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ABSTRACT

Image steganography is the process of hiding secret information in an image
through imperceptible changes. Most of recent works hide message in the im-
age by modifying the pixels of image itself. However, those images with hidden
messages are not robust to compression such as JPEG, which is used almost every-
where. In order to achieve the ability to compress the image while still having the
ability to carry the message, we propose an innovative optimization method which
leverages a semi-amortized approach to directly manipulate latent space data for
the joint optimization of image compression and steganography. In the compres-
sion module, we investigate two of the most popular models in learned image
compression with different pre-trained quality: the hyperprior model and the ELIC
model. For the steganography module, our method employs the pre-trained fixed
neural network steganography (FNNS) model. We compare our method with two
state-of-the-art methods such as FNNS-JPEG and LISO-JPEG, achieving signifi-
cant image compression while maintaining high fidelity and ensuring the accuracy
of content upon decoding. The results demonstrate the effectiveness and superior-
ity of our approach.

1 INTRODUCTION

Image steganography involves the artful concealment of sensitive data, such as audio, imagery, and
textual content (Morkel et al., 2005), within a host image through minimal perturbations. In an opti-
mal scenario, the embedded information remains undetectable to all but the intended recipients, who
possess the requisite keys for extraction. Despite minor discrepancies between the steganographic
and original images, the presence of covert data remains imperceptible to the uninitiated, render-
ing steganography a valuable asset in applications such as digital watermarking (Wolfgang & Delp,
1996; Shih, 2007) and patent verification (Lu, 2005).

Conventional steganographic practices often rely on pixel-level image statistics, with the Least Sig-
nificant Bit (LSB) technique being a prime example (Pevný et al., 2010; Holub & Fridrich, 2012b;
Holub et al., 2014). This method ingeniously manipulates and embeds information within the LSBs
of an image’s pixels, capitalizing on the human visual system’s relative indifference to minor color
variations for the purpose of information obfuscation.

The advent of deep learning has revolutionized steganography with the advent of end-to-end train-
able encoder-decoder neural networks (Zhang et al., 2019; Dong et al., 2018; Baluja, 2017). In par-
ticular, convolutional neural networks have demonstrated an uncanny ability to discern and exploit
the manifold structure of images (Zhang et al., 2019; Baluja, 2017). These sophisticated methods
not only produce highly realistic encrypted images, but also facilitate the encoding of substantial
information loads, potentially reaching a density of 6 bits per pixel (bpp). However, this increased
capacity comes at the cost of a proportional increase in error rates (Reed et al., 1960).

Innovative methodologies have emerged that frame steganography as a constrained optimization
problem, harnessing adversarial learning strategies to embed data by introducing subtle, yet delib-
erate, perturbations within the image (Kishore et al., 2021). Other cutting-edge approaches amal-
gamate end-to-end neural networks with optimization algorithms, achieving a remarkable 100%
accuracy rate while simultaneously generating images of enhanced naturalism (Chen et al., 2023).
However, these methods are sensitive to commonly adopted image compression techniques. Even
under the 1 bpp condition (which is much less aggressive than real world image compression), the
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accuracy of the extracted information is almost lost after the steganographic image is compressed by
JPEG (Wallace, 1992). Even if a differentiable JPEG is added in the optimization process to back
propagate the gradient, the PSNR metric is bad and unnatural pictures will be produced. Moreover,
the compression quality of training and evaluation must be consistent to have high accuracy, which
is not in line with actual transmission situation.

The steganographic image is not as close to the original image as possible; if the mse metric is used,
it is easy to make the image blurred, adding the perception metric will make the encrypted image
more real and effectively improve the robustness in some detection cases. Therefore, in order to
improve the visual quality of steganographic images and increase the security of steganography, we
add a GAN-like discriminator (Goodfellow et al., 2014; Agustsson et al., 2018) for adversarial train-
ing to achieve the objective of improving the subjective quality of images. Previous work has shown
that semi-amortized inference (Kim et al., 2018) can be used to improve R-D performance (Johnston
et al., 2017; Yang et al., 2020). We intend to use it in our model to edit latent variables to achieve
steganography and reconstruction task. We find that this method can flexibly control each trade-off
metric. Our contributions are as follows.

