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ABSTRACT

Reinforcement learning (RL) has enhanced the capabilities of large language mod-
els (LLMs) by enabling self-evolution through reward-driven training. Nevertheless,
this process can introduce excessively long responses that inflate inference latency
and computational overhead. To address this issue, existing RL-based length
control methods often incorporate fixed penalties or heuristic reward shaping to
encourage outputs of a desired length. However, such strategies may misalign
the optimization objective with the underlying task, resulting in suboptimal per-
formance and limited generalization across model architectures and datasets. In
this work, we propose LACONIC, a lightweight reinforcement learning method
that enforces a target token budget during training. Specifically, we update policy
models using an augmented objective that combines the task reward with a length-
based cost applied only to tokens exceeding the specified budget. Furthermore, to
balance brevity and task performance, the cost scale is adjusted online throughout
training. This formulation directly optimizes task reward subject to an explicit
token budget constraint, delivering precise and performance-preserving length
control. Across mathematical reasoning models and datasets, LACONIC preserves
or improves pass@1 while reducing output length by up to 43%. It maintains
out-of-domain performance on general knowledge and multilingual benchmarks
with a 44% reduction in tokens. Moreover, LACONIC integrates into standard RL
fine-tuning with no inference changes and minimal deployment overhead.

1 INTRODUCTION
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Figure 1: Heuristic reward shaping
yields suboptimal task rewards, while
adaptive length-aware objective realigns
optimization with true rewards, preserv-
ing performance under length control.

Large language models (LLMs) such as GPT [Ope-
nAI et al., 2024; OpenAI, 2025], Gemini [Comanici
et al., 2025], DeepSeek [DeepSeek-AI, 2025], and
Claude[Anthropic, 2025] have witnessed unprecedented
success in its applications from software agents to enter-
prise analytics [Team et al., 2025; Li et al., 2025b; Jin et al.,
2025; Feng et al., 2025]. The impressive capabilities of
LLMs have been significantly enhanced by reinforcement
learning based fine-tuning [Li et al., 2025a; Wu et al., 2025;
Li et al., 2025b], a procedure that aligns pretrained models
with task-specific rewards through interaction with an en-
vironment. This process has been pivotal in refining LLM
reasoning skills, enhancing generalization, and achieving
state-of-the-art performance across diverse benchmarks
[Wang et al., 2024; Hsiao et al., 2025; Shi et al., 2025; Qu
et al., 2025]. However, RL-tuned language models often
suffer from generating unnecessarily long thinking traces.
This problem is particularly acute on reasoning and mathe-
matics tasks, where the model is asked to spell out logical
steps [Chen et al., 2025; Sui et al., 2025]. In practice,
excessive verbosity inflates training and inference time,
increases memory pressure, and ultimately degrades user experience.
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Figure 2: Illustration of LACONIC. LACONIC alternates two steps: (1) in a primal update, the
policy model is updated on an augmented objective that trades off task reward r with a length-aware
cost c scaled by the dual variable λ; (2) in a dual update, λ is adaptively updated to enforce a token
budget constraint B by increasing when the average length L̄ exceeds the budget B and decreasing
otherwise. Together, these updates maximize task reward while meeting the budget on average.

Recent work on length-aware LLMs has explored positional encoding, prompt engineering, and
post-generation truncation [Li et al., 2025a; Wu et al., 2025; Li et al., 2025b]. A straightforward
method is to design new reward functions to incorporate response length signals into RL-tuning
[Aggarwal & Welleck, 2025; Cheng et al., 2025; Huang et al., 2025; Yuan et al., 2025]. These
methods hard-code a length-aware reward, typically with a fixed penalty or heuristic shaping that
stays fixed throughout training. Fine-tuning with these rewards optimizes a surrogate objective that is
misaligned with true task reward, and often demands per-setting hyperparameter tuning. Figure 1
(top) visualizes this issue by showing a sketch of training process. The fixed heuristic objective differs
from the true objective, so optimizing it yields policies with suboptimal task rewards.

