
Published as a conference paper at ICLR 2026

ON THE EXPRESSIVE POWER OF GNNS FOR BOOLEAN
SATISFIABILITY

Saku Peltonen
ETH Zürich
Zürich, Switzerland
speltonen@ethz.ch

Roger Wattenhofer
ETH Zürich
Zürich, Switzerland
wattenhofer@ethz.ch

ABSTRACT

Machine learning approaches to solving Boolean Satisfiability (SAT) aim to re-
place handcrafted heuristics with learning-based models. Graph Neural Networks
have emerged as the main architecture for SAT solving, due to the natural graph
representation of Boolean formulas. We analyze the expressive power of GNNs
for SAT solving through the lens of the Weisfeiler-Leman (WL) test. As our main
result, we prove that the full WL hierarchy cannot, in general, distinguish between
satisfiable and unsatisfiable instances. We show that indistinguishability under
higher-order WL carries over to practical limitations for WL-bounded solvers that
set variables sequentially. We further study the expressivity required for several
important families of SAT instances, including regular, random and planar in-
stances. To quantify expressivity needs in practice, we conduct experiments on
random instances from the G4SAT benchmark and industrial instances from the
International SAT Competition. Our results suggest that while random instances
are largely distinguishable, industrial instances often require more expressivity to
predict a satisfying assignment.

1 INTRODUCTION

Boolean Satisfiability (SAT) is a central reasoning problem in computer science and one of the
canonical NP-complete problems. Classic SAT solvers are highly optimized and can handle in-
stances with millions of variables (Heule et al., 2024). Part of their success comes from carefully
engineered heuristics, such as branching and restart strategies (Moskewicz et al., 2001; Biere, 2008),
conflict-driven clause learning (CDCL) (Silva & Sakallah, 1996), and learned clause management
(Audemard & Simon, 2009). These heuristics are based on recurring patterns that differ across
distributions: CDCL solvers are effective on industrial instances with strong community structure
(Ansótegui et al., 2012), whereas look-ahead solvers are better suited for random instances (Alyahya
et al., 2022). However, designing distribution-specific heuristics is time-consuming and requires ex-
pertise in the field.

Machine learning offers a promising alternative, where heuristics can be learned from data. Graph
Neural Networks (GNNs) (Scarselli et al., 2008; Kipf, 2016; Xu et al., 2018) have become the main
architecture for learning-based SAT solving (Guo et al., 2023), since formulas can be naturally ex-
pressed as graphs. A common choice is the Literal Clause Graph (LCG), where literals are connected
to clauses in a bipartite graph (see Figure 2 for an example). Existing GNN methods range from
end-to-end SAT solvers, such as NeuroSAT (Selsam et al., 2019) and QuerySAT (Ozolins et al.,
2022), to hybrid approaches that augment components of classic solvers (Wang et al., 2024; Guo
et al., 2023).

However, GNNs are inherently limited in their expressive power (Xu et al., 2019)—that is, their
ability to distinguish different graph structures. The expressive power of GNNs is characterized by
the Weisfeiler-Leman (WL) test (Weisfeiler & Lehman, 1968), and the extended k-WL hierarchy
(Immerman & Lander, 1990), which provide universal limits on which graphs GNNs can distin-
guish. In particular, any GNN bounded by the WL hierarchy produces identical outputs on graphs
that are WL-equivalent (Xu et al., 2019). This poses a concrete limitation in the context of SAT,

1

Published as a conference paper at ICLR 2026

c1 c2 c3 c4 c5 c6

x1 x1 x2 x2 x3 x3

f = (¬x1 ∨ x3) ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (x1 ∨¬x3)

Figure 1: Literal-clause graph with negation connections (LCN) of a formula f . Removing the
literal-literal edges represented by dashed lines gives the literal-clause graph (LCG).

where solving relies on uncovering structural patterns in graphs representing formulas. This raises
a fundamental question: Are GNNs expressive enough to reason about satisfiability?

Our main result shows that even the full Weisfeiler-Leman hierarchy cannot, in general, distinguish
satisfiable from unsatisfiable formulas. Specifically, we construct pairs of 3-SAT instances with
O(n) variables are indistinguishable under the n-WL test, despite one being satisfiable and the other
unsatisfiable (Theorem 5.3)1. This result mirrors the classic construction of Cai et al. (1992) in
the context of boolean formulas, demonstrating that indistinguishable formulas may also differ in
satisfiability. This has practical implications for solvers that assign variables sequentially, such as
QuerySAT (Ozolins et al., 2022). Even with Ω(n) variable assignments, satisfiability of the residual
formula may remain undecidable with a WL-powerful architecture2 (Lemma 5.4, Corollary 5.5).
This result is notable because it transfers a theoretical limitation (k-WL indistinguishability) to a
realistic computational setting.

We analyze regular, planar, and random SAT instances to examine how expressivity requirements
vary across families. In RegularSAT—a family which we introduce and show is NP-complete —all
instances of the same size are indistinguishable, making WL-powerful GNNs essentially useless. In
contrast, PlanarSAT is fully identified by the 4-WL test (Theorem 6.1).

Similarly, we argue that random SAT instances are largely distinguishable by the WL test, mirror-
ing behavior observed in graph isomorphism testing (Babai et al., 1980). We prove this formally
for formulas generated using the method of Wu & Ramanujan (2021) (Lemma 6.3). Interestingly,
learning-based SAT solvers are often trained on random instances, primarily because they are easy
to generate (Li et al., 2024). While both random and industrial instances can be hard in the tradi-
tional sense, they differ significantly in structure (Alyahya et al., 2022). Our results show that these
instance families also differ in the level of expressivity required to solve them.

We quantify this difference experimentally. We test whether WL-powerful GNNs can theoretically
distinguish literals sufficiently to predict a satisfying assignment. For datasets, we use random in-
stances from the G4SAT benchmark (Li et al., 2024) as well as industrial and crafted instances from
the International SAT competition (Heule et al., 2024). In general, literals in random instances are
quickly distinguished. In contrast, competition instances often require more iterations, and some-
times WL-powerful GNNs are simply not expressive enough to predict a satisfying assignment.
This confirms that industrial and crafted instances pose a greater challenge from the perspective of
expressivity.

2 PRELIMINARIES

Boolean satisfiability. Let x1, . . . , xn denote variables in a propositional logic. A literal ℓ is a vari-
able x or its negation ¬x. A clause c = {ℓ1, . . . , ℓs} is a set of literals, representing the disjunction
ℓ1 ∨ · · · ∨ ℓs. A formula f in Conjunctive Normal Form (CNF) is a set of m clauses {c1, . . . , cm},
representing the conjunction c1 ∧ · · · ∧ cm. We write f as a logical formula

∧
c∈f

∨
ℓ∈c ℓ or as

sets, depending on the context. Let L(f) = ∪c∈f ∪ℓ∈c ℓ be the set of all literals in a formula. The
Boolean Satisfiability Problem (SAT) is defined as follows: given a formula f , check whether f is

1A common misconception is that such indistinguishable instances must exist, because SAT is NP-hard.
Appendix F explains why expressivity and computational hardness are unrelated in this way.

2GNNs with expressive power matching the Weisfeiler-Leman test, such as (Xu et al., 2019)

2

Published as a conference paper at ICLR 2026

satisfiable. 3-SAT is the SAT problem where each formula is in CNF and each clause consists of at
most 3 literals.

Graph Notation. A graph G is a tuple (V,E). If the graph is not clear from context, we write V (G)
and E(G). All graphs are undirected unless otherwise specified. N(v) denotes the set of neighbors
of a node v and d(v) = |N(v)| is the degree of v. On a directed graph dout denotes the outdegree
of a node. A node coloring is a function λV : V → C where C is a set of colors. Similarly, an
edge coloring is a function λE : E → C. On edge-colored graphs we write Nc(v) = {w ∈ V (G) :
∃{v, w} ∈ E(G) s.t. λE({v, w}) = c} for the neighbors of v through edges of color c.

Isomorphism. Two graphs G and H are isomorphic if there exists a bijection σ : V (G) → V (H)
such that {v, w} ∈ E(G) iff {σ(v), σ(w)} ∈ E(H). On graphs with a node-coloring (cG, cH for
G,H , respectively) we also require that cG(v) = cH(σ(v)) for all v ∈ V (G). The definition is
extended for edge-colored graphs in the natural way.

Two CNF formulas f, g are isomorphic if there are bijections σL : L(f) → L(g) and σC : f → g
such that (1.) σL(¬ℓ) = ¬σL(ℓ) for all ℓ ∈ L(f), i.e. σL preserves the relationship between a literal
and its negation, and (2.) σC(c) = {σL(ℓ) : ℓ ∈ c} for all c ∈ f .

Graph Neural Networks. We focus on Message Passing Neural Networks (MPNNs) which encap-
sulate the majority of GNN architectures. Nodes have some initial features s0v ∈ Rd. An MPNN
operates in synchronous rounds, which are typically structured as follows. In each round 1 ≤ ℓ ≤ L,
every node aggregates the states of its neighbors, aℓv = agg({{sℓ−1

w : w ∈ N(v)}}), where {{.}} de-
notes a multiset. The nodes update their state using their previous state and the aggregated messages:
sℓv = upd(sℓ−1

v , aℓv). The functions agg and upd are differentiable functions typically parameterized
by neural networks. The final representations sLv can be used for node-level prediction tasks, or they
can be aggregated into a graph-level representation.

Weisfeiler-Leman Test. The expressive power of MPNNs is bounded by the Weisfeiler-Leman
(WL) algorithm, also known as color refinement:

Definition 2.1 (Weisfeiler-Leman algorithm). Let λV : V (G) → C be a vertex coloring. The WL
algorithm computes new colorings of the graph iteratively. The initial coloring is given by χ0 := λV .
For ℓ ∈ N, a new coloring χℓ is defined as χℓ(v) := (χℓ−1(v), {{χℓ−1(w) : w ∈ N(v)}}). The
color refinement is continued until the partition of nodes given by χℓ equals the partition given by
χℓ+1. The output of the WL algorithm is the stable coloring χℓ.

The WL algorithm can be generalized to also use an edge-coloring λE : E(G) → CE . The update
considers each color class of edges separately: χℓ(v) := (χℓ−1(v), {{χNc : c ∈ CE}}), where
χNc = {{χℓ−1(w) : w ∈ Nc(v)}} are the colors of neighbors through edges of color c.

In the Weisfeiler-Leman test, the WL algorithm is applied to the disjoint union of G and G′. The WL
test distinguishes G and G′ if there is a color c such that the sets {v : v ∈ V (G), χ(v) = c}, {v :
v ∈ V (G′), χ(v) = c} have different cardinalities. We say that a graph G is identified by WL if it is
distinguished from every other non-isomorphic graph H . A class of graphs K is identified if every
graph in K is distinguished from every other non-isomorphic graph H (possibly H ̸∈ K).

k-Weisfeiler Leman Test. Let k ≥ 2 be an integer. The atomic type of a tuple v ∈ V (G)k encodes
all facts about edge connections and colors within the tuple. Two tuples v ∈ V (G)k, u ∈ V (G′)k

have the same atomic type if and only if the mapping vi 7→ ui is an isomorphism of the induced
colored subgraph G[{v1, . . . , vk}] to G[{u1, . . . , uk}].

