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ABSTRACT

Partially observable Markov decision processes (POMDPs) have been widely ap-
plied to capture many real-world applications. However, existing theoretical re-
sults have shown that learning in general POMDPs could be intractable, where
the main challenge lies in the lack of latent state information. A key fundamental
question here is how much online state information (OSI) is sufficient to achieve
tractability. In this paper, we establish a lower bound that reveals a surprising
hardness result: unless we have full OSI, we need an exponentially scaling sam-
ple complexity to obtain an ϵ-optimal policy solution for POMDPs. Nonetheless,
inspired by the key insights in our lower bound design, we find that there exist im-
portant tractable classes of POMDPs even with only partial OSI. In particular, for
two novel classes of POMDPs with partial OSI, we provide new algorithms that
are proved to be near-optimal by establishing new regret upper and lower bounds.

1 INTRODUCTION

Partially observable Markov decision processes (POMDPs) model reinforcement learning (RL) sys-
tems, where an agent interacts with the environment sequentially without observing the latent state.
In these systems, the agent only has access to a noisy observation randomly generated by the latent
state via an emission probability distribution. The goal of the agent is to achieve a large expected
cumulative reward. POMDPs generalize the classic (fully observable) MDPs, and have been ap-
plied to capture many real-world applications. For example, an AI-trained robot often receives
only noisy observations of the environment from its sensors due to sensory noise (Akkaya et al.,
2019); autonomous cars typically do not have a global view of traffic conditions due to their lim-
ited reception (Levinson et al., 2011). Similar scenarios can occur in games (Berner et al., 2019),
healthcare (Hauskrecht & Fraser, 2000), recommendation systems (Li et al., 2010), economic sys-
tems (Zheng et al., 2020), and so forth.

Existing information-theoretical results have shown that learning in general POMDPs is intractable
and PSPACE-complete (Papadimitriou & Tsitsiklis, 1987; Mundhenk et al., 2000; Vlassis et al.,
2012; Krishnamurthy et al., 2016). This is in contrast to classic MDPs, where many efficient algo-
rithms have been developed, e.g., Azar et al. (2017); Jin et al. (2018); Agarwal et al. (2019); Jin et al.
(2020); Ayoub et al. (2020); Xie et al. (2020); Foster et al. (2021); Jin et al. (2022); Bai et al. (2019);
Cai et al. (2020), among others. The challenge of POMDPs mainly lies in the lack of latent state
information, such that the Markov property that simplifies classic MDPs does not hold any more.

Despite the intractability in general POMDPs, recent studies have identified some tractable classes
of POMDPs, for which efficient algorithms with polynomial dependency (on the number of ac-
tions A, number of states S and episode length H) can be developed, e.g., m-step decodable
POMDPs (Efroni et al., 2022), reactive POMDPs (Jiang et al., 2017), POMDPs with block
MDPs (Zhang et al., 2022) or latent MDPs (Kwon et al., 2021), and POMDPs with reachabil-
ity (Xiong et al., 2022) or observability (Golowich et al., 2022). Due to page limits, we relegate more
discussions about related work in Appendix A. One prominent tractable class is identified based on
weakly revealing conditions (Liu et al., 2022; 2023) or predictive state representations (Chen et al.,
2022a; Zhong et al., 2022). However, these conditions may not hold in practical cases, e.g., resource
allocation (Sinclair et al., 2023; Lee et al., 2023) and robotics (Pinto et al., 2018; Lee et al., 2023).
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Moreover, the regret obtained there can be arbitrarily large if the emission probability differences of
different underlying states are small.

To circumvent the dependency and strong assumptions on the emission probability measure, recent
work has exploited hindsight state information (Sinclair et al., 2023; Lee et al., 2023), where full
state information is revealed only at the end of each episode. This line of work is motivated by
the fact that, although the precise information about the true underlying state is not available before
the agent takes an action, some information may become available in hindsight. However, these
studies have assumed full hindsight state information. Thus, a natural question one may ask is: what
would happen if the state information was not fully revealed at the end of the episode? In fact, this
can happen often in practice. For example, in classic wireless channel scheduling formulated by
POMDPs (Zhao et al., 2007; Chen et al., 2008; Ouyang et al., 2015), only the feedback about the
scheduled or sensed channels will be available to the users; in autonomous driving Levinson et al.
(2011); Pinto et al. (2018); Jennings & Figliozzi (2019), only the condition of the located or probed
path will be known to the car. Further, it can be trivially shown (based on the existing lower bounds
in Krishnamurthy et al. (2016); Liu et al. (2022)) that such a situation becomes intractable.

This thus motivates us to investigate the value of partial (i.e., not full) state information inside (i.e.,
not at the end of) the episode. We call this partial “Online State Information” (OSI). In order to
model such partial OSI more concretely, we provide a novel formulation. Specifically, we consider
vector-structured states Jin et al. (2020); Agarwal et al. (2019); Ayoub et al. (2020), which are moti-
vated by the aforementioned practical examples. In other words, the state is given by a d-dimension
vector with each element representing an abstract feature, such as the feedback about a wireless
channel Zhao et al. (2007) and the condition of a path in autonomous driving Jennings & Figliozzi
(2019). Partial OSI means that at each step of an episode, a subset of d̃ (1 ≤ d̃ < d) elements in the
state-vector will be revealed to the agent after her query. Note that such a model allows the agent
to actively query partial OSI for different elements at different times. This prevents the trivial case,
where one state-element cannot be known throughout the process (so that the problem becomes
equivalent to a POMDP problem with that specific unknown state-element being the hidden state).
Therefore, the key fundamental open questions are:

With such partial OSI, can POMDPs be tractable/learnable? If not, are there any specific
classes of POMDPs that can be tractable under partial OSI?

Our Contributions: In this paper, we study the important problem of POMDPs with partial OSI
and provide in-depth answers to the above key open questions.

First, we establish a lower bound in Theorem 1 that reveals a surprising hardness result: unless we
have full OSI, we need an exponentially scaling sample complexity of Ω̃(A

H

ϵ2 ) to find an ϵ-optimal
policy for POMDPs, where A and H are the number of actions and episode length, respectively.
This result indicates a sharp gap between POMDPs with partial OSI and those with full OSI or full
hindsight state information (Lee et al., 2023). This may seem somewhat counter-intuitive, because
by combining multiple partial OSI from different steps, one may construct full information of a state,
and thus enjoy similar performance as that with full OSI. In fact, in Sec. 3, we design a hard instance
with special state representations and transitions, under which partial OSI at each step and even a
combination of partial OSI from different steps are not sufficient to achieve an ϵ-optimal solution
with polynomial complexity.

Nonetheless, inspired by the key insights in our design of the hard instance for establishing the lower
bound, we identify two intriguing tractable classes of POMDPs with only partial OSI.

Second, inspired by our state-transition design for the lower bound, in Sec. 4 we identify a novel
tractable class of POMDPs with partial OSI, where the transitions of the sub-states (i.e., elements) in
the state-vector are independent of each other. This class is motivated by many practical examples
ranging from wireless scheduling (Zhao et al., 2007; Chen et al., 2008; Ouyang et al., 2015) to
Martian rock-sampling (Levinson et al., 2011) and autonomous driving (Pinto et al., 2018; Jennings
& Figliozzi, 2019). We provide two new near-optimal algorithms for this class. The regrets of
both algorithms achieve a polynomial dependency on all parameters (please see Theorem 2 and
Theorem 6). In addition, the regret of our second algorithm for the case with d̃ > 1 shows that
the regret can be further reduced as d̃ increases. To achieve such results, our algorithm design
includes important novel ideas to determine (i) which partial OSI is more informative, and (ii) the
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(c) The POMDP with partial OSI
and partial noisy observations.

Figure 1: A sketch of one step in different classes of POMDPs: the squares represent the feedback
of the partial OSI actively queried by the agent, and/or the (partial) noisy observations

action policy that relies on the queried partial OSI at each step. These also require new technical
developments in the regret analysis (see Appendix E and Appendix F).

Third, inspired by our state-representation design for the lower bound, in Sec. 5 we identify another
novel tractable class of POMDPs with partial OSI, where additional noisy observations for the sub-
states in the state-vector that are not actively queried are available. We provide a new algorithm with
a near-optimal regret in Theorem 3. Our regret analysis involves a non-trivial generalization of
the observable operator method (Jaeger, 2000; Liu et al., 2022) to handle the case with partial OSI
of different sub-states that are actively queried by the agent. In addition, we provide a new regret
lower-bound in Theorem 4 that demonstrates the near-optimality of the regret that we achieve.

2 PROBLEM FORMULATION

In this section, we first introduce the general episodic partially observable Markov decision process
(POMDP) for clarity, which is intractable in the worst case. Then, we introduce the POMDP setting
with partial online state information (OSI) that we study in this paper.

2.1 THE GENERAL EPISODIC POMDP

Episodic POMDPs are usually modelled by a tuple M = (S,A,O, H,∆1,P,O, r) (Liu et al., 2022;
2023; Chen et al., 2022a;b; Cai et al., 2022), where S, A and O denote the state space with S states,
the action space with A actions and the observation space with O observations, respectively; H
denotes the number of steps in an episode; ∆1 : S → [0, 1] denotes a probability measure supported
on the state space S and determines the randomness of the initial state at the beginning of an episode;
P = {Ph : S × S × A → [0, 1]}H−1

h=1 and O = {Oh : O × S → [0, 1]}Hh=1 denote the unknown
transition and emission probability measures, respectively; and r = {rh : O × A → [0, 1]}Hh=1
denotes the known reward function. Specifically, an online agent interacts with the environment in
K episodes. At each step h = 1, ...,H of an episode, the agent receives a noisy observation okh that
is generated according to the emission probability Oh(·|skh), where skh is the unknown true latent
state. Next, the agent takes an action akh and receives the reward rh(o

k
h, a

k
h). Then, the environment

transits to the next state skh+1, which is drawn according to the transition probability Ph(·|skh, akh).
The goal of the agent is to find a near-optimal policy that achieves an expected cumulative reward
close to that of the optimal policy. Please see Fig. 1a for a sketch of one step. Due to the lack of
latent state information, the observation is non-Markovian and the policy needs to maintain memory.

2.2 THE EPISODIC POMDP WITH PARTIAL OSI

As discussed in Sec. 1, we make the first effort to investigate the impact of partial OSI on POMDPs
in this paper. We provide a formulation for studying POMDPs with partial OSI. Specifically, we
consider the vector-structured states (Jin et al., 2020; Ayoub et al., 2020; Agarwal et al., 2019).
Each state s is represented by a d-dimension feature vector ϕ⃗(s) = [ϕ1(s), ..., ϕd(s)]

T ∈ S̃d, where
S̃ is the universal set of the values for each element/sub-state in ϕ⃗(s), and [·]T denotes the transpose
of a vector. We use |S̃| to denote the cardinality of the set S̃. Then, at each step h = 1, ...,H of an
episode k = 1, ...,K, the agent interacts with the environment as follows (please see Fig. 1b for a
sketch of one step of the POMDP with partial OSI):

(Step-i) The agent actively queries a subset of d̃ (where 1 ≤ d̃ < d) sub-states (let îkh denote the
indices of these queried sub-states); (Step-ii) the partial OSI, i.e., the precise information of the
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queried sub-states {ϕi(s)}{i∈îkh}
, is revealed to the agent; (Step-iii) the agent takes an action akh and

receives the reward rh(ϕîkh
(skh), a

k
h), where the reward rh : S̃ × A → [0, 1] is a function of the

partial OSI and S̃ ≜ {ϕî(s) : |̂i| = d̃, s ∈ S} is the sub-state space for any union of d̃ sub-states.;
(Step-iv) the environment transits to the next state skh+1.

This model is motivated by various practical scenarios, e.g., wireless scheduling (Chen et al., 2008;
Ouyang et al., 2015), autonomous driving (Levinson et al., 2011; Pinto et al., 2018; Jennings &
Figliozzi, 2019), robotics (Akkaya et al., 2019; Lee et al., 2023; Silver & Veness, 2010) and health-
care (Hauskrecht & Fraser, 2000). Below, we elaborate on two important motivating examples.

Motivating example 1: In an autonomous delivery system (Jennings & Figliozzi, 2019), in order to
deliver the product to the destination, a robot explores multiple paths and chooses one path at each
intersection. Here, each sub-state ϕi(s) of s represents the condition, e.g., traffic intensity, of one
path. At each step, the robot agent first actively queries and observes the condition of several paths,
i.e., the partial OSI. However, due to delay requirements, unknown dynamics in the environment,
and occlusion, the precise conditions of other paths may not be available to the robot. Then, she
chooses one path to follow, i.e., the action that will incur a reward.

Motivating example 2: Consider a cognitive MAC (medium access control) system (Ouyang et al.,
2015), where a secondary user, i.e., an agent, wishes to search for spectrum-access opportunities.
Here, the state s characterizes the conditions of multiple channels available for an agent to use. Sub-
state ϕi(s) represents the condition, e.g., busy or idle, of the i-th channel. At each step, the agent
first probes the conditions of a number of channels. After this query, the conditions of the sensed
channels will be observed, i.e., the partial OSI. However, due to energy constraints and latency
requirements, the agent cannot sense all the channels. Then, she transfers the packets using one
channel, i.e., the action that will incur a reward.

2.3 PERFORMANCE METRIC

In POMDPs with partial OSI, at each step h of episode k, the feedback revealed to the agent is
Φk

h = (ϕîk1
(sk1), a

k
1 , ..., ϕîkh−1

(skh−1), a
k
h−1). We use Φ̂h to denote the feedback space of Φk

h before

the partial OSI for step h is revealed, and use Φ̃h = {Φ̂h ∪ {ϕîh
(sh)}îh} to denote the feedback

space after the partial OSI for step h has been revealed. Then, the query îkh is made according to a
query policy πk

q,h ∈ {πq,h : Φ̂h → ∆̂h({̂i}|d̃)}, which maps from Φ̂h to a conditional probability
measure ∆̂h({̂i}|d̃) supported on the query space {̂i : |̂i| = d̃}. Next, after receiving the partial
OSI ϕîkh

(skh), the action akh is taken according to an action policy1 πk
a,h ∈ {πa,h : Φ̃h → ∆̃h(A)},

which maps from Φ̃h to a probability measure ∆̃h(A) supported on the action space A. We use
the V -value V πk

≜ E{πk
q ,π

k
a ,P,∆1}[

∑H
h=1 rh(ϕîkh

(skh), a
k
h)] to denote the expected total reward in

episode k by following πk
q = {πk

q,h}Hh=1 and πk
a = {πk

a,h}Hh=1, where πk = (πk
q , π

k
a). We take the

regret as the performance metric, which is the difference between the expected cumulative reward
using the online joint policies π1:K and that of using the optimal policy, i.e.,

Regπ
1:K

(K) ≜
∑K

k=1

[
V ∗ − V πk

]
, (1)

where V ∗ ≜ supπ V
π denotes the expected total reward of the optimal policy in an episode. The

goal of the online agent is to find a policy that achieves a sub-linear regret with respect to K. Hence,
the main challenge and new difficulty here is how to design the query policy πq , such that an action
policy πa can also be intelligently developed to achieve a near-optimal regret.

3 PERILS OF NOT HAVING FULL OSI: A NEW LOWER BOUND

In this section, we answer the long-standing open question: whether POMDPs with online state
information are tractable without full OSI? In Theorem 1 below, we establish a lower bound that
reveals a surprising hardness result: unless we have full OSI, we need an exponential sample com-
plexity to find an ϵ-optimal policy for POMDPs, where a policy π is ϵ-optimal if V π ≥ V ∗ − ϵ.

1Recall that ϕîk
h
(skh) ∈ Φ̃h. Thus, the action policy πk

a,h relies on the output of the query policy πk
q,h.
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Figure 2: A hard instance for developing the lower bound in POMDPs with only partial OSI. States
s(1), s(2), s(3) and s(4) are represented by solid circles, dashed circles, solid squares and dashed
squares, respectively. Ber(1/2) represents the Bernoulli distribution with mean 1/2

Theorem 1. (Intractability for not having full OSI) For POMDPs with only partial online state
information introduced in Sec. 2.2, there exists hard instances, such that with a probability p ≥ 1/3,
any algorithm needs at least Ω(AH/ϵ2) samples to find an ϵ-optimal policy.

Theorem 1 demonstrates the hardness of POMDPs without full OSI: a polynomially scaling sample
complexity Poly(A,H, S,K) is impossible. The result in Theorem 1 may seem counter-intuitive,
because by combining multiple partial OSI collected from different steps, one may construct full ob-
servations and then enjoy similar performance as that with full OSI. Below, we design an important
hard instance and provide our key proof ideas of Theorem 1, which shows why this is not true.
Remark 1. The intractability result in Theorem 1 still holds even if in addition to partial OSI, there
exist noisy observations (please see our discussion in Sec. 5). This is because we can construct a
hard instance directly based on the one that we construct in this section, while letting the emission
probabilities of the additional noisy observations to be exactly the same for all underlying states,
such that the additional observations do not provide any useful statistical information.

3.1 OUR KEY PROOF IDEAS FOR THEOREM 1
For simplicity, we focus on the simpler case with d = 2 and d̃ = 1, which makes it easier to
understand our key proof ideas. Please see Appendix C for the complete proof. The important parts
in our proof are to design special state representations and transitions, such that partial OSI cannot
help the learner to improve her statistical knowledge about the true underlying state. Towards this
end, we construct a hard instance with four states, i.e., s(1), s(2), s(3) and s(4) (see Fig. 2).

Idea I (Special state representations): Our first key idea is to construct special state representa-
tions, such that by only observing d̃ = 1 sub-state, it is still impossible for the learner to infer the
true latent state. Specifically, we let ϕ⃗(s(1)) = [x1, x2]

T, ϕ⃗(s(2)) = [x3, x4]
T, ϕ⃗(s(3)) = [x1, x4]

T

and ϕ⃗(s(4)) = [x3, x2]
T, where x1, ..., x4 are sub-states (see Fig. 2).

We introduce the high-level reason for constructing the state representations in this way. Let us
consider states s(1) and s(2) as a group of states, and we call it group a. Similarly, we call states
s(3) and s(4) group b. Under our construction of the state representation, each state in group a (i.e.,
s(1) and s(2)) must contain a same sub-state as that in each state of group b (i.e., s(3) and s(4)).
For example, the first sub-states of both state s(1) and state s(3) are x1. This means that, by only
querying ϕ1(s) = x1, the learner cannot know whether she is in a state from group a or group b. As
another example, the second sub-states of both state s(1) and state s(4) are x2. This means that, by
only querying ϕ2(s) = x2, the learner cannot know whether she is in a state from group a or group
b. As a result, if (i) there is only one specific action sequence that guarantees the learner to be in
group a, and (ii) group a generates a larger reward, then intuitively the learner has to constantly keep
trying all exponential number of possible action sequences to figure this out with high probability.