• We are the first to propose a joint optimization of compression and steganography, which
solves the problem that steganographic images are destroyed due to the compression pro-
cess, so that encrypted images can convey more effective information in the case of com-
pression.

• Our method consists of a image compression module and a steganography module, both
of which use pre-trained models and are independent of the optimization process based on
semi-amortized inference, allowing flexible model configurations.

• We exploit the advantages of GAN models in generating images with better subjective
quality and introduce discriminator and adversarial training for optimization. The results
show that the subjective quality of the images generated by our method is also better than
that of existing methods.

2 RELATED WORKS

Steganography classic steganography operates directly on the spatial of the cover image to encode
the message to be hidden. For example, least significant bit (LSB) steganography. This method
sequentially embeds the binary representation of the hidden message in one of the RGB channels
of the carrier image. Previous work such as Pixel-Value Differencing (PVD) (Wu & Tsai, 2003)
uses the difference in pixel dimension between two images. Highly undetectable steganography
(HUGO) (Pevný et al., 2010) uses the minimization of a well-defined distortion metric, which
quantifies the perceptual and statistical changes introduced by the embedding process. This dis-
tortion metric is typically formulated on the basis of an extended state space, capturing both local
and global characteristics of the cover medium. For Wavelet Obtained Weights (WOW) (Holub &
Fridrich, 2012a), this algorithm assesses the embedding cost of each pixel in an image using a set
of directional filters. The core idea of the WOW algorithm is to adaptively embed secret informa-
tion based on the local texture complexity of the image. With the development of deep learning.
HiDDeN (Zhu et al., 2018) has proposed a encoder-decoder framework to hide messages. Hayes &
Danezis (2017) and Zhang et al. (2019) use adversarial training to generate better quality stegano-
graphic images, and the latter method can hide up to 6 bpp with error rates of about 13-33%. All
these approaches are training based methods, which means using a dataset to train a model and test it
on other images. Recent years have seen a novel method called learning-to-optimize (Kishore et al.,
2021) which inserts an optimization problem for each processed image. The steganographic image
is optimized with respect to the outputs of a fixed (random or pre-trained) decoder and encoder and
the optimization problem is solved with gradient-based optimizer, such as L-BGFS (Dennis, 1982).

Learned end-to-end Image Compression Over the past decade, learning-based image compres-
sion has achieved remarkable success. One of the pioneering contributions in this field was made
by Johannes Ballé (Ballé et al., 2017), who first proposed an end-to-end learning framework for
image compression and use uniform noise estimator and a parametric entropy model to approximate
the probability mass function. Then VAE architecture and hyperprior were proposed (Ballé et al.,
2018) for further improvement. They use hyperprior parameter ẑ to calculate the parameters of the
entropy model. Minnen et al. (2018) utilizes spatial masked convolution as context model, which
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improves the compression ratio at the cost of high decoding complexity. Then channel-wise con-
text model is proposed for more effecient context modeling (Minnen & Singh, 2020). ELIC (He
et al., 2022) adopts a spatial-channel context model with other architecture improvement, achieving
a better balance between compression and computational complexity. To make reconstructed images
more realistic and natural, GAN based models are used and verified to be successful in image com-
pression (Mentzer et al., 2020), where conditional GAN is used to constrain consistency between
decoding image and origin image.

Semi-amortized Variational Inference and Code Editing Kim et al. (2018) and Marino et al.
(2018) invented semi-amortized variational inference. In traditional Variational Autoencoders
(VAEs), a shared inference network, known as the encoder, generates variational parameters for
each sample. This approach, referred to as Amortized Variational Inference (AVI), is computation-
ally efficient because the same network is used globally across all samples. However, the shared
nature of the inference network can lead to suboptimal variational parameters, as it may not capture
the specific characteristics of individual samples accurately. On the other hand, Stochastic Varia-
tional Inference (SVI) performs variational inference for each sample individually. While SVI can
produce more accurate and sample-specific variational parameters, it is computationally expensive
and often impractical for large datasets. The Semi-Amortized Variational Autoencoders is to ini-
tialize the variational parameters for each sample like traditional VAE, then update the variational
parameters for each sample to get high-quality posterior approximations. Campos et al. (2019) and
Yang et al. (2020) introduce this method to learned end-to-end image compression. Training a fully
amortized network is the first step and iteratively optimizing latent is the next step. Gao et al. (2022)
proposed Code Editing, a new paradigm for continuous variable bitrate neural image compression
based on semi-amortized inference. They edit latent directly towards different optimization target,
giving neural image compression more flexibility.
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Figure 1: The overall framework of our approach. We use the same architecture of ga, gs, ha and
hs as ELIC (He et al., 2022). SCCTX denotes the spatial-channel context model. We use the
uneven 5-group scheme with parallel context models. Fixed encoder and Fixed decoder are several
convolutional neural networks with parameters frozen, the same as FNNS (Kishore et al., 2021).
There is only y changing during the optimization.