In this paper, we address length control in RL-tuning by maximizing task reward subject to an average
token budget constraint. We introduce LACONIC (Length-Aware Constrained Policy Optimization),
a primal-dual algorithm. During training, the model samples candidate responses for each prompt.
Besides the task reward (e.g., correctness or usefulness) as in the standard RL-tuning, we assign
to each candidate response also a length-aware cost proportional to its budget violation. We then
construct a learning signal that combines task reward with length cost, scaled by an adaptively learned
multiplier. We alternatively update the policy model and the multiplier. The policy is updated by a
policy optimization step where advantages and objectives are calculated from the constructed signal.
Then we update the multiplier based on the average response length of the current batch. We raise
the multiplier if the current batch violates the token budget constraint on average, and lower it if
the current batch falls short. This feedback automatically steers the model’s average output length
towards the token budget. Particularly, when the model consistently stays within the token budget, the
multiplier naturally drops to zero and our training steps reduce to standard RL-tuning steps, allowing
the model to recover task rewards with shortened responses. As illustrated in figure 1, LACONIC
adopts an adaptive objective that dynamically align the optimization with true rewards, steering the
policy towards the length-aware optimum.

We conduct extensive experiments to evaluate our method LACONIC and present the evaluation
results in section 3. We apply LACONIC to fine-tune two reasoning models DeepScaleR-1.5B-
Preview [Luo et al., 2025] and Qwen2.5-Math-1.5B-Instruct [Yang et al., 2024]. The experimental
results show that our LACONIC-tuned models can significantly outperform existing length control
baseline L1 [Aggarwal & Welleck, 2025] and match GRPO on pass@1 across common mathematics
benchmarks, while effectively shortening response lengths by using 44% and 26% fewer tokens than
the base model and L1-Max respectively. LACONIC also preserves accuracy on benchmarks outside
our RL-tuning domain while reducing response length by 44% compared to GRPO. Furthermore, we
perform ablation analysis on the hyperparameters of our method in section 4. Ablation experiments
show that LACONIC provides robust and length control.
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2 METHODOLOGY

2.1 PRELIMINARY BACKGROUND

RL fine-tuning casts text generation as a sequential decision process, where the prompt q together
with the partial output sequence constitutes the state, selecting the next token is the action, and the
language model parameterized by θ serves as the policy πθ that maps states to action probabilities.
After generating the response, the model receives task rewards r(q, o) assigned by a reward model.
Policy gradient algorithms such as Proximal Policy Optimization (PPO) [Schulman et al., 2017] and
Group Relative Policy Optimization (GRPO) [Shao et al., 2024a] then translate such rewards into
token-level gradients, so that the model can be updated to increase the corpus-level expected rewards,
i.e, maxθ Eq∼P (Q),o∼πθ(·|q)[r(q, o)]. In practice, GRPO updates the policy model’s parameters θ by
optimizing the following surrogate objective

J (θ) = Eq,{oi}G
i=1

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min(ρi,tAi,t, clip(ρi,t, 1−ε, 1+ε)Ai,t)−βDKL[πθ∥πref ]

, (1)

where ρi,t =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

is the likelihood ratio, and Ai,t is the group-relative advantage. The
likelihood ratio clipping and an extra KL-divergence penalty are adopted to stabilize policy updates.

2.2 LACONIC: LENGTH-AWARE CONSTRAINED POLICY OPTIMIZATION

To add explicit control over response length, we extend standard RL fine-tuning to a constrained
setting that maximizes task reward under an average token count constraint B, a pre-specified budget
reflecting deployment targets such as latency and computational resources in practice. We treat the
token budget as a given hyperparameter and learn a policy whose average response length respects
the budget B. Formally, letting L(o) denote the length of response o, we address

max
θ

Eq∼P (Q),o∼πθ(·|q)[r(q, o)], s.t. Eq∼P (Q),o∼πθ(·|q)[L(o)] ≤ B. (2)

In this formulation, we enforce a corpus-level average token budget rather than a more strict per-
sequence length constraint. Response lengths naturally vary across prompts. As an example, a math
olympiad problem typically requires more tokens to solve than a simple arithmetic query. The average
budget constraint in equation (2) allows the model to generate more tokens where they improve
reward and shorten responses on easier cases while still meeting the overall budget constraint.