However, as we mentioned before, another question still remains: whether a combination of the
partial OSI from different steps would be enough? To answer this question, we construct special state
transitions using our idea II below. Together with the state representation that we construct above,
this state transition causes difficulty for the learner, even when multiple partial OSI are combined.
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Idea II (Special state transitions): Our second key idea is to construct special state transitions,
such that even by combining the partial OSI from different steps, it is still impossible for the learner
to infer the true latent state. Specifically, in each episode, the learner starts from state s1 = s(1)
(see Fig. 2). At step h = 1, (i) if action a(1) is chosen, the state will transition to s(1) and s(2) with
the same probability (wsp); (ii) if action a(2) is chosen, the state will transition to s(3) and s(4)
wsp. At step h = 2, (i) if action a(1) is chosen, both states s(1) and s(2) will transition to s(3) and
s(4) wsp; (ii) if action a(2) is chosen, they will transition to s(1) and s(2) wsp. At step h = 3, (i) if
action a(1) is chosen, states s(1) and s(2) will transition to s(1) and s(2) wsp; (ii) if action a(2) is
chosen, they will transition to s(3) and s(4) wsp. For states s(3) and s(4) at step h = 2 and h = 3,
no matter which action is chosen, the states will transition to s(3) and s(4) wsp.

Then, together with the state representation that we constructed, even when the partial OSI about
the first and second sub-states from different steps are combined, such a construction for the state
transition still prevents the learner from knowing which group of states she is in. For example, at
step h = 1 of two episodes, the learner can keep taking action a(1) and query the first and second
sub-states one-by-one. Then, the partial OSI at step h = 2 could be ϕ1(s

k
2) = x1 (i.e., the first

sub-state of s(1)) and ϕ2(s
k+1
2 ) = x4 (i.e., the second sub-state of s(2)). However, note that the

first and second sub-states of s(3) are also x1 and x4. Thus, such a combination of partial OSI (i.e.,
ϕ1(s

k
2) = x1 and ϕ2(s

k+1
2 ) = x4) is not powerful enough for the learner to distinguish whether she

is visiting s(1) and s(2) or she is simply visiting s(3). Similar issues occurs at other steps.

Idea III (Special reward functions): Up to here, we can see that only with partial OSI, the learner
cannot improve her statistical knowledge about the true underlying states. Thus, she can only rely on
the statistical relation between the sequence of actions that is chosen and the reward that is received.
Hence, to create difficulties, we let (i) the rewards rh at steps h = 1, 2, 3 are all 0; (ii) if the final
state is in group b, i.e., s(3) or s(4), the reward at step h = 4 follows Bernoulli distribution with
mean 1

2 ; (iii) if the final state is in group a, i.e., s(1) or s(2), the reward at step h = 4 follows
Bernoulli distribution with a slightly higher mean equal to 1

2 + ϵ. In this way, the optimal policy will
take action sequence (a(1), a(2), a(1)) for all episodes, so that she can remain in group a and enjoy
a larger expected total reward in every episode equal to 1

2 + ϵ. In contrast, the online learner has to
try every possible sequence of actions to figure out which sequence provides larger reward with high
probability. Since there are AH number of possible action sequences, according to the Hoeffding’s
inequality, we can show that the sample complexity for achieving an ϵ-optimal policy is Ω(AH/ϵ2).

4 OPTIMALITY UNDER PARTIAL OSI AND INDEPENDENT SUB-STATES

While learning in the world of general POMDPs with partial OSI is intractable, inspired by the key
insights in our lower-bound design, we identify two rich classes of POMDPs with partial OSI that
are tractable, for which we provide new near-optimal algorithms. We leave other potential learnable
classes as future work. The tractable class that we study in this section is as follows.
Class 1. (POMDPs with partial OSI and independent sub-states) At each step, (step-i) the agent
actively selects sub-states îkh to query, and receives the partial OSI {ϕi(s

k
h)}{i∈îkh}

; (step-ii) The

agent takes the action akh and receives the reward rh(ϕîkh
(skh), a

k
h); (step-iii) the next state skh+1

is drawn according to probability Ph(·|skh, akh) =
∏d

i=1 Ph,i(ϕi(·)|ϕi(s
k
h), a

k
h), where the product

form indicates that the sub-states have independent transition kernels.

This class is motivated by many important practical applications. For example, in classic wireless
channel scheduling Zhao et al. (2007); Chen et al. (2008); Ouyang et al. (2015), the condition of
each channel could change independently; and in Martian RockSampling (Silver & Veness, 2010) or
autonomous driving Pinto et al. (2018); Jennings & Figliozzi (2019), the condition of each potential
rock or path could also change independently. Notably, as we state in Proposition 1, without the
partial OSI in step-i of Class 1, even learning under independent sub-states could still be intractable.
Proposition 1. (Intractability if not having partial OSI) There exist POMDPs with independent
sub-states, such that learning an ϵ-optimal policy necessarily requires Ω̃(AH/ϵ2) samples.
Remark 2. By replacing partial OSI with noisy observations under certain conditions, POMDPs
with independent sub-states could be decoupled into paralleled sub-POMDPs, which may be solved
using existing methods. In contrast, the query of the agent for partial OSI in Class 1 couples poten-
tial sub-POMDPs together, such that existing solutions do not apply or result in poor performance.
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Algorithm 1 Optimistic-Pessimistic Two-Layer Learning (OP-TLL)

for k = 1 : K do
Step 1: update the weights wk(i) and probabilities pk(i) according to Eq. (2).
for h = 1 : H do

Step-2: choose a sub-state ikh according to probability pk(i) and query partial OSI ϕikh
(skh).

Step-3: take an action akh that maximizes the updated Q-value function in Eq. (3).
end for

end for

For Class 1, we develop two new near-optimal algorithm. Due to page limits, we focus on the
simpler case with d̃ = 1 in this section, and introduce our results for the more challenging case with
d̃ > 1 in Appendix F. Our new algorithm when d̃ = 1 is called Optimistic-Pessimistic Two-Layer
Learning (OP-TLL). Please see Algorithm 1. At each step h, the optimal policy queries a sub-state i
according to a fixed distribution p, and receives the partial OSI for this queried sub-state. Then, she
takes an action according to ϕi(sh). We note that the new challenge here is: how to utilize partial
OSI to avoid the intractability issue shown in Proposition 1 and achieve optimality? To address this
question, our OP-TLL algorithm contains two critical learning layers that involve our two new ideas,
and obtains a near-optimal regret.

Idea-I (Update the query policy pessimistically): This pessimism is because the query policy
updated in “Step-1” of Algorithm 1 affects the choice of action akh in Step-3, which requires com-
plete state information for V -value estimation. As a result of this, the relation between the regret
and model misspecification error Jin et al. (2020) indicates a linear-in-K regret if the estimation
error due to query is not sufficiently considered. Thus, although the state-transition and reward are
stochastic, the query needs to be made sufficiently conservatively. Specifically, at the beginning of
each episode k, OP-TLL updates the query policy as follows,

wk(i) = wk−1(i) · e
η1

dpk−1(i)

∑H
h=1 r̂k−1

h (ϕi(s
k−1
h ),ak−1

h )
, and pk(i) = (1−η1)w

k(i)∑d
i′=1

wk(i′)
+ η1

d , (2)

where the estimated reward r̂k−1
h (ϕi(s

k−1
h ), ak−1

h ) = rh(ϕi(s
k−1
h ), ak−1

h ), if i = ikh; and
r̂k−1
h (ϕi(s

k−1
h ), ak−1

h ) = 0, otherwise. Note that this is a new variant of the importance sampling
method, where the new development lies in estimating the reward by exploiting partial OSI. More-
over, η1 is a key parameter that determines how pessimistic the algorithm is. For example, with a

smaller η1, the term e
η1

dpk−1(i)

∑H
h=1 r̂k−1

h (ϕi(s
k−1
h ),ak−1

h )
increases more slowly. As a result, the weight

wk(i) increases more slowly, and thus the algorithm behaves more pessimistically. In “Step-2”, OP-
TLL chooses the query according to probability pk(i), where the first term wk(i)∑d

i′=1
wk(i′)

captures the
query importance of sub-state i among all sub-states.

Idea-II (Update the action policy optimistically): The intuition for this optimism is to minimize
the bias in reward estimates, which is critical because the query policy updated in Step-1 relies on
the estimated reward. Specifically, in “Step-3”, OP-TLL takes an action that maximizes the Q-value
function following the optimism-in-face-of-uncertainty principle (the new challenge here is how to
design the bonus term to address the impact of partial OSI),

Qk
h(ϕi(s), a) = min{rh(ϕi(s), a) + [Pk

hV
k
h+1](ϕi(s), a) +O(

√
H2/N k

h (ϕi(s), a)), H}, (3)

where Pk
h(ϕi(s

′)|ϕi(s), a) =
Nk

h (ϕi(s),a,ϕi(s
′))

Nk
h (ϕi(s),a)

is the estimated transition kernel, N k
h (ϕi(s), a) and

N k
h (ϕi(s), a, ϕi(s

′)) are the number of times (ϕi(s), a) and (ϕi(s), a, ϕî(s
′)) have been visited at

step h up to episode k, respectively, and V k
h (ϕi(s)) = maxa Q

k
h(ϕi(s), a) is the estimated V -value.

Theorem 2. (Regret) For POMDPs with partial OSI (d̃ = 1) and independent sub-states, with
probability 1 − δ for any δ ∈ (0, 1), the regret of our OP-TLL algorithm with parameter η1 =

O(
√

d ln d
H2K ) can be upper-bounded as follows,

RegOP-TLL(K) ≤ Õ

(
AH3|S̃|2d

√
K
(
ln(AH2|S̃|K/δ)

)2)
. (4)
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Algorithm 2 Optimistic Maximum Likelihood Estimation with Partial OSI (OMLE-POSI)

Initialization: Θ0 = {θ ∈ Θ : min{h,̂i} σS̃(Õî
h) ≥ α}.

for k = 1 : K do
Step-1: estimate the models θ̂ ≜ (P̂, ˆ̃O, ∆̂1) (including partial emission model) according to

Θk =

{
θ̂ ∈ Θ0 :

k−1∑
τ=1

logPπτ

θ̂
(Γτ ) ≥ max

(P′,Õ′,∆′
1)∈Θ0

k−1∑
τ=1

logPπτ

P′,Õ′,∆′
1

(Γτ )− β

}
∩Θ0. (5)

Step-2: update the joint policy πk ≜ argmaxπ:θ̂∈Θk E{πq,πa,∆1,θ̂}[
∑H

h=1 rh(ϕîkh
(skh), a

k
h)].

for h = 1 : H do
Step-3: query the partial OSI {ϕi(s

k
h)}{i∈îkh}

according to the query policy πk
q,h, collect

partial noisy observation õkh, and then take an action akh according to the action policy πk
a,h.

end for
end for

Theorem 2 shows that OP-TLL achieves a regret that (i) depends polynomially in all parameters A,
H , |S̃|, d and K, and (ii) depends on

√
K, which is tight. To the best of our knowledge, this is the

first such near-optimal result for POMDPs with partial OSI. Similar to algorithm design, the main
difficulty in the proof is how to capture the mutual impact between the query and action policies.
Due to page limits, please see Appendix E for details and Appendix F for the case when d̃ > 1.

5 OPTIMALITY UNDER PARTIAL OSI AND PARTIAL NOISY OBSERVATIONS

In this section, we identify another tractable class (i.e., Class 2 below) of POMDPs with partial OSI,
and provide a new near-optimal algorithm. Please see Fig. 1c for a sketch of one step in this class.

Class 2. (POMDPs with partial OSI and partial noisy observations) At each step, (step-i) the
agent actively selects sub-states îkh to query, and receives the partial OSI {ϕi(s

k
h)}{i∈îkh}

; (step-ii)

the agent receives the partial noisy observation õkh for the other d− d̃ sub-states that are not queried,

where õkh is generated according to the partial emission probability Õîkh
h

(
·
∣∣{ϕi(s

k
h)}{i/∈îkh}

)
. The

partial emission matrix Õî
h ∈ RO×|S̃|d−d̃

satisfies the partially revealing condition: there exists a
constant α > 0, such that σS̃(Õî

h) ≥ α for any sub-states î and step h, where S̃ = |S̃|d−d̃ and σS̃(·)
denotes the S̃-th largest singular value of a matrix. Namely, min{h,̂i} σS̃(Õî

h) ≥ α holds; (step-iii)
the agent takes an action akh and receives the reward rh(ϕîkh

(skh), a
k
h); (step-iv) the next state skh+1

is drawn according to the joint transition probability Ph(·|skh, akh).

We note that in classic POMDPs (Chen et al., 2022a; Liu et al., 2022; 2023), the noisy observa-
tion is independent of the decisions of the agent. In contrast, in Class 2, at each step, the par-
tial noisy observation õkh depends on the query îkh of the agent. This new dependency results in
new non-trivial challenges in both the algorithm design and regret analysis. For clarity, we use
Γk
h ≜ {̂ik1 , ϕîk1

(sk1), õ
k
1 , a

k
1 , ..., î

k
h−1, ϕîkh−1

(skh−1), õ
k
h−1, a

k
h−1} to denote the feedback (including

both the partial OSI Φk
h and partial noisy observations õk1:h−1) in this case.

Remark 3. The partially revealing condition in step-ii of Class 2 is milder than the weakly revealing
condition in Liu et al. (2022) that requires minh σS(Oh) ≥ α, where S = |S̃|d is the total number
of states and Oh is the emission matrix that we introduced in Sec. 2.1. This is because for an m× n
matrix A and an m× (n− l) sub-matrix B of A, we have that σi+l(A) ≤ σi(B) Horn et al. (1994).

Remark 4. Without the partially revealing condition in step-ii of Class 2, POMDPs with partial OSI
are still intractable in the worst case. This can be shown by letting the partial emission probability
Õî

h of each î be the same for all possible sub-states {ϕi(s)}i/∈î, and then we can show that learning
an ϵ-optimal policy in POMDPs with partial OSI still necessarily requires Ω̃(AH/ϵ2) samples.
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For Class 2, we develop a new near-optimal algorithms (see Algorithm 2), called Optimistic Max-
imum Likelihood Estimation with Partial OSI (OMLE-POSI). Recall that the new challenges here
are: (i) the partial noisy observation õkh depends on the query îkh of the agent; (ii) the performance of
the action policy πk

a,h depends on both the observation õkh and query îkh. Our algorithm is inspired
by the idea of OMLE, but extends it to elegantly address the non-trivial joint query policy and action
policy optimization. Specifically, OMLE-POSI (in Algorithm 2) differs from OMLE in two aspects.
First, in “Step-1”, OMLE-POSI only collects partial noisy observations õk1:H , which relies on the
queries îk1:H determined in Step-2. Due to this new relation, in Eq. (5) we design a new bonus term

β = O
(
(|S̃|2dA+ |S̃|d−d̃O) ln(|S̃|dAOHK)

)
which depends on the size of the non-queried sub-

state space |S̃|d−d̃, and OMLE-POSI only estimates partial emission model Õ. Second, note that in
the joint optimization of “Step-2”, the action policy πa is inherently a function of the query policy
πq , since the action akh taken according to πk

a,h relies on the observation õkh, which further depends
on the query îkh made according to πk

q,h. Due to page limits, please see Appendix G for more details.
Theorem 3. (Regret) For POMDPs with the partial OSI and partially revealing condition, with
probability 1− δ, when |S̃| > (d/d̃)2, the regret of OMLE-POSI can be upper-bounded as follows,

RegOMLE-POSI(K) ≤ Õ

(
|S̃|2d−d̃OAH4

√
K(|S̃|2dA+ |S̃|(d−d̃)/2O)/α2

)
. (6)

Theorem 3 above shows that (i) the regret of OMLE-POSI depends on
√
K, which is tight; (ii) the

regret depends polynomially on A and H; and (iii) the regret further decreases exponentially as d̃
increases. To the best of our knowledge, this is the first such near-optimal result for POMDPs with
partial OSI. Recall that partial OSI affects both the MLE and policy optimization. Thus, the main
difficulty in the proof of Theorem 3 is how to capture such new effects. Indeed, directly applying
existing observable operator method (OOM) Jaeger (2000); Liu et al. (2022) will result in a regret
that does not decrease with d̃. Please see Appendix G for our new analytical ideas and the proof.
Theorem 4. (Lower bound) For POMDPs with the partial online state information and partially
revealing condition, the regret of any algorithm π can be lower-bounded as follows,

Regπ(K) ≥ Ω̃
(√

AH · |S̃|d/2 ·
√
K
)
. (7)

Theorem 4 indicates that the dependency on |S̃|d/2 in the regret of OMLE-POSI is necessary.
Our key proof idea in Appendix H is to construct a new special state transition, such that even
with partial OSI, all combinations of sub-states ϕi(s) must be explored to achieve a sub-linear
regret. We conjecture that a stronger lower bound depending on the query capability would be
Ω̃
(√

AH · |S̃|(d−d̃)/2 ·
√
K/α

)
, and leave this as a future open question.

6 DISCUSSION AND CONCLUSION

It is worthwhile to draw connection of our POMDP setting with the standard POMDP and general
decision making problem. First, our POMDP setting can be placed under the general decision-
making setting (Foster et al., 2021; Chen et al., 2022b; Foster et al., 2023). However, directly
instantiating their result to our Classes 1 and 2 will result in worse regret upper bounds than our
results here, which exploit our special problem structure such as the dependency of the action policy
πa on the query policy πq for developing more refined bounds. Second, our POMDP setting cannot
be placed under the standard POMDP setting (Liu et al., 2022; Chen et al., 2022a), mainly due to
the special sequential structure of the query, observation, action, and reward in our process. More
detailed discussion is provided in Appendix B.

To conclude, this paper answers a fundamental open question: how much online state information
(OSI) is sufficient to achieve tractability in POMDPs? Specifically, we establish a lower bound that
reveals a surprising hardness result: unless we have full OSI, we need an exponential complexity
to obtain an ϵ-optimal policy for POMDPs. Nonetheless, we identify two novel tractable classes of
POMDPs with only partial OSI, which are important in practice. For these two classes, we provide
three new RL algorithms, which are shown to be near-optimal by establishing new regret upper and
lower bounds. There are several interesting future work. For example, it would be interesting to
study the value of partial OSI in more general POMDPs, e.g., with continuous state spaces (Cai
et al., 2022; Liu et al., 2023). Second, the regret upper and lower bounds that we achieved can be
further tightened, e.g., improve the dependency on d and O using ideas from Chen et al. (2023).
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NOTATIONS

For the convenience of readers, we summarize the notations in Table 1.

