̃] (seeFig. 10). We index all facets of
an early stage contour byj = 1,2, . . . , r, clockwisely. The totality of indices denotesI;
we consider this set modulor. We shall assign a subsetIh(t) of consecutive indices inI
to each facetFh(t) of S(t)= ⋃k

h=1Fh(t) and divideI into disjoint subsets{Ih(t)}kh=1 in
the following inductive way. We callIh(t) the set of early stage indices ofFh(t). Suppose
that all sets of early stage indices ofS(t) are already known.

Suppose thatFl(�) disappears att1> t and that no facet disappears ats ∈ (t, t1). Then,
we setIh(s)= Ih(t) for s ∈ (t, t1). We shall construct the set of early stage indices att1
as follows. If bothFl−1 andFl+1 do not disappear att1, then we addIl−1(t), Il (t), and
Il+1(t) to the set of early stage indices of a (merged) facetF∗(t1) containing the limit of
Fl−1(s) andFl+1(s) ass ↑ t1. Fig. 11(A) shows an example: At timet = t1, the facetF4
disappears. Assume thatIl (t) = {l} for t < t1. Then, in this case as shown inFig. 11(A),
I3(t1)= {3,4,5}.

If two consecutive facetsFl−1 (resp.Fl+1) andFl disappear att1, then we addIl (t) to
the set of early stage indices of a facetF∗(t1) containing the limitFl+1(s) (resp.Fl−1(s)) as
s ↑ t1. Fig. 11(B) shows an example:Att=t1, the facetF2 andF3 disappear simultaneously.
Assume thatIl (t)={l} for t < t1. Then, in this case as shown in Fig.11(B),I2(t1)={1,2}
andI3(t1)= {3,4}.

By this procedure, the set of early stage indices is uniquely determined for each facet
of S(t) as far asS(t) is essentially admissible. (Note thatI is divided into sets of early
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(A) (B)

Fig. 11. Construction of indicesIl (t). (A): A facetF4(t) disappears att1. (B): Two consecutive facetsF2(t) and
F3(t) disappear simultaneously att = t1. (We use I instead ofI in this figure. The same convention applies to
Figs. 12, 14, 15, and16.)

Fig. 12. A scale-space representation of the transition number. It is proved that, ifV = ��, then all disappearing
facet have zero transition number, and at most two consecutive facets disappear. Thex-axis represents the index
of facet in the early stage contour, and they axis represents the timet.

stage indices att >0.) Different from Section 2, one facetFh(t)may have several indices of
Ih(t). Let�(j, t) denote the transition number of the facetFh(t) such thatIh(t) contains
j. As is shown inFig. 12, the transition number is plot at the corresponding position in the
scale-space. This representation is analogous to a usual curvature scale-space.

Fig. 13 presents an example of a crystalline flow numerically obtained with a regular
octagon as a Wulff shape. Ast increases, the number of (non-trivial) facets in an evolving
contour decreases. The evolving polygon becomes an octagon in finite time. When the
evolving contour becomes an octagon, the transition numbers of all facets become−1.
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Fig. 13. An example of a crystalline flow. The Wulff shape is a regular octagon.

t

o
Index in I 

i* j*

Fig. 14. The scale-space representation that corresponds toFig. 13. The white area represents�j = −1, black one
�j = +1, and the gray one�j = 0. The facets whose indices arei∗ andj∗ are shown inFig. 13.

Fig. 14shows the scale-space representation corresponds to the crystalline shown inFig.
13. The horizontal axis indicates indices ofI.

Referring to the scale-space representation of the transition number, we extract dominant
facets whose transition numbers are not 0 and the values of the transition numbers are
inherited for a long time interval in the evolving process. Our algorithm is as follows.

(1) Make the scale-space representation of the transition number�(j, t), wherej is in I
andt is the time.

(2) Divide the scale-space into areas, so that each area has the uniform value of�(j, t)
inside, and has different value from the neighbouring areas. Let denote such the area as
Ak, wherek = 1,2, . . . , n is the serial number.

(3) Set the base scalet0, and draw a linet= t0 in the scale space. Then, find a set of numbers
Ut0, so that the areaAk contains the linet = t0 and that�(j, t) �= 0 onAk, if k ∈ Ut0.

(4) Extract all indices fromI (the set of all indices of early stage contour) that are included
in the areaAk(t̃) for somek ∈ Ut0. Here,Ak(t̃) is the cross-section ofAk at the
time t̃ at whichS(t̃) is an early stage contour. We call facets of an early stage contour
corresponding to such extracted indicesdominant facetsat t0. Each of these indices
corresponds to a facet of the early stage contour whose transition number is inherited
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Fig. 15. Dominant facet extraction using the scale-space representation. The facets in an initial contour� �= 0 are
extracted, if they can be tracked to the base scalet0.

to the evolving contour att0. In Fig. 15, the indices of the dominant facets are indicated
by up-arrows.

(5) Increase the base scalet0 by small amount�t , and repeat (3),(4), and (5), ift0 is smaller
than the scale at which the evolving contour becomes convex (provided that the evolving
contour is essentially admissible).

We note that the set of all dominant facets may differ for different base scalet0. If t0< t1,
then,Ut0 ⊇ Ut1. As the result, the number of the dominant facets does not increase ast0
increases.

Fig. 16shows an experimental result of dominant facet extraction. The early stage contour
has 310 facets. By changing the base scalet0, we obtain several sets of dominant facets.
Five contours inFig. 16are obtained by linking the dominant facets of early stage contour.
Although a dominant facet is a segment of finite length, the dominant facets look like black
points in Fig. 16 since the length of dominant facets is small. We call such shapes an
extracted contourat the base scalet0. As shown inFig. 16, fewer facets were extracted for
higher value of the base scale.Fig. 17shows the graph of the number of dominant facets
with respect to the change of the base scale. The graph has a staircase pattern. The set
of dominant facets which survives in a long interval of base scales yields a typical shape
neglecting small details of the original contour.

5. Conclusion

A numerical method for obtaining a crystalline flow starting from a given polygon that
is not essentially admissible is presented. The method enables us to use any convex poly-
gon as the Wulff shape. In many cases, a contour in an image is given as a polygon. For
example, a contour represented with a chain-code is a polygon that consists of short facets.
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Fig. 16. An experimental result of dominant facet extraction. The corresponding base scales are shown with lines
in the scale-space.

Fig. 17. The change of the dominant facets with respect to the base scalet0.
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Since the nonlocal curvature�� is determined by the facet length, we can calculate the
nonlocal curvature without any numerical approximation. In a crystalline flow, each facet
moves with keeping its direction, so it is not difficult to track every facet in scale-space
through the evolving process. In particular, it is easy to track the place of a curve where
the shape is concave in scale-space compared with other numerical methods approximating
conventional curvature flows. We apply a crystalline flow for the multi-scale analysis of a
contour figure in an image. We track each facet of an evolving polygon and provide the
scale-space representation for a given contour. At several base scales (times), we construct
an extracted contour, which are important to represent the shape of a given contour, for
example, in image recognition[21]. Note that one is able to take any convex polygon as a
Wulff shape. We believe that this freedom is useful for a multi-scale analysis of a contour
figure.
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