3 PROPOSED METHOD

3.1 OVERALL FRAMEWORK

Let X ∈ [0, 1]3×H×W be a color image with height H and width W . Let M ∈ [0, 1]D×H×W be a
message that we are trying to conceal in X , where D specifies the number of bits we need to hide per
pixel. We assume that the length of message is D×H ×W . If the message length is not a multiple
of H ×W we can simply ignore the unused outputs and view them as zero during optimization.
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We assume the involvement of two entities in the information transmission process: the sender and
the receiver. The sender uses an encoder network to embed the information within the cover image,
producing a steganographic image. In contrast, the receiver utilizes a decoder network to extract
information from the target steganographic image. However, considering there is a transmission
process, the image needs to be compressed, which means it has information loss during the pro-
cess. Our primary objective is to guarantee that the receiver can accurately extract the information
even after the steganographic image has been subjected to compression and transmission. Further-
more, the steganographic image should closely resemble the original image, both perceptually and
quantitatively.

Our structure includes an image compression module and a steganography module, both of which
use pre-trained models. The compression and strganography process is shown in Fig. 1. For the
compression module, we use both ELIC (He et al., 2022) and Hyper (Ballé et al., 2018) as our
coding architecture to simulate the compression and transmission process. Fig. 1 shows its diagram
with ELIC. We froze the parameters of all neural networks, retaining only the latent code y as the
object that can receive gradients and participate in optimization.

Deep learning-based data compression methods have achieved an increasingly strong performance
in visual data compression, outperforming classical codecs such as JPEG and BPG (fabrice bellard,
2015) in terms of rate-distortion performance. Both hyperprior and various context models proposed
recently have greatly improved the rate-distortion performance, but optimized reconstruction based
on mse loss is easy to generate blurred images, which will also occur with the loss function of
ssim (Wang et al., 2004). Some previous work adopted GAN to enhance perceptual quality, such as
using a generator and a conditional discriminator to compress images while maintaining subjective
quality (Agustsson et al., 2018). In our method we use the discriminator same as HIFIC (Mentzer
et al., 2020).

3.2 LOSS FUNCTION

To generate steganographic images with high fidelity, recover messages with low error, and save
image in low bpp, the overall optimization object is:

L = R+ λ1Lrecon + λ2Lperc + λ3Ladv + λ4Ltv + λ5Lacc, (1)

where the reconstruction loss is mse:

MSE =
1

WH

w∑
i=0

h∑
i=0

(Xij − X̂ij)
2, (2)

Perceptual loss Lperc is LPIPS-VGG loss (Zhang et al., 2018). Given a discriminator gd, the adver-
sarial loss (Mentzer et al., 2020) is:

Ladv = −E log gd(x̂, ŷ), (3)

Ltv is total variational loss:

Ltv =
∑
i,j

(
(x̂i,j−1 − x̂i,j)

2 − (x̂i+1,j − x̂i,j)
2
)β

, (4)

Lacc is the decoding accuracy using cross entropy loss:

Lacc = Ex∼pc
CrossEntropy(D(E(X,M),M)), (5)

where pc is cover image distribution, D is the message decoder, ε is the cover image encoder, M
is the message. The λ1 used for reconstruction error are the same as those used in the pre-trained
image compression models to ensure effectiveness during joint optimization.