Length-aware cost. In order to enforce the budget constraint during training, we assign each
response a sequence-level cost that measures its budget violation. Specifically, for a prompt q and a
response o generated by the policy model πθ, we define the cost as

c(q, o) = max

{
L(o)−B

B
, 0

}
. (3)

The cost is zero for responses no longer than B, and increases linearly with the number of over-budget
tokens. This design discourages unnecessary verbosity while preserving exploration as the model can
freely use up to B tokens without penalty. While task rewards often lie in [0, 1], response lengths can
range widely from a few hundreds to over 100K across backbones, prompt distributions, and output
length caps in practice. We add the 1/B normalization to keep the cost on a comparable scale across
different magnitudes of lengths and budgets.

Lagrangian reward. We incorporate the cost into the learning objective via a Lagrangian relaxation.
With a nonnegative multiplier λ ≥ 0, also known as a dual variable, we define the Lagrangian reward

ℓλ(q, o) = r(q, o)− λ · c(q, o). (4)

Primal updates. To tackle the constrained optimization in equation (2), we alternate a primal
(policy) update and a dual (multiplier) update. In the primal update, we hold λ fixed and take a policy
gradient step to optimize expected Lagrangian reward, i.e., maxθ Eq,o[ℓλ(q, o)]. This is essentially the
standard RL-tuning objective with the task reward r replaced by the Lagrangian reward ℓλ. Therefore,
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Algorithm 1: LACONIC (Length-Aware Constrained Policy Optimization)
Input: initial policy model πθinit ; reward models rφ; task prompts D; token budget B; step size η;

initial dual variable λinit
1 policy model πθ ← πθinit

2 dual variable λ← λinit
3 for iteration = 1, . . . , I do
4 reference model πref ← πθ

5 for step = 1, . . . ,M do
6 Sample a batch Db from D
7 Update the old policy model πθold ← πθ

8 Sample G outputs {oi}Gi=1 ∼ πθold(·|q) for each question q ∈ Db

9 Compute rewards {ri}Gi=1 for each sampled output oi by running rφ
10 Compute costs {ci}Gi=1 for each sampled output oi by equation (3)
11 Compute Lagrangian rewards {ℓλ,i}Gi=1 for each sample output by equation (4)
12 Compute advantages Ai,t for the t-th token of oi by equation (5)

// Primal update
13 Update the policy model πθ by maximizing the GRPO-style objective

// Dual update
14 Update the dual variable λ by equation (6)
15 Update rφ

Output: πθ

we adapt the GRPO-style policy update with the objective computed from ℓλ. Specifically, for each
prompt q, we sample a group of candidate outputs o = {o1, o2, . . . , oG} from the current policy
model πθ, and compute their task rewards r = {r1, r2, . . . , rG} and costs c = {c1, c2, . . . , cG} by
equation (3). We then compute the Lagrangian rewards ℓℓℓλ = {ℓλ1

, ℓλ,2, . . . , ℓλ,G} where ℓλ,i =
ri − λci. For each token oi,t, we construct the GRPO-style advantage as the normalized Lagrangian
reward, i.e.,

Ai,t = ℓ̃λ,i =
ℓλ,i −mean(ℓℓℓλ)

std(ℓℓℓλ)
. (5)

The policy model is optimized by maximizing the GRPO objective in equation (1) where advantages
are calculated by equation (5).

Dual updates. In the dual update, we adjust the dual variable λ based on how the batch compares
to the token budget. Let L̄ denote the average response length of the current batch. We update

λ← max

{
λ+ η

(
L̄

B
− 1

)
, 0

}
, (6)

with the step size η > 0. When the batch violates the token budget on average (L̄ > B), the update
increases λ, raising the effective price of tokens in ℓλ. Longer responses then receive lower (often
negative) advantages than shorter responses with similar task rewards, so the next primal update shifts
the policy toward shorter outputs. If the batch falls within the budget, λ relaxes towards 0. Notably,
when λ = 0, ℓλ reduces to the task reward r, and the next primal update is exactly a GRPO step.
This feedback adapts λ to track the budget constraint throughout training as the policy and length
distribution evolve.

We present LACONIC in algorithm 1 and illustrate the workflow with two sample steps in figure 2.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Models and Datasets. For the training dataset, we use DeepScaleR-Preview-Dataset [Luo et al.,
2025], a math dataset containing 40.3K rows of question-answer pairs sampled from AIME (prior to
2023), AMC (prior to 2023), Omni-MATH [Gao et al., 2024], and STILL [Min et al., 2024]. For

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results across five math benchmarks.