Table 1: Notations

S state space
A action space
O observation space
S number of states
A number of actions
O number of observations
H number of steps in each episode
K number of episodes
∆1 initial state probability measure
P state transition probability measure
O emission probability measure
r reward function
d dimension of the feature vector of each state

ϕi(s) i-th sub-state of state s

S̃ sub-state set
| · | the cardinality of a set
d̃ query capability: number of sub-states that can be queried
îkh indices of the queried sub-states
Φk

h feedback before the partial OSI for step h of episode k is revealed
∆̂h({̂i}|d̃) conditional probability measure supported on the query space {̂i : |̂i| = d̃}
∆̃h(A) probability measure supported on the action space A
Φ̂h feedback space of Φk

h before the partial OSI for step h is revealed
Φ̃h feedback space after the partial OSI for step h has been revealed
πk
q,h query policy for step h in episode k

πk
a,h action policy for step h in episode k

πk
h joint query-and-action policy for step h in episode k

V πk

V-value of the joint policy πk

Regπ
1:K

(K) regret of the online joint policy π1:K

Pk
h(ϕi(s

′)|ϕi(s), a) the estimated transition kernel
N k

h (ϕi(s), a) number of times (ϕi(s), a) has been visited at step h up to episode k
N k

h (ϕi(s), a, ϕi(s
′)) number of times (ϕi(s), a, ϕî(s

′)) has been visited at step h up to episode k

õkh partial noisy observation for the d− d̃ sub-states that are not queried

Õîkh
h

(
·
∣∣{ϕi(s

k
h)}{i/∈îkh}

)
partial emission probability

Γk
h feedback in Class 2, including both the partial OSI and partial noisy observations

rkh,i the reward value rh(ϕi(s
k
h), a

k
h) of the i-th sub-state at step h of episode k

r̂k−1
h the estimated reward at step h of episode k
θ joint problem model

Ōî ∈ RO×|S̃|d augmented partial emission matrix

A MORE RELATED WORK ON POMDPS

Theoretical studies on partially observable Markov decision processes (POMDPs) have had a long
history Jaeger (2000); Åström (1965); Smallwood & Sondik (1973); Sondik (1978); Kaelbling et al.
(1998); Hauskrecht (2000). For example, Åström (1965) studied limitations of dynamic program-
ming in solving POMDPs. Smallwood & Sondik (1973) studied properties of the optimal control
policy and the optimal payoff function in a finite-state discrete POMDP problem. Sondik (1978)
studied implementable approximation solutions for stationary policies in POMDPs. Kaelbling et al.

13



Under review as a conference paper at ICLR 2024

(1998) studied properties of the finite-memory controller in a POMDP problem motivated by robotic
navigation. However, these studies did not provide the performance guarantee on the regret or the
tractability.

Recently, there has been a significant progress on performance-guaranteed reinforcement learning
algorithms for POMDPs. For example, Efroni et al. (2022) studied m-step decodable POMDPs,
where there is a specific one-to-one mapping from the noisy observation in a history of m-steps
(i.e., from step h − m + 1 to step h) to the current true underlying state; Jiang et al. (2017) stud-
ied reactive POMDPs, where the optimal value/action at each step is assumed to be independent
of any past (i.e., any step before the current step h) decisions and feedback; Zhang et al. (2022)
studied POMDPs with block MDPs, where each underlying state can be directly learned based on
the noisy observation; Kwon et al. (2021) studied POMDPs with latent MDPs, where an unknown
MDP model is selected by the environment at the beginning of each episode, and is executed for
the episode; Xiong et al. (2022) studied POMDPs with reachability, where the critical exploration
is not handled; Golowich et al. (2022) studied POMDPs with γ-observability, where γ characterizes
how different the emission probabilities are for different states; Chen et al. (2022a); Zhong et al.
(2022) studied predictive state representations, where the probability of each near-term future obser-
vations is a weighted linear combination of the probability of a special subset of observations; Liu
et al. (2022; 2023) studied m-step weakly-revealing POMDPs, where the current state can be statis-
tically decoded based on m-step near-term future observations; and Foster et al. (2021); Chen et al.
(2022b); Foster et al. (2023) studied general decision making with structured observations, which
includes POMDPs as a special case. However, these results typically rely on various assumptions
on the emission model or the underlying states, which may not always hold in practice.

To circumvent the dependency and sometimes strong assumptions on the emission probability dis-
tribution, Sinclair et al. (2023); Lee et al. (2023) studied the benefit of hindsight state information.
Specifically, Sinclair et al. (2023) studied POMDPs with exogenous inputs, where the state transi-
tion function and reward function are parameterized by an exogenous input. This exogenous input
will be known after the action is taken, i.e., in hindsight. Lee et al. (2023) studied POMDPs with
full observability, where the unknown underlying state will be revealed to the agent at the end of
each episode, i.e. full hindsight state information. Thus, these recent work studying POMDPs with
hindsight state information typically assume full hindsight state information or full observability,
which is usually difficult to obtain in practice.

B COMPARISON WITH THE STANDARD POMDP SETTING AND COMPARISON
BETWEEN CLASS 1 AND CLASS 2

In this section, we provide comparisons with the standard POMDP setting. In addition, we provide
a comparison between the identified Class 1 and Class 2.

B.1 COMPARE WITH THE STANDARD POMDP SETTING

Our POMDP setting with partial OSI cannot be placed under the standard POMDP setting (Liu et al.,
2022; Chen et al., 2022a). Recall that in our setting, at each step, the partial noisy observation õkh
depends on the query îkh of the agent, whereas standard POMDP does not allow the observation to
depend on the action of the same time step. One may resolve this issue by letting the observation
at step h be oh = (ϕîh

(sh), õh) and letting the action be Ah = (ah, îh+1), so that îh becomes the
action taken in the previous time step h − 1 and hence the observation oh can depend on such an
action îh. However, there is still a major issue here. In our process, after taking ah, the agent receives
the reward rh, and then takes the query îh+1 (which depends on rh). In contrast, the above argument
of Ah = (ah, îh+1) requires taking action ah and îh+1 simultaneously, which is not consistent with
our setting.

Moreover, we conjecture that a lower bound depending on the revealing condition α could be de-
veloped. However, note that the development of the regret lower bound (which depends on α) and
the development of the regret lower bound in our paper require two different state transitions. In
particular, a very special sub-state transition is needed in our case for making partial OSI not useful
for the learning agent. We leave this as an interesting future work.
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B.2 THE COMPARISON BETWEEN CLASS 1 AND CLASS 2

We note that each of two classes, i.e., Class 1 and Class 2, becomes learnable due to different natures
in their transition model structures, and hence requires very different algorithm designs to handle
these specialities. Below we highlight the two key differences between Class 1 and Class 2 that
make it difficult to unify the approaches for them. The first difference is the structure of the state
transition kernel P. In Class 1, the state transition probability is assumed to be Ph(·|skh, akh) =∏d

i=1 Ph,i(ϕi(·)|ϕi(s
k
h), a

k
h). That is, it is the product of independent transition kernels of sub-

states. In contrast, in Class 2, we do not need such a requirement. The second difference is the
additional noisy observation õ. In Class 1, in addition to the partial OSI, the agent receives the partial
noisy observation õkh for the d − d̃ sub-states that are not queried, where õkh is generated according

to the partial emission probability Õîkh
h

(
·
∣∣{ϕi(s

k
h)}{i/∈îkh}

)
. Moreover, the partial emission matrix

Õî
h ∈ RO×|S̃|d−d̃

is assumed to satisfy the partially revealing condition: there exists a constant
α > 0, such that σS̃(Õî

h) ≥ α for any sub-states î and step h, where S̃ = |S̃|d−d̃ and σS̃(·) denotes
the S̃-th largest singular value of a matrix. Namely, min{h,̂i} σS̃(Õî

h) ≥ α holds. In contrast, Class 1
does not require any additional noisy observation õ at all.

C PROOF OF THEOREM 1

In this section, we provide the complete proof for Theorem 1 with general d and d̃.

Proof. As we discussed in Sec. 3, to prove Theorem 1, the most important parts are to construct
special state representations, state transitions, and reward functions, such that partial online state
information (OSI) cannot help the learner to improve her statistical knowledge about the true under-
lying state. As a result, the learner can only rely on the relation between the action sequence and
reward to learn the optimal policy. Therefore, if we carefully construct the reward function for the
optimal and sub-optimal action sequences, we should be able to guarantee that only after enough
(i.e., exponential number of) episodes, can the learner figure out the ϵ-optimal policy, i.e., the one
that determines which probability distribution over the action sequences conditioned on the noisy
observation is the best with high probability. Towards this end, we construct a hard instance with 2d
states, i.e., s(1), s(2), ..., s(2d). For ease of elaboration, we start from the case when d̃ = 1, which
is ready and easy to be extended to the cases with d̃ > 1 as we discuss at the end of the proof.

C.1 OUR IDEAS FOR CONSTRUCTING THE STATE REPRESENTATION

Our key idea is to construct a special state representation, such that by observing only d̃ sub-states,
it is still difficult or impossible for the learner to infer the true underlying state. Specifically, the first
d states s(1), s(2), ..., s(d) are represented as follows,

ϕ⃗(s(1)) =


x1

x2

...
xd

 , ϕ⃗(s(2)) =


xd+1

xd+2

x3

...
xd

 , ..., ϕ⃗(s(δ)) =



x1

x2

...
xδ−2

xd+δ−1

xd+δ

xδ+1

...
xd


, ..., ϕ⃗(s(d)) =



x1

x2

...
xd−2

x2d−1

x2d

 . (8)
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The last d states s(d+ 1), s(d+ 2), ..., s(2d) are represented as follows

ϕ⃗(s(d+ 1)) =


xd+1

x2

...
xd

 , ϕ⃗(s(d+ 2)) =


x1

xd+2

x3

...
xd

 , ..., ϕ⃗(s(d+ δ)) =



x1

...
xδ−1

xd+δ

xδ+1

...
xd


,

..., ϕ⃗(s(2d)) =


x1

x2

...
xd−1

x2d

 . (9)

That is, we first let the state-vector of state s(1) be ϕ⃗(s(1)) = [x1, x2, ..., xd]
T. Then,

• The representation of each of the states s(2), s(3) ..., s(d) differs from the representation of
state s(1) by two and only two values. Precisely, the differences between the representation
of the state x(δ) and the representation of state x(1) are the (δ− 1)-th element and the δ-th
element in the state vector, where 1 < δ ≤ d. As shown in Eq. (8), we let the new values of
the (δ− 1)-th element and the δ-th element in the state vector of s(δ) be xd+δ−1 and xd+δ ,
respectively.

• The representation of each of the states s(d + 1), ..., s(2d) differ from the representation
of state s(1) by exactly one value. Precisely, the difference between the representation of
the state x(d + δ) and the representation of state x(1) is the (d + δ)-th element, where
1 ≤ δ ≤ d. As shown in Eq. (9), we let the new value of the (d+ δ)-th element in the state
vector of s(d+ δ) be xd+δ .

Next, we introduce the high-level reasons for constructing the state representations in this way. For
ease of elaboration, let us consider states s(1), s(2), ..., x(d) as a group of states, and we call it
group a. Similarly, we consider states s(d + 1), s(d + 2), ..., x(2d) as another group of states, and
we call it group b.

There are two important properties of our construction of the state representation. The first property
is that, each state in group a (i.e., s(1), s(2), ..., s(d)) must contain at least one same sub-state as
that in each state of group b (i.e., s(d + 1), s(d + 2), ..., s(2d)). For example, the first sub-states
of state s(1) from group a and states s(d + 2), ..., s(2d) from group b are all x1. This means that,
by only receiving the partial online state information ϕ1(s) = x1, the learner is not able to know
whether she is in a state from group a or group b. As another example, the second sub-states of
state s(1) from group a and states s(d + 1), s(d + 3), ..., s(2d) from group b are x2. This means
that, by only receiving the partial online state information ϕ2(s) = x2, the learner is also not able to
know whether she is in a state from group a or group b. As a result, if (i) there is only one specific
action sequence that guarantees the learner to be in group a, and (ii) group a incurs a larger reward,
then intuitively the learner has to constantly keep trying all exponential number of possible action
sequences to figure this (only choosing that unknown specific action sequence generates a larger
expected reward) out with high probability.

The second property is that any combination of the sub-states of any state from one group must
exist in some states from another group. For example, the sub-state sequence in state s(1) (from
group a) is x1, x2, ..., xd. The same combination of sub-states can be collected by receiving the first
sub-state of state s(d + 2) (from group b), and the second to the last sub-states of state s(d + 1)
(from group b). As another example, the sub-state sequence in state s(d + 1) (from group b) is
xd+1, x2, ..., xd. The same combination of sub-states can be collected by receiving the first sub-
state of state s(2) (from group a) and the second to the last sub-states of state s(1) (from group a).
This property is key to guarantee that the combination of partial OSI from different times still does
not help the learner to improve her statistical knowledge about the true underlying state. Please see
our more detailed discussions below.
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Similar to the simple case when d = 2, another question still remains: whether a combination of the
partial online state information collected from different times is enough to learn the true underlying
states efficiently? To answer this question, we construct a special state transition using our second
idea below. Together with the second property of the state representation that we construct above,
this special state transition causes learning-difficulty for the learner, even when multiple partial OSI
from different times are combined.

C.2 OUR IDEAS FOR CONSTRUCTING THE SUB-STATE TRANSITION

Our key idea here is to construct a special state transition, such that even by combining the partial
OSI about different sub-states from different times together, it is still difficult for the learner to infer
the true underlying state. Specifically, the state transition probabilities at step h = 1 are as follows,

P1(s2|s(1), a(1)) =
{
1/d, if s2 ∈ {s(1), s(2), ..., s(d)};
0, if s2 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)}; (10)

P1(s2|s(1), a(2)) =
{
0, if s2 ∈ {s(1), s(2), ..., s(d)};
1/d, if s2 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)}. (11)

The state transition probabilities at step h = 2 are as follows,

P2(s3|s2, a(1)) =
{
0, if s3 ∈ {s(1), s(2), ..., s(d)} and for all s2;
1/d, if s3 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)} and for all s2;

(12)

P2(s3|s2, a(2)) =


1/d, if s3 ∈ {s(1), s(2), ..., s(d)} and s2 ∈ {s(1), s(2), ..., s(d)};
0, if s3 ∈ {s(1), s(2), ..., s(d)} and s2 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)};
0, if s3 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)} and s2 ∈ {s(1), s(2), ..., s(d)},
1/d, if s3 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)} and s2 ∈ {s(d+ 1), ..., s(2d)}.

(13)

The state transition probabilities at step h = 3 are as follows,

P3(s4|s3, a(1)) =


1/d, if s4 ∈ {s(1), s(2), ..., s(d)} and s3 ∈ {s(1), s(2), ..., s(d)};
0, if s4 ∈ {s(1), s(2), ..., s(d)} and s3 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)};
0, if s4 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)} and s3 ∈ {s(1), s(2), ..., s(d)},
1/d, if s4 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)} and s3 ∈ {s(d+ 1), ..., s(2d)}.

(14)

P3(s4|s3, a(2)) =
{
0, if s3 ∈ {s(1), s(2), ..., s(d)} and for all s3;
1/d, if s4 ∈ {s(d+ 1), s(d+ 2), ..., s(2d)} and for all s3.

(15)

That is, in each episode, the learner starts from state s1 = s(1), i.e.,

∆1(s1) =

{
1, if s1 = s(1);

0, otherwise.
(16)

Then, for step h = 1 to step h = 3, we let

• At step h = 1, (i) if action a(1) is chosen, the state s1 will transition to s(1), s(2), ..., s(d)
from group a with the same probability; (ii) if action a(2) is chosen, the state will transition
to s(d+ 1), s(d+ 2), ..., s(2d) with the same probability.

• At step h = 2, (i) if action a(1) is chosen, all states s(1), s(2), ..., s(d) from group a will
transition to states s(d+1), s(d+2), ..., s(2d) from group b with the same probability; all
states s(d+1), s(d+2), ..., s(2d) from group b will transition to states s(d+1), s(d+2),
..., s(2d) from group b with the same probability; (ii) if action a(2) is chosen, all states
s(1), s(2), ..., s(d) from group a will transition to states s(1), s(2), ..., s(d) from group a
with the same probability; all states s(d+1), s(d+2), ..., s(2d) from group b will transition
to states s(d+ 1), s(d+ 2), ..., s(2d) from group b with the same probability.
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• At step h = 3, (i) if action a(1) is chosen, all states s(1), s(2), ..., s(d) from group a will
transition to states s(1), s(2), ..., s(d) from group a with the same probability; all states
s(d + 1), s(d + 2), ..., s(2d) from group b will transition to states s(d + 1), s(d + 2),
..., s(2d) from group b with the same probability; (ii) if action a(2) is chosen, all states
s(1), s(2), ..., s(d) from group a will transition to states s(d+ 1), s(d+ 2), ..., s(2d) from
group b with the same probability; all states s(d+1), s(d+2), ..., s(2d) from group b will
transition to states s(d+ 1), s(d+ 2), ..., s(2d) from group b with the same probability.

• Note that for all states s(d+ 1), s(d+ 2), ..., s(2d) from group b, at step h = 2 and h = 3,
no matter which action is chosen, they will transition to s(d+ 1), s(d+ 2), ..., s(2d) from
group b with the same probability.

Then, together with the state representations that we construct before, even when the partial OSI
about different sub-states from different times are combined together, such a construction for the
state transition still prevents the learner from knowing which group of states she is in. For example,
at step h = 1 of d consecutive episodes, the learner can keep taking action a(1) and query the first
sub-state to the last sub-state one-by-one. Then, the partial OSI at step h = 2 could be ϕ1(s

k
2) =

xd+1 (i.e., the first sub-state of s(2)), ϕ2(s
k+1
2 ) = x2 (i.e., the second sub-state of s(1)), ϕ2(s

k+2
2 ) =

x3 (i.e., the third sub-state of s(2), ..., ϕ2(s
k+d
2 ) = xd (i.e., the last sub-state of s(2). However, note

that the sub-states of s(d + 1) are also xd+1, x2, ..., xd. Thus, such a combination of partial OSI,
i.e.,

ϕ1(s
k
2) = xd+1, ϕ2(s

k+1
2 ) = x2, ..., ϕ2(s

k+d
2 ) = xd, (17)

is not powerful enough for the learner to distinguish whether she is visiting states s(1) and s(2) from
group a or she is simply visiting state s(d + 1) from group b. It is not difficult to see that similar
issues occur at other steps.