3.3 OPTIMIZATION VIA CODE EDITING

We use Code Editing (Gao et al., 2022) for joint optimization of compression and steganography.
Specifically, given an origin image x, we first initialize the continue latent parameters y ←− fϕλ0

(x).
Next, we iteratively optimize y to maximize the objective function L as shown in equation 1. In
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other words, we directly edit the code y. The decoder and entropy parameters θλ0 are kept constant
during the optimization process.

y = argmin
y

L, (6)

where L is equation 1. Similar to most learned image compression methods, the challenge is that
rounding operation is non-differentiable, the majority works of NIC adopt additive uniform noise
(AUN) to relax it (Ballé et al., 2017; Ballé et al., 2018), which is also our method.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

We validate our approach on three distinct datasets:

1) DIV2K (Agustsson & Timofte, 2017): A widely-used dataset for super-resolution and image
reconstruction, consisting of 800 high-quality natural images.

2) MS COCO (Lin et al., 2014): A benchmark data set for object detection commonly employed in
the field.

3) CelebA (Liu et al., 2015): A well-known dataset for face recognition tasks.

For both the DIV2K and MS COCO datasets, we cropped the images to the size of 512 × 512 pixels.
For the CelebA dataset, images are cropped to 192 × 192 pixels to align with the image compression
module.

In all cases, we use random 100 images from the validation set of each dataset. To simulate the
distribution of compressed or encrypted messages, we employed random binary bit strings generated
from an independent Bernoulli distribution with a probability parameter p = 0.5.

Our approach relies entirely on pre-trained models. In the compression module, we use two of the
popular models in learned image compression with different quality: the hyperprior model and the
ELIC model. We use the pretrained model from the opensourced hyperprior1 and ELIC2 model
respectively. For the steganography module, we utilize the pre-trained steganography model, which
employs a classic encoder-decoder architecture like FNNS (Kishore et al., 2021) and LISO (Chen
et al., 2023). More specifically, we use the pretrained encoder-decoder from FNNS directly. We set
the iteration step to 1500 and use the Adam optimizer with a learning rate of 1e-3. To demonstrate
the influence of JPEG compression, we perform both direct JPEG compression on the carrier image
and analyze the steganography effects after training with differentiable JPEG and corresponding
JPEG compression. We call our model Hyperbase and ELICbase steganography model. For every
λ in equation 1, we set λ2 = 16, λ3 = 1, λ4 = 1

244 , λ5 = 1
48 . Specially for λ1 we use it the same as

the pre-trained compression model to maintain the same rate-distortion trade-off as pretraining.

4.2 EVALUATION METRICS

Steganography algorithms are evaluated along the amount of data that can be hidden in an image,
a.k.a capacity. Compression algorithms are evaluated along the length of binary data that repre-
sent a compressed image, a.k.a. rate. Both are evaluated along the similarity between the cover
and steganography image, a.k.a distortion, This section describes some metrics in evaluating the
performance of our model.

Reed Solomon Bits per pixel Measuring the accuracy of the amount of data that is hidden in an
image is non-trivial. In the actual process of information transmission, certain error correction
techniques are needed to help accurately transmit information to the target location, which is more
meaningful. Consider a practical situation where a piece of information is encoded into a binary bit
stream, there is a probability that some of the information will be successfully recovered through
steganography of the image. Since the location of the error is random, it can only allow you to know
the proportion of errors, but not the location of the error. The value of the decoded information is
completely meaningless.

1https://github.com/InterDigitalInc/CompressAI
2https://github.com/VincentChandelier/ELiC-ReImplemetation
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To accurately estimate the payload fraction of our approach, we resort to Reed-Solomon codes (Reed
et al., 1960) following (Zhang et al., 2019). Reed-Solomon error correction codes belong to a class
of linear block codes, which can encode a data block of length k, generating coded data of length n

(n ≥ k). The average ratio of valid message can be seen as k
n and repair errors are at most (n−k)

2 .
This shows that if there is a steganography algorithm that produces a wrong bit with probability p
during use, then we expect that our error-correcting bits should be more than the number of bits that
produce the error. We refer to this ”average ratio” metric as Reed-Solomon bits per pixel (RSBPP).
Given the error probability p, there is an inequality according to the above:

p · n ≤ n− k

2
(7)

Therefore, the RSBPP of the decoding message is less than or equal to 1−2p. Considering an image
can be compressed and saved in binary format, bpp (bit per pixel) is one of the important indicators
to judge the effectiveness of compression algorithm, which indicates the number of bits occupied by
each pixel. RSBPP rate, which means how much hidden message can be load by cover image (in bit
stream format) per bit, can be represented by:

RSBPPrate =
RSBPP

bpp
(8)

Thus, we can measure the relative load of the steganography technique. Higher RSBPP rate means
we can reliably transmit more secret message with less transmission cost or smaller steganographic
image size. In other words, the size of steganographic image is utilized by the secret message more
efficiently, more secret message can be delivered under the same bandwidth or steganographic image
size constraint. Based on this consideration, we regard RSBPP rate as a more meaningful metric for
practical image steganography.