Definition 2.2 (k-dimensional WL algorithm). The k-Weisfeiler-Leman (k-WL) algorithm ini-
tializes χ0(v) as the atomic type of v for each v ∈ V (G)k. For ℓ ∈ N, a new col-
oring χℓ is defined as χℓ(v) := (χℓ−1(v), χℓ−1

1 (v), χℓ−1
2 (v), .., χℓ−1

k (v)), where χℓ−1
i (v) =

{{χℓ−1(v1, . . . , vi−1, u, vi+1, . . . , vk) : u ∈ V (G)}}. The color refinement is continued until the
partition of tuples given by χℓ equals the partition given by χℓ+1. The output of the WL algorithm
is the stable coloring χℓ. The k-dimensional WL test is defined analogously to the WL test. We say
that G and G′ are distinguished if there exists a color c such that the sets {v : v ∈ V (G)k, χ(v) = c}
and {v : v ∈ V (G′), χ(v) = c} have different cardinalities.

Remark 2.3. There are two algorithms and naming conventions in the literature. This version of the
k-WL algorithm is most common in machine learning literature. Through connections to counting

3

Published as a conference paper at ICLR 2026

logic, it can be shown (Grohe, 2017) to be equivalent to (k− 1)-WL, as defined in for example (Cai
et al., 1992; Kiefer et al., 2019). See (Huang & Villar, 2021) for an overview.

3 GRAPH REPRESENTATIONS OF SAT FORMULAS

A standard way to represent SAT formulas as graphs is the literal-clause graph (LCG). The LCG is
a bipartite graph with literals on one side and clauses on the other. Edges connect literals to clauses
where they appear. See Figure 1 for an example.

In GNNs, node labels of a graph are omitted to preserve permutation invariance. To avoid informa-
tion loss, it is essential to include edges between literals and their negations.3 We call the extended
representation the literal-clause graph with negation connections (LCN). It is defined as the LCG
with additional edges connecting each variable to its negation. The literal-literal edges are assigned
a distinct color from the literal-clause edges. The LCN of a CNF formula f is denoted LCN(f).

Literal-literal edges is necessary to preserve information once labels are removed (see Appendix A
for an example). The LCN representation is also sufficient to preserve all information:

Observation 3.1. An LCN without node labels uniquely determines the corresponding SAT formula
up to isomorphism. The formula can be constructed by grouping nodes into variable pairs according
to the literal-literal edges, labeling them arbitrarily as xi,¬xi, and reading clauses from the literal-
clause edges.

Other representations include the variable-clause graph (VCG) and less common literal-incidence
graph (LIG) and clause-incidence graph (CIG). We focus on the LCN in this work, as the LIG and
CIG representations are lossy, and VCG is not suitable for expressivity analysis because the same
formula (up to isomorphism) can have non-isomorphic VCG representations. See Appendix A for
details.

4 RELATED WORK

Machine Learning for SAT. One of the earliest works in this area is NeuroSAT (Selsam et al.,
2019) – an end-to-end SAT solver framework with GNNs. Their algorithm is based on predicting
satisfiability, and hence works with single-bit supervision. QuerySAT (Ozolins et al., 2022) uses an
unsupervised loss computed from continuous variable values, and a query mechanism to update the
variable values. Other approaches include transformer-based models such as SATformer (Shi et al.,
2023) and attention-based variants like SAT-GATv2 (Chang & Liu, 2025). In a complementary line
of work, Yolcu & Póczos (2019) build a local search SAT solver whose variable selection strategy
is learned by a GNN. Several of these architectures and losses can be evaluated on the G4SAT
benchmark (Li et al., 2024).

The end-to-end SAT solvers are mostly of methodological interest, and currently not practical for
large instances. Another line of research augments classic SAT solvers with machine learning com-
ponents, such as learned heuristics or branching strategies. Selsam & Bjørner (2019) adapt the
NeuroSAT architecture to predict unsatisfiability cores, which is used to select branching variables.
Other SAT solving components with potential for ML solutions include variable initialization (Wu,
2017), clause deletion (Vaezipoor et al., 2020) and restart policy (Liang et al., 2018b). See (Guo
et al., 2023) for a comprehensive survey on machine learning methods in SAT solving.

Dataset generation is another promising application area. To mimic industrial SAT instances, Wu
& Ramanujan (2021) use a learning-based graph representation and design a method to generate
SAT instances from their implicit model. Another line of work frames SAT generation as a bipartite
graph generation problem (You et al., 2019).

Expressivity and the Weisfeiler-Leman test. It is well known that the Weisfeiler-Leman test
bounds the expressive power of MPNNs (Xu et al., 2019). This limitation has motivated a large
number of more expressive GNN architectures, with expressivity corresponding to k-WL for some

3Literal-literal edges are already used in practice in most GNN SAT solvers (Selsam et al., 2019; Li et al.,
2024), but their importance is not always stated explicitly.

4

Published as a conference paper at ICLR 2026

k > 2 (Morris et al., 2019; Maron et al., 2019; Keriven & Peyré, 2019). A comparison of the
expressivity of different GNN extensions is given by (Papp & Wattenhofer, 2022).

The k-WL is a powerful tool, but it is not able to solve graph isomorphism in general. The seminal
work of Cai et al. (1992) shows that there are pairs of non-isomorphic O(n)-node graphs that are
indistinguishable by the n-WL test. There are positive results for special graph classes. Namely,
Kiefer et al. (2019) show that planar graphs are identified by 4-WL. Random graphs are mostly
identifiable by the WL test in two iterations (Babai et al., 1980).

Beyond structural expressivity, Grohe (2023) analyzes the power of GNNs in terms of circuit com-
plexity, showing that GNNs can decide problems in TC0 (constant-depth circuits with polynomial
size).4

Complexity Theory. Boolean satisfiability was the first problem proven to be NP-complete, by
Stephen Cook (Cook, 1971). Later, several variants of SAT have been proven to be equally hard,
such as PlanarSAT (Lichtenstein, 1982). SAT solving remains an active area of research, with SAT
competitions being held annually (Heule et al., 2024).

The computational complexity of different equivalence relations between boolean functions was
studied by Borchert et al. (1998). In their work, two formulas f, f ′ on the same set of variables are
said to be isomorphic if there is a bijection σ of the variables such that f, f ′ agree on all assignments
up to the mapping σ. Under this definition, for instance, a tautology is isomorphic to the empty
formula. Our notion of isomorphism is stricter, as it requires clauses to be preserved under the
mapping. We find that this notion is better suited for the setting with graph representations.

Proof Complexity. The complexity of proving the unsatisfiability of propositional formulas is a
central topic in proof complexity. One of the most studied systems is resolution, where the proof
consists of clauses derived from the original formula using a simple inference rule. Hard examples
for resolution include the Pigeonhole principle (Haken, 1985) and the Tseitin formulas (Urquhart,
1987). Resolution proof length can be related to the width of the proof, where the width of a resolu-
tion proof is the maximum number of literals in any clause of the proof (Ben-Sasson & Wigderson,
2001). The complexity of resolution has also been characterized in terms of pebbling games (At-
serias & Dalmau, 2008; Galesi & Thapen, 2005). In this setting, pebbling games are played on a
single graph—unlike the two-graph pebbling games that correspond to k-WL indistinguishability
(Cai et al., 1992).

5 INDISTINGUISHABLE FAMILIES OF SAT INSTANCES

In this section, we construct explicit families of SAT formulas that are provably indistinguishable
by the WL-test and the WL hierarchy. As our main technical contribution, we show that there are
3-SAT formulas that are indistinguishable by the n-WL test, despite one being satisfiable and the
other not (Section 5.2). We also identify a practically relevant family of regular SAT formulas that
are indistinguishable by WL, yet remain NP-complete. In general, distinguishing SAT instances
(regardless of satisfiability) is as hard as graph isomorphism (Appendix C).

5.1 3-REGULAR SAT

To motivate our first contribution, we start the section with a simple example of a pair of WL-
indistinguishable formulas. Consider a CNF formula f on three variables x1, x2, x3:

f = (x1 ∨ ¬x3) ∧ (¬x1 ∨ x3) . . . x1 = x3

∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) . . . x1 ⊗ x2

∧ (x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) x2 ⊗ x3

where ⊗ denotes the xor. See Figure 1 for the graph representation. The formula is satisfied by
x = (1, 0, 1) or x = (0, 1, 0). We can make a similar but unsatisfiable formula f ′ by replacing the

4This implies (under common complexity theoretic assumptions) that SAT cannot be decided by GNNs.
However, note that this does not imply that there must exist n-WL indistinguishable satisfiable and unsatisfiable
formulas (which is what we show in Theorem 5.3). Indeed, as shown in Theorem 6.1, all PlanarSAT instances
are distinguishable by 4-WL, even though PlanarSAT is NP-complete.

5

Published as a conference paper at ICLR 2026

clauses encoding x2 ⊗ x3 (the third line) with clauses encoding x2 = x3. Note that this change
keeps all literal degrees the same. Since each literal appears in exactly two clauses in both f and f ′,
the LCGs of f and f ′ are WL-indistinguishable. However, f ′ is clearly unsatisfiable.

This example can be generalized to a family of 3-regular SAT instances. We say that a SAT instance
is k-regular if each literal appears in exactly k clauses and each clause contains exactly k literals.
Despite this strong regularity, the class remains computationally hard:
Theorem 5.1. 3-regular SAT is NP-complete.

Although related NP-complete variants have appeared in the literature (3-SAT (Karp, 1972), 3-SAT
with each variable appearing at most 4 times (Tovey, 1984)), we are not aware of a formal proof of
this specific result, so we provide one in Appendix D for completeness. If formulas are given in the
3-regular SAT format, a WL-powerful GNN is essentially useless in solving them:
Observation 5.2. The WL test does not distinguish between any two 3-regular SAT formulas with
the same number of variables.

5.2 K-WL INDISTINGUISHABLE SAT INSTANCES

Given that WL cannot distinguish some formulas, one might wonder whether higher-order WL
tests suffice. In this section, we answer the question in the negative, showing that there are 3-SAT
formulas that are indistinguishable by the WL hierarchy, despite one being satisfiable and the other
not.
Theorem 5.3. There are 3-SAT formulas f, f̃ with O(n) variables and O(n) clauses such that f is
satisfiable and f̃ is not, but the LCNs of f and f̃ are indistinguishable by the n-WL test.

Our result uses the seminal work of Cai, Fürer and Immerman Cai et al. (1992), giving a pair of non-
isomorphic graphs H and H̃ which are indistinguishable by n-WL. We construct a pair of formulas
f, f̃ with LCNs isomorphic to H and H̃ , respectively. On a high level, our formula fG encodes the
existence of an even orientation for a graph G. This is an orientation of the edges such that each
node has an even number of outedges. We show that such an orientation exists if and only if the
number of edges is even. Then, we construct a twisted formula f̃G, encoding the existence of an
even orientation when one of the edges is bidirectional. Exactly one of fG and f̃G are satisfiable,
depending on the parity of m. The proof of Theorem 5.3 is given in Appendix B.