Model AIME2024 MATH Minerva Olympiad Macro Average

Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens

DeepScaleR-1.5B
+ GRPO 26.25 4462 83.44 1657 28.81 1982 46.59 2600 46.27 2675
+ L1-Exact 21.88 3754 82.44 3614 28.70 3612 44.55 3687 44.39 ↓1.88 3667 ↑37%

+ L1-Max 25.00 2879 83.50 1794 28.28 1624 44.96 2025 45.44 ↓0.83 2080 ↓22%

+ LACONIC 27.50 2451 83.72 1000 28.84 1113 45.82 1496 46.47 ↑0.2 1515 ↓43%

Qwen-Math-1.5B
+ GRPO 11.46 952 74.86 570 25.14 656 39.84 808 37.89 747
+ L1-Exact 9.79 1309 69.69 988 22.52 1277 37.17 1128 34.79 ↓3.1 1176 ↑57%

+ L1-Max 11.04 1229 70.39 779 22.93 1239 37.07 1063 35.36 ↓2.53 1078 ↑44%

+ LACONIC 11.46 674 73.85 464 25.25 524 38.39 603 37.24 ↓0.65 566 ↓24%

base models, we use DeepScaleR-1.5B-Preview [Luo et al., 2025] (DeepScaleR-1.5B for short) and
Qwen2.5-Math-1.5B-Instruct [Yang et al., 2024] (Qwen-Math-1.5B for short). DeepScaleR-1.5B is a
1.5B-parameter reasoning model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B [DeepSeek-AI,
2025] on DeepScaleR-Preview-Dataset, and Qwen-Math-1.5B is a 1.5B-parameter instruction-tuned
math model. In line with previous works, we set the maximum response length to 4K tokens per
prompt during training and 8K tokens during evaluation for DeepScaleR-1.5B. We set the maximum
response length to 2K tokens per prompt during training and evaluation for Qwen-Math-1.5B, because
the model supports only up to 4K context lengths.

Baselines. We fine-tune the base models with the following algorithms to serve as baselines and
compare with our algorithm LACONIC: (i) GRPO [Shao et al., 2024a]: the standard RL-tuning
algorithm originally used in the post-training of DeepScaleR-1.5B and Qwen math models; (ii) L1-
Exact [Aggarwal & Welleck, 2025]: a length-controlled policy optimization algorithm that fine-tunes
models to satisfy exact token-length constraints; (iii) L1-Max [Aggarwal & Welleck, 2025]: a variant
of L1-Exact that further fine-tunes models to observe a maximum token budget.

Evaluation. We evaluate models on 4 common mathematics benchmarks: AIME2024, MATH
[Hendrycks et al., 2021], Minerva [Lewkowycz et al., 2022], and Olympiad-Bench [He et al., 2024].
To assess the mathematical reasoning ability of the models, we report pass@1, the fraction of
questions for which the model’s first response matches the correct answer. To quantify the verbosity
of the model’s output, we report the average response length.

3.2 MAIN RESULTS

In this section, we first present in table 1 the main results of all baselines and LACONIC on the 4
mathematics benchmarks. Then we present in table 2 the results on out-of-domain benchmarks,
GPQA, LSAT, and MMLU, which probe general knowledge and logic reasoning.

LACONIC outperforms existing length-control methods and matches vanilla RL-tuning while
significantly reducing response lengths. On DeepScaleR-1.5B, after fine-tuning, LACONIC out-
performs GRPO and both L1 variants on pass@1 while significantly shortening its answers by
emitting 43%, 58%, and 26% fewer tokens per prompt on average than GRPO, L1-Exact, and L1-Max
respectively. Specifically, LACONIC-tuned model outperforms the three baselines with the highest
pass@1 in AIME2024, MATH, and Minerva benchmarks while using significantly fewer tokens. On
Qwen-Math-1.5B, after fine-tuning, LACONIC virtually preserves the pass@1 performance of GRPO
and outperforms both L1 variants, while substantially shortening its answers by emitting 24%, 52%,
and 47% fewer tokens per prompt on average than GRPO, L1-Exact, and L1-Max respectively. No-
tably, LACONIC generates least tokens across all benchmarks on both base models with comparable
or higher pass@1.