C.3 OUR IDEAS FOR CONSTRUCTING THE REWARD FUNCTION

Up to here, we can see that only with partial OSI, the learner cannot improve her statistical knowl-
edge about the true underlying states. Thus, she can only rely on the statistical relation between the
sequence of actions that is chosen and the reward that is received. Hence, finally we construct the
reward as follows.

• The rewards rh at steps h = 1, h = 2 and h = 3 are all 0;

• If the final state at step h = 4 is in group b, i.e., s(d+ 1), s(d+ 2), ..., s(2d), the reward at
step h = 4 follows Bernoulli distribution with mean 1

2 ;

• If the final state at step h = 4 is in group a, i.e., s(1), s(2), ..., s(d), the reward at step
h = 4 follows Bernoulli distribution with a slightly higher mean equal to 1

2 + ϵ.

In this way, the optimal policy will take action sequence

a∗1 = a(1), a∗2 = a(2), a∗3 = a(1), (18)

for all episodes, so that she can stay in group a and enjoy a larger expected total reward in ev-
ery episode equal to 1

2 + ϵ. Note that the optimal action sequence (a(1), a(2), a(1)) in Eq. (18)
is simply because of the specific constructions that we introduce above. This optimal action se-
quence could easily be changed to any other action sequence (a∗1, a

∗
2, a

∗
3), e.g., (a(1), a(1), a(1)) or

(a(2), a(2), a(2)). The key idea is that there exists one and only one action sequence that generates
larger reward at the end of each episode.

Note that the online learner has no idea about which state or group she is in, and partial OSI cannot
provide any help for distinguishing the true underlying states and groups. Thus, in sharp contrast
to the optimal policy, the online learner has to try every possible sequence of actions to figure out
which sequence of actions provides a larger reward with high probability.
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C.4 OUR IDEAS FOR LOWER-BOUNDING THE FINAL REGRET

Since there are AH−1 number of possible action sequences, according to the Hoeffding’s inequality,
we can show that the sample complexity for achieving an ϵ-optimal policy is Ω(AH/ϵ2). Precisely,
based on the reasons from Appendix C.1, Appendix C.2 and Appendix C.3, this hard instance is
equivalent to finding the best arm in a multi-armed bandit problem by using the random reward
feedback, where each arm corresponds to an action sequence. For this part, similar to the KL-
divergence analysis in the bandit learning, we can consider an equivalent instance of the multi-armed
bandit problem with AH−1 number of arms as follows:

• The reward of one arm i∗, i.e., the optimal arm, is generated according to the Bernoulli
distribution with mean 1

2 + ϵ, while the reward of all other AH−1 − 1 arms, i.e., the sub-
optimal arms, are generated according to the Bernoulli distribution with slightly smaller
mean 1

2 .

• In addition, the optimal arm i∗ is chosen uniformly randomly by the environment.

• Note that at each time k, the algorithm chooses one arm based on the past reward feedback
Γk−1 = {0, 1}k−1.

We use Pi∗(K) to denote the probability that the online algorithm π chooses the optimal arm i∗ in
this instance, i.e.,

Pi∗(K) = Pr{iπ(K) = i∗}. (19)

Thus, in the following, we focus on upper-bounding the expected probability of choosing the optimal
arm i∗ by any online algorithm π, where the expectation is taken with respect to the randomness
of the feedback and the randomness of the optimal arm i∗. To prove this, we can use Pinsker’s
inequality and Hoeffding’s inequality. Specifically, first, we use P0(K) to denote the probability
that the online algorithm π chooses the optimal arm i∗ in a fictitious case, where the reward of all
arms are generated according to the same Bernoulli distribution with mean 1

2 . In such a fictitious
case, each arm (including arm i∗) performs equally, and thus could be chosen arbitrarily. Next,
we prove that the difference between the probability Pi∗(K) of choosing the optimal arm i∗ in the
instance that we construct above and the probability P0(K) in the fictitious instance can be upper-

bounded by 1
2

√
E0[N ] log 1

1−4ϵ2 , where E0[N ] is the expected number of times choosing the arm
i∗ when the reward of all arms follows the same distribution.

First, according to the total variation distance and Pinsker’s inequality, we have

|Pi∗(K)− P0(K)| ≤ ∥Pi∗ − P0∥TV ≤
√

1

2
KL(Pi∗∥P0). (20)

Next, based on the definition of the KL-divergence and the chain rule, we have

KL(Pi∗∥P0) =

K∑
k=1

∑
{0,1}k−1:ak=i∗

P0({0, 1}k−1)

(
1

2
log(

1/2

1/2− ϵ
) +

1

2
log(

1/2

1/2 + ϵ
)

)

=
1

2
log

(
1

1− 4ϵ2

) K∑
k=1

P0(a
k = i∗), (21)

where the sum of the probabilities
∑K

k=1 P0(a
k = i∗) is equal to the expected number of times

choosing the optimal arm i∗. Moreover, since the optimal arm i∗ is chosen uniformly randomly
among all arms, by combining Eq. (20) and Eq. (21), we have that the expected probability of
choosing the optimal arm i∗ can be upper-bounded as follows,

Ei∗ [Pi∗(K)] ≤ Ei∗ [P0(K)] +
1

2
Ei∗

[√
E0[N ] log

1

1− 4ϵ2

]
. (22)

Then, according to Jensen’s inequality, from Eq. (22), we have

Ei∗ [Pi∗(K)] ≤ 1

AH−1
+

1

2

√
Ei∗ [E0 [N ]] log

1

1− 4ϵ2
. (23)
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Finally, since Ei∗ [E0 [N ]] = K
AH−1 and log 1

1−x ≤ 2x for all x ≤ 1
2 , from Eq. (23), we have that

whenever K ≤ O(A
H

ϵ2 ),

Ei∗ [Pi∗(K)] ≤ 2

3
, (24)

for all ϵ ≤
√

1/8.

Furthermore, when d̃ > 1, the same line of proof can be easily generalized to prove the correspond-
ing dependency in the sample complexity lower bound, i.e., we can still use the similar construction
of state representations and state transitions, just by guaranteeing that any d̃ combination of sub-
states in group a must exist in group b, and vice versa. To avoid too much repetition, we take the
case with d = 3, d̃ = 2 as an example. In this case, we consider 8 states, i.e., s(1), ..., s(8). Then,
we let

ϕ⃗(s(1)) =

[
x1

x2

x3

]
, ϕ⃗(s(2)) =

[
x1

x6

x4

]
, ϕ⃗(s(3)) =

[
x5

x2

x4

]
, ϕ⃗(s(4)) =

[
x5

x6

x3

]
,

ϕ⃗(s(5)) =

[
x1

x2

x4

]
, ϕ⃗(s(6)) =

[
x5

x2

x3

]
, ϕ⃗(s(7)) =

[
x1

x6

x3

]
, ϕ⃗(s(8)) =

[
x5

x6

x4

]
.

In this way, the first property that we mentioned in Appendix C.1 still holds. That is, each state
in group a (i.e., s(1), s(2), s(3), and s(4)) must contain at least one same combination of d̃ = 2
sub-states as that in each state of group b (i.e., s(5), s(6), x(7), and s(8)), and vice versa. For
example, the first two sub-states of state s(1) and state s(5) are all (x1, x2). This means that, by
only receiving partial OSI ϕ{1,2}(s) = (x1, x2), the learner is not able to know whether she is in a
state from group a or group b. As another example, the last two sub-states of state s(1) and states
s(6) are (x2, x3). This means that, by only receiving partial OSI ϕ{2,3}(s) = (x2, x3), the learner
is also not able to know whether she is in a state from group a or group b.

Moreover, the second property that we describe in Appendix C.1 still holds. That is, any full com-
bination of the sub-states of any state from one group must exist in some states from another group.
For example, the sub-state sequence in state s(1) (from group a) is x1, x2, x3. The same combi-
nation of sub-states can be collected by receiving the first two sub-states of state s(5) (from group
b), and the second two sub-states of state s(6) (from group b). As another example, the sub-state
sequence in state s(5) (from group b) is x1, x2, x4. The same combination of sub-states can be col-
lected by receiving the first two sub-states of state s(1) (from group a) and the second two sub-states
of state s(3) (from group a). Therefore, finally, by constructing the same state-transition and reward
function, all the previous proof steps still hold. This concludes the proof.

D PROOF OF PROPOSITION 1

In this section, we provide and prove a more general version of Proposition 1. Please see Proposi-
tion 2 below.
Proposition 2. (Intractability) There exist POMDPs with independent sub-states and even with
noisy observations, such that with a probability p ≥ 1/3, learning an ϵ-optimal policy necessarily
requires Ω̃(AH/ϵ2) samples.

Proposition 2 indicates that without the partial OSI in item (i) of Class 1 that is defined in Sec. 4,
learning in POMDPs with independent sub-states is still intractable, i.e., with exponentially scaling
sample complexity.

Proof. To prove Proposition 2, we construct a new hard instance, where the emission probabilities
of all states are exactly the same. Thus, the noisy observation cannot help the learner to improve
her statistical knowledge about the true underlying state. As a result, the learner can only rely on
the relation between the action sequence and reward to learn the optimal policy. Therefore, if we
carefully construct the reward function for the optimal and sub-optimal action sequences, we should
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be able to guarantee that only after enough (i.e., exponential number of) episodes, can the learner
figure out the ϵ-optimal policy, i.e., the one that determines which probability distribution over the
action sequences conditioned on the noisy observation is the best with high probability. The hard
instance that we construct for proving Proposition 2 is as follows. We still focus on showing a simple
instance that is easy to understand, which is easy to be extended to more general case.

D.1 OUR IDEAS FOR CONSTRUCTING THE SUB-STATES AND THE STATE REPRESENTATION

We consider a hard instance with the value set of elements S̃ = {x1, x2}. That is, there are d = 2

sub-states and the caldinality is |S̃| = 2. Thus, the total number of states is S = |S̃|d = 22 = 4. The
representations of these four states are

ϕ⃗(s(1)) =

[
x1

x1

]
, ϕ⃗(s(2)) =

[
x1

x2

]
, ϕ⃗(s(3)) =

[
x2

x1

]
, ϕ⃗(s(4)) =

[
x2

x2

]
. (25)

The representations are not necessarily exactly the same as that in Eq. (25). Our key idea is to
guarantee that each sub-state takes at least two different values, such that by constructing a spe-
cial emission model and transition kernel (as follows), it is difficult for the learner to improve her
statistical knowledge about the true underlying sub-states.

D.2 OUR IDEAS FOR CONSTRUCTING THE EMISSION MODEL

Our key idea for constructing the emission model is to guarantee that, at each step h, the emission
probabilities for all states are exactly the same. As a result, even with noisy observations, the learner
cannot improve her statistical knowledge about the true underlying state at all. In other words, we
let the emission probability be

Oh(·|s(1)) = Oh(·|s(2)) = Oh(·|s(3)) = Oh(·|s(4)), for all steps h. (26)

In this way, by receiving any noisy observation, the probability of the true underlying state is the
same. Thus, the noisy observation does not provide any useful information for the learner to infer
the true underlying states at any step.

D.3 OUR IDEAS FOR CONSTRUCTING THE SUB-STATE TRANSITION

Recall that in our proof for Theorem 1 in Appendix C, the idea is to construct a special state tran-
sition, such that even by combining the partial online state information about different sub-states
from different times together, it is still difficult for the learner to infer the true underlying state. In
contrast, there is no partial online state information here. Thus, differently from the idea in Ap-
pendix C, our idea here is to guarantee that there exists only one specific sequence of actions, such
that for all sub-states, the values that generate a larger reward can be attained. In order to achieve
this, we construct the special sub-state transition below. We consider A = 2 actions. Specifically,
for each sub-state ϕi(s), at step h = 1,

P1(ϕi(s2)|ϕi(s(1)), a(1)) =

{
1, if ϕi(s2) = x1;

0, if ϕi(s2) = x2;
(27)

P1(ϕi(s2)|ϕi(s(1)), a(2)) =

{
0, if ϕi(s2) = x1;

1, if ϕi(s2) = x2;
(28)

Then, we construct the sub-state transition probabilities of each sub-state ϕi(s) at step h = 2 as
follows,

P2(ϕi(s3)|ϕi(s2), a(1)) =

{
0, if ϕi(s3) = x1 and for all ϕi(s2);

1, if ϕi(s3) = x2 and for all ϕi(s2);
(29)

P2(ϕi(s3)|ϕi(s2), a(2)) =


1, if ϕi(s3) = x1 and ϕi(s2) = x1;

0, if ϕi(s3) = x1 and ϕi(s2) = x2;

0, if ϕi(s3) = x2 and ϕi(s2) = x1;

1, if ϕi(s3) = x2 and ϕi(s2) = x2;

(30)
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Finally, we construct the sub-state transition probabilities of each sub-state ϕi(s) at step h = 3 as
follows,

P3(ϕi(s4)|ϕi(s3), a(1)) =


1, if ϕi(s4) = x1 and ϕi(s3) = x1;

0, if ϕi(s4) = x1 and ϕi(s3) = x2;

0, if ϕi(s4) = x2 and ϕi(s3) = x1;

1, if ϕi(s4) = x2 and ϕi(s3) = x2;

(31)

P3(ϕi(s4)|ϕi(s3), a(2)) =

{
0, if ϕi(s4) = x1 and for all ϕi(s3);

1, if ϕi(s4) = x2 and for all ϕi(s3);
(32)

That is, in each episode, the learner starts from state s1 = s(1) = [x1, x1]
T, i.e.,

∆1(s1) =

{
1, if s1 = s(1);

0, otherwise.
(33)

Then, for step h = 1 to step h = 3, we let

• At step h = 1, (i) if action a(1) is chosen, each sub-state will transition to x1; (ii) if action
a(2) is chosen, each sub-state will transition to x2.

• At step h = 2, (i) if action a(1) is chosen, sub-state x1 will transition to states x2 and
sub-state x2 will transition to x2; (ii) if action a(2) is chosen, sub-state x1 will transition to
states x1 and sub-state x2 will transition to x2.

• At step h = 3, (i) if action a(1) is chosen, sub-state x1 will transition to sub-state x1 and
sub-state x2 will transition to x2; (ii) if action a(2) is chosen, it will transition to states x2.

• Note that for sub-state x2 at step h = 2 and h = 3, no matter which action is chosen, the
states will transition to x2.

By constructing so, only taking action sequence a(1), a(2) and a(1) will guarantee that both sub-
states are in x1.

D.4 OUR IDEAS FOR CONSTRUCTING THE REWARD FUNCTIONS

Since (i) the emission model that we construct in Appendix D.2 guarantees that the noisy observation
cannot help for inferring the true underlying state, and (ii) the sub-state transitions that we construct
in Appendix D.3 guarantees that there exists only one specific sequence of actions that guarantees
that the sub-state x1 is attained, then our idea for constructing the reward functions is to guarantee
that only sub-state x1 provides larger reward. Hence, finally we construct the reward functions as
follows:

• The rewards rh at steps h = 1, h = 2 and h = 3 are all 0;

• If the final sub-state is x2, the reward at step h = 4 follows Bernoulli distribution with
mean 1

2 ;

• If the final sub-state is x1, the reward at step h = 4 follows Bernoulli distribution with a
slightly higher mean equal to 1

2 + ϵ.

In this way, the optimal policy will take action sequence (a(1), a(2), a(1)) for all episodes, so that
she can enjoy a larger expected total reward in every episode equal to 1

2 + ϵ. In contrast, the online
learner has to try every AH−1 possible sequence of actions to figure out which sequence provides
larger reward with high probability. Following the same line of the final part of our proof for Theo-
rem 1, we obtain the final conclusion in Proposition 2.
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E OUR NEW ALGORITHM AND REGRET ANALYSIS FOR THE CASE WITH
d̃ = 1

In this section, we first introduce our new algorithm for the simpler case with d̃ = 1 for complete-
ness, i.e., a special case of Class 1 of POMDPs with independent sub-states. Then, we provide our
complete proof for the regret of our algorithm, i.e., Theorem 5 below.

Theorem 5. (Regret) For POMDPs with partial OSI (d̃ = 1) and independent sub-states, with
probability 1 − δ for any δ ∈ (0, 1), the regret of our OP-TLL algorithm with parameter η1 =

O(
√

d ln d
H2K ) can be upper-bounded as follows,

RegOP-TLL(K) ≤ Õ

(
AH3|S̃|2d

√
K
(
ln(AH2|S̃|K/δ)

)2)
. (34)

Theorem 5 shows that OP-TLL achieves a regret that depends polynomially in A, H , |S̃|, d and
K. We note that the key difference between the tractable Class 1 and factored MDPs is that in the
tractable Class 1, the agent needs to actively query only one sub-state, and then observe the infor-
mation of only this queried sub-state. Hence the problem is still POMDP. In contrast, in factored
MDPs, the full state is observed, and hence the problem is MDP. This is also the main reason that
the same regret in factored MDPs cannot be obtained in the tractable Class 1.

E.1 OPTIMISTIC-PESSIMISTIC TWO-LAYER LEARNING (OP-TLL)

There are three steps in Algorithm 3. In “Step 1”, OP-TLL updates the weights wk(i) and prob-
abilities pk(i) according to Eq. (35). After updating the query policy πq according to the updated
probability distribution, in “Step-2”, OP-TLL chooses a sub-state ikh according to probability pk(i)
and query partial OSI ϕikh

(skh). In “Step-3”, OP-TLL takes an action akh that maximizes the updated
Q-value function in Eq. (37). Thus, OP-TLL contains two critical learning layers that involve our
two new ideas.

Layer-I (Update the query policy pessimistically): This pessimism is because the query policy
updated in Step-1 of Algorithm 1 affects the choice of action akh in Step-3, which requires com-
plete state information for V -value estimation. As a result of this, the relation between the regret
and model misspecification error Jin et al. (2020) indicates a linear-in-K regret if the estimation
error due to query is not sufficiently considered. Thus, although the state-transition and reward are
stochastic, the query needs to be made sufficiently conservatively. Specifically, at the beginning of
each episode k, OP-TLL updates the weights and probabilities for each sub-state ϕi(s) according
to Eq. (35). We note that this is a new variant of the standard exponential weight method, where
the new change in estimating the reward is due to the partial OSI. For example, with a smaller η1,

the term e
η1

dpk−1(i)

∑H
h=1 rk−1

h increases more slowly. As a result, the weight wk(i) increases more
slowly, and thus the algorithm behaves more pessimistically. In Step-2, OP-TLL chooses the query
according to probability pk(i), where the first term wk(i)∑d

i′=1
wk(i′)

captures the query importance of
sub-state i among all sub-states.