Interestingly, the construction in Theorem 5.3 is similar to Tseitin formulas, which are known as
hard instances for resolution refutation (Urquhart, 1987). Tseitin formulas encode a set of linear in-
equalities over nodes of a graph. See Definition B.11 for a formal definition. Resolution proofs—and
likewise the WL test—rely on exploiting local patterns in the formula (or graph), and in both set-
tings, the hardest instances include a global inconsistency that cannot be detected through purely
local reasoning. To the best of our knowledge, this connection between Tseitin formulas and the
construction of Cai et al. (1992) has not been previously observed.

Implications for WL-powerful architectures. Theorem 5.3 shows that in general, satisfiability
cannot be expressed by any GNN architecture bounded by the WL hierarchy. In contrast to pre-
dicting satisfiability directly, classic SAT solvers, and some GNN-based approaches (Ozolins et al.,
2022), work by sequentially setting variables. A natural question is whether a few variable assign-
ments can help to break symmetries, making formulas more distinguishable, i.e., increasing the
effective expressive power of the solver. This mirrors how node labeling tricks are useful for GNNs
to solve certain tasks like triangle counting (You et al., 2021; Zhang et al., 2021). However, even in
this setting, WL-powerful GNNs have fundamental limitations:

Lemma 5.4. Let f , f̃ be formulas with LCNs indistinguishable by k-WL for some k ≥ 4. For
any partial assignment σ of variables of f with at most ⌊k/2⌋ − 1 variables set, there is a cor-
responding partial assignment σ̃ of the variables of f̃ such that LCN(σ(f)) and LCN(σ̃(f̃)) are
WL-indistinguishable.

Here, LCN(σ(f)) denotes the LCN of the formula f , with additional labels ⊤ or ⊥ for literals set to
true or false by σ. Lemma 5.4 transfers a theoretical k-WL indistinguishability result to a practical
setting, where a WL-powerful GNN is used to make sequential decisions—any decision that is made
for f could also be made for f̃ .

6

Published as a conference paper at ICLR 2026

Restart strategies provide a concrete example of this limitation. When restarting, the solver discards
the current assignment and restarts the search from scratch. Restarting is a core component of classic
solvers (Gomes et al., 2000; Huang et al., 2007), and ML has also been used to guide such restarts
(Liang et al., 2018a). The following result is a corollary of Theorem 5.3 and Lemma 5.4, showing
that restart prediction is fundamentally hard for WL-powerful models:

Corollary 5.5. WL-powerful GNNs cannot, in general, distinguish a satisfiable residual formula
from an unsatisfiable one, even with Θ(n) variable assignments, where n is the number of variables
in the formula.

6 POSITIVE RESULTS FOR DISTINGUISHABILITY

Having shown expressivity limits, we now identify families where GNNs can succeed.

6.1 PLANAR SAT

PlanarSAT is a variant of SAT where the clauses are represented as a planar graph. The PlanarSAT
language is NP-complete (Lichtenstein, 1982). The following result is a consequence of Kiefer et al.
(2019), who showed that the 4-WL test distinguishes all planar graphs.

Theorem 6.1. For any SAT formula f , there is an equisatisfiable PlanarSAT formula f ′ with polyno-
mially many variables and clauses, such that the 4-WL test distinguishes f ′ from any other formula.

Proof. PlanarSAT is NP-complete (Lichtenstein, 1982) (this also works in the LCN represen-
tation, see Lemma 1 in (Lichtenstein, 1982)). The 4-WL test distinguishes between all planar
graphs (Kiefer et al., 2019). □

This result shows that, despite the general limitations of the WL-hierarchy in distinguishing formulas
(Section 5.2), there exist natural and computationally hard subsets of SAT, such as PlanarSAT, where
already 4-WL is fully expressive. The reduction to PlanarSAT is done by replacing edge crossings in
the LCN with gadgets that ensure planarity. Unfortunately, the reduction is not efficient in practice,
because each gadget adds 9 variables and 20 clauses and there may be up to O(n2) edge crossings.

6.2 RANDOM SAT INSTANCES

Random SAT instances can be defined in various ways, often depending on the desired structure or
difficulty. In this section, we consider instances generated from randomly sampled literal-incidence
graphs (LIGs), where each literal is a node and edges connect literals that co-occur in a clause. While
the LIG representation loses some logical information, Wu & Ramanujan (2021) give a principled
procedure for extracting a CNF formula from it:

Lemma 6.2 ((Wu & Ramanujan, 2021)). Given a literal-incidence graph G, a corresponding CNF
formula can be extracted by computing a minimal clique edge cover of G.5 The clauses of the for-
mula correspond to the cliques in the edge cover. The generated formula does not contain duplicate
clauses, subsumed clauses or unit clauses.

We show that a CNF formula extracted from a random literal-incidence graph is likely identified by
WL. The proof can be found in Appendix E.

Theorem 6.3. A CNF formula extracted from a uniformly random literal-incidence graph with n
literals is identified by the WL test with probability at least 1 − (n)−1/7, over the choice of a LIG,
for a large-enough n.

7 EXPERIMENTS

We aim to evaluate whether WL-powerful architectures (such as GIN (Xu et al., 2019)) are, in
principle, capable of predicting a satisfying assignment to SAT formulas.

5A clique edge cover is a set of cliques in G, such that all edges belong to at least one clique.

7

Published as a conference paper at ICLR 2026

7.1 SETUP

Our experiments are based on the fact that in a node-level prediction task, nodes that are WL-
equivalent must have the same output. Given a satisfiable formula, we add equality constraints
between all WL-equivalent literals, and check whether the augmented formula remains satisfiable.
This is a necessary (but not a sufficient) condition for a WL-powerful GNN to predict a satisfying
assignment.

Formally, let f be a satisfiable formula. Running WL for r ≥ 1 rounds on LCN(f) gives a partition
of the literals L1, . . . , Ls. We construct an augmented formula fr that restricts literals in each
partition to the same value. For each equivalence class Lj = {ℓj1, . . . , ℓjnj

}, we add the clauses

gj := (¬ℓjnj
∨ ℓj1) ∧

∧nj−1
i=1 (¬ℓji ∨ ℓji+1). The formula gj encodes an equality constraint between

the literals in Lj . Given a satisfiable formula f , a WL-powerful architecture can predict a satisfying
assignment within r rounds only if fr = f ∧

∧s
i=1 gj is satisfiable. We solve fr for different values

of r, from r = 1 to r = rconverged, where rconverged is the number of rounds for WL to converge on
the LCN of the original formula f . We let rcrit be the smallest r such that fr is satisfiable, if such
a round exists. Conversely, if fr is unsatisfiable for all r, we conclude that WL is not sufficiently
powerful to predict satisfying assignments for f .

7.2 DATASETS

Random instances. The G4SAT benchmark (Li et al., 2024) generates random instances from
various families, including random 3-SAT (Crawford & Auton, 1996) and the CA family mimicking
community structures in industrial instances (Giráldez-Cru & Levy, 2015). Instances are grouped
by size (referred to as difficulty in (Li et al., 2024)). The benchmark is designed so that all instances
are challenging, by choosing instances that are near the satisfiability threshold for 3-SAT (Crawford
& Auton, 1996) and analogously for other families. See (Li et al., 2024) for descriptions of the
families.

SAT competition instances. We use instances from the International SAT competition (Heule et al.,
2024), spanning the competitions held between years 2020 and 2025. The instances are selected as
hard examples from various applications, including scheduling, cryptography, and hardware equiv-
alence checking. Some families are hand-crafted to be difficult for SAT solvers, such as formulas
encoding the Pigeonhole principle. Detailed descriptions of the families can be found in the com-
petition proceedings; see (Heule et al., 2024) for the 2024 edition.6. The size of the instance varies
from a few hundred variables to 50 million variables. Due to limited computational resources, we
limit instances to those under 10 MB in size.

7.3 RESULTS

See Table 1 for results on random instances. The number of rounds needed for WL to distinguish
literals sufficiently is very low, usually 3 or 4. We observed that in many cases (about 40% of all
formulas), WL actually gives all literals unique identifiers. In this case, the constrained formula fr
is trivially satisfiable because it is equal to f . There are a few instances in the k-clique and k-vercov
families (2.0% and 0.3%, respectively) that WL could not solve.7 See Table 4 for the full results on
random instances.

For random 3-SAT instances, regardless of the size of the formula, literals are almost always suffi-
ciently identified after 3 iterations, and WL converges in 4 rounds. This pattern is due to the constant
degree of the clauses. In the first iteration, each literal sees its degree dℓ. However, the second iter-
ation does not refine the literal partition because every neighbor is a clause with degree 3—only on
the third iteration, the literals observe the degrees of other literals in shared clauses.

6A list of instances for the 2024 competition is available at https://benchmark-database.de/
?track=main_2024&result=sat

7k-clique encodes the problem of finding a k-clique on an Erdös-Renyi graph. Symmetries in the underlying
graph can lead to symmetries in the formula that WL cannot resolve. For example, the graph may contain two
nodes that are each fully connected to the same clique but not to each other, making them indistinguishable
under WL, yet mutually exclusive in the satisfying assignment.

8

https://benchmark-database.de/?track=main_2024&result=sat
https://benchmark-database.de/?track=main_2024&result=sat

Published as a conference paper at ICLR 2026

Table 1: Results on random instances, grouped by family. All instances were initially satisfiable.
rcrit is the smallest number of rounds for which the augmented formula fr is satisfiable. We write
unsat when this value does not exist. rconverged is the number of rounds for WL to converge. All
values are reported as mean ± std.

family difficulty rcrit rconverged Variables Clauses Count

3-sat easy 2.97 ± 0.18 3.68 ± 0.47 26 ± 9 119 ± 36 1000
medium 3.00 ± 0.04 3.92 ± 0.28 119 ± 47 509 ± 198 1000
hard 3.00 ± 0.00 4.00 ± 0.00 250 ± 29 1065 ± 125 100
hard+ 3.00 ± 0.00 4.00 ± 0.00 921 ± 48 3775 ± 196 24
hard++ 3.08 ± 0.28 4.00 ± 0.00 5001 ± 62 20504 ± 256 25

k-clique easy 4.12 ± 0.73 6.26 ± 0.83 33 ± 13 543 ± 426 960
unsat 6.00 ± 0.78 22 ± 7 217 ± 194 40

medium 4.11 ± 0.52 6.33 ± 0.95 68 ± 17 2156 ± 960 999
unsat 6.00 ± 0.00 45 ± 0 939 ± 0 1

hard 4.00 ± 0.00 6.00 ± 0.00 114 ± 20 5554 ± 1718 100

Table 2: Results on a selection of instances from the international SAT competition. All instances
were initially satisfiable.

family rcrit rconverged Variables Count

argumentation 2.94 ± 0.44 4.31 ± 0.87 1266 ± 625 16
circuit-multiplier unsat 7.18 ± 0.40 1075 ± 50 11
cryptography 15.74 ± 14.67 17.63 ± 14.34 41510 ± 29705 19

unsat 18.74 ± 13.38 19257 ± 37634 23
hamiltonian 4.17 ± 0.51 5.44 ± 0.51 550 ± 45 18
heule-folkman unsat 4.91 ± 0.30 16614 ± 1103 11
heule-nol unsat 8.60 ± 1.26 1419 ± 0 10
maxsat-optimum 26.64 ± 3.64 29.27 ± 2.49 22157 ± 5623 11

unsat 59.00 ± 0.00 27597 ± 8713 7

SAT Competition Instances. An overview of the results is shown in Table 2 and a more detailed
breakdown is given in Table 3 (Appendix G). WL takes considerably more rounds to converge. Out
of 448 evaluated instances, only 234 could be solved with the expressive power of WL. Across 69
instance families, 38 contained instances where WL is not expressive enough. An example of a
family with indistinguishable structure is heule-nol, which encodes a type of grid coloring problem
(Heule et al., 2024). The regular structure of the instances makes it difficult for WL to distinguish
literals.

