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Abstract

Modern computational systems have an unprecedented ability to detect, leverage
and influence human attention. Prior work identified user engagement and dwell
time as two key metrics of attention in digital environments, but these metrics
have yet to be integrated into a unified model that can advance the theory and
practice of digital attention. We draw on work from cognitive science, digital
advertising, and AI to propose a two-stage model of attention for social media
environments that disentangles engagement and dwell. In an online experiment, we
show that attention operates differently in these two stages and find clear evidence
of dissociation: when dwelling on posts (Stage 1), users attend more to sensational
than credible content, but when deciding whether to engage with content (Stage
2), users attend more to credible than sensational content. These findings have
implications for the design and development of computational systems that measure
and model human attention, such as newsfeed algorithms on social media.

1 Introduction

In our current attention economy [Wu, 2017], digital ecosystems and social media environments are
designed to grab and vie for users’ attention. Social media platforms often leverage vulnerabilities in
human psychology to distract users and exploit their attention [Lorenz-Spreen et al., 2020], leading
many to argue that the ways digital platforms quantify and extract value from users’ attention have
led to a crisis in attention [Hwang, 2020, Wu, 2017].

However, it remains unclear how attention actually operates in digital ecosystems. Indeed, under-
standing how attention can be detected, modeled and influenced by computational systems is crucial
for promoting better digital ecosystems. In this paper, we draw on research and methods from
cognitive science, psychology, AI, and human-computer interaction to propose and validate a model
for attention for digital ecosystems.
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1.1 Measuring and quantifying attention online

Decades of attention research has led to many insights into how attention operates in many contexts
[Buschman and Kastner, 2015, Simon, 1971]. Digital environments such as social media offer yet
another context that requires new ways of measuring, quantifying, and understanding attention (see
Lorenz-Spreen et al. [2020]). The digital advertising industry is among the first to systematically
measure and quantify attention online [Hwang, 2020]. By standardizing user engagement and
attention with metrics like the number of clicks and dwell time, it turned advertising into an online
marketplace where user attention is commodified and traded via real-time bidding [Hwang, 2020,
Wang et al., 2016], and these attention metrics have also been used to predict purchase intentions and
behaviors of (even anonymous) website visitors [Mokryn et al., 2019].

Although researchers in different fields such as collaborative filtering and information retrieval have
long recognized the value of quantifying attention and engagement via dwell time [Resnick et al.,
1994], it is only in the last decade where work has been done to measure and model dwell time
for different types of digital content [Lamba and Shah, 2019], and use it determine whether digital
content is useful for and relevant to individual users Liu et al. [2011], Yi et al. [2014]. Surprisingly,
little work has has been done to integrate dwell time and engagement data, which provide different
yet complementary measures of attention. As far as we are aware, the only work is by Lagun and
Lalmas [2016], who proposed a four-level taxonomy (bounce [<10s dwell time], shallow engagement,
deep engagement, complete engagement [dwell and interact]). However, because this taxonomy does
not offer details into whether and how attention operates differently across levels, it does not provide
insights into how to optimize different types of attention.

Attentional exposure (   )
via dwelling infeed

Posts are sorted &
filtered into feed

Stage 1: Try
Engagement with post (   )
conditional on exposure

Stage 2: Buy

Figure 1: Two-stage model of attention in social media environments (Try + Buy).

1.2 Understanding and dissociating attention with a two-stage try-buy model

Here, we propose a two-stage model (Try + Buy) that integrates different ways of conceptualizing
attention in social media environments (Figure 1). Users are initially exposed to content in an
algorithmically-generated newsfeed (Stage 1), and then engage with content conditional on having
been exposed to it (Stage 2). Crucially, our model jointly considers distinct attention dynamics at
two different stages. First, the extent to which users attend to a piece of content reflects the amount
of “trying” (Stage 1), which can be quantified continuously via dwell time. Second, engagement
behavior such as sharing or liking content reflects “buying” (Stage 2).

Previous work focused largely on Stage 2—what causes people to engage with or “buy” content in
digital ecosystems and what are the consequences [Chen et al., 2021, Salganik et al., 2006]. However,
some work highlights how people have to first sample or “try” content before they decide whether
to “buy” it [Krumme et al., 2012, Van Hentenryck et al., 2016], and crucially, different processes
like social influence may operate differently in the “try” versus “buy” stages (see also Epstein et al.
[2021] for a review). Crucially, unlike previous work that used two-stage models to primarily define
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and measure content quality [Wu et al., 2018, Abeliuk et al., 2017] and jointly predict “trying” and
“buying” [Zhou et al., 2018], this paper focuses on dissociating the “try” and “buy” stages and
examining how attention operates differently in these stages afforded by systems like social media
environments.