Peak Signal to Noise Ratio To measure the quality of the steganography and compression image,
we use peak signal-to-noise ratio (PSNR). This metric is widely used to measure image distortions.

Fréchet Inception Distance Fréchet Inception Distance (FID) is used to measure the gap between
two image distributions. If one image distribution is the training set, and the images generated
by the generative model are used to form the other distribution, then the FID metric indicates the
overall similarity between the generated images and the original images. We use FID to measure the
perceptual quality of the steganographic images.

4.3 COMPARISON AND ANALYSIS

We compare our method with FNNS (Kishore et al., 2021) and LISO (Chen et al., 2023), two state-
of-the-art methods in image steganography with optimization-based method. In practical industrial
scenarios, directly transmitting raw float32 image data is highly inefficient and resource-intensive.
Saving images in formats like PNG, which are lossless, can result in large file sizes, making them
unsuitable for real-time or bandwidth-constrained environments. Therefore, it is essential to employ
various compression techniques to reduce the size of image data to compare these steganography
methods. For FNNS, we saved the final steganographic image in fp16, PNG, and different-quality
JPEG formats after loading cover image information, to show FNNS’s information recovery ability
under different saving methods. We found that the higher the bpp (bits per pixel), the higher the
accuracy of the information that can be recovered. Additionally, for different qualities of JPEG
methods, we incorporate a differentiable JPEG method into our optimization process, which allows
the gradient to pass through the parameters during optimization. It makes image steganography
more adaptable to JPEG compression.

For LISO, there is one kind of LISO employs an approximate JPEG layer, where the forward pass
performs standard JPEG compression and the backward pass is an analytic function. The improved
method is called LISO-JPEG (Chen et al., 2023). Since the pre-trained models in LISO-JPEG are
not completely released, we were only able to compare LISO-JPEG with our method in DIV2K.

As can be seen in Tables 1, 2, 3, FNNS-png means saving the steganographic image in png format
(Portable Network Graphics) and reloading it to measure the decoding message accuracy, similar to
”-jpg90”,”-jpg70”. The number after ”jpg” means jpeg quality, ” TRAIN” after jpg means adding
differentiable jpeg layer in the optimization pipeline, where the gradient can be propagated back-
ward. And different numbers behind the hyperprior and ELIC means different trade-off (different λ
in R-D loss) between rate and distortion in pre-training process.

6
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Table 1: Steganography and compression results on CelebA dataset

Dataset Method 1bit
PSNR BPP Accuracy RSBPP rate FID

FNNS 27.55 96.00 100.00% 0.010 \
FNNS-fp16 27.5 48.00 99.8% 0.031 \
FNNS-png 27.5 16.68 99.69% 0.060 126.39
LISO-png 35.62 17.08 100.00% 0.062 108.30
FNNS-jpg90 25.63 3.77 56.79% 0.036 133.14
FNNS-jpg70 25.43 2.55 54.76% 0.037 133.47
FNNS-jpg50 34.74 1.15 51.96% 0.034 135.74
LISO-jpg90 32.68 2.12 55.61% 0.036 72.04
LISO-jpg70 25.43 1.03 51.86% 0.036 54.76
LISO-jpg50 34.74 0.74 51.04% 0.028 54.80
FNNS-JPG50 TRAIN 17.50 2.80 68.16% 0.130 229.83