8 CONCLUSIONS AND FUTURE WORK

Our theoretical results establish fundamental limitations on the expressive power of GNNs for SAT
solving. We show that even the full WL hierarchy cannot distinguish between satisfiable and un-
satisfiable formulas, while also revealing connections to resolution complexity and offering a new
perspective on the classic construction of Cai et al. (1992). Additionally, we identify an NP-complete
but WL-indistinguishable class of SAT instances, as well as provide positive guarantees for distin-
guishing random and planar SAT instances.

Experimentally, we show that WL-powerful architectures are, in principle, expressive enough to
predict satisfying assignments for random SAT instances, but struggle with industrial and crafted
benchmarks. Our test setup allows us to see if a WL-powerful GNN has the necessary expressive
power for predicting satisfying assignments, though it does not capture whether that expressivity is
sufficient for generalizable learning. Even for random SAT formulas, improved generalization may
require higher-order GNNs, symmetry breaking, or other architectural improvements.

9

Published as a conference paper at ICLR 2026

We hope to see GNNs applied to industrial SAT instances in the future. While this remains challeng-
ing—due to the lack of scalable generators and the large size of many industrial instances—these
instances provide a structurally richer and potentially more demanding testbed. Progress in this
direction could offer new insights into generalization that remain hidden when only using random
instance distributions.

REPRODUCIBILITY STATEMENT

The code for the experiments is available online8 Complete proofs of all theoretical results, including
background results such as the NP-completeness of 3-regular SAT, are included in the appendix (Ap-
pendices B-E). Details of dataset selection and generation are given in Section 7.2 and Appendix G.

REFERENCES

M. Ajtai. Recursive construction for 3-regular expanders. Combinatorica, 14(4):379–416, 1994.
doi: 10.1007/BF01302963. URL https://doi.org/10.1007/BF01302963.

Tasniem Nasser Alyahya, Mohamed El Bachir Menai, and Hassan Mathkour. On the structure of
the boolean satisfiability problem: A survey. ACM Comput. Surv., 55(3), March 2022. ISSN
0360-0300. doi: 10.1145/3491210. URL https://doi.org/10.1145/3491210.

Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of sat formulas.
In International Conference on Theory and Applications of Satisfiability Testing, pp. 410–423.
Springer, 2012.

Albert Atserias and Vı́ctor Dalmau. A combinatorial characterization of resolution width. Journal
of Computer and System Sciences, 74(3):323–334, 2008. ISSN 0022-0000. doi: https://doi.
org/10.1016/j.jcss.2007.06.025. URL https://www.sciencedirect.com/science/
article/pii/S0022000007000876. Computational Complexity 2003.

Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern sat solvers. In
IJCAI, volume 9, pp. 399–404, 2009.

László Babai, Paul Erdös, and Stanley M. Selkow. Random graph isomorphism. SIAM Journal
on Computing, 9(3):628–635, 1980. doi: 10.1137/0209047. URL https://doi.org/10.
1137/0209047.

Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J. ACM,
48(2):149–169, March 2001. ISSN 0004-5411. doi: 10.1145/375827.375835. URL https:
//doi.org/10.1145/375827.375835.

Armin Biere. Adaptive restart strategies for conflict driven sat solvers. In International Conference
on Theory and Applications of Satisfiability Testing, pp. 28–33. Springer, 2008.

B. Borchert, D. Ranjan, and F. Stephan. On the computational complexity of some classical equiv-
alence relations on boolean functions. Theory of Computing Systems, 31(6):679–693, 1998. doi:
10.1007/s002240000109. URL https://doi.org/10.1007/s002240000109.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992. doi: 10.1007/BF01305232. URL
https://doi.org/10.1007/BF01305232.

Wenjing Chang and Wenlong Liu. Sat-gatv2: A dynamic attention-based graph neural network for
solving boolean satisfiability problem. Electronics, 14(3):423, 2025.

Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, pp. 151–158, New York, NY,
USA, 1971. Association for Computing Machinery. ISBN 9781450374644. doi: 10.1145/800157.
805047.
8https://github.com/sakupeltonen/sat-expressivity

10

https://doi.org/10.1007/BF01302963
https://doi.org/10.1145/3491210
https://www.sciencedirect.com/science/article/pii/S0022000007000876
https://www.sciencedirect.com/science/article/pii/S0022000007000876
https://doi.org/10.1137/0209047
https://doi.org/10.1137/0209047
https://doi.org/10.1145/375827.375835
https://doi.org/10.1145/375827.375835
https://doi.org/10.1007/s002240000109
https://doi.org/10.1007/BF01305232
https://github.com/sakupeltonen/sat-expressivity

Published as a conference paper at ICLR 2026

James M. Crawford and Larry D. Auton. Experimental results on the crossover point in ran-
dom 3-sat. Artificial Intelligence, 81(1):31–57, 1996. ISSN 0004-3702. doi: https://doi.org/
10.1016/0004-3702(95)00046-1. URL https://www.sciencedirect.com/science/
article/pii/0004370295000461. Frontiers in Problem Solving: Phase Transitions and
Complexity.

Nicola Galesi and Neil Thapen. Resolution and pebbling games. In Fahiem Bacchus and Toby
Walsh (eds.), Theory and Applications of Satisfiability Testing, pp. 76–90, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg. ISBN 978-3-540-31679-4.

Jesús Giráldez-Cru and Jordi Levy. A modularity-based random sat instances generator. In Proceed-
ings of the 24th International Conference on Artificial Intelligence, IJCAI’15, pp. 1952–1958.
AAAI Press, 2015. ISBN 9781577357384.

Carla P Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena in satisfia-
bility and constraint satisfaction problems. Journal of automated reasoning, 24(1):67–100, 2000.

Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Lec-
ture Notes in Logic. Cambridge University Press, 2017.

Martin Grohe. The descriptive complexity of graph neural networks. In 2023 38th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–14, 2023. doi: 10.1109/
LICS56636.2023.10175735.

Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi
Yan. Machine learning methods in solving the boolean satisfiability problem. Machine In-
telligence Research, 20(5):640–655, 2023. doi: 10.1007/s11633-022-1396-2. URL https:
//doi.org/10.1007/s11633-022-1396-2.

Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985. ISSN 0304-3975. doi: https://doi.org/10.1016/0304-3975(85)90144-6. URL https:
//www.sciencedirect.com/science/article/pii/0304397585901446. Third
Conference on Foundations of Software Technology and Theoretical Computer Science.

Marijn JH Heule, Markus Iser, Matti Järvisalo, and Martin Suda. Proceedings of SAT competition
2024: Solver, benchmark and proof checker descriptions. 2024.

Jinbo Huang et al. The effect of restarts on the efficiency of clause learning. In IJCAI, volume 7,
pp. 2318–2323, 2007.

Ningyuan Huang and Soledad Villar. A short tutorial on the Weisfeiler-Lehman test and its variants.
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 8533–8537, 2021.

Neil Immerman and Eric Lander. Describing Graphs: A First-Order Approach to Graph
Canonization, pp. 59–81. Springer New York, New York, NY, 1990. ISBN 978-1-
4612-4478-3. doi: 10.1007/978-1-4612-4478-3 5. URL https://doi.org/10.1007/
978-1-4612-4478-3_5.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2 9. URL https://
doi.org/10.1007/978-1-4684-2001-2_9.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Curran Associates Inc., Red Hook, NY, USA, 2019.

Sandra Kiefer. Power and limits of the Weisfeiler-Leman algorithm. PhD thesis, Dissertation, RWTH
Aachen University, 2020, 2020.

Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The Weisfeiler–Leman dimension of
planar graphs is at most 3. J. ACM, 66(6), November 2019. ISSN 0004-5411. doi: 10.1145/
3333003. URL https://doi.org/10.1145/3333003.

11

https://www.sciencedirect.com/science/article/pii/0004370295000461
https://www.sciencedirect.com/science/article/pii/0004370295000461
https://doi.org/10.1007/s11633-022-1396-2
https://doi.org/10.1007/s11633-022-1396-2
https://www.sciencedirect.com/science/article/pii/0304397585901446
https://www.sciencedirect.com/science/article/pii/0304397585901446
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4612-4478-3_5
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1145/3333003

Published as a conference paper at ICLR 2026

TN Kipf. Semi-supervised classification with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Zhaoyu Li, Jinpei Guo, and Xujie Si. G4SATBench: Benchmarking and advancing SAT solving with
graph neural networks. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh. Machine
learning-based restart policy for cdcl sat solvers. In International Conference on Theory and
Applications of Satisfiability Testing, pp. 94–110. Springer, 2018a.

Jia Hui Liang, Chanseok Oh, Minu Mathew, Ciza Thomas, Chunxiao Li, and Vijay Ganesh. Ma-
chine learning-based restart policy for CDCL SAT solvers. In Olaf Beyersdorff and Christoph M.
Wintersteiger (eds.), Theory and Applications of Satisfiability Testing – SAT 2018, pp. 94–110,
Cham, 2018b. Springer International Publishing. ISBN 978-3-319-94144-8.

David Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–343,
1982. doi: 10.1137/0211025. URL https://doi.org/10.1137/0211025.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful Graph
Networks. Curran Associates Inc., Red Hook, NY, USA, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and Leman go neural: higher-order graph neural networks.
In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First
Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, AAAI’19/IAAI’19/EAAI’19. AAAI Press, 2019.
ISBN 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33014602.

Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient sat solver. In Proceedings of the 38th annual Design Automation Con-
ference, pp. 530–535, 2001.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs Ko-
zlovics. Goal-aware neural SAT solver. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, July 2022. doi: 10.1109/ijcnn55064.2022.9892733. URL
http://dx.doi.org/10.1109/IJCNN55064.2022.9892733.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network exten-
sions. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning, volume
162 of Proceedings of Machine Learning Research, pp. 17323–17345. PMLR, 17–23 Jul 2022.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Daniel Selsam and Nikolaj S. Bjørner. Guiding high-performance SAT solvers with unsat-core
predictions. In International Conference on Theory and Applications of Satisfiability Testing,
2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
Dill. Learning a SAT solver from single-bit supervision, 2019. URL https://arxiv.org/
abs/1802.03685.

Zhengyuan Shi, Min Li, Yi Liu, Sadaf Khan, Junhua Huang, Hui-Ling Zhen, Mingxuan Yuan, and
Qiang Xu. Satformer: Transformer-based unsat core learning. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1–4. IEEE, 2023.