LACONIC preserves out-of-domain (OOD) capabilities. LACONIC preserves GRPO’s macro
average accuracy while generating 44% fewer tokens on average. Our method matches vanilla RL-
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Table 2: Evaluation results across out-of-domain (OOD) benchmarks.

Model GPQA LSAT MMLU Macro Average

Accuracy # Tokens Accuracy # Tokens Accuracy # Tokens Accuracy # Tokens

DeepScaleR-1.5B
+ GRPO 28.88 2229 24.6 3426 43.30 719 32.26 2125
+ L1-Exact 22.88 1475 25.19 1374 36.67 766 28.25 ↓4.01 1205 ↓43%

+ L1-Max 28.72 1773 26.58 2321 38.48 863 31.26 ↓1.00 1652 ↓22%

+ LACONIC 27.20 1167 24.53 1923 43.36 497 31.69 ↓0.57 1196 ↓44%

tuning on MMLU and LSAT with 31% and 44% fewer tokens respectively, and trades 1.68 percentage
points on GPQA for a 48% length reduction. Compared with both L1 variants, LACONIC attains
higher macro pass@1 with fewer tokens. The results indicate strong OOD task reward preservation
with substantially shorter outputs.

4 FURTHER ANALYSIS

In this section, we present additional ablation analysis related to hyperparameters, and examine the
computational resources required by LACONIC, including runtime, FLOPs, and memory usage.

4.1 ABLATION ANALYSIS ON BUDGET B

We vary the token budget B ∈ {3000, 2000, 1750, 1500} on DeepScaleR-1.5B while keeping all
other settings and hyperparameters (including the dual step size) fixed, and train for 300 steps.
Figure 3 shows the training dynamics of (a) accuracy reward; (b) average response length; (c) dual
variable λ; and (d) average response length to budget ratio L̄/B. We evaluate the step-300 checkpoints
on the four mathematics benchmarks. Table 3 reports pass@1 and average response lengths.

LACONIC provides reliable, hyperparameter-tuning-free length control. Across token budgets,
training rapidly drives the average response length under the budget and maintains it near the budget
once stabilized. Even under tight constraints on a backbone that naturally produces long responses,
LACONIC keeps the average length near the budget. Although prompt distributions during evaluation
differ from training, table 3 shows a clear monotonic relation between the token budget B and average
response length. In practice, B acts as a single knob and no re-tuning of other hyperparameters is
required to achieve effective length control.

LACONIC achieves better reward with less tokens than GRPO and existing length control
methods across a wide range of token budgets. We compare the evaluation results of LACONIC
with token budgets ranging from 1500 to 3000 in table 3 to GRPO and both L1 variants in table 1.
Across a wide range of token budgets, LACONIC consistently outperforms all baselines (GRPO and
L1) on most benchmarks while using substantially fewer tokens at the same time. This shows the
superiority of LACONIC to preserve reward under constrained token budgets.

Overall, these results demonstrate LACONIC’s controllability (the achieved lengths drop as the budget
shrinks), stability (training lengths remain near the budget), and decoupling (changing token budgets
B require no re-tuning of other hyperparameters).

4.2 ABLATION ANALYSIS ON DUAL STEP SIZE η

We vary the step size for dual updates η ∈ {0.002, 0.01, 0.02} while keeping all other settings fixed
and train Qwen-Math-1.5B for 350 steps under a token budget B = 550. We set the token budget
B = 550 for all runs. For η = 0.02, we also set a ceiling λmax = 0.1 for the dual variable. Figure 4
plots the training dynamics of (a) accuracy reward; (b) average response length; (c) dual variable
λ; (d) average response length to budget ratio L̄/B. We evaluate the step-350 checkpoints on the 4
mathematics benchmarks, and report the pass@1 and average response lengths in table 4.
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(a) Accuracy reward over training steps (b) Average response length over training steps

(c) Dual variable λ over training steps (d) Average length to budget L̄/B over training steps
Figure 3: Ablation on token budget B. All plots are smoothened over 10 steps except (c) dual
variable.

Table 3: Evaluation results across 4 math benchmarks.