CelebA FNNS-JPG70 TRAIN 17.54 3.84 73.02% 0.120 248.98
FNNS-JPG90 TRAIN 20.25 5.76 78.32% 0.0983 204.66
hyperbase 3 25.27 1.386 66.40% 0.237 212.15
hyperbase 4 25.8 1.748 71.93% 0.251 178.06
hyperbase 5 26.40 1.508 74.80% 0.329 155.01
hyperbase 6 26 3.115 85.69% 0.2291 134.24
hyperbase 7 26.5 3.239 85.40% 0.219 133.23
hyperbase 8 28.15 3.46 84.80% 0.201 101.95
ELICbase 3 22.1 2.718 60.49% 0.077 305.4
ELICbase 4 24.06 2.468 64.06% 0.114 238.1
ELICbase 5 26.42 2.7 83.00% 0.244 160.84
ELICbase 6 29.22 2.69 87.10% 0.276 129.72

Table 2: Steganography and compression results on DIV2K dataset

Dataset Method 1bit
PSNR BPP Accuracy RSBPP rate FID

FNNS 23.04 96.00 100.00% 0.010 \
FNNS-fp16 23.05 48.00 100.00% 0.031 \
FNNS-png 23.04 21.78 99.98% 0.046 208.15
LISO-png 33.83 17.08 100.00% 0.062 30.53
FNNS-jpg90 22.87 5.15 62.45% 0.048 112.6
FNNS-jpg70 22.76 2.86 58.40% 0.059 111.26
FNNS-jpg50 22.68 1.98 56.31% 0.064 117.57
LISO-jpg90 27.44 3.35 57.40% 0.044 44.14
LISO-jpg70 29.14 1.61 52.09% 0.026 47.54
LISO-jpg50 28.66 1.19 50.69% 0.012 52.05
FNNS-JPG50 TRAIN 16.543 2.944 70.75% 0.141 305.85
FNNS-JPG70 TRAIN 17.237 3.907 76.05% 0.133 323.32

DIV2K FNNS-JPG90 TRAIN 20.37 5.86 66.00% 0.055 165.11
LISO-JPEG 15.41 4.20 99.47% 0.236 292.24
hyperbase 3 23.08 1.64 74.18% 0.295 118.53
hyperbase 4 23.20 1.57 80.58% 0.376 123.83
hyperbase 5 23.74 1.66 81.21% 0.376 114.67
hyperbase 6 23.28 3.53 91.75% 0.237 104.43
hyperbase 7 23.82 3.42 92.58% 0.249 95.98
hyperbase 8 24.90 3.83 92.20% 0.220 84.73
ELICbase 3 19.76 2.61 68.60% 0.135 202.96
ELICbase 4 21.58 2.39 68.40% 0.163 167.04
ELICbase 5 24.71 2.46 84.15% 0.278 111.15
ELICbase 6 27.80 2.82 88.00% 0.270 82.14
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Table 3: Steganography and compression results on MSCOCO dataset

Dataset Method 1bit
PSNR BPP Acc Rate RSBPP rate FID

FNNS 30.37 96.00 100.00% 0.010 \
FNNS-fp16 30.37 48.00 100.00% 0.021 \
FNNS-png 30.36 19.03 99.95% 0.052 111.16
LISO-png 33.83 18.12 100.00% 0.054 34.65
FNNS-jpg90 29.94 3.64 57.65% 0.042 109.43
FNNS-jpg70 29.68 1.79 53.76% 0.042 181.18
FNNS-jpg50 29.40 1.25 52.51% 0.040 178.09
LISO-jpg90 30.68 1.88 53.65% 0.03 109.43
LISO-jpg70 29.68 1.35 51.76% 0.025 181.18
LISO-jpg50 28.46 1.08 50.30% 0.022 178.09
FNNS-JPG50 TRAIN 16.77 2.88 70.20% 0.140 280.31
FNNS-JPG70 TRAIN 17.49 3.85 74.10% 0.125 227.34

MSCOCO FNNS-JPG90 TRAIN 21.00 5.53 77.30% 0.099 167.48
hyperbase 3 23.49 1.40 69.60% 0.280 186.99
hyperbase 4 23.14 1.51 74.25% 0.322 165.04
hyperbase 5 23.19 1.564 76.48% 0.339 150.29
hyperbase 6 22.01 3.58 87.69% 0.211 142.31
hyperbase 7 22.20 3.59 87.30% 0.208 133.84
hyperbase 8 22.72 3.92 86.54% 0.186 119.06
ELICbase 3 21.56 2.032 59.60% 0.094 228.12
ELICbase 4 22.67 1.963 67.60% 0.179 205.49
ELICbase 5 24.95 2.344 84.60% 0.295 137.21
ELICbase 6 26.89 2.735 86.75% 0.269 116.55