Layer-II (Update the action policy optimistically): The intuition for this optimism is to minimize
the bias in reward estimates, which is critical because the query policy updated in Step-1 relies on
the estimated reward. Specifically, in Step-3, OP-TLL takes an action that maximizes the Q-value
function following the optimism-in-face-of-uncertainty principle. Note that the new challenge here
is how to design the bonus term βk

h = O(
√
H2/N k

h (ϕikh
(s), a)) to address the impact of partial

OSI.

E.2 PROOF OF THEOREM 5

We first provide a complete statement for the regret upper-bound of our OP-TLL algorithm. For
simplicity, we will drop (ϕîkh

(skh), a
k
h) from rh(ϕîkh

(skh), a
k
h) when it is clear from the context.
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Algorithm 3 Optimistic-Pessimistic Two-Layer Learning (OP-TLL)

Initialization: w1(i) = 1 and p1(i) = 1
d for all i = 1, ..., d.

for k = 1 : K do
Step 1: update the weights wk(i) and probabilities pk(i) according to Eq. (35) as follows,

wk(i) = wk−1(i) · e
η1

dpk−1(i)

∑H
h=1 r̂k−1

h (ϕi(s
k−1
h ),ak−1

h )
,

pk(i) =
(1− η1)w

k(i)∑d
i′=1 w

k(i′)
+

η1
d
, (35)

where

r̂k−1
h (ϕi(s

k−1
h ), ak−1

h ) = rk−1
h (ϕi(s

k−1
h ), ak−1

h ), if i = ikh,

and r̂k−1
h (ϕi(s

k−1
h ), ak−1

h ) = 0, otherwise, (36)

η1 = O(
√

d ln d
H2K ) is a key parameter that determines how pessimistic the algorithm is.

for h = 1 : H do
Step-2: choose a sub-state ikh according to probability pk(i) and query partial OSI ϕikh

(skh).
Step-3: take an action akh that maximizes the updated Q-value function in Eq. (37) as follows,

Qk
h(ϕi(s), a) = min{rh(ϕi(s), a) + [Pk

hV
k
h+1](ϕi(s), a) +O(

√
H2/N k

h (ϕi(s), a)), H},
(37)

where Pk
h(ϕi(s

′)|ϕi(s), a) =
Nk

h (ϕi(s),a,ϕi(s
′))

Nk
h (ϕi(s),a)

is the estimated transition ker-

nel, N k
h (ϕi(s), a) and N k

h (ϕi(s), a, ϕi(s
′)) are the number of times (ϕi(s), a) and

(ϕi(s), a, ϕî(s
′)) have been visited at step h up to episode k, respectively, and V k

h (ϕikh
(s)) =

maxa Q
k
h(ϕikh

(s), a) is the estimated V -value function.
end for

end for

Proof. The main challenges in the proof of Theorem 2 result from the mutual effects between the
first learning layer and the second learning layer. Specifically, first, note that in Algorithm 1, the first
learning layer is affected by the chosen action and V -value function estimates in the second learning
layer. For example, in the first learning layer, the weight wk+1(i) at each episode is updated based
on the reward

∑H
h=1 rh(ϕîkh

(skh), a
k
h) received in the last episode, which further depends on the

chosen action and V -value function estimates in the second learning layer. Thus, a larger gap in
the observed reward will make the quality of the weights and probabilities worse. This will then
affect the choice of the reward action. Second, note that the chosen action and V -value estimates in
the second learning layer depend on the feedback collected from the determined reward sub-state,
which further depend on the first learning layer. Thus, a larger gap in the weights and probabilities
will make the choice of the rewarding action worse. This will make the V -value estimate even worse
than that in classic MDPs.

To address these new challenges and capture the effects between two learning layers, our idea is to
first analyze each layer separately conditioned on a fixed error from the other layer. Then, based on
the resulting bound, which could be a random value, we further characterize the expected total gap
due to the bias from each layer. Finally, by combining these gap together and taking the expectation
over all possible past realizations, we obtain the final regret upper-bound.

E.2.1 STEP-1: CONNECT THE STOCHASTIC OBSERVED REWARD TO THE SUB-REGRET IN
THE FIRST LEARNING LAYER

In this step, we upper-bound the sub-regret due to the sub-optimiality in the first learning layer.
First, according to the update of the weights in Eq. (2), the property in Lemma 1 below holds.
Please see Appendix E.3 for the proof of Lemma 1.
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Lemma 1. At each step h of episode k, we must have

1

η1
ln


d∑

i=1

wk+1(i)

d∑
i=1

wk(i)

 ≤ 1

d(1− η1)

d∑
i=1

H∑
h=1

rkh,i +
H(e− 2)η1
d2(1− η1)

d∑
i=1

H∑
h=1

rkh,i/p
k(i), (38)

where rkh,i ≜ rh(ϕi(s
k
h), a

k
h).

Note that the left-hand side of Eq. (38) captures the evolution of the weights in the logarithmic scale.
The first term on the right-hand side of Eq. (38) represents the parameterized stochastic observed
total reward in episode k. The second term on the right-hand side of Eq. (38) represents a reduced
version of the variance of the observed reward.

Next, for the sum of both sides of Eq. (38) over all episodes k, we take the expectation with respect
to the randomness of the algorithm, including the randomness of the query policy and the action
policy, and the state transition. Then, by rearranging the terms, the expected cumulative reward
of OP-TLL over all episodes k can be lower-bounded as follows,

E

[
1

d(1− η1)

K∑
k=1

d∑
i=1

H∑
h=1

rkh,i

]

≥ E

[
−H(e− 2)η1

d2(1− η1)

K∑
k=1

d∑
i=1

H∑
h=1

rkh,i/p
k(i)

]
+ E

 1

η1

K∑
k=1

ln


d∑

i=1

wk+1(i)

d∑
i=1

wk(i)


 . (39)

Since 0 ≤ rkh,i ≤ 1 for all h and k, according to the telescoping sum, we have

E

[
1

d(1− η1)

K∑
k=1

d∑
i=1

H∑
h=1

rkh,i

]
≥ −H(e− 2)η1

d2(1− η1)
KHd+ E

[
1

η1
·

(
η1
d

K∑
k=1

H∑
h=1

r̂kh,ikh
− ln d

)]
.

(40)

where r̂k
h,ikh

= r̂kh(ϕikh
(skh), a

k
h), and the expectation is taken with respect to the randomness of the

algorithm, including the query policy and the action policy, and the state transition. Thus, we have

E

[
K∑

k=1

d∑
i=1

H∑
h=1

rkh,i

]
≥ −Hη1

d
KHd+ E

[
d(1− η1)

η1
·

(
η1
d

K∑
k=1

H∑
h=1

r̂kh,ikh
− ln d

)]
, (41)

Finally, we can upper-bound the conditional difference between the stochastic observed reward of
the our OP-TLL and that of the optimal policy as follows,

E

[
K∑

k=1

H∑
h=1

r̂kh,ikh

]
− E

[
K∑

k=1

d∑
i=1

H∑
h=1

rkh,i

]
≤ 2H2η1K +

d ln d

η1
, (42)

where the expectation is taken with respect to the randomness of the algorithm, including the query
policy and the action policy, and the state transition. Note that we now successfully connect the
stochastic observed reward to the sub-regret in the first learning layer. However, the new difficulty
here is that the reward is not the observed one with noise, i.e., not the true optimal reward that we
can obtain in each episode. This is mainly because of the sub-optimality in the second learning layer
for collecting the partial OSI and estimating the V -value function.

E.2.2 STEP-2: CONNECT THE SUB-REGRET IN THE SECOND LEANING LAYER TO THE
WEIGHT ESTIMATION IN THE FIRST LEARNING LAYER

In this step, we address the problem that we mentioned at the end of Appendix E.2.1. We first focus
on the first term on the left-hand side of Eq. (42). Note that to upper-bound the final regret, we need
to capture the gap due to the imperfect reward used for updating weights in Eq. (2). To achieve this,
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we note that the expected difference between the best achievable reward and the observed reward
can be connected as follows,

E

[
K∑

k=1

H∑
h=1

r̂∗h,i∗h

]
− E

[
K∑

k=1

H∑
h=1

r̂kh,ikh

]
= E

[
K∑

k=1

(

H∑
h=1

r̂∗h,i∗h − V k
h )

]
+ E

[
K∑

k=1

(V k
h −

H∑
h=1

r̂kh,ikh
)

]
.

(43)

where r̂∗h,i∗ = r̂kh(ϕi∗h
(skh), a

k
h), and the expectation is taken with respect to the randomness of

the algorithm, including the query policy and the action policy, and the state transition. To upper-
bound the first term on the right-hand side of Eq. (43), below we provide an important lemma,
i.e., Lemma 2, that is proved to be useful later.

Lemma 2. In each episode k, for any δ ∈ (0, 1), with probability at least 1− δ, we have

E

[
H∑

h′=h

r̂∗h′,i∗
h′

]
≤ V k

h , (44)

where V k
h is the V -value estimated by OP-TLL in Algorithm 1.

Please see the proof of Lemma 2 in Appendix E.4. Note that in Lemma 2, the term on the left-hand
side of Eq. (44) is the best possible expected observed reward, which is equivalent to the expected
residual reward obtained by the optimal policy. Moreover, the term on the right-hand side of Eq. (44)
is the estimated V -value at step h of episode k. According to Eq. (44), we have

E

[
K∑

k=1

H∑
h=1

r̂∗h,i∗h

]
− E

[
K∑

k=1

H∑
h=1

r̂kh,ikh

]
≤ E

[
K∑

k=1

(V k
h −

H∑
h=1

r̂kh,ikh
)

]
. (45)

Thus, we can focus on upper-bounding the difference between the estimated expected reward, i.e.,
V k
h , and the expected reward after taking the action akh. Note that in Lemma 2, we have related the

expected reward used in the first learning layer to the V -value estimate in the second learning layer
of Algorithm 1. After relating the expected reward E[

∑H
h′=h r

∗
h′,i∗

h′
] used in the first learning layer

to the V-value estimate V k
h in the second learning layer, we can focus on the difference between

the estimated V-value V k
h and the true reward rk

h,ikh
under the randomness of the queries on the sub-

states ikh. Then, conditioned on the σ-algebra generated by the observation history, such a difference
in each episode k can be decomposed into the sub-differences V k

h,i − E[
∑H

h′=h r
k
h′,i] resulting from

each sub-state i under the randomness of observing sub-state i. The corresponding sub-regret V k
h,i−

E[
∑H

h′=h r
k
h′,i] due to each sub-state i is equivalent to the sub-regret V k

h (skh) − V πk

h (skh) (i.e., the
term inside the summation on the left-hand-side of Proposition 3) in the tabular MDP case studied
in Azar et al. (2017).

Proposition 3. (Lemma 14 in Azar et al. (2017)): With probability 1− δ, we have

K∑
k=1

[
V k
1 (sk1)− V πk

1 (sk1)
]
≤ O

(
H3/2

√
SAK ln

(
H2SAK

δ

)
+H2S2A

(
ln

(
H2SAK

δ

))2
)
.

(46)

Thus, the sum of the sub-regret over all episodes k, i.e.,
∑K

k=1

{
V k
h,i − E[

∑H
h′=h r

k
h′,i]

}
, can be

upper-bounded by applying Proposition 3. Thus, we have that

E

[
K∑

k=1

(V k
h −

H∑
h=1

rkh)

]

≤ O

H3/2

√
d|S̃|AK ln

(
H2|S̃|AK

δ

)
+H2

√
dS2A

(
ln

(
H2|S̃|AK

δ

))2
 . (47)
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E.2.3 STEP-3: UPPER-BOUND THE FINAL REGRET

By connecting the stochastic observed reward to the sub-regret in the first learning layer in step-1 and
connecting the sub-regret in the second learning layer to the weight estimation in the first learning
layer in step-2, we have finally upper-bounded the sub-regrets in both layers due to the errors from
the other layer. Thus, by combining Eq. (42), Eq. (43), Eq. (45) and Eq. (47), we have that, with
probability 1− δ, the regret of OP-TLL is upper-bounded as follows,

RegOP-TLL(K)/H

≤ O

H2η1K +
d ln d

η1
+H3/2

√
d|S̃|AK ln

(
H2|S̃|AK

δ

)
+H2

√
dS2A

(
ln

(
H2|S̃|AK

δ

))2


= O

H
√
dK ln d+H

3
2

√
d|S̃|AK ln

H2|S̃|AK

δ
+H2

√
d|S̃|2A

(
ln

H2|S̃|AK

δ

)2


= O

H
√
dK ln d+AH2

√
d|S̃|2

√
K

(
ln

AH2|S̃|K
δ

)2
 , (48)

where the first equality is by taking η1 = O

(√
d ln d
H2K

)
.

E.3 PROOF OF LEMMA 1

Proof. First, according to the weight updates in Eq. (2), we have

1

η1
ln


d∑

i=1

wk+1(i)

d∑
i=1

wk(i)



=
1

η1
ln


d∑

i=1

wk(i) · e
η1
d

∑H
h=1 r̂kh(ϕik

h
(skh),a

k
h)

d∑
i=1

wk(i)

 . (49)

Next, since ex ≤ 1 + x + (e − 2)x2 for all x ≤ 1, according to the update of the probability pk(i)
in Eq. (2), we have

1

η1
ln


d∑

i=1

wk+1(i)

d∑
i=1

wk(i)
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H∑
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(e− 2)η21
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)2
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≤ 1
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1 +
η1

d(1− η1)

d∑
i=1

H∑
h=1

rkh,i +
(e− 2)η21
d2(1− η1)

d∑
i=1

(
H∑

h=1

rkh,i

)2

/pk(i)


≤ 1

η1
ln

(
1 +

η1
d(1− η1)

d∑
i=1

H∑
h=1

rkh,i +
H(e− 2)η21
d2(1− η1)

d∑
i=1

H∑
h=1

rkh,i/p
k(i)

)
. (50)
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Then, since ln(1 + x) ≤ x for all x, we have

1

η1
ln


d∑

i=1

wk+1(i)

d∑
i=1

wk(i)

 ≤ 1

d(1− η1)

d∑
i=1

H∑
h=1

rkh,i +
H(e− 2)η1
d2(1− η1)

d∑
i=1

H∑
h=1

rkh,i/p
k(i). (51)

E.4 PROOF OF LEMMA 2

Proof. The proof of Lemma 2 mainly utilizes a set of concentration inequalities Azar et al. (2017).
Specifically, we prove Lemma 2 by mathematical induction.

Base case: when h = H , Eq. (44) trivially holds, since according to the definition of V k
H , we have

E [r∗H ] ≤ V k
H . Note that the reward r∗h′ = rh′(ϕi∗

h′ (sh′), ah′) is a function of the query î∗h′ .

Induction: we hypothesize that E

[
H∑

h′=h+1

r∗h′

]
≤ V k

h+1. Then, we focus on proving that

E
[

H∑
h′=h

r∗h′

]
≤ V k

h . Note that, we have

V k
h − E

[
H∑

h′=h

r∗h′

]
≥ Pk,∗

h V k
h+1(s)− P∗

hV
k
h+1(s) + bkh+1(s, a), (52)

where bkh+1(s, a) is the bonus term in Eq. (62). By adding and subtracting some middle terms, we
have that

V k
h − E

[
H∑

h′=h

r∗h′

]
≥ Pk,∗

h

[
V k
h+1(s)− V ∗

h+1(s)
]
+
[
Pk,∗
h − P∗

h

]
V ∗
h+1(s) + bkh+1(s, a). (53)

According to induction hypothesis that E

[
H∑

h′=h+1

r∗h′

]
≤ V k

h+1, we have

V k
h − E

[
H∑

h′=h

r∗h′

]
≥
[
Pk,∗
h − P∗

h

]
V ∗
h+1(s) + bkh+1(s, a). (54)

Finally, according to the empirical Bernstein’s inequality, we have that with probability 1− δ,[
P∗
h − Pk,∗

h

]
V ∗
h+1(s) ≤ bkh+1(s, a). (55)

Combining Eq. (54) and Eq. (55), we have E
[

H∑
h′=h

r∗h′

]
≤ V k

h .

F PROOF OF THEOREM 6

In this section, we first provide the complete version of our new algorithm, OP-MLL, for the case
with d̃ > 1. Please see Algorithm 4. Then, we present our complete proof for the regret of our
algorithm, i.e., Theorem 6. We use mod(k, x) to denote the remainder when k is divided by x and let
κ = ⌈(d−1)/(d̃−1)⌉. In this case, after choosing the queried sub-states, since the number of queried
sub-states is larger than 1, then agent needs to pick one of the sub-states as the rewarding sub-state.
That is, at each step, (step-i) the agent actively selects sub-states îkh to query, and receives the partial
OSI {ϕi(s

k
h)}{i∈îkh}

; (step-ii) the agent choose one of the queried sub-states as the rewarding state
ϕikh

(skh); (step-iii) the agent takes the action akh and receives the reward rh(ϕikh
(skh), a

k
h); (step-iv)

the next state skh+1 is drawn according to probability Ph(·|skh, akh) =
∏d

i=1 Ph,i(ϕi(·)|ϕi(s
k
h), a

k
h),

where the product form indicates that the sub-states have independent transition kernels.
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Algorithm 4 Optimistic-Pessimistic Multi-Layer Learning (OP-MLL)

Initialization: w1(i) = 1 and p1(i) = 1
d for all i = 1, ..., d; κ =

⌈
d−1
d̃−1

⌉
.

for k = 1 : K do
if mod(k, κ) = 1 then

Step-1: update the global weights wk(i) and probabilities pk(i) as follows,

wk(i) = wk−κ(i) · e
(d−1)η1
d(d̃−1)

∑k−1
τ=k−κ

∑H
h=1 r̂τh(ϕi(s

τ
h),a

τ
h),

pk(i) = (1− η1)
wk(i)∑d

i′=1 w
k(i′)

+
η1
d
, (56)

where

r̂τh(ϕi(s
k−1
h ), ak−1

h ) = rτh(ϕi(s
k−1
h ), ak−1

h )− rτh(ϕiτh
(sk−1

h ), ak−1
h ), if i ̸= iτh,

and r̂τh(ϕi(s
k−1
h ), ak−1

h ) = 0, otherwise, (57)

Step-2: choose the leading sub-state, i.e., the leader, according to the updated global proba-
bility pk(i).
Step-3: initialize the local weight w̃k(i) according to the global weight wk(i), i.e., w̃k(i) =
wk(i).

end if
Step-4: choose d̃ − 1 supporting sub-states, i.e., the follower, uniformly randomly from the
sub-states that have not yet been chosen in most-recent κ episodes, i.e., from

⌊
k−1
κ

⌋
· κ+ 1 to

(
⌊
k−1
κ

⌋
+ 1) · κ.