JP Marques Silva and Karem A Sakallah. Grasp-a new search algorithm for satisfiability. In Pro-
ceedings of International Conference on Computer Aided Design, pp. 220–227. IEEE, 1996.

Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics, 8
(1):85–89, 1984. ISSN 0166-218X. doi: https://doi.org/10.1016/0166-218X(84)90081-7.

12

https://doi.org/10.1137/0211025
http://dx.doi.org/10.1109/IJCNN55064.2022.9892733
https://arxiv.org/abs/1802.03685
https://arxiv.org/abs/1802.03685

Published as a conference paper at ICLR 2026

Alasdair Urquhart. Hard examples for resolution. J. ACM, 34(1):209–219, January 1987. ISSN
0004-5411. doi: 10.1145/7531.8928. URL https://doi.org/10.1145/7531.8928.

Pashootan Vaezipoor, Gil Lederman, Yuhuai Wu, Roger Baker Grosse, and Fahiem Bacchus.
Learning clause deletion heuristics with reinforcement learning. 2020. URL https://api.
semanticscholar.org/CorpusID:221089812.

Wenxi Wang, Yang Hu, Mohit Tiwari, Sarfraz Khurshid, Kenneth McMillan, and Risto Miikku-
lainen. Neuroback: Improving CDCL SAT solving using graph neural networks. In The Twelfth
International Conference on Learning Representations, 2024.

Boris Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, pp. 2(9):12–16, 1968.

Haoze Wu. Improving SAT-solving with machine learning. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, pp. 787–788, New
York, NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346986. doi:
10.1145/3017680.3022464. URL https://doi.org/10.1145/3017680.3022464.

Haoze Wu and Raghuram Ramanujan. Learning to generate industrial SAT instances. Proceedings
of the International Symposium on Combinatorial Search, 10:206–207, 09 2021. doi: 10.1609/
socs.v10i1.18493.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Emre Yolcu and Barnabás Póczos. Learning local search heuristics for boolean satisfiability. Ad-
vances in Neural Information Processing Systems, 32, 2019.

Jiaxuan You, Haoze Wu, Clark Barrett, Raghuram Ramanujan, and Jure Leskovec. G2SAT: Learning
to generate SAT formulas. NeurIPS, 2019.

Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
10737–10745, 2021.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061–9073, 2021.

A GRAPH REPRESENTATIONS OF SAT FORMULAS

c1 c2 c3 c4 c5 c6

x1 x2 x3 x1 x2 x3

c1 c2 c3 c4 c5 c6

x1 x2 x3 x1 x2 x3

Left: f = (x1 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) ∧ (¬x2 ∨ ¬x3)
Right: f ′ = (x1 ∨ ¬x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ ¬x2) ∧ (¬x2 ∨ ¬x1) ∧ (¬x1 ∨ ¬x3)

Figure 2: LCNs of f and f ′. The difference between the formulas is highlighted in bold. Removing
the literal-literal edges represented by the dashed lines gives the literal-clause graphs.

13

https://doi.org/10.1145/7531.8928
https://api.semanticscholar.org/CorpusID:221089812
https://api.semanticscholar.org/CorpusID:221089812
https://doi.org/10.1145/3017680.3022464

Published as a conference paper at ICLR 2026

Literal-clause graphs with negation connections See Section 3 for the definition of the literal-
clause graph with negation connections (LCN). The following lemma illustrates why adding literal-
literal edges is necessary to preserve all information about the formula when labels are removed.

Lemma A.1. There are 3-SAT formulas f, f ′ such that the literal-clause graphs Gf and Gf ′ are
isomorphic but f is satisfiable and f ′ is not.

Proof. Consider the formulas shown in Figure 2 The two LCGs (dashed lines excluded) are isomor-
phic. f has a solution x1 =1, x2 =0, x3 =1. However, f ′ is not satisfiable: x1 =1 implies x2 =0
because of c5, and x3=0 because of c6. Now c3 is false. Conversely, x1=0 implies x2=1 because
of c2, and x3=0 because of c1. This makes c4 false.

Other representations In this work we use the literal-clause graph representation (with negation
edges) because it is lossless and corresponds one-to-one with formulas up to isomorphism. Another
popular representation is the variable-clause graph (VCG), which connects variables to clauses,
with edge colors indicating the sign of the variable. Similarly to the LCN, the VCG preserves all
information about the formula. However, a limitation of the VCG representation is that a formula
admits up to 2n non-isomorphic graph encodings, where n is the number of variables. For example,
flipping the sign of all occurrences of a variable x in f = (x ∨ y) ∧ (¬x) produces an isomorphic
formula f ′ = (¬x ∨ ¬y) ∧ (x), but the VCGs are non-isomorphic. In contrast, the LCNs of f and
f ′ are identical. From the perspective of learning-based methods, such invariance is desirable: it is
analogous to the requirement of permutation invariance in graph learning.

Other known graph representations include the literal-incidence graph (LIG) and the clause-
incidence graph (CIG), where literals (clauses) are connected to other literals (clauses) if they co-
occur in a clause (share a variable). These representations are less commonly used, as they are
inherently lossy.

B K-WL INDISTINGUISHABLE INSTANCES (PROOF OF THEOREM 5.3)

In this section, we prove the following theorem:

Theorem 5.3. There are 3-SAT formulas f, f̃ with O(n) variables and O(n) clauses such that f is
satisfiable and f̃ is not, but the LCNs of f and f̃ are indistinguishable by the n-WL test.

The construction is based on the seminal work of Cai, Fürer, Immerman (CFI) (Cai et al., 1992),
giving a pair of non-isomorphic graphs H and H̃ which are indistinguishable by n-WL. We construct
a pair of formulas f, f̃ with LCNs isomorphic to H and H̃ , respectively. On a high level, our formula
fG encodes the existence of an even orientation for a graph G. This is an orientation of the edges
such that each node has an even number of outedges. We show that such an orientation exists if
and only if the number of edges is even. Then, we construct a twisted formula f̃G, encoding the
existence of an even orientation when one of the edges is bidirectional. Exactly one of fG and f̃G
are satisfiable, depending on the parity of m.

B.1 THE CONSTRUCTION

The CFI construction (Cai et al., 1992) takes in a low degree graph G with only linear sized separa-
tors and produces non-isomorphic graphs X(G) and X̃(G) that are indistinguishable by WL. Next,
we go over the steps to construct X(G), or equivalently a formula fG with an LCN isomorphic to
X(G). For each vertex v ∈ V (G), we define the following subformula Xk, where k = d(v):

Literals: Ak ∪Bk, where
Ak = {ai | 1 ≤ i ≤ k},
Bk = {bi | 1 ≤ i ≤ k}
Clauses: Ck ∪Dk, where

Ck = {cS=
(
∨i∈S ai

)
∨
(
∨i ̸∈S bi

)
|S⊆ [k], |S| is even}

Dk = {ai ∨ bi | i ∈ {1, . . . , k}}

14

Published as a conference paper at ICLR 2026

Here [k] denotes the set {1, . . . , k}. See Figure 3 for a diagram of the LCN of Xk with k = 3. This
graph corresponds exactly to the graph Xk in the CFI construction9. Note that the negations of the
literals are not contained in Xk – they will be defined later.

a1∨b1

a2∨b2 a3∨b3

c∅c12 c23c13

a1

a2 a3

b1

b2 b3

Figure 3: An LCN of the formula X3, corresponding to the graph X3 in the CFI construction. Literal
nodes are circled. The clauses are connected to the literals by solid lines.

For a given graph G, the full formula fG is constructed as follows. For each vertex v ∈ V (G),
add the subformula Xd(v). Each edge {v, w} of v is associated with one of the literal pairs (ai, bi),
where we call the literals av,w, bv,w. The node w on the other side of this edge uses the negations of
the literals, that is, aw,v = ¬av,w and bw,v = ¬bv,w. In the LCN, the literal av,w is connected to its
negation aw,v , and bv,w to bw,v . See Figure 4a for an example.

Now, we define a twisted formula f̃G, and the corresponding twisted graph X̃(G) as follows. An
edge {v, w} ∈ E(G) is chosen arbitrarily. The literal-literal connections are twisted, so that av,w
becomes the negation of bw,v and bv,w becomes the negation of aw,v . A twisted edge is shown in
Figure 4b.
Observation B.1. The LCNs of fG and f̃G are isomorphic to the graphs X(G) and X̃(G) in (Cai
et al., 1992), respectively.

To state the result of Cai et al. (1992), we need the concept of a separator:
Definition B.2. A separator of a graph G is a set S ⊂ V (G) such that the induced subgraph on
V \ S has no connected component with more than |V (G)|/2 vertices.
Theorem B.3 (Theorem 6.4 in (Cai et al., 1992)). Let G be a graph such that every separator of G
has at least k + 1 vertices. Then X(G) and X̃(G) are non-isomorphic but k-WL indistinguishable.

B.2 SATISFIABILITY OF fG AND f̃G

By construction, literals have their negations on the other side of each edge:
Remark B.4. For a normal (not twisted) edge {v, w} ∈ E(G), av,w = ¬aw,v and bv,w = ¬bw,v . If
the edge is twisted, av,w = ¬bw,v and bv,w = ¬aw,v .

The following is true for fG and f̃G, for any edge {v, w} (twisted or not):
Observation B.5. The literals av,w, bv,w are non-equal in any satisfying assignment.

Proof. This is forced by (av,w ∨ bv,w) ∧ (aw,v ∨ bw,v) ≡ (av,w ∨ bv,w) ∧ (¬av,w ∨ ¬bv,w).

This allows us to talk about satisfying assignments of fG and f̃G as orientations of edges of G:
Remark B.6. Any satisfying assignment is uniquely characterized by the values of A. On a graph
without twists, assignments to A correspond one-to-one with orientations of G. On a twisted edge,
either both av,w and aw,v are true, or both are false.

Consequently, the number of A-literals set to true in fG is m, while in f̃G it is m− 1 or m+ 1.

The next lemma characterizes the satisfiability of Xk:
9The nodes corresponding to the Dk clauses are not present in the standard construction in (Cai et al., 1992),

but they mention that nodes connecting each ai to bi can be added.

15

Published as a conference paper at ICLR 2026

av,w∨bv,w

aw,v∨bw,v

av,w

aw,v

bv,w

bw,v

(a) A normal edge.

av,w∨bv,w

aw,v∨bw,v

av,w

aw,v

bv,w

bw,v

(b) A twisted edge.

Figure 4: Constructions in the formula fG and f̃G for an edge {v, w} ∈ E(G). The edges are
represented vertically, with the top ellipse corresponding to v’s side and the bottom to w’s side
of the edge. Solid lines connect clauses to their literals. Dashed lines connect literals and their
negations.

Lemma B.7. Let k be an odd integer and assume that ai ̸= bi for 1 ≤ i ≤ k. Xk is satisfied if and
only if an even number of ai’s (or equivalently bi’s) are set to true.

Proof. Let T ⊂ {1, . . . , k} be the set of indices i such that ai is set to true. We start by proving that
Xk is satisfied whenever |T | is even. The clauses in Dk are satisfied whenever ai ̸= bi, which is
guaranteed by our assumption. Consider any clause cS =

(
∨i∈S ai

)
∨
(
∨i ̸∈S bi

)
. Since k is odd,

|S| is even, and |T | is even, S ∪T is not a partition of {1, . . . , k}. Hence, there is some index i such
that i is in both sets or neither of the sets. If i ∈ S ∩ T , then ai satisfies cS . Else i ̸∈ S ∪ T , and bi
satisfies cS .