An important implication of our “try-buy” model is that systems that optimize for dwell time (e.g.,
TikTok [Smith, 2021, Team, 2021]) versus engagement (e.g., Facebook [Oremus et al., 2021])
focus on different attention dynamics by design, which in turn may lead to different information
environments. Thus, in this paper, we use dwell time and engagement data to provide insights into
how attention operates in the “try” and “buy” stages, and reflect on how algorithm designers may
optimize for these signals responsibly.

2 Methods

2.1 Dwell time for posts on social media feed

We recruited a convenience sample of Americans (N=644), of which 628 completed the survey
on desktop computers (n=483) or mobile devices (n=145), using the recruitment platform Prolific.
(compensation: $9 USD/hour; total amount: approx. $1700). Our participants had mean age of
35.7 (46.5% female, 66% white). At the start of the survey, participants provided informed consent
and were routed to Yourfeed, a website we designed that displays content in a scrolling feed layout
[Epstein and Lin, 2022]. The user interface mirrors the appearance of commonly used social media
sites, such as Facebook or Twitter. Participants saw a modal that said “Thank you for participating!
Next, you will see a social media newsfeed, configured just for you. Please browse this newsfeed like
you usually would for social media. For each post, indicate whether you would consider sharing it
with your network.”

Crucially, this platform measured dwell time by considering how much time a participant spent on
each post, which was determined based on how much each post was in the visible area of the browser
window (also known as viewport time; [Lagun and Lalmas, 2016]). Occasionally, two posts could
be fully visible in the browser window—in such cases, we assumed participants were viewing both
because it was impossible to determine exactly which post they were looking at. This design detail
reflects a trade-off between internal and external validity [Lin et al., 2021], and our platform was
designed specifically to mimic the user interfaces of existing social media platforms like Twitter and
Facebook, which often have two or more posts fully in view.

The website displayed 120 actual and recent social media posts to each participant in a scrollable
feed, and participants could click to share or/and like any post (these behaviors were hypothetical
engagement decisions, and did not affect what other participants saw). Of the 120 posts shown,
90 were randomly sampled from a set of 200 political and non-political news items [Epstein et al.,
2022, Pennycook et al., 2021], half of which are true and half false. The other 30 were randomly
sampled from a set of 76 opinion and mundane news items. The mundane posts were sourced from
tabloid sites (e.g. The Sun, Daily Mail) and opinion posts are opinion pieces from reputable sources
(e.g., New York Times Economist). All posts contained both an image and text (see Appendix A for
example posts).

2.2 Feature ratings for each post

In addition to the task described above, we also conducted a separate rating survey to obtain out-of-
sample post-level features for each of the 276 posts used. We recruited participants (N=1248) from the
recruitment site Lucid to rate these posts (compensation: $9 USD/hour; total amount: approx. $1800),
and included in our analyses only participants (N=872) who passed two attention checks. After
providing informed consent, participants rated 40 randomly selected posts (of 276) on one of eight
dimensions: 1) If you were to see the above article on social media, how likely would you be to share
it?, 2) Are you familiar with the above headline (have you seen or heard about it before)?, 3) What is
the likelihood that the above headline is true?, 4) Assuming the above headline is entirely accurate,
how favorable would it be to Democrats versus Republicans?, 5) How provocative/sensational is this
headline?, 6) How informative is this headline?, 7) How surprising is this headline?, and 8) How
impactful is this headline?
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We computed the mean across participants to compute a single estimate for each post feature (an
average of 15.06 ratings per post per feature). We then use these ratings below to examine how they
might be associated with the two stages of the try-buy model. Note that true posts were rated as
significantly more true than false headlines (b = 1.11, p < 0.001) and were more likely to be shared
by participants [Epstein et al., 2022]. Moreover, posts participants indicated they were more likely to
share in this rating survey were also posts that were shared more frequently by participants in the
actual experiment described above (r = 0.26, p < 0.001).