Step 5: update the local weights w̃k(i) and probabilities p̃k(i) for sub-state i queried as follows,

w̃k(i) = w̃k−1(i) · e
η2
d̃

∑H
h=1 rh(ϕi(s

k−1
h ),ak−1

h ),

p̃k(i) = (1− η2)
w̃k(i)∑

i′∈îk w̃
k(i′)

+
η2

d̃
. (58)

Step-6: choose the rewarding sub-state according to the updated local probability p̃k(i).
for h = H : 1 do

Step-7: update the Q-value function as follows,

Qk
h(ϕi(s), a) = min

{
rh(ϕi(s), a) + [Pk

hV
k
h+1](ϕi(s), a) +O

(√
H2

N k
h (ϕi(s), a)

)
, H

}
,

(59)

where Pk
h(ϕi(s

′)|ϕi(s), a) =
Nk

h (ϕi(s),a,ϕi(s
′))

Nk
h (ϕi(s),a)

is the estimated transition ker-

nel, N k
h (ϕi(s), a) and N k

h (ϕi(s), a, ϕi(s
′)) are the number of times (ϕi(s), a) and

(ϕi(s), a, ϕî(s
′)) have been visited at step h up to episode k, respectively, and V k

h (ϕi(s)) =

maxa Q
k
h(ϕi(s), a) is the estimated V -value function.

end for
for h = 1 : H do

Step-8: take an action akh that maximizes the updated Q-value function, and collect the partial
OSI.

end for
end for

F.1 OPTIMISTIC-PESSIMISTIC MULTI-LAYER LEARNING (OP-MLL)

Idea-I (Determine a leading sub-state pessimistically): The key insight in our idea-I is that, al-
though the state-transition and reward are stochastic, an existing stochastic learning method (such as
upper confidence interval) does not apply in our case. This is because the choice of the sub-state set î
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will finally affect the V -value estimation, and thus needs to be handled in a more conservative man-
ner. Thus, in the first learning layer (i.e., Step-1 and Step-2 of Algorithm 4), OP-MLL determines
a leading sub-state pessimistically. Specifically, at the beginning of every κ episodes, OP-MLL up-
dates the global weights and probabilities for each sub-state ϕi(s) according to our new exponential
weighting method as follows (and chooses the leading sub-state according to the updated pk(i)),

wk(i) = wk−κ(i) · e
(d−1)η1
d(d̃−1)

k−1∑
τ=k−κ

H∑
h=1

r̂τh(ϕi(s
τ
h),a

τ
h)

, and pk(i) = (1− η1)
wk(i)

d∑
i′=1

wk(i′)

+
η1
d
, (60)

where η1 is a key parameter that determines how pessimistic the algorithm is, e.g., with smaller
η1, the global weight increases more slowly and thus the algorithm behaves more pessimistically.
Note that the first term in pk(i) captures how important the sub-state ϕi(s) is among all sub-states,
and the second term is a uniform distribution (parameterized by η1) that allows the learner to keep
exploiting different sub-states. An important step in our idea-I is how to get the correct factor (i.e.,
(d−1)η1

d(d̃−1)
) for wk(i). We explain it in idea-II below, since it is tuned based on both our idea-I and

idea-II.

Idea-II (Choose the supporting sub-states based on the selections in most-recent episodes): The
key insight in our idea-II is that, due to the bias resulting from partial OSI, the standard importance
sampling method (e.g., selecting the supporting sub-states î with highest weight

∑
i∈î w

k(i)) does
not apply in our case. Thus, instead, OP-MLL chooses d̃ − 1 supporting sub-states uniformly ran-
domly from the sub-states that have not yet been chosen in most-recent episodes from

⌊
k−1
κ

⌋
·κ+1

to (
⌊
k−1
κ

⌋
+ 1) · κ (i.e., Step-3 in Algorithm 4). As a result, conditioned on the leading sub-state

(and independent of the episode), each sub-state is chosen with probability d̃−1
d−1 , which results in the

factor η1

d d̃−1
d−1

= (d−1)η1

d(d̃−1)
in the global weight. Interestingly, in the regret analysis, we prove that in

this way, the unnecessary bias (due to partial OSI) that could result in a linear-in-K regret can be
avoided.

Idea-III (Choose the rewarding sub-state and action optimistically): In the third layer, OP-
MLL chooses the rewarding sub-state and the final action in an optimistic manner. Specifically, in
Step-4, OP-MLL updates the local weights w̃k(i) and probabilities p̃k(i) for the sub-states ϕi(s)

that was chosen in the current set îk as follows,

w̃k(i) = w̃k−1(i) · e
η2
d̃

H∑
h=1

rh(ϕi(s
k−1
h ),ak−1

h )
, and p̃k(i) = (1− η2)

w̃k(i)∑
i′∈îk w̃

k(i′)
+

η2

d̃
. (61)

There are three differences between the global update in Eq. (60) and the local update in Eq. (61).
First, the global weight wk(i) is updated based on the weight wk−κ(i) that is κ episodes earlier,
while the local weight w̃k(i) is updated based on the weight wk−1(i) that is 1 episodes earlier
and parameterized by an important different η2. To make the algorithm more optimistic locally to
achieve larger reward, the value of η2 should be larger than the value of η1. Indeed, Theorem 6
below provides a sufficient condition on how η2 should be larger than η1. Second, the factor d−1

d̃−1
does not appear in Eq. (61), because the local weight is updated for only the sub-states in the chosen
set îk. Third, since the local probability p̃k(i) is also only for the sub-states in îk, the denominator
in the first term on the right-hand side of the second equation in Eq. (61) is summing only over
i ∈ îk. Finally, in Step-5 and Step-6, OP-MLL takes an action that maximizes the Q-value function
following the optimism-in-face-of-uncertainty principle (please see Appendix F for details),

Qk
h(ϕi(s), a) = min{rh(ϕi(s), a) + [Pk

hV
k
h+1](ϕi(s), a) +O(

√
H2/N k

h (ϕi(s), a)), H}. (62)

Theorem 6. (Regret) For POMDPs with partial online state information and independent sub-
states, by choosing η1 = Õ(1/

√
K) and η2 = 16(d−1)

d̃−1
η1, with probability 1 − δ, the regret

RegOP-MLL(K) of OP-MLL can be upper-bounded by

Õ

H
5
2

√
d|S̃|AK

d̃− 1
ln

H3|S̃|AK

δ
+H2

√
d

d̃− 1
|S̃|2A

(
ln

H2|S̃|AK

δ

)2

+H2

√
dK ln d

d̃− 1

 .

(63)
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Theorem 6 shows that (i) the regret of OP-MLL depends polynomially on all problem parameters
A, H , |S̃| and d; (ii) the regret of OP-MLL decreases further as d̃ increases; (iii) the dependency on
K is Õ(

√
K), which cannot be further improved. To the best of our knowledge, this is the first such

near-optimal result for POMDPs without full OSI. The main difficulties in the proof of Theorem 6
mainly result from the effects between every two of the three learning layers. For example, in
the first and second layers, two different weight parameters η1 and η2 are used for adapting to the
change of the cumulative reward resulting from the third learning layer. Thus, in order to connect
the local regret in an episode to the global regret across episodes, we leverage the second-order and
third-order Taylor expansions of the function ex. Please see the other difficulties and more details
in Appendix F.

F.2 PROOF OF THEOREM 6

Proof. The main challenges in the proof of Theorem 6 result from the mutual effects among the
three learning layers. Specifically, first, note that in Algorithm 4, the first learning layer is affected
by the supporting sub-states chosen in the second learning layer, and the chosen action and V -value
function estimates in the third learning layer. For example, in the first learning layer, the weight
wk(i) at each episode is updated based on the reward received in the last episode, which further
depends on the supporting sub-states chosen in the second learning layer, and the chosen action and
V -value function estimates in the third learning layer. Second, note that the supporting sub-states
chosen in the second learning layer is affected by the leading sub-state chosen in the first learning
layer and the reward received from the third learning layer. Third, note that the chosen action and
V -value estimates in the third learning layer depends on the feedback collected from the determined
leading sub-state and the chosen supporting sub-states, which further depends on the first learning
layer and second learning layer.

To address these new challenges and capture such effects between every two learning layers, our
ideas are to first analyze each layer separately by assuming a fixed error from the other layer. Then,
based on the resulting bound, we characterize the further gap due to the bias from each layer. Finally,
by carefully combining these gap together using the first and second order properties of the reward,
we get the final regret upper-bound.

F.2.1 STEP-1: CONNECT THE SUB-REGRET IN THE SECOND LEARNING LAYER TO THE
CHOICE IN THE FIRST LEARNING LAYER

In this step, we focus on capturing the effect from the first learning layer on the sub-regret in the
second learning layer. Specifically, differently from our proof for the simpler case with d̃ = 1
in Appendix E, our OP-MLL algorithm for the case with d̃ > 1 selects the supporting sub-states
for îk based on the choice of the leading sub-state determined in the first learning layer. Thus, we
need to first upper-bound the sub-regret here. First, for every κ episodes, we can lower-bound the
expected observed reward as in Lemma 3 below.

Lemma 3. For each episode k, we have that the expected observed reward can be lower-bounded
as follows,

E

∑
i∈îk

H∑
h=1

rkh,i

 ≥ d̃(1− η2)

η2
E

ln

∑
i∈îk

w̃k+1(i)∑
i∈îk

w̃k(i)


− H2η2

d̃
. (64)

where rkh,i ≜ rh(ϕi(s
k
h), a

k
h), and the expectation is taken with respect to the randomness of the

algorithm, including the query policy and the action policy, and the state transition.. Note that
in Lemma 3, the term on the left-hand side of Eq. (64) is the expected reward observed by the agent.
Moreover, the first term on the right-hand side of Eq. (64) captures the evolution of the weights and
the second term is the gap. Please see Appendix F.3 for the proof of Lemma 3.

Note that the next difficulty to upper-bound the sub-regret from the second learning layer is that the
weight w̃k(i) is the local weight updated according the acceleration parameter η2 that we constructed
to let the algorithm learn the reward and sub-state transitions faster. However, to upper-bound the
sub-regret, we still need to convert it back to the global weight wk(i) that is directly related to the

31



Under review as a conference paper at ICLR 2024

whole episode horizon and the true reward. To resolve this difficulty, we connect the logarithmic
term on the right-hand side of Eq. (64), which contains the local weight w̃k(i), to the first and second
order moments of the reward as in Lemma 4 below.

Lemma 4. For each step h of each episode k, we have

E

ln

∑
i∈îk

w̃k+1(i)∑
i∈îk

w̃k(i)


 ≥ E

∑
i∈îk

η22

4d̃2

( H∑
h=1

rkh,i − E[
H∑

h=1

rkh,i]

)2
+

η2

d̃
E

∑
i∈îk

H∑
h=1

rkh,i

 ,

(65)

where the expectation is taken with respect to the randomness of the algorithm, including the query
policy and the action policy, and the state transition.

Note that Lemma 4 provides a lower bound for the weight-evolution term on the right-hand side
of Eq. (64). Specifically, the first term on the right-hand side of Eq. (65) is related to the second
order moment of the observed reward. It is essentially the variance of the total observed reward in
episode k conditioned on the realization before episode k. This term is critical for further connecting
the reward to the global weights wk(i) updated using the parameter η1 for every κ episodes. The
second term on the right-hand side of Eq. (65) is related to the expectation of the observed reward.
This is another critical part that guarantees that the sub-regret can be related to the global weights,
since the expected observed reward with respect to the randomness of the sub-state set îk is equal to
the expected true reward. Please see Appendix F.4 for the proof of Lemma 4.

F.2.2 STEP-2: CONNECT THE SUB-REGRET IN THE FIRST TWO LEARNING LAYERS TO THE
EXPECTED REWARD IN THE THIRD LEARNING LAYER

Note that another challenge to upper-bound the regret is that the the set îk depends on the episode
k and changes randomly. To resolve this problem, we connect the local set îk to the global set
{1, ..., d} of sub-states by using the conclusion in Lemma 5 below.

Lemma 5. For each episode, we have

E

∑
i∈îk

( H∑
h=1

rkh,i − E[
H∑

h=1

rkh,i]

)2
 ≥ d̃− 1

d− 1
E

 d∑
i=1

( H∑
h=1

rkh,i − E[
H∑

h=1

rkh,i]

)2
 , (66)

where the expectation is taken with respect to the randomness of the algorithm, including the query
policy and the action policy, and the state transition.

Note that Lemma 5 connects the expected variance of the observed reward (i.e., the left-hand side
of Eq. (66)) with respect to the sub-state set îk to the variance of the true reward (i.e., the right-hand
side of Eq. (66)). Please see Appendix F.5 for the proof of Lemma 5. Moreover, similar to the proof
of Lemma 3 in Appendix F.3, we can show Lemma 6 below.

Lemma 6. For each episodes, we have that

E

 uκ∑
k=(u−1)κ+1

H∑
h=1

rkh

 ≥ d(1− η1)

η1
E

ln


d∑
i=1

wuκ(i)

d∑
i=1

w(u−1)κ+1(i)


− H2η1

d
, (67)

where the expectation is taken with respect to the randomness of the algorithm, including the query
policy and the action policy, and the state transition.

Next, by connecting the variance of the true reward on the right-hand side of Eq. (66) to the global
weights wk(i), we connect the sub-regret in the first two learning layers to the expected reward in
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the third learning layer. To this end, we prove that the evolution of the global weights satisfies the
following inequality,
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This is because according to the update for the global weights wi(k) in Eq. (56), we have
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Then, since ex ≤ 1 + x + x2 for x ≤ ln 2, the first term on the right-hand side of Eq. (69) can be
upper-bounded as follows,
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Since ln(1 + x) ≤ x, we have
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Thus, Eq. (68) is true because of Eq. (69) and Eq. (71). Finally, by combin-
ing Eq. (64), Lemma 4, Eq. (66) and Eq. (68), we have
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Taking the expectation and the sum over all episodes for both sides of Eq. (72), we have
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where the last step is because of the telescoping sum. Finally, combining Eq. (73) with the updates
of the global weights in Eq. (56), we have
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. (74)

F.2.3 STEP-3: CONNECT THE EXPECTED REWARD IN THE THIRD LEARNING LAYER TO THE
TRUE OPTIMAL REWARD

Note that we now connect the expected observed reward to the sub-regret in the first two learning
layers. However, the new difficulty here is that the reward is not the true optimal reward that we
can obtain in each episode. This is because of the sub-optimality in the third learning layer for
estimating the V -value function.

Hence, in this step, we address the problem that we mentioned above. Let us focus on the first term
on the left-hand side of Eq. (74). We have
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]
. (75)

Below, we provide an important lemma, i.e., Lemma 7, that is proved to be useful soon later.

Lemma 7. For any δ ∈ (0, 1), with probability at least 1− δ, we have

E

[
H∑
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r∗h′,i∗
h′

]
≤ V k

h . (76)

Please see Appendix F.6 for the proof of Lemma 7. Then, according to Lemma 7, we have
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]
. (77)

Thus, we can focus on upper-bounding the difference between the estimated expected reward, i.e.,
V k
h , and the expected reward after taking the action akh. Note that in Lemma 7, we have related the

expected reward used in the first two learning layers to the V -value estimate in the third learning
layer of Algorithm 4. After relating the expected reward E[

∑H
h′=h r

∗
h′,i∗

h′
] used in the first two

learning layers to the V-value estimate V k
h in the third learning layer, we can focus on the difference

between the estimated V-value V k
h and the true reward rk

h,ikh
under the randomness of the queries
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on the sub-states ikh. Then, conditioned on the σ-algebra generated by the observation history, such
a difference in each episode k can be decomposed into the sub-differences V k

h,i − E[
∑H

h′=h r
k
h′,i]

resulting from each sub-state i under the randomness of observing sub-state i. The corresponding
sub-regret V k

h,i − E[
∑H

h′=h r
k
h′,i] due to each sub-state i is equivalent to the sub-regret V k

h (skh) −
V πk

h (skh) in the tabular MDP case studied in Azar et al. (2017).

Proposition 4. (Lemma 14 in Azar et al. (2017)): With probability 1− δ, we have
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(78)

Thus, the sum of the sub-regret over all episodes k, i.e.,
∑K

k=1{V k
h,i − E[

∑H
h′=h r

k
h′,i]}, can be

upper-bounded by applying Proposition 3. Thus, we have that,
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(79)

F.2.4 STEP-4: UPPER-BOUND THE FINAL REGRET

By connecting the sub-regret in the second learning layer to the choice in the first learning layer in
step-1, connecting the sub-regret in the first two learning layers to the expected reward in the third
learning layer in step-2, and connecting the expected reward in the third learning layer to the true
optimal reward in step-3, we have finally upper-bounded the sub-regrets in all three layers due to the
errors from the other layers. Hence, we have that, with probability 1 − δ, the regret of OP-MLL is
upper-bounded as follows,
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(80)

F.3 PROOF OF LEMMA 3

Proof. First, similar to the proof of Lemma 1 in Appendix E.3, we can show that
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i∈îk

w̃k(i)

 =
1

η2
ln


∑
i∈îk
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Note that differently from that in the proof of Lemma 1 in Appendix E.3, in Eq. (81) we focus on
i ∈ îk. Next, since ex ≤ 1 + x+ (e− 2)x2 for all x ≤ 1, according to the update of the probability
pi(k) in Eq. (2), we have
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Then, since ln(1 + x) ≤ x for all x, we have
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Thus, we have
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i∈îk

H∑
h=1

rkh,i



≥ d(1− η2)

η2
E

ln

∑
i∈îk
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i∈îk

w̃k(i)


− H2(e− 2)η2

d̃
. (84)

F.4 PROOF OF LEMMA 4

Proof. First, according to the update for the local weight in Eq. (58), we have
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Since ex ≥ 1 + x + 1
2x

2, the first term on the right-hand side of Eq. (85) can be lower-bounded as
follows,
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i∈îk

η22

2d̃2

( H∑
h=1

rkh,i − E[
H∑

h=1

rkh,i]

)2
]. (86)

Since ln(1 + x) ≥ x
2 for all x ∈ [0, 1], we have
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F.5 PROOF OF LEMMA 5

Proof. We start from considering the right-hand side of Lemma 5. First, we have
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By rearranging the terms in Eq. (88), we have
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Then, we consider all possible random choice of the sub-states sets îk, i.e., taking another expecta-
tion with respect to the randomness of îk. According to the law of total expectation, we have
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According to the updates of weights and probabilities in Eq. (58), we can see that the local prob-
ability p̃i(k) can be related to the global probabilities. That is, p̃i(k) = pi(k) · 1

(d−1

d̃−1)
. Thus,

from Eq. (90), we have
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F.6 PROOF OF LEMMA 7

Proof. The proof of Lemma 7 follows the same line of the proof for Lemma 2 and mainly utilizes a
set of concentration inequalities Azar et al. (2017). Specifically, we prove Lemma 7 by mathematical
induction.