Conversely, suppose that |T | is odd. Consider the clause cS with S = {1, . . . , k} \ T . It is a clause
because |S| is even. It is unsatisfied, since ai = F for each i ∈ S and bi = F for each i ̸∈ S.

The following observation is a direct consequence of Lemma B.7 and Observation B.5:
Observation B.8. Assume the degree of every node in G is odd. In any solution of fG or f̃G, the
number of A-literals set to true is even.

We say that a simple graph G has an even orientation if there is an orientation of the edges such that
all nodes have even outdegree. The following is a simple fact characterizing the existence of even
orientations:

Lemma B.9. Let H be a simple connected graph. H has an even orientation if and only if m =
|E(H)| is even.

Proof. Let dout(v) denote the outdegree of a node v. It always holds that
∑

v∈V dout(v) = m.

Assume there exists an even orientation of H . Then dout(v) is even for all v. Since the sum of even
terms is always even, m must be even.

Now assume that m is even. Start with an arbitrary orientation of the edges. For any two vertices v, w
with odd outdegree, take an arbitrary path connecting v and w and reorient the edges on the path.
This changes the outdegrees of v and w from odd to even, while not changing the parity of other
nodes. Repeat this process until all nodes have even outdegree. Suppose that this is not possible, that
is, we are left with a single node v with odd outdegree. We have dout(v) = m−

∑
w∈V \{v} d

out(w).
The left side is odd, while the right side is even because m and the terms of the sum are even. Hence,
we can always find an even orientation.

Using this, we can prove the main lemma characterizing the satisfiability of fG and f̃G:

Lemma B.10. Let G be a connected graph where all degrees are odd.10 If m = |E(G)| is even
(odd), fG is satisfiable (unsatisfiable), and f̃G is unsatisfiable (satisfiable).

10The proof can be generalized to a mix of odd and even degrees, but we chose to do this for simplicity of
the argument.

16

Published as a conference paper at ICLR 2026

Proof. Suppose that m is even. G has an even orientation by Lemma B.9. We can use this to extract
a satisfying assignment of fG by setting av,w = T for each outedge of v. This assignment satisfies
every subformula by Lemma B.7. On the other hand, the twisted formula must have m− 1 or m+1
A-literals true (Observation B.6), making it unsatisfiable (Observation B.8).

If m is odd, fG is unsatisfiable by Observation B.8. On the other hand, the twisted edge allows us
to set both a-literals of the edge to false, effectively removing the edge. The graph G with {v, w}
removed has an even number of edges, so we can find a satisfying assignment by computing an even
orientation of the remaining edges.

Proof of Theorem 5.3. Let G be a graph with odd degrees, where the size of the smallest separator
is linear in n. We can use the construction of Ajtai (1994) for 3-regular expanders. The LCNs of
f and f ′ are isomorphic to X(G) and X̃(G), respectively. These graphs are indistinguishable by
Theorem B.3. By the above Lemma B.10, exactly one of fG and f̃G is satisfiable. Note that both
fG and f̃G have at most 3 literals per clause. The number of variables is n ·∆(G) = O(n) and the
number of clauses n · (2∆(G)−1 + 1) = O(n). □

Tseitin Formulas. Interestingly, this construction is related to Tseitin formulas, which are known
as hard instances for resolution refutation proofs (Urquhart, 1987).

Definition B.11. A Tseitin formula is constructed by taking a graph G and a charge function c :
V (G) → {0, 1} labeling the vertices. Each edge e ∈ E(G) is associated with a variable xe. For
each vertex, there is a constraint ξv =

∑
w∈N(v) x{v,w} = c(v) mod 2, meaning that the parity of

the sum of variables of v’s edges is equal to the charge. The full formula is defined as ∧v∈V ξv .

It is known that a Tseitin formula is satisfiable if and only if the sum of charges is even. Hence,
satisfiability is a global property of the graph. When the underlying graph is an expander (with
small degrees), Tseitin formulas are known to be hard instances for resolution (Urquhart, 1987).

B.3 IMPLICATIONS FOR WL-POWERFUL ARCHITECTURES (PROOF OF LEMMA 5.4)

To prove Lemma 5.4, we first prove a more general statement (Lemma B.12). This uses the equiv-
alence between k-WL and the pebbling games of Cai et al. (1992). Using the definition from
(Kiefer, 2020), the bijective k-pebble game BPk(G,H) is defined as follows. The game is played
on two graphs G and H . There are two players, a spoiler and a duplicator. The game proceeds in
rounds. Each round is associated with a configuration (u, v) of pebbles on the two graphs, where
u ∈ (V (G))ℓ and v ∈ (V (H))ℓ, where ℓ ∈ [0, k]. G[u] denotes the subgraph induced by the nodes
in u, where nodes carry the label of its position in the tuple u. The initial configuration is the pair of
empty tuples. In each round, the following actions are performed in order:

• The spoiler chooses an index i ∈ [k]

• The duplicator chooses a bijection f : V (G) → V (H)

• The spoiler chooses v ∈ V (G) and sets w = f(v).

If i ∈ [ℓ], a pebble is moved from ui to v in G and from vi to w in H . The new configuration is

((v1, . . . , vi−1, v, vi+1, . . . , vℓ), (w1, . . . , wi−1, w, wi+1, . . . , wℓ))

Otherwise, a new pebble is placed on v in G and on w in H , and the new configuration is

((v1, . . . , vℓ, v), (w1, . . . , wℓ, w))

The spoiler wins if the induced, ordered subgraphs G[u] and H[v] are non-isomorphic. The dupli-
cator wins if the spoiler never wins.

Let Gu denote the whole graph G, where nodes in u carry the label of their position in the tuple u.

Lemma B.12. Let G and H be two graphs indistinguishable by k-WL for some k ≥ 3. Then, for
every pebbling u ∈ (V (G))t, t ≤ k − 2, there exists a pebbling v ∈ (V (H))t such that the pebbled
graphs Gu and Hv are indistinguishable by WL.

17

Published as a conference paper at ICLR 2026

Proof. By the equivalence between k-WL and the bijective k-pebble game (Cai et al., 1992)11,
the duplicator has a winning strategy in BPk(G,H). Starting from the empty configuration of
BPk(G,H), let spoiler spend the first t rounds to place t pebbles on G according to u. Because
the duplicator follows a global winning strategy in BPk(G,H), there exists a pebbling v on H such
that the configuration remains a partial isomorphism.

We now keep the t pebbles fixed and consider the 2-pebble game played on the graphs Gu and Hv ,
where the vertices of u, v carry unique labels. Consider BP2(G

u, Hv) which is equivalent to WL on
these graphs. To argue that WL does not distinguish these graphs, we show that the duplicator has a
winning strategy in BP2(G

u, Hv).

We can simulate any spoiler play in BP2(G
u, Hv) in BPk(G,H), keeping the first t pebbles in

place while using the k − t ≥ 2 free pebbles to simulate the two pebbles in BP2. Note that in
Gu, the vertices of u already carry unique labels, so the spoiler gains no additional power from
placing a pebble on already labeled nodes, so we can assume spoiler only plays pebbles on vertices
outside of u. Each BP2 round (spoiler picks index, duplicator picks bijection, spoiler picks a vertex
in G) is then a legal BPk round. The duplicator responds with their winning strategy for BPk. The
spoiler never reaches a winning configuration in BPk(G,H), and hence cannot win in BP2(G

u, Hv).
Therefore the duplicator wins BP2(G

u, Hv), which by the known equivalence is the same as WL
failing to distinguish Gu and Hv .

Lemma B.13. Let f , f̃ be formulas with LCNs indistinguishable by k-WL for some k ≥ 4. For
any partial assignment σ of variables of f with at most ⌊k/2⌋ − 1 variables set, there is a cor-
responding partial assignment σ̃ of the variables of f̃ such that LCN(σ(f)) and LCN(σ̃(f̃)) are
WL-indistinguishable.

Proof of Lemma 5.4. The proof follows from Lemma B.12, which states that if two graphs are
indistinguishable by k-WL, then any labeling of at most k−2 nodes in one graph can be matched by
a labeling of nodes in the other graph so that the resulting labeled graphs are WL-indistinguishable.
We can think of assigned literals as being labeled with ⊤ or ⊥. There are at most 2(⌊k/2⌋ − 1) ≤
k − 2 labeled literal nodes, since each variable corresponds to two literal nodes. By Lemma B.12,
there exists a labeling of at most k − 2 nodes in LCN(f̃) such that the labeled graphs LCN(σ(f))

and LCN(σ̃(f̃)) are indistinguishable. The labels on these nodes determine a corresponding partial
assignment (σ̃ cannot label two adjacent literals ℓ,¬ℓ with the same label (e.g. both ⊤), because
such a labeling would be detectable by 1-WL as only existing in LCN(σ̃(f̃))) □

C GRAPH ISOMORPHISM COMPLETENESS OF DISTINGUISHING
LITERAL-CLAUSE GRAPHS

To complement the indistinguishability results, we show that, in general, distinguishing LCNs is as
hard as graph isomorphism. The graph isomorphism problem (GI) asks whether there is an edge-
preserving bijection of the nodes. Formally, the decision problem is

GI = {(G,H) : G,H are isomorphic graphs}

Let G = {LCN(f) : f ∈ 3-SAT} be the set of LCNs of all 3-SAT formulas. We define the graph
isomorphism problem on LCNs as the language

GISAT = {(G,H) : G,H ∈ G are isomorphic graphs}

We use the following formula to encode all relevant information about a graph in a CNF formula:

Definition C.1 (fG). For each v ∈ V (G), let xv be a variable. The edges of G (and |V (G)|) can be
encoded as a CNF formula fG =

(∧
{v,w}∈E(G)(xv ∨ xw)

)
∧
(∧

v∈V xv

)
.

This formula is trivially satisfiable and not meaningful from a logical perspective, but it uniquely
encodes G up to isomorphism.

11Note that for k ≥ 3, our definition of k-WL (which is more common in the machine learning literature)
actually corresponds to k − 1-WL in (Cai et al., 1992; Kiefer, 2020).

18

Published as a conference paper at ICLR 2026

Observation C.2. The LCN of fG is equal to G with the following modifications. Each edge is
subdivided with the corresponding clause node added in the middle. The original nodes correspond
to the positive literals. Two leaf nodes corresponding to the negative literal and the unit clause is
connected to each positive literal.

Theorem C.3. The graph isomorphism problem on LCNs of 3-SAT formulas is equally hard as
graph isomorphism on general graphs.

Proof. GI ≤ GISAT: Let G,H be two graphs and let fG, fH be the corresponding formulas en-
coding the graph structure, as in Definition C.1. These two formulas are isomorphic iff G,H are
isomorphic: the two-variable clauses encode edges and the single-variable clauses encode nodes.
The LCNs of fG, fH are isomorphic iff the two formulas are isomorphic (Lemma 3.1).