While FNNS and LISO can attain a zero error rate, this comes at the expense of using PNG or
other space-consuming formats. When JPEG is employed to compress the steganographic image
and then retrieve the information, the recovery rate significantly drops (e.g. FNNS-jpg90 and LISO-
jpg90). Even it can adopt an approximate JPEG layer where the forward pass performs normal
JPEG compression and the backward pass is an identity function like LISO-JPEG (Chen et al.,
2023) or FNNS-JPG90 TRAIN in practical scenarios, the RSBPP rate and image quality measured
by FID and PSNR are all much worse than our methods. The RSBPP rate of our method (hyberbase
and ELICbase) is substantially higher than that of FNNS and LISO, and enables better tradeoff
between image compression and image steganography. These findings highlight the effectiveness
and superiority of our approach.

Fig. 2 gives several visual examples. We can observe that when image compression is considered,
the image quality of FNNS-jpg90 and FNNS-JPG90 TRAIN is much worse than our methods Hy-
perbase and ELICbase. Our methods can produce steganographic images which are visually similar
to the original cover images. Note that there is a tradeoff between steganographic image quality,
compression ratio and steganography accuracy as shown in Table 1, 2, 3 the last column is shown
just to give readers a feeling about the image quality of other methods. We do not need to beat it on
this single metirc.

4.4 STEGANALYSIS

Steganalysis, as a critical component of information security, is dedicated to the detection of covert
communications embedded within digital media. The primary objective of steganalysis tools is to
ascertain whether an image has been manipulated to conceal a message. This domain encompasses
two principal methodologies: statistical steganalysis and neural steganalysis.

Statistical steganalysis relies on the identification of deviations from the expected statistical proper-
ties of an image, detecting LSB (least significant bit) steganography of an image (Gupta & Bhushan,
2012). These deviations may indicate the presence of hidden data. A notable example of a statistical
steganalysis tool is StegExpose (Boehm, 2014), which integrates a variety of detection algorithms,
such as the Chi-square attack (Westfeld & Pfitzmann, 1999b) and RS (Regular/Singular) analy-
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(a)Origin (b)FNNS-jpg90 (c)FNNS-JPGD (d)Hyperbase 8 (e)ELICbase 6 (f)LISO-JPG

Figure 2: Visual results. FNNS-JPGD means FNNS-jpg90 TRAIN in Table 1, 2, 3

sis (Westfeld & Pfitzmann, 1999a), PrimarySets (Dumitrescu et al., 2002). The Chi-square attack
evaluates the distribution of pixel values to detect alterations, while RS analysis focuses on the dif-
ferences in the statistical behavior of regular and singular pixels to infer the presence of hidden
information.

In contrast, neural-based steganalysis leverages the power of neural networks to learn and recog-
nize complex patterns that are indicative of steganographic manipulation (Ye et al., 2017; You et al.,
2020). This approach often involves training deep neural networks on large datasets of clean and
steganographic images (images containing hidden messages). The trained models can then be used
to classify new images with high accuracy, even when the steganographic techniques used are highly
sophisticated and subtle. Compared to traditional statistical steganalysis, neural network-based ste-
ganalysis exhibits significantly greater power and effectiveness. Neural networks are capable of
successfully detecting hidden messages even at low bit-per-pixel (bpp) rates, such as below 0.5 bpp.
To evaluate the security of our proposed method, using StegExpose (Boehm, 2014) as the detec-
tion tool following FNNS and LISO, we demonstrate its ability to evade detection in Table 4. If
image compression is not considered, both FNNS and LISO can achieve zero error rate and LISO
can achieve nearly zero detection accuracy. For practical applications, compression is necessary.
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Though LISO-jpg90 has low detection accuracy, its error rate is very high. Our methods (Hyper-
based and ELICbase) outperform previous methods regarding error rate and detection accuracy.

Table 4: Steganalysis results using images produced by different methods, evaluated on results on
3 datasets, the quality of ”jpg” and ”diffjpg” is 90, Hyperbase is 8, ELICbase is 6. The error rate,
following previous works, is one minus the accuracy in Table 1, 2, 3. Higher detection accuracy
means the steganography method is easier to be discovered by detection tool, so lower is better.