Base case: when h = H , Eq. (76) trivially holds, since according to the definition of V k
H , we have
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h′ (sh′), ah′) is a function of the query î∗h′ .
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where bkh+1(s, a) is the bonus term in Eq. (62). By adding and subtracting some middle terms, we
have that
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h+1(s)− V ∗

h+1(s)
]
+
[
Pk,∗
h − P∗

h

]
V ∗
h+1(s) + bkh+1(s, a). (93)

According to induction hypothesis that E

[
H∑

h′=h+1

r∗h′

]
≤ V k

h+1, we have

V k
h − E

[
H∑

h′=h

r∗h′

]
≥
[
Pk,∗
h − P∗

h

]
V ∗
h+1(s) + bkh+1(s, a). (94)
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Finally, according to the empirical Bernstein’s inequality, we have that with probability 1− δ,[
P∗
h − Pk,∗

h

]
V ∗
h+1(s) ≤ bkh+1(s, a). (95)

Combining Eq. (94) and Eq. (95), we have E
[

H∑
h′=h

r∗h′

]
≤ V k

h .

G PROOF OF THEOREM 3

In this section, we prove the regret upper-bound in Theorem 3 of our OMLE-POSI algorithm,
i.e., Algorithm 2. Recall that partial online state information (OSI) ϕîk1:H

affects both the maxi-
mum likelihood estimation (MLE) and joint query and action policy optimization. Thus, the main
difficulty in the proof of Theorem 3 is how to capture such new effects. Indeed, directly applying
existing observable operator method (OOM) Jaeger (2000); Liu et al. (2022) will result in a regret
that does not decrease with d̃, which is a critical benefit that we should obtain from using partial OSI.
To resolve this issue, we develop a new sub-matrix decomposition representation for the cumulative
partial OSI and partial noisy observations, which non-trivially generalizes OOM to the case with
both partial feedback and noisy observations.

In the following, we first provide a proof sketch in Appendix G.1, where we highlight the new
difficulties and our new analytical ideas. Then, we provide a complete proof in Appendix G.4.

G.1 SKETCH OF THE PROOF OF THEOREM 3

In this subsection, we first provide the proof sketch of Theorem 3, where we highlight the new
difficulties and our new analytical ideas. Please see Appendix G.4 for the complete proof.

Proof. First, the regret can be represented as follows,

RegOMLE-POSI(K) =

K∑
k=1

[
V ∗ − V πk

]
=

K∑
k=1

[
V ∗ − V k

]
+

K∑
k=1

[
V k − V πk

]
. (96)

According to Lemma 8 below, from Eq. (96), we have that with probability 1− δ,

RegOMLE-POSI(K) =

K∑
k=1

[
V ∗ − V πk

]
≤

K∑
k=1

[
V k − V πk

]
. (97)

Lemma 8. By choosing β = O
(
(|S̃|2dA+ |S̃|d−d̃O) ln(|S̃|dAOHK) + ln K

δ

)
, with probability at

least 1− δ, we have (
P, Õ,∆1

)
∈
{(

Pk, Õk,∆k
1

)}
, (98)

where the big-O notation hides the constant and logarithmic terms including
(
d
d̃

)
.

Lemma 8 shows an important property of the maximum likelihood estimation used in our OMLE-
POSI algorithm. That is, by utilizing partial OSI, with high probability, the true transition kernel
and partial emission model must be characterized by the set of the estimated transition kernels and
the partial emission models. Please see Appendix G.2 for the proof of Lemma 8.

Since the expected total reward in each episode is at most H , from Eq. (97), we have

RegOMLE-POSI(K) ≤ H

K∑
k=1

∑
Γ

∣∣∣Pπk

Pk,Ōî,k,∆k
1

(Γ)− Pπk

P,Ōî,∆1
(Γ)
∣∣∣ . (99)

Next, based on the observable operator method (OOM) in Jaeger (2000); Liu et al. (2022); Chen
et al. (2022a); Foster et al. (2021), we develop a new trajectory representation using sub-matrix
decomposition. This new development is for addressing the aforementioned problem caused by
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using partial OSI in our case. Specifically, we use Ōî ∈ RO×|S̃|d to denote the augmented partial
emission model and use ∆1 ∈ RS to denote the initialization model. We note that the augmented
partial emission matrix Ōî is generated based on the partial emission matrix õî and depends on the
query î. That is, |S̃|d−d̃ columns of Ōî correspond to the partial noisy observations õ for the non-
queried sub-states {ϕi(s)}{i/∈î} and |S̃|d̃ columns are set to 0 because the corresponding sub-states
do not generate partial noisy observation. Then, the observable operator corresponding to a specific
θ in our setting can be represented as follows,

bθ0(̂i1) = Ōî1,θ
1 ∆θ

1 ∈ RO,

Bθ
h(õ, a, îh, îh+1) = Ōîh+1,θ

h+1 Pθ
h,adiag(Ōîh,θ

h (õ|·))(Ōîh,θ
h )† ∈ RO×O, (100)

where Pθ
h,a ∈ RS×S is the transition matrix for action a, Ōîh,θ

h (õ|·) is the õ-th row of the augmented

partial emission matrix Ōî,θ
h and diag(Ōîh,θ

h (õ|·)) is the diagonal matrix with diagonal entries equal

to Ōîh,θ
h (õ|·). Please note that different from the standard observable operator, due to the partial

OSI in our problem, Bθ
h(õ, a, îh, îh+1) is now a function of two consecutive queries (̂ih, îh+1) of

the agent. Let us focus on the probability difference on the right-hand side of Eq. (99). Specifically,
the probability difference can be represented by the difference between the product of conditional
(conditioned on the past feedback) probability of feedback at each step under the observed trajectory
and the true case, i.e.,

K∑
k=1

∑
Γ

∣∣∣Pπk

Pk,Ōî,k,∆k
1

(Γ)− Pπk

P,Ōî,∆1
(Γ)
∣∣∣

=

K∑
k=1

∑
Γ

∣∣∣∣∣ (eT
õHBθk

H (õH , aH , îH , îH+1) · · ·Bθk

1 (õ1, a1, î1, î2)b
θk

0 (̂i1)
)

−
(
eT
õh
Bθ

H(õH , aH , îH , îH+1) · · ·Bθ
1(õ1, a1, î1, î2)b

θ
0(̂i1)

) ∣∣∣∣∣ · πk(Γ)

=

K∑
k=1

∑
Γ

∥∥∥∥∥(Bθk

H (õH , aH , îH , îH+1) · · ·Bθk

1 (õ1, a1, î1, î2)b
θk

0 (̂i1)
)

−
(
Bθ

H(õH , aH , îH , îH+1) · · ·Bθ
1(õ1, a1, î1, î2)b

θ
0(̂i1)

)∥∥∥∥∥
1

· πk(Γ). (101)

After decomposing the probability representations as in Eq. (101), according to the triangle inequal-
ity and the partial-revealing condition, we have

K∑
k=1

∑
Γ

∣∣∣Pπk

Pk,Ōî,k,∆k
1

(Γ)− Pπk

P,Ōî,∆1
(Γ)
∣∣∣

≤ |S̃|(d−d̃)/2

α

[
K∑

k=1

H∑
j=1

∑
Γj

∥∥∥(Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

+
∥∥∥bθk

0 (̂i1)− bθ0(̂i1)
∥∥∥
1

]
. (102)
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For the first term on the right-hand side of Eq. (102), we have
K−1∑
k=1

∑
Γj

∥∥∥(BθK

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

≤
K−1∑
k=1

∑
Γj

∥∥∥BθK

j (õj , aj , îj , îj+1) ·
(
bθ

K

j−1(Γj−1)− bθj−1(Γj−1)
)∥∥∥

1
· πk(Γj)

+

K−1∑
k=1

∑
Γj

∥∥∥BθK

j (õj , aj , îj , îj+1)b
θK

j−1(Γj−1)−Bθ
j (õj , aj , îj , îj+1)b

θ
j−1(Γj−1)

∥∥∥
1
· πk(Γj).

(103)

Next, we can upper-bound the partial observation trajectory difference, i.e., the two terms on the
right-hand side of Eq. (103), using the conclusion in Lemma 9 below.

Lemma 9. For each episode k, we have

∑
Γk
h1:h2

πk(Γk
h1:h2

) ·

∥∥∥∥∥∥
 h2∏

j=h1

Ōîkh+1

j+1 P
θk

j,adiag(Ōîkj
j (õj |·)(Ō

îkj
j )†)

 Ō
îkh1

h1
∆θk

h1

∥∥∥∥∥∥
1

≤ |S̃| d−d̃
2

α

∥∥∥∥Ōîkh1

h1
∆θk

h1

∥∥∥∥
1

.

(104)

Lemma 9 shows that the conditional probability of receiving a certain trajectory about the partial OSI
and noisy observations, i.e., the left-hand side of Lemma 9, depends on the size of the state space

|S̃| d−d̃
2 , partial-revealing parameter α and the initial probability measure

∥∥∥∥Ōîkh1

h1
∆θk

h1

∥∥∥∥
1

, i.e., the terms

on the right-hand side of Lemma 9. We note that in Eq. (102) and Eq. (104), the multiplicative factor
depends on |S̃|d−d̃, which is size of the space of the sub-states that cannot be queried by the agent
at each step. Please see Appendix G.3 for the proof of Lemma 9. Applying Lemma 9 to Eq. (103),
we have

K−1∑
k=1

∑
Γj

∥∥∥(BθK

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

= O(
|S̃|(d−d̃)/2

α

√
Kβ). (105)

Finally, by combining Eq. (96)-Eq. (105) and the value of β, with probability 1 − δ, we can upper-
bound the regret of OMLE-POSI as follows,

RegOMLE−POSI(K) ≤ O

(√
(|S̃|2dA+ |S̃|d−d̃O)K · |S̃|2(d−d̃)H4AO/α2

)
. (106)

G.2 PROOF OF LEMMA 8

Proof. This lemma mainly follows the standard properties of MLE and the proof of Proposition 13
in Liu et al. (2022). The main difference here is due to the queried partial state information and
partial emission model considered in our setting. Specifically, first, according to Eq. (14) there (i.e.,
∥Pπ

θ − Pπ
θ̄
∥1 ≤ 1

T ), we have

E[e
K∑

τ=1
ln

Pπτ

Pτ ,Õτ (Γτ )

Pπτ

P∗,Õ∗ (Γτ )
] = E[e

K−1∑
τ=1

ln
Pπτ

Pτ ,Õτ (Γτ )

Pπτ

P∗,Õ∗ (Γτ ) · ∥Pπτ

Pτ ,Õτ (Γ
K)∥1]

≤ E[e

K−1∑
τ=1

ln
Pπτ

Pτ ,Õτ (Γτ )

Pπτ

P∗,Õ∗ (Γτ ) ·
(
1 +

1

K

)
]. (107)
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By applying mathematical induction, we have that the right-hand-side of Eq. (107) is upper-bounded
by (1 + 1/K)K , which is less than or equal to e. Thus, Eq. (107) further yields

E[e
K∑

τ=1
ln

Pπτ

Pτ ,Õτ (Γτ )

Pπτ

P∗,Õ∗ (Γτ )
] ≤ e. (108)

Then, according to Markov’s inequality, we have that

Pr

{
K∑

τ=1

ln
Pπτ

Pτ ,Õτ (Γ
τ )

Pπτ

P∗,Õ∗(Γ
τ )

> log(
1

δ
)

}
≤ eδ. (109)

Then, by taking the union bound over the state-transition space P, partial emission space Õ and
episodes τ , we have that for any δ ∈ (0, 1), there exists c > 0, s.t.,

Pr

{
max
P,Õ,k

K∑
τ=1

ln
Pπτ

Pk,Õk(Γ
τ )

Pπτ

P,Õ(Γ
τ )

≥ c(|S̃|2dA+ |S̃|d−d̃O

(
d

d̃

)
) ln(|S̃|dAOHK) + ln

K

δ

}
≤ δ,

(110)

where the quantity c(|S̃|2dA+ |S̃|d−d̃O
(
d
d̃

)
) ln(|S̃|dAOHK)+ ln K

δ follows because the dimension
of the state-transition space is |S̃|2dA, the dimension of the partial emission model space (i.e., Õ :

S̃ × Õ → [0, 1]) is |S̃|d−d̃O, the structure of the partial emission model space is independent of the
queried sub-states, and the total number of episodes is K. Finally, Lemma 8 follows because β is an
upper-bound of this quantity.

G.3 PROOF OF LEMMA 9

Note that this lemma is one of the key parts where we can leverage partial OSI to improve the regret
to be decreasing exponentially as d̃ increases.

Proof. First, we have∑
Γk
h1:h2

πk(Γk
h1:h2

) ·

∥∥∥∥∥∥
 h2∏

j=h1

Ōîkh+1

j+1 P
θk

j,adiag(Ōîkj
j (õj |·)(Ō

îkj
j )†)

 Ō
îkh1

h1
∆θk

h1

∥∥∥∥∥∥
1

=
∑

Γk
h1:h2

πk(Γk
h1:h2

) ·

∥∥∥∥∥∥∥
 h2∏

j=h1

Ōîkh+1

j+1 P
θk

j,adiag(Ōîkj
j (õj |·)(Ō

îkj
j )†)

 h2∏
j=h1

Ōîkj
j

 h2∏
j=h1

Ōîkj
j

−1

Ō
îkh1

h1
∆θk

h1

∥∥∥∥∥∥∥
1

.

(111)

Due to the partial online state information for the chosen d̃ sub-states, the row space of partial-OSI
representation product in Eq. (111) belongs to the column space of the partial-revealing matrix.
Thus, by canceling out some middle terms on the right-hand side of Eq. (111), we have

∑
Γk
h1:h2

πk(Γk
h1:h2

) ·

∥∥∥∥∥∥
 h2∏

j=h1

Ōîkh+1

j+1 P
θk

j,adiag(Ōîkj
j (õj |·)(Ō

îkj
j )†)

 Ō
îkh1

h1
∆θk

h1

∥∥∥∥∥∥
1

≤
∑

Γk
h1:h2

πk(Γk
h1:h2

) ·

∥∥∥∥∥∥∥
 h2∏

j=h1

Ōîkj
j

−1

Ō
îkh1

h1
∆θk

h1

∥∥∥∥∥∥∥
1

≤ |S̃| d−d̃
2

α

∥∥∥∥Ōîkh1

h1
∆θk

h1

∥∥∥∥
1

. (112)
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G.4 THE COMPLETE PROOF OF THEOREM 3

In previous subsections, we have introduced the proof sketch for Theorem 3, where we highlighted
the new difficulties and our new analytical ideas in the proof. In this subsection, we provide the
complete proof of Theorem 3, where we repeat some details in Liu et al. (2022) for completeness.

To begin with, we state Theorem 3 more formally with more details.
Theorem 7. (Regret) For POMDPs with the partial online state information and partially revealing
condition, with probability 1−δ for any δ ∈ (0, 1], the regret of OMLE-POSI can be upper-bounded
as follows,

RegOMLE-POSI(K) ≤ Õ

(
|S̃|2(d−d̃)OAH4

√
K(|S̃|2dA+ |S̃|d−d̃O)/α2

)
(113)

Proof. The proof of Theorem 3 can be divided into four important steps as follows.

Step 1 (Observable operator decomposition):

Recall that in Class 2, we use Γk
h ≜ {̂ik1 , ϕîk1

(sk1), õ
k
1 , a

k
1 , ..., î

k
h−1, ϕîkh−1

(skh−1), õ
k
h−1, a

k
h−1} to de-

note the feedback (including both the partial OSI Φk
h and partial noisy observations õk1:h−1). For

simplicity, similar to that in Algorithm 2, we use θ ≜ (P, Ōî,∆1) to denote the joint problem
model, where we use P ∈ RS×S×A to denote the POMDP transition matrix, use Ōî ∈ RO×|S̃|d

to denote augmented partial emission matrix, and use ∆1 ∈ RS to denote the initialization matrix.
We note that the augmented partial emission matrix Ōî is generated based on the partial emission
matrix õî and depends on the query î. That is, |S̃|d−d̃ columns of Ōî correspond to the partial noisy
observations õ for the non-queried sub-states {ϕi(s)}{i/∈î} and |S̃|d̃ columns are set to 0 because the
corresponding sub-states do not generate partial noisy observation. Then, the observable operator
corresponding to a specific θ in our setting can be represented as follows,

bθ0(̂i1) = Ōî1,θ
1 ∆θ

1 ∈ RO,

Bθ
h(õ, a, îh, îh+1) = Ōîh+1,θ

h+1 Pθ
h,adiag(Ōîh,θ

h (õ|·))(Ōîh,θ
h )† ∈ RO×O, (114)

where Pθ
h,a ∈ RS×S is the transition matrix for action a, Ōîh,θ

h (õ|·) is the õ-th row of the augmented

partial emission matrix Ōî,θ
h , diag(Ōîh,θ

h (õ|·)) is the diagonal matrix with diagonal entries equal to

Ōîh,θ
h (õ|·), and (·)† represents the Moore-Penrose inverse of a matrix. Please note that different

from the standard observable operator, due to the partial OSI in our problem, Bθ
h(õ, a, îh, îh+1)

is now a function of two consecutive queries (̂ih, îh+1) of the agent. Moreover, we use θk ≜
(Pk, Ōî,k,∆k

1) to denote the joint POMDP transition model, augmented partial emission model and
initialization model of Algorithm 2 in the k-th episode. Given the POMDP parameters, we can
represent the probability of observing a specific trajectory (of the queries, partial OSI and partial
noisy observation) based on the observable operator Bθ

h(õ, a, îh, îh+1). Specifically, we have that

Pπ
θ (Γh) = π(Γh)×

(
eT
õh
Bθ

h−1(õ, a, îh−1, îh) · · ·Bθ
1(õ, a, î1, î2)b

θ
0(̂i1)

)
∈ R, (115)

where π(Γh) ≜
∏h−1

h′=1 πq,h′ (̂ih′ |Γh′−1)πa,h′(ah′ |Γh′−1, ϕîh′ , õh′), πq and πa denotes the query
policy and action policy, respectively, and eõh is an identity vector.