2.3 Dwell time preprocessing

Following Lin et al. [2022], we excluded posts whereby dwell times were longer than 30s. We then
excluded the first three and last three posts because dwell times could not be determined precisely
when participants were reading the instructions at the start or deciding whether to submit and proceed
to the next phase of the study at the end of feed.

Because scrollable social media feeds introduce dependencies between dwell time and engagement
(i.e., to engage with a post, people have to slow down and click the share/like buttons; but when
they do not want to engage with a post, they do not have to slow down or click any button), we
dissociated the motor and attentional components that contribute to dwell time. To do so, we fitted
a Bayesian hierarchical mixed-effects model to predict dwell time as a function of the number of
times participants engaged with any given post. The participant-specific coefficients provided an
estimate of the time it takes for each participant to engage once with a post (“movement time”), and
we adjusted dwell times by subtracting “movement time” to eliminate the motor component of dwell
time, which should leave us with primarily the attentional component. After which, we excluded
posts with dwell times shorter than 0.15s because it is unlikely that participants could attend to and
evaluate post features so rapidly [Lin et al., 2022]. Data and code to reproduce the experimental
results can be found here.

3 Results

3.1 Post features and dwell correlations

To investigate whether dwell times correlated with the eight post features, we computed the mean
dwell times (across participants) for each post and correlated them with post features. As shown in
Figure 3, the features correlated with each other, and three correlated significantly with dwell (e.g.,
surprising and true posts had longer and shorter dwells, respectively). Crucially, these correlations
suggest dwell captures attention exposure and dynamics and the amount of “trying.”

Figure 2: Correlations between post features and dwell.

We then performed principal component analysis (PCA), which revealed that the first two components,
together, explained more than half the variance in the data (PC1: 29%; PC2: 25%). As shown in
Table 1, relative to PC1 which has large positive weights for the truth, informative, and familiarity
features, PC2 has a negative weight for the truth feature and large positive weights for the provocative
and surprising features. Thus, PC1 seems to capture variance related to “credibility,” whereas PC1
captures variance related to “sensationalism ” (see Appendix A for the top posts for each component).
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Table 1: PCA component weights and variance explained

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
familiarity 0.43 -0.17 0.28 0.26 0.68 -0.27 0.32 -0.02
favorability 0.12 0.31 0.81 -0.06 -0.42 -0.04 0.20 -0.09
impactful 0.43 0.28 -0.24 -0.20 0.05 0.66 0.36 -0.27
informative 0.45 0.07 -0.35 -0.40 -0.29 -0.63 0.15 -0.00
provocative 0.17 0.52 0.12 -0.29 0.38 -0.03 -0.67 0.01
sharing 0.35 0.28 -0.19 0.79 -0.28 -0.04 -0.23 -0.00
surprising -0.26 0.54 -0.13 0.05 0.14 -0.06 0.41 0.66
truth 0.44 -0.37 0.13 -0.12 -0.16 0.30 -0.19 0.70
variance 0.29 0.25 0.12 0.09 0.08 0.07 0.06 0.04
cumulative variance 0.29 0.54 0.66 0.75 0.83 0.90 0.96 1.00

As with the dwell-feature correlations (Figure 3), PC1 (the “credibility” component) correlates
negatively (marginally significant) with dwell (r = -0.11, p = 0.063), but PC2 (the “sensationalism”
component) correlates positively with dwell (r = 0.17 p = 0.005). Together, these correlations
suggest that more sensational posts were associated with more “trying,” but more credible posts were
associated with less “trying.” For a breakdown of the relationships between the component scores
and dwell times separately posts that had been engaged with or not, see Figure 3. Given these results,
we focus on the two PCA components (instead of the 8 features) in the analyses that follow.

Figure 3: Relationships between principal component scores and dwell for posts that had been
engaged with or not. Each dot is one post.

3.2 Evaluating the two-stage model with dwell and engagement analyses

Next, we examined what influenced the extent to which participants “tried” each post by fitting a
fixed-effects linear regression to predict dwell time (Table 2). For posts participants had engaged
with (i.e., shared and/or liked), dwell time was longer (b = 0.31, p < .001). Participants also dwelled
longer on posts with higher PC1 (“sensationalism” component) scores (b = 0.04, p < .001), but less
on posts with higher PC2 (“credibility” component) scores (b = -0.02, p = 0.017). There was also
an interaction effect, such participants dwelled even longer on sensational posts they engaged with
(b = 0.05, p < .001). Thus, consistent with the results in the previous section, we find that whether
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participants had engaged with a post and the post’s credibility and sensationalism influenced how
much participants “tried” each post.