Dataset Method Error Rate↓ PSNR↑ Detection accuracy↓
FNNS 0 27.55 62%

FNNS-jpg90 43.21% 27.5 44%
FNNS-jpg90 TRAIN 21.68% 20.25 90%

CelebA Hyperbase 15.20% 28.15 36%
ELICbase 12.90% 29.22 28%

LISO 0% 30.15 2%
LISO-jpg90 44.39% 32.68 14%

FNNS 0 30.37 39%
FNNS-jpg90 42.35% 29.94 15%

FNNS-jpg90 TRAIN 22.70% 21.00 61%
MSCOCO Hyperbase 13.46% 22.72 23%

ELICbase 13.25% 26.89 7%
LISO 0% 30.42 1%

LISO-jpg90 46.35% 28.46 4%
FNNS 0 23.04 39%

FNNS-jpg 37.55% 23.04 15%
FNNS-jpg90 TRAIN 24.50% 20.37 61%

DIV2K Hyperbase 7.80% 24.9 23%
ELICbase 12% 27.8 7%

LISO 0.0% 30.95 0%
LISO-jpg90 43.60% 27.44 4%

5 CONCLUSION

We propose an innovative optimization method for joint optimization of image compression and
steganography. Our method has demonstrated superior efficiency compared to existing techniques
such as FNNS-JPEG and LISO-JPEG, achieving significant image compression while maintaining
high fidelity and ensuring the accuracy of steganographic content upon decoding. By balancing the
image compression rate with the steganographic payload, we have reached a level of performance
that is considered state-of-the-art. In the future, our research will continue to explore strategies for
reducing compression rates further while maintaining low error rates and enhancing the quality of
steganographic images, aiming to push the boundaries of what is achievable in the field of advanced
image processing for security and data efficiency.
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A APPENDIX

A.1 DETAIL OF NETWORK ARCHITECTURE AND HYPERPARAMETER

Table 5: Architecture of main part of ELIC.

Analyzer ga Synthesizer gs
in: 3-channel image in: M-channel symbols
Conv 5 × 5, s2, N Attention
ResBottleneck×3 TConv 5 × 5, s2, N
Conv 5 × 5, s2, N ResBottleneck×3
ResBottleneck×3 TConv 5 × 5, s2, N
Attention Attention
Conv 5 × 5, s2, N ResBottleneck×3
ResBottleneck×3 TConv 5 × 5, s2, N
Conv 5 × 5, s2, M Attention
Attention TConv 5 × 5, s2, 3

We show the detail architecture for hyper and ELIC model, for hyper model, it utilizes Generalized
Divisive Normalization (GDN) for normalization. GDN is a non-linear normalization technique that
is similar to Batch Normalization (BN) but is specifically designed to better capture the statistical
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properties of natural images and transform them into a Gaussian distribution. Every λ in equation 1,
we set λ2 = 16, λ3 = 1, λ4 = 1

244 , λ5 = 1
48 . Specially for λ1 we use it the same as the pre-trained

model to maintain the trade-off in pretrain process.

Software and Hardware

PyTorch Version: 2.3.0

Hardware: NVIDIA A100 GPU

Some important libraries:

diffJPEG: We used the diffJPEG library to enable differentiable JPEG compression, allowing us to
incorporate JPEG compression directly into the training pipeline.

CompressAI: We utilized the CompressAI open-source library for neural network-based image com-
pression. CompressAI provides a variety of pre-trained models and tools for training custom com-
pression models.

Table 6: Architecture of main part of Hyper.

Analyzer ga Synthesizer gs
in: 3-channel image in: M-channel symbols
Conv 5 × 5, s2, N TConv 5 × 5, s2, N
GDN IGDN
Conv 5 × 5, s2, N TConv 5 × 5, s2, N
GDN IGDN
Conv 5 × 5, s2, N TConv 5 × 5, s2, N
GDN IGDN
Conv 5 × 5, s2, M TConv 5 × 5, s2, 3

Figure 3: Visual result, JPGD means using differentiable JPEG estimator, the same as FNNS-jpg90-
TRAIN
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