Step 2 (Bound the total variation distance by the operator estimation error):

The regret of OMLE-POSI can be represented as follows,

RegOMLE-POSI(K) =

K∑
k=1

[
V ∗ − V πk

]
=

K∑
k=1

[
V ∗ − V k

]
+

K∑
k=1

[
V k − V πk

]
. (116)

According to Lemma 8, from Eq. (116), we have that with probability 1− δ,

RegOMLE-POSI(K) =

K∑
k=1

[
V ∗ − V πk

]
≤

K∑
k=1

[
V k − V πk

]
. (117)
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Since the expected total reward in each episode is at most H , from Eq. (117), we have

RegOMLE-POSI(K) ≤ H

K∑
k=1

∑
Γ

∣∣∣Pπk

Pk,Ōî,k,∆k
1

(Γ)− Pπk

P,Ōî,∆1
(Γ)
∣∣∣ , (118)

where Γ = {̂i1, ϕî1
(s1), õ1, a1, ..., îH , ϕîH

(sH), õH , aH} represents any possible feedback tra-

jectory in a whole episode, Pk, Ōî,k,∆k
1 is the POMDP parameters estimated at episode k, and

P, Ōî,∆1 are the true POMDP parameters of the environment. Hence, to bound the regret of OMLE-
POSI, we need to bound the total variation (TV) distance on the right-hand-side of Eq. (118).

Specifically, for a matrix A and p ≥ 1, we denote the matrix norm ∥A∥p = supx⃗:∥x⃗∥p≤1 ∥Ax⃗∥p.
Then, the TV difference can be represented by the difference between the product of conditional
(conditioned on the past feedback) probability of feedback at each step under the observed feedback
trajectory and the true model, i.e.,

K∑
k=1

∑
Γ

∣∣∣Pπk

Pk,Ōî,k,∆k
1

(Γ)− Pπk

P,Ōî,∆1
(Γ)
∣∣∣

=

K∑
k=1

∑
Γ

∣∣∣∣∣ (eT
õHBθk

H (õH , aH , îH , îH+1) · · ·Bθk

1 (õ1, a1, î1, î2)b
θk

0 (̂i1)
)

−
(
eT
õh
Bθ

H(õH , aH , îH , îH+1) · · ·Bθ
1(õ1, a1, î1, î2)b

θ
0(̂i1)

) ∣∣∣∣∣ · πk(Γ)

=

K∑
k=1

∑
Γ

∥∥∥∥∥(Bθk

H (õH , aH , îH , îH+1) · · ·Bθk

1 (õ1, a1, î1, î2)b
θk

0 (̂i1)
)

−
(
Bθ

H(õH , aH , îH , îH+1) · · ·Bθ
1(õ1, a1, î1, î2)b

θ
0(̂i1)

)∥∥∥∥∥
1

· πk(Γ), (119)

where we keep the additional fictitious query îH+1 for clarity.

Thus, to bound the TV distance, we need to bound the difference between the above two products of
operators in ∥ · ∥1. Next, we bound such a difference by the difference between observable operator
pairs at each step one-by-one. Specifically, after decomposing the probability representations as
in Eq. (119), according to the triangle inequality and the partially revealing condition in Class 2, we
have that

∑
Γ

∥∥∥∥∥(Bθk

H (õH , aH , îH , îH+1) · · ·Bθk

1 (õ1, a1, î1, î2)b
θk

0 (̂i1)
)

−
(
Bθ

H(õH , aH , îH , îH+1) · · ·Bθ
1(õ1, a1, î1, î2)b

θ
0(̂i1)

)∥∥∥∥∥
1

· πk(Γ)

≤
H∑
j=1

∑
Γ

∥∥∥∥∥
(

H∏
j′=j+1

Bθk

j′ (õj′ , aj′ , îj′ , îj′+1)
(
Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)

· bθj−1(Γj−1)

)∥∥∥∥∥
1

· πk(Γ) +
∑
Γ

∥∥∥∥∥∥
(

H∏
j′=1

Bθk

j′ (õj′ , aj′ , îj′ , îj′+1)
(
bθ

k

0 (̂i1)− bθ0(̂i1)
)∥∥∥∥∥∥

1

· πk(Γ),

(120)

where bθj−1(Γj−1) =
∏j−1

j′=1 B
θ
j′(õj′ , aj′ , îj′ , îj′+1)b

θ
0(̂i1). Next, we use Lemma 32 in Liu et al.

(2022) to bound the two terms on the right-hand side of Eq. (120). The tricky parts when apply their
result are (i) how to construct the observable operator term and the controlled variable; (ii) how to
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address the impact of the partial noisy observation. Specifically, we have that for all j,∑
Γ

∥∥∥∥∥∥
(

H∏
j′=j+1

Bθk

j′ (õj′ , aj′ , îj′ , îj′+1)
(
Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

)∥∥∥∥∥∥
1

· πk(Γ) ≤ |S̃|(d−d̃)/2

α

∑
Γj

∥∥∥(Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj),

(121)

where we consider
(
Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1) as the variable x in

Lemma 32, and we have that∑
Γ

∥∥∥∥∥∥
(

H∏
j′=1

Bθk

j′ (õj′ , aj′ , îj′ , îj′+1)
(
bθ

k

0 (̂i1)− bθ0(̂i1)
)∥∥∥∥∥∥

1

· πk(Γ)

≤ |S̃|(d−d̃)/2

α

∥∥∥bθk

0 (̂i1)− bθ0(̂i1)
∥∥∥
1
, (122)

where we consider bθ
k

0 (̂i1) − bθ0(̂i1) as the variable x in Lemma 32. We note that in Eq. (121)
and Eq. (122), the multiplicative factor depends on |S̃|d−d̃, which is size of the space of the sub-
states that cannot be queried by the agent at each step.

By combining Eq. (120), Eq. (121) and Eq. (122), we have that∑
Γ

∥∥∥∥∥(Bθk

H (õH , aH , îH , îH+1) · · ·Bθk

1 (õ1, a1, î1, î2)b
θk

0 (̂i1)
)

−
(
Bθ

H(õH , aH , îH , îH+1) · · ·Bθ
1(õ1, a1, î1, î2)b

θ
0(̂i1)

)∥∥∥∥∥
1

· πk(Γ)

≤ |S̃|(d−d̃)/2

α

[
H∑
j=1

∑
Γj

∥∥∥(Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

+
∥∥∥bθk

0 (̂i1)− bθ0(̂i1)
∥∥∥
1

]
. (123)

Then, by combining Eq. (119) and Eq. (123), we have that the TV distance can be upper bounded
as follows,
K∑

k=1

∑
Γ

∣∣∣Pπk

Pk,Ōî,k,∆k
1

(Γ)− Pπk

P,Ōî,∆1
(Γ)
∣∣∣

≤ |S̃|(d−d̃)/2

α

[
K∑

k=1

H∑
j=1

∑
Γj

∥∥∥(Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

+
∥∥∥bθk

0 (̂i1)− bθ0(̂i1)
∥∥∥
1

]
. (124)

Step 3 (Bound the operator estimation error by the properties of MLE):

According to Eq. (117) and Eq. (118), to upper bound the regret, we can focus on bounding the dif-
ference between each observable operator pair at each step on the right-hand side of Eq. (124). Note
that such a difference mainly captures the operator estimation error under the estimated parameter
θk and the true parameter θ, which further depends on the property of MLE. Thus, we next upper
bound such a difference by applying the properties of MLE. First, according to Lemma 8, we have
that with high probability,

K−1∑
τ=1

ln
Pπτ

P,Ōî,∆1
(Γτ )

Pπτ

PK ,Ōî,K ,∆K
1

(Γτ )
≤ β. (125)
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Next, according to Proposition 14 in Liu et al. (2022), we have that with probability 1− δ,
K−1∑
τ=1

(∑
Γ

∣∣∣Pπτ

PK ,Ōî,K ,∆K
1

(Γ)− Pπτ

P,Ōî,∆1
(Γ)
∣∣∣)2

= O(βK). (126)

By applying the Cauchy-Schwarz inequality to Eq. (126), we have
K−1∑
τ=1

∑
Γ

∣∣∣Pπτ

PK ,Ōî,K ,∆K
1

(Γ)− Pπτ

P,Ōî,∆1
(Γ)
∣∣∣ = O(

√
βK). (127)

This means that
K−1∑
τ=1

∑
Γh,õh+1 ,̂ih+1

∣∣∣Pπτ

PK ,Ōî,K ,∆K
1

(Γh, õh+1, îh+1)− Pπτ

P,Ōî,∆1
(Γh, õh+1, îh+1)

∣∣∣ = O(
√
βK)

K−1∑
τ=1

∑
õ1 ,̂i1

∣∣∣Pπτ

PK ,Ōî,K ,∆K
1

(õ1, î1)− Pπτ

P,Ōî,∆1
(õ1, î1)

∣∣∣ = O(
√

β/K). (128)

We note that in the above marginalization of the distribution, we have taken the new impact of
partial OSI and query îh in our problem into consideration, because the query is part of the feedback
trajectory and appears in the sum of Eq. (128). According to Eq. (115) and Eq. (128), we have that

K−1∑
τ=1

∑
Γh

∥∥∥bθK

h (Γh)− bθh(Γh)
∥∥∥
1
· πτ (Γh) = O(

√
βK)∥∥∥bθK

0 (Γh)− bθ0(Γh)
∥∥∥
1
= O(

√
β/K), (129)

where bθ
K

h (Γh) =
∏h

h′=1 B
θ
h′(õh′ , ah′ , îh′ , îh′+1)b

θK

0 (̂i1) and bθh(Γh) =∏h
h′=1 B

θ
h′(õh′ , ah′ , îh′ , îh′+1)b

θ
0(̂i1).

Recall from Eq. (124) that our goal is to bound the following two terms:
K−1∑
k=1

∑
Γj

∥∥∥(BθK

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj),

and ∥∥∥bθK

0 (̂i1)− bθ0(̂i1)
∥∥∥
1
.

The second equation in Eq. (129) already gives the upper bound for the second term∥∥∥bθK

0 (̂i1)− bθ0(̂i1)
∥∥∥
1
. Thus, we next focus on bounding the first term using the first equation

in Eq. (129). To prove this, we first apply the triangle inequality to this term as follows,
K−1∑
k=1

∑
Γj

∥∥∥(BθK

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

≤
K−1∑
k=1

∑
Γj

∥∥∥BθK

j (õj , aj , îj , îj+1) ·
(
bθ

K

j−1(Γj−1)− bθj−1(Γj−1)
)∥∥∥

1
· πk(Γj)

+

K−1∑
k=1

∑
Γj

∥∥∥BθK

j (õj , aj , îj , îj+1)b
θK

j−1(Γj−1)−Bθ
j (õj , aj , îj , îj+1)b

θ
j−1(Γj−1)

∥∥∥
1
· πk(Γj).

(130)
By applying the first equation in Eq. (129) and Lemma 32 to Eq. (130), we have that

K−1∑
k=1

∑
Γj

∥∥∥(BθK

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

= O(
|S̃|(d−d̃)/2

α

√
Kβ). (131)
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Step 4 (Deriving final regret using l1 eluder argument):

In this final step, we prove the final regret, which depends on the performance of OMLE-POSI in
a new episode K + 1, based on the upper bound that we have proved for the previous K episodes
in Eq. (131). To prove this, we use the l1 eluder argument. Specifically, we first use [A]r to denote
the r-th row of matrix A. Next, Eq. (131) implies that

K−1∑
k=1

∑
Γj :(õj ,aj ,̂ij ,̂ij+1)=(õ,a,̂i,̂i′)

O∑
l=1

∣∣∣[(BθK

j (õ, a, î, î′)−Bθ
j (õ, a, î, î

′)
)
Ōj

]
r
· Ō†

jb
θ
j−1(Γj−1)

∣∣∣
· πk(Γj) = O(

|S̃|(d−d̃)/2

α

√
Kβ). (132)

Then, to apply the l1 eluder argument in Proposition 22 of Liu et al. (2022), we can
consider

[(
BθK

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)
Ōj

]
r

as the wt,l variable and consider

Ō†
jb

θ
j−1(Γj−1) · πk(Γj) as the xt,i variable. Then, we have that,

K∑
k=1

∑
Γj :(õj ,aj ,̂ij ,̂ij+1)=(õ,a,̂i,̂i′)

O∑
l=1

∣∣∣[(Bθk

j (õ, a, î, î′)−Bθ
j (õ, a, î, î

′)
)
Ōj

]
r
· Ō†

jb
θ
j−1(Γj−1)

∣∣∣
· πk(Γj) = O(

|S̃|3(d−d̃)/2H2

α

√
Kβ), (133)

where we slightly abuse the notation K and use it to denote any episode. By taking the sum of both
sides of Eq. (133) over all steps j and all possible feedback trajectory Γj , we have that

K∑
k=1

(
H∑
j=1

∑
Γj

∥∥∥[(Bθk

j (õj , aj , îj , îj+1)−Bθ
j (õj , aj , îj , îj+1)

)]
· bθj−1(Γj−1)

∥∥∥
1
· πk(Γj)

+
∥∥∥bθk

0 (̂i1)− bθ0(̂i1)
∥∥∥
1

)
= O(

|S̃|3(d−d̃)/2OAH3

α

√
Kβ), (134)

where the big-O notation hides the constant and logarithmic terms including2
(
d
d̃

)
.

Finally, by combining Eq. (118), Eq. (124) and Eq. (134), we have that the regret of OMLE-POSI can
be upper bounded as follows,

RegOMLE−POSI(K) = Õ

 |S̃|2(d−d̃)OAH4
((

d
d̃

))2
α2

√
K(|S̃|2dA+ |S̃|d−d̃O

(
d

d̃

)
))

 ,

= Õ

(
|S̃|2d−d̃OAH4

α2

√
K(|S̃|2dA+ |S̃|d−d̃/2O))

)
, (135)

where the last inequality is because |S̃| ≥ (d/d̃)2,
(
d
d̃

)
= O((d/d̃)d̃), and the big-O notation hides

the constant and logarithmic terms.

H PROOF OF THEOREM 4

Proof. To prove the regret lower-bound in Theorem 4, we construct a new special state transition,
such that even with partial online state information (OSI), all combinations of sub-states ϕi(s) must
be explored to achieve a regret that is sub-linear in K. Formally, to achieve this, we construct a new
special hard instance as follows.

2Since in our case, the observable operator is not only for the observation-action pair (õ, a), but also for the
two consecutive query pair (̂ij , îj+1), there will an new factor

((
d
d̃

))2
after taking the sum.
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A new hard instance: We consider S = |S̃|d states, i.e., s(1), s(2), ..., s(S). Each of them is one
specific permutation of the sub-state values. Let us consider S̃ = {0, 1} and d = 3 as an example.
Then, there are 8 states, i.e.,

ϕ⃗(s(1)) =

[
0
0
0

]
, ϕ⃗(s(2)) =

[
1
0
0

]
, ϕ⃗(s(3)) =

[
0
1
0

]
, ϕ⃗(s(4)) =

[
0
0
1

]
,

ϕ⃗(s(5)) =

[
1
1
0

]
, ϕ⃗(s(6)) =

[
1
0
1

]
, ϕ⃗(s(7)) =

[
0
1
1

]
, ϕ⃗(s(8)) =

[
1
1
1

]
. (136)

Moreover, there are A actions, i.e., a(1), a(2), ..., a(A), where A ≤ S. In each episode k, the learner
starts from a fixed initial state s1 = [x1, x2, ..., xd]

T, e.g., s1 = s(1) = [0, 0, 0]T, i.e.,

∆1(s1) =

{
1, if s1 = s(1);

0, otherwise.
(137)

Based on these, we construct a new special state transition as follows.

State transitions: In each episode, after taking an action a(j) at the first step h = 1, state s1
transitions to one specific new state at step h = 2 deterministically. Specifically, there are A states
at step h = 2. After taking action a(j), state s1 = s(1) transitions and only transitions to state
s2 = s(j) with probability 1, i.e.,

P1(s2|s1, a(j)) =
{
1, if s2 = s(j);

0, otherwise.
(138)

Let us consider A = 2 as an example. Then,

P1(s2|s1, a(1)) =
{
1, if s2 = s(1);

0, if s2 ̸= s(1).

P1(s2|s1, a(2)) =
{
1, if s2 = s(2);

0, if s2 ̸= s(2).
(139)

For the next logA S−1 steps, the state transitions are as follows. (In the above example with |S̃| = 2,
d = 3 and A = 2, we have logA S = 3.) After taking action a(j) at step h, the m-th state transitions
to one specific new state at step h + 1 deterministically. Specifically, there are Ah−1 states at step
h. by taking action a(j), state sh,m transitions to state sh+1 = s(A(m− 1) + j) with probability 1,
i.e.,

P2(s3|s(m), a(j)) =

{
1, if s3 = s(A(m− 1) + j);

0, otherwise.
(140)

Let us still consider the aforementioned example. Then, at step h = 2, we have

P2(s3|s2, a(1)) =


1, if s2 = s(1) and s3 = s(1);

1, if if s2 = s(2) and s3 = s(3);

0, otherwise.

P2(s3|s2, a(2)) =


1, if s2 = s(1) and s3 = s(2);

1, if if s2 = s(2) and s3 = s(4);

0, otherwise.
(141)

Finally, for the rest of steps, the number of states keeps to be equal to S. For the j-th state s(m)
at each episode, only by taking action a(max{mod(m,A), 1}), the next state is still s(m) with
probability 1. Otherwise, the next state is s(1). Formally, we let

Ph(s(m))(sh(s(m)+1)|s(m), a(j)) =


1, if j = max{mod(m,A), 1} and sh(s(m)+1) = s(m);

1, if j ̸= max{mod(m,A), 1} and sh(s(m)+1) = s(1);

0, otherwise,
(142)
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where h(s(m)) denotes the step of state s(m) that is under consideration and mod(m,A) denotes
the remainder of dividing m by A.

Reward function: We let the reward be rh = 0 for all the first logA S steps. For the later steps, only
when taking action a(max{mod(m,A), 1}) at state s(m), the reward is rh = Ber( 12 ) for some h,
while uniformly randomly pick one of them to be j∗ and rh(s(m

∗), a(max{mod(m∗, A), 1})) =
Ber( 12 + ϵ). Formally, there exists a step h0 > logA S, such that,

rh(s(m), a(j)) =


Ber( 12 ), if j = max{mod(m,A), 1}, h = h0, and m ̸= m∗;

Ber( 12 + ϵ), if j = max{mod(m,A), 1}, h = h0, and m = m∗;

0, otherwise.
(143)

Note that in such a instance, even with partial OSI, the online learner has to try all possible action
sequence to figure out which one provide the slightly higher reward. Therefore, learning in this
instance with partial online state information is equivalent to learning which action sequence is the
best one. Since there are at least Ω(|S̃|dAH) of action sequences with expected reward rh ≥ 1

2 .
Thus, the regret lower bound Ω̃(

√
MK) (where M denotes the total number of arms) in bandit

learning implies that the regret lower bound in our case is Regπ(K) ≥ Ω̃
(√

AH · |S̃|d/2 ·
√
K
)

for any algorithm π.
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