Table 2: Fixed-effect regression predicting log(dwell) as a function of engagement (no: -0.5, yes:
0.5), credibility (PC1 z-scored), and sensationalism (PC2 z-scored)

Estimate SE t value Pr(>|t|)
engage 0.311 0.025 12.348 0.000
credibility -0.017 0.007 -2.405 0.017
sensationalism 0.038 0.008 4.729 0.000
engage:credibility 0.010 0.011 0.901 0.368
engage:sensationalism 0.048 0.013 3.694 0.000

Having shown that dwell time captures attentional exposure and dynamics and that it serves as a
measure of "trying," we turn to the question of what features are associated with decisions to “buy”
by fitting a fixed-effect logistic regression to predict engagement (i.e., yes: 1, no: 0). As shown in
Table 3, longer dwell times were associated with an increased probability of engagement (b = 0.36, p
< .001). That is, the more participants "tried," the more likely they were to "buy."

However, in contrast to the model predicting dwell times (i.e., extent of "trying") above (Table 2),
participants were more likely to engage with credible posts (b = 0.21, p < .001), but less likely to
engage with sensational posts (b = -0.22, p < .001). Moreover, dwell interacted with sensationalism,
such that sensational posts with longer dwell times were more likely to be engaged with (b = 0.06, p
= 0.003). In other words, participants were more and less likely to "buy" credible and sensational
posts, respectively. But when they dwelled longer on sensational posts, they were also more likely to
then engage with these posts.

Table 3: Fixed-effect logistic regression predicting engagement as a function of log(dwell) (z-scored),
credibility (PC1 z-scored), and sensationalism (PC2 z-scored)

Estimate SE t value Pr(>|t|)
dwell 0.355 0.029 12.355 0.000
credibility 0.212 0.049 4.361 0.000
sensationalism -0.221 0.047 -4.711 0.000
dwell:credibility 0.011 0.020 0.538 0.590
dwell:sensationalism 0.062 0.021 2.921 0.003

4 Discussion

In this paper, we introduce a two-stage model of attention to conceptualize and understand how
attention operates in social media environments. Using an analytic approach informed by our try-buy
model, we find dissociations between the “try” and “buy” stages: in the “try” stage, attention (dwell)
was focused on sensational posts and not credible posts. Conversely, in the “buy” stage, attention
(engagement) was focused on credible posts and not sensational posts. However, our experiments
used data about hypothetical engagement. While past work has shown that self-reported news sharing
in surveys correlates with actual sharing on Twitter [Mosleh et al., 2020], future work should replicate
these findings with actual engagement data from social media.

Nevertheless, our model and results have important implications for how attention is modeled and
leveraged by AI systems in human-computer interactions: For one, algorithmic systems that explicitly
optimize for dwell time may prioritize sensational content over credible content and therefore
inadvertently proliferate misinformation. Conversely, while optimizing for engagement may indeed
surface credible content, we found that people were more likely to engage with sensational content
after dwelling more on them, which could create a positive feedback loops that drives the spread of
misinformation [Hao, 2021]. Future work is needed to apply our findings to the adaptive dynamics
of optimized newsfeed algorithms, and how to align such algorithms with human values by more
rigorously evaluating optimization metrics [Dmitriev and Wu, 2016], learning complex multi-variate
objectives from stakeholders [Stray et al., 2021] and directly giving users control of the algorithms
instead of trying to infer their desires [Ekstrand and Willemsen, 2016, Bhargava et al., 2019].
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A Appendix

Interpreting the PCA components

We checked the posts qualitatively (Figure 4), which corroborated our interpretations of PC1 and
PC2. For example, the top two PC1 posts were from reputable mainstream new sources: "New York
City Mandates Vaccines for Its Workers to ‘End the COVID Era’" (New York Times) and "President
Biden’s oil price two-step won’t lower your gas prices" (Washington Post). However, the top two PC2
posts were from unreliable or fake news sources: "Democrats Introduce Bill To ‘Euthanize Seniors’
To Save Social Security" (Daily World Update) and "920 Women Lose Their Unborn Babies After
Getting Vaccinated" (The True Defender).

Figure 4: Top headlines for PC1 (left) and PC2 (right).
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