GISAT < GI: Let Gf , Gf ′ be two LCNs. This direction is easy, since Gf and Gf ′ are just two
graphs. Note that graph isomorphism between edge-colored graphs can be reduced to graph isomor-
phism between uncolored graphs by replacing each edge with a special gadget that does not occur
anywhere else in the graph, e.g. a K4 since an LCN is tripartite. Specifically, for each literal-literal
edge {x,¬x}, remove the edge and add a K4, connecting x and ¬x to the same vertex in the K4.

D 3-REGULAR SAT (PROOF OF THEOREM 5.1)

Recall that a bipartite graph is (a, b)-regular if all nodes in the left partition have degree a and all
nodes in the right partition have degree b.
Observation D.1. (a, b)-regular bipartite graphs with nA and nB nodes in the partitions are indis-
tinguishable by WL.

We use the following lemma to manipulate the formula:
Remark D.2. (x ∨ y) ⇐⇒ (x ∨ y ∨ z) ∧ (x ∨ y ∨ ¬z)
Lemma D.3 (Theorem 2.1 (Tovey, 1984) modified). For any δ ≥ 2, given a 3-SAT formula f with
maximum literal degree ∆, there is an equisatisfiable formula f ′ with maximum literal degree δ.
The formula f ′ has at most n′ = n+ 4∆n variables and m′ = m+ 4∆n clauses.

Proof. Let x be a variable in f with x or ¬x appearing more than δ times. We break the variable
into s = d(x) + d(¬x) variables x1, . . . , xs, where s ≤ 2∆. The constraint x1 = x2 = . . . , xs is
equivalent to (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ · · · ∧ (xs ∨ ¬x1). We use Remark D.2 on each clause to
make them 3-regular. The end result uses 2s variables and has 2s clauses. Each original literal is
used once in the constraint clauses, so it can be used δ − 1 times outside of it.

Lemma D.4. Given a 3-SAT formula f where each literal appears in at most 3 clauses, there is an
equisatisfiable 3-regular formula f ′ where each literal is in exactly 3 clauses, with at most n′ = 5n
variables and m′ = m+ 9n clauses.

Proof. Let Lr ⊆ L be the literals in f that appear in exactly 3 clauses. First, note that the number
of edges in the literal-clause graph of f is

3m = 3|Lr|+
∑

ℓ∈L\Lr

d(ℓ)

Here, the sum of degrees of non-regular literals must be a multiple of 3. We need to add s =∑
ℓ∈L\Lr

3 − d(ℓ) = 3|L \ Lr| −
∑

ℓ∈L\Lr
d(ℓ) connections to make the literals 3-regular. As

shown above, s is a multiple of 3, so it is enough to show how to add 3 connections for literals
ℓ1, ℓ2, ℓ3 (possibly some of these are equal). We introduce auxilliary variables a, b, c, d and set
a = b = c = 1, while the value of d does not matter. We add the following clauses to form f ′:

(ℓ1, a,¬b), (a,¬c, d), (b,¬a, d), (c,¬b, d),
(ℓ2,¬a, c), (a,¬c,¬d), (b,¬a,¬d), (c,¬b,¬d),
(ℓ3, b,¬c)

Note that all 9 clauses are satisfied by either a, b or c. Also, all clauses are unique (even when
ℓ1 = ℓ2 = ℓ3) and non-trivial (no clauses of type x∨¬x). All auxilliary literals appear exactly three

19

Published as a conference paper at ICLR 2026

times. The set of solutions of f ′ projected to the variables of f is the same as the set of solutions
for f .

The number of missing connections s is at most 3n, so the number of added variables and clauses is
at most 4n and 9n.

E DISTINGUISHING RANDOM SAT INSTANCES (PROOF OF LEMMA 6.3)

This section uses the seminal results of Babai et al. (1980) on random graph isomorphism. To state
our results, we need some related definitions. Let K be a class of graphs with n vertices. A canonical
labeling algorithm of K is an algorithm which assigns numbers 1, . . . , n to each graph in K, such
that two graphs are isomorphic if and only if the labeled graphs coincide. Note that the labeling
must be permutation invariant. Given a canonical labeling, we can test if two graphs are isomorphic
in linear time by comparing the edges of the two graphs.

Babai et al. (1980) gave a canonical labeling algorithm for isomorphism testing on random graphs:
Theorem E.1 ((Babai et al., 1980)). There is a class of n-node graphs K and a linear-time algorithm
that decides whether a given graph G belongs to K and computes a canonical labeling of K. The
probability that a uniformly random n-node graph belongs to K is at least 1 − n−1/7, for large
enough n.

Proof sketch. In short, their algorithm computes a unique identifier for each node based on adja-
cency to high-degree nodes. For this to work, the top r := 3 log n/ log 2 degrees must be unique.
Assuming unique degrees for nodes v1, . . . , vr ordered by degree, the adjacency patterns to these
nodes gives an O(log n)-bit identifier xv to each node v, where (xv)i = 1(vi ∈ N(v)). If the top
degrees and the generated IDs are unique, this labeling is returned. Otherwise, the graph does not
belong to K. It can be shown that both conditions hold with probability at least 1 − n−1/7 over all
n-node graphs.

It is known that the WL test identifies all graphs in K. For clarity, we add the following lemma to
make this formal:
Lemma E.2. The WL test distinguishes any two graphs G,H where G ∈ K and H is any graph
non-isomorphic to G.

Proof. The first round labels χ1
v of WL partition nodes by degree. The partition given by labels

χ2
v after the second round is clearly at least as fine as the partition given by xv in the algorithm of

Theorem E.1. Hence, if xv is unique for each node, then so is χ2
v . Hence, the multiset of second-

round labels is different for any G ∈ K and H ̸∈ K. In the third round, the unique labels encode all
information about edges, so any differences in the adjacency between graphs in K is detected.

E.1 DISTINGUISHING INSTANCES EXTRACTED FROM RANDOM LIGS

Recall the literal-incidence graph representation of a CNF formula, where each literal is a node
and two nodes are connected if they appear in the same clause. A principled way of extracting
a CNF formula from a random literal-incidence graph is given by Wu & Ramanujan (2021) (see
Lemma 6.2). We show that a CNF formula constructed this way is likely identified by the WL test.
Theorem 6.3. A CNF formula extracted from a uniformly random literal-incidence graph with n
literals is identified by the WL test with probability at least 1 − (n)−1/7, over the choice of a LIG,
for a large-enough n.

Proof. Let G be the corresponding literal-incidence graph. We show that the LCN is identified if G
is identified. Color refinement identifies G, i.e. each node gets a unique identifier (Theorem E.1),
with probability at least 1− (n)−1/7.

Consider color refinement on the LCN. We can ignore literal-literal edges – due to their different
color, they only add expressivity. In two iterations, the information traveling from literals to literals
via clauses on the LCN is exactly the same as in one iteration on G. By construction, the set of
two-hop literal neighbors on the LCN (ignoring literal-literal edges) is exactly the same as the set of

20

Published as a conference paper at ICLR 2026

neighbors in G. Hence, color refinement on the LCN produces unique identifiers for the literals (in
at most twice the number of iterations). Since there are no duplicate clauses, clause nodes become
identified by the unique set of literals they are connected to. Since all nodes have a unique identifier,
the LCN is identified (as in Lemma E.2).

F EXPRESSIVITY VS. COMPUTATIONAL HARDNESS

A common misconception is that if a problem is computationally hard (e.g. NP-complete), then
the WL hierarchy will also struggle to distinguish some instances of this problem. This is not
the case. Distinguishability in GNNs, or equivalently the WL hierarchy (Xu et al., 2019; Morris
et al., 2019) is a structural notion, whereas NP-hardness concerns the computational complexity of
deciding a property. These notions are unrelated: there exists NP-hard problem families that the WL
hierarchy fully identifies, i.e. distinguishes perfectly. For example, 4-WL distinguishes all instances
of PlanarSAT (Theorem 6.1) even though PlanarSAT is NP-complete.

Conversely, our construction (Theorem 5.3) shows that there exists satisfiable and unsatisfiable for-
mulas that remain indistinguishable to the full WL hierarchy. This indistinguishability arises because
the satisfiability of these formulas does not localize in a way detectable by the WL refinement, not
because SAT is computationally hard.

G EXPERIMENTAL RESULTS

G.1 DETAILS ON INSTANCE GENERATION

The default size of instances in G4SATBench is limited (200-400 variables for hard instances).
To generate very large instances with number of variables in the thousands, we adapt the genera-
tion script for 3-SAT by slightly reducing the clause-to-variable ratio from the known satisfiability
threshold (Crawford & Auton, 1996) of ⌊4.258 · nV + 58.26 · n−2/3

V ⌋, where nV is the number of
variables. This is known as the threshold number of clauses for 3-SAT instances, where the ratio
of satisfiable to unsatisfiable formulas is approximately 50/50, and also where the hardest instances
are typically found. To produce very large instances for the 3-SAT family, we change the multiplier
from 4.258 to 4.158, which reduces the number of clauses slightly. This enables faster generation of
satisfiable instances, while still maintaining approximately the same complexity.

G.2 FULL RESULTS

Below are Tables 3 and 4, presenting the full results of our experiments on the SAT competition and
G4SAT benchmark instances.

The competition instances were selected from the International SAT competition from years 2020 to
2025. All instances were initially satisfiable. Due to computational constraints, we only evaluated
instances with size at most 10MB. Out of 448 evaluated instances, only 234 could be solved with
the expressive power of WL. Across 69 instance families, 38 contained instances where WL is not
expressive enough. Additionally, there were 72 instances where the evaluation timed out, because a
solution was not found within 1 hour.

21

Published as a conference paper at ICLR 2026

Table 3: Results on instances from the International SAT competition from years 2020 to 2025.
All instances were initially satisfiable. rcrit denotes the iteration in the Weisfeiler-Leman algorithm
where the WL-partition-constrained formula becomes satisfiable (unsat if such an iteration does not
exist). rconverged is the number of iterations for the WL algorithm to converge. All values are reported
as mean ± standard deviation.

family rcrit rconverged Variables Clauses Count

algebra 43.00 ± 0.00 44.00 ± 0.00 12168 ± 0 55927 ± 0 1
unsat 59.00 ± 0.00 45763 ± 21854 212025 ± 101562 3

antibandwidth unsat 43.00 ± 0.00 56745 ± 0 177682 ± 0 1
argumentation 2.94 ± 0.44 4.31 ± 0.87 1266 ± 625 24764 ± 18863 16
at-least-two-sol unsat 7.00 ± 0.00 2352 ± 0 219297 ± 0 2
auto-correlation 29.00 ± 0.00 32.00 ± 0.00 37869 ± 0 77287 ± 0 2
battleship unsat 1.00 ± 0.00 762 ± 501 8466 ± 7770 5
bitvector unsat 30.00 ± 0.00 11403 ± 0 33386 ± 0 1
brent-equations 31.11 ± 3.86 38.78 ± 12.34 72398 ± 9398 307082 ± 41212 9

unsat 59.00 ± 0.00 78934 ± 5098 350649 ± 22681 2
cardinality-constraints 14.00 ± 0.00 18.00 ± 0.00 647 ± 0 3239 ± 0 1
cellular-automata unsat 59.00 ± 0.00 42271 ± 0 248471 ± 0 1
circuit-multiplier unsat 7.18 ± 0.40 1075 ± 50 20414 ± 1517 11
coloring unsat 6.71 ± 4.61 15563 ± 28396 303330 ± 115583 14
cover unsat 56.00 ± 6.00 162628 ± 199188 84331 ± 98439 4
crafted-cec 18.00 ± 1.10 19.00 ± 1.10 25109 ± 5971 75253 ± 17929 6
cryptography 15.74 ± 14.67 17.63 ± 14.34 41510 ± 29705 184548 ± 86532 19

unsat 18.74 ± 13.38 19257 ± 37634 73907 ± 118053 23
cryptography-ascon unsat 54.00 ± 0.00 158751 ± 58 373490 ± 258 7
cryptography-simon 18.00 ± 2.76 18.67 ± 2.80 3328 ± 599 11072 ± 2035 6
discrete-logarithm 17.50 ± 1.29 23.50 ± 4.43 14876 ± 3199 79248 ± 18265 4
edge-matching unsat 13.67 ± 2.31 6615 ± 3633 73913 ± 44663 3
edit-distance 31.00 ± 0.00 32.00 ± 0.00 11083 ± 0 155964 ± 0 1
ensemble-computation 6.00 ± 0.00 8.00 ± 0.00 11607 ± 0 73804 ± 0 1
fermat 8.33 ± 0.58 11.00 ± 0.00 8203 ± 891 45927 ± 5155 3
fixed-shape-random 5.00 ± 0.00 5.00 ± 0.00 3486 ± 0 8496 ± 0 3
fpga-routing unsat 9.50 ± 3.54 3331 ± 1783 42108 ± 27772 2
generic-csp unsat 7.00 ± 0.00 840 ± 402 9858 ± 4852 2
hamiltonian 4.17 ± 0.51 5.44 ± 0.51 550 ± 45 4951 ± 408 18
hamiltonian-cycle unsat 59.00 ± 0.00 33213 ± 5180 266845 ± 38797 9
hw-model-check unsat 56.50 ± 3.54 119179 ± 39350 419860 ± 67060 2
heule-folkman unsat 4.91 ± 0.30 16614 ± 1103 20147 ± 1492 11
heule-nol unsat 8.60 ± 1.26 1419 ± 0 7832 ± 6 10
hgen 5.00 ± 0.00 5.00 ± 0.00 321 ± 1 1123 ± 3 14
influence-max 19.00 ± 2.83 21.50 ± 3.54 11323 ± 6549 62832 ± 36781 2
knights-problem unsat 24.33 ± 1.15 107589 ± 25778 389927 ± 91758 3
matrix-multiplication 9.00 ± 0.00 10.00 ± 0.00 2396 ± 0 83733 ± 0 1
max-const-part 23.00 ± 0.00 52.00 ± 0.00 30252 ± 0 123402 ± 0 2
maxsat-optimum 26.64 ± 3.64 29.27 ± 2.49 22157 ± 5623 250704 ± 108568 11

unsat 59.00 ± 0.00 27597 ± 8713 318348 ± 145483 7
minimal-disagreement-
parity

unsat 59.00 ± 0.00 3176 ± 0 10283 ± 42 2

minimal-
superpermutation

36.67 ± 4.04 40.00 ± 3.46 7885 ± 2006 26129 ± 5579 3

unsat 59.00 ± 0.00 9075 ± 0 26255 ± 15479 2
min-dis-parity unsat 8.73 ± 0.96 1042 ± 211 5861 ± 1234 15
modcircuits unsat 7.00 ± 0.00 479 ± 0 123509 ± 0 1
multiplier-circuits 33.20 ± 12.49 37.80 ± 11.90 10955 ± 5629 43559 ± 22450 10
planning 14.00 ± 0.00 26.00 ± 0.00 439 ± 0 5423 ± 0 1

unsat 25.00 ± 29.44 8666 ± 5382 74156 ± 36566 3
poly-mult unsat 55.57 ± 9.07 57580 ± 31837 228133 ± 126348 7

22

Published as a conference paper at ICLR 2026

prime-factoring 13.33 ± 10.69 16.17 ± 15.14 2305 ± 2557 16872 ± 5327 6
prime-testing 33.25 ± 14.15 34.00 ± 14.54 30102 ± 47706 98632 ± 134347 4
purdom-instances 22.33 ± 2.31 28.33 ± 11.85 4661 ± 327 18469 ± 1302 3
pythagorean-triples 7.00 ± 0.00 7.00 ± 0.00 3690 ± 4 13674 ± 75 2
quasigroup-compl 4.00 ± 0.00 4.00 ± 0.00 20940 ± 5970 436860 ± 149323 2

unsat 5.00 ± 0.00 1890 ± 0 12666 ± 0 1
random-circuits unsat 5.33 ± 1.15 3115 ± 231 184064 ± 13856 3
random-csp 3.60 ± 0.89 3.80 ± 0.45 799 ± 369 35723 ± 18087 5
random-modularity 3.00 ± 0.00 4.00 ± 0.00 2200 ± 0 9086 ± 0 2
rbsat 4.00 ± 0.00 4.00 ± 0.00 869 ± 206 55161 ± 22567 9
scheduling 12.14 ± 2.19 16.14 ± 3.48 16459 ± 3223 113224 ± 122825 7

unsat 30.86 ± 13.37 35633 ± 29001 158119 ± 102896 28
set-covering 2.00 ± 0.00 4.00 ± 0.00 758 ± 51 31049 ± 3275 12
sgen unsat 1.00 ± 0.00 220 ± 57 528 ± 136 2
sliding-puzzle 31.00 ± 0.00 33.00 ± 0.00 23029 ± 0 86273 ± 0 2
social-golfer 13.67 ± 1.15 16.67 ± 0.58 17469 ± 10785 103810 ± 72947 3

unsat 7.33 ± 4.62 8098 ± 3956 91566 ± 65385 3
software-verification unsat 54.00 ± 0.00 20965 ± 0 93999 ± 0 1
ssp-0 12.00 ± 0.00 28.00 ± 0.00 50093 ± 0 214490 ± 0 1
stedman-triples 9.29 ± 1.54 10.14 ± 1.41 6225 ± 4578 142252 ± 118879 14
subgraph-iso 4.00 ± 0.00 5.00 ± 0.00 1065 ± 382 124130 ± 73773 3

unsat 1.00 ± 0.00 598 ± 0 14076 ± 0 1
sum-of-3-cubes 11.50 ± 0.58 47.00 ± 13.88 35914 ± 6913 175274 ± 34488 4
summle unsat 32.00 ± 0.00 102501 ± 12815 215796 ± 24955 17
tensors 14.92 ± 0.29 16.00 ± 0.00 3220 ± 0 12439 ± 0 12
termination-analysis 13.00 ± 0.00 17.00 ± 0.00 15092 ± 0 65248 ± 0 1
tree-decomposition unsat 42.00 ± 0.00 74804 ± 0 393322 ± 0 2
tseitin-formulas 8.33 ± 1.15 8.67 ± 0.58 334 ± 21 2356 ± 147 3
unknown 9.33 ± 2.52 10.33 ± 3.21 2525 ± 1849 267927 ± 21151 3

unsat 7.33 ± 1.15 7594 ± 7090 125672 ± 112383 3
waerden 2.00 ± 0.00 4.00 ± 0.00 242 ± 16 31376 ± 3731 2

23

Published as a conference paper at ICLR 2026

Table 4: Results on the instances from the G4SAT benchmark. Instances are divided by family and
difficulty, where difficulty follows the size-based categorization in (Li et al., 2024). The benchmark
is designed so that all instances are challenging: hardness is controlled via the clause-to-variable
ratio, which is fixed close to the satisfiability threshold for 3-SAT, and analogously for families
encoding combinatorial problems. All instances were initially satisfiable. rcrit denotes the WL
iteration where the WL-partition constrained formula becomes satisfiable (unsat if such an iteration
does not exist). rconverged is the number of iterations for the WL algorithm to converge. On average, a
few iterations is enough for WL to sufficiently distinguish literals, except for a few outlier instances
in the k-clique, k-vertex cover and ca families. The PS family is omitted due to problems with the
generation script. All values are reported as mean ± standard deviation.

rcrit rconverged Variables Clauses Count
family difficulty

3-sat easy 2.97 ± 0.18 3.68 ± 0.47 26 ± 9 119 ± 36 1000
medium 3.00 ± 0.04 3.92 ± 0.28 119 ± 47 509 ± 198 1000
hard 3.00 ± 0.00 4.00 ± 0.00 250 ± 29 1065 ± 125 100
hard+ 3.00 ± 0.00 4.00 ± 0.00 921 ± 48 3775 ± 196 24
hard++ 3.08 ± 0.28 4.00 ± 0.00 5001 ± 62 20504 ± 256 25

k-clique easy 4.12 ± 0.73 6.26 ± 0.83 33 ± 13 543 ± 426 960
unsat 6.00 ± 0.78 22 ± 7 217 ± 194 40

medium 4.11 ± 0.52 6.33 ± 0.95 68 ± 17 2156 ± 960 999
unsat 6.00 ± 0.00 45 ± 0 939 ± 0 1

hard 4.00 ± 0.00 6.00 ± 0.00 114 ± 20 5554 ± 1718 100
k-domset easy 4.11 ± 0.71 5.61 ± 0.93 39 ± 12 329 ± 186 1000

medium 4.33 ± 0.58 5.50 ± 0.72 88 ± 18 1647 ± 687 1000
hard 4.42 ± 0.67 5.54 ± 0.69 137 ± 22 3986 ± 1315 100

k-vercov easy 4.75 ± 1.14 6.18 ± 1.38 39 ± 13 358 ± 245 993
unsat 4.00 ± 0.00 26 ± 8 159 ± 108 7

medium 4.94 ± 1.00 5.88 ± 1.08 96 ± 20 2052 ± 936 1000
hard 5.00 ± 1.01 5.80 ± 0.85 179 ± 25 7198 ± 2159 100

sr easy 2.00 ± 0.05 3.00 ± 0.06 25 ± 9 146 ± 54 1000
medium 2.01 ± 0.12 3.00 ± 0.00 118 ± 47 644 ± 249 1000
hard 2.05 ± 0.22 3.00 ± 0.00 299 ± 62 1613 ± 343 100

24

	Introduction
	Preliminaries
	Graph representations of SAT formulas
	Related work
	Indistinguishable families of SAT instances
	3-regular SAT
	k-WL indistinguishable SAT instances

	Positive results for distinguishability
	Planar SAT
	Random SAT instances

	Experiments
	Setup
	Datasets
	Results

	Conclusions and future work
	Graph representations of SAT formulas
	k-WL indistinguishable instances (proof of theorem 5.3)
	The construction
	Satisfiability of fG and G
	Implications for WL-powerful architectures (proof of lemma 5.4)

	Graph isomorphism completeness of distinguishing literal-clause graphs
	3-regular SAT (proof of theorem 5.1)
	Distinguishing random SAT instances (proof of lemma 6.3)
	Distinguishing instances extracted from random LIGs

	Expressivity vs. computational hardness
	Experimental results
	details on instance generation
	Full results