Model AIME2024 MATH Minerva Olympiad Macro Average

Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens

DeepScaleR-1.5B
+ GRPO 26.25 4462 83.44 1657 28.81 1982 46.59 2600 46.27 2675
+ LACONIC (3000) 29.79 3642 84.46 1490 29.76 1921 47.07 2386 47.77 ↑1.50 2360 ↓12%

+ LACONIC (2000) 30.83 3558 85.70 1454 31.02 1839 48.94 2357 49.12 ↑2.85 2302 ↓14%

+ LACONIC (1750) 30.21 3477 84.62 1388 30.52 1659 48.78 2221 48.53 ↑2.26 2186 ↓18%

+ LACONIC (1500) 27.50 3124 84.39 1297 31.60 1494 48.65 2048 48.04 ↑1.77 1991 ↓26%

LACONIC is insensitive to the dual step size η. Across different dual step sizes, LACONIC
delivers consistent length control. With η = 0.002 versus 0.01, the training dynamics of average
response length are virtually identical throughout, and the final policies match after stabilization.
With η = 0.02 (plus a λ-ceiling), the curves settle into the same stabilized dynamics and reach
comparable final reward. This shows that LACONIC is robust to an order-of-magnitude change in the
dual step size η.

LACONICworks consistently with a λ-ceiling. Across runs with and without a ceiling, the training
curves and final policies are essentially the same once stabilized. In both cases LACONIC tracks
the token budget and recovers reward. The λ-ceiling is a preference safeguard. Our primary goal
is to favor correct responses over incorrect ones, even when correct answers are longer. With the
Lagrangian reward, an excessively large λ can flip preferences and make very short but incorrect
outputs score higher than correct long outputs. Specifically, for an indicator reward function r(q, o) =
1{o is correct}, we require ℓλ(q, oc) = 1 − λ(L(oc) − B)/B > 0, where oc is any correct response.
This translates to an upper bound of λ < B/(L(oc) − B) for any correct response oc. It suffices
to set a ceiling of λmax = B/(Lmax − B), where Lmax is the maximum response length cap. In
cases where a λ-ceiling λmax is present, we augment the dual update to a projected version: λ ←
clip(λ+ η

(
L̄
B − 1

)
, 0, Lmax).

4.3 COMPUTATIONAL RESOURCE ANALYSIS
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(a) Accuracy reward over training steps (b) Average response length over training steps

(c) Dual variable λ over training steps (d) Average response length to budget ratio L̄/B over
training steps

Figure 4: Ablation of the length-aware fine-tuning: (a) reward accuracy, (b) mean response length,
(c) length-penalty multiplier λ, (d) ratio of average response length over threshold.

Table 4: Evaluation results across 4 math benchmarks.

Model AIME2024 MATH Minerva Olympiad Macro Average

Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens Pass@1 # Tokens

Qwen-Math-1.5B
+ GRPO 11.46 952 74.86 570 25.14 656 39.84 808 37.89 747
+ LACONIC (0.02) 11.04 661 73.73 466 25.34 539 37.72 601 36.96 ↓0.93 567 ↓24%

+ LACONIC (0.01) 11.46 674 73.85 464 25.25 524 38.39 603 37.24 ↓0.65 566 ↓24%

+ LACONIC (0.002) 10.42 652 73.74 464 25.32 527 38.43 609 36.98 ↓0.91 563 ↓25%

492s

398s
Average step time

0.67ms

0.77ms
Average step time per token

18GB

14GB
Average GPU memory usage

Figure 5: Average computational resource usage of
LACONIC (green) and GRPO (blue).

We report in figure 5 wall-clock step time,
step time per token, and NVML GPU mem-
ory, averaged over training steps. LACONIC
is end-to-end cheaper than vanilla RL-
tuning. Our method is 19% faster and uses
22% less GPU memory. Per-token cost is
nearly unchanged, with a small bookkeep-
ing overhead for the length cost and dual
update. Overall, LACONIC adds negligible
kernel-level overhead and reduces overall runtime and memory by learning to generate fewer tokens.

5 RELATED WORK

RL fine-tuning. Reinforcement learning has become a crucial component of LLM post-training,
particularly for enhancing large-scale reasoning and aligning model behavior with human preferences
or task-specific objectives. One of the most widely used approaches for policy optimization in this
setting is the policy gradient algorithm [Sutton & Barto, 2018]. To address the instability of early
methods such as REINFORCE [Williams, 1992], Proximal Policy Optimization (PPO) [Schulman
et al., 2017] introduced a clipped importance sampling ratio to constrain policy updates, which has
since become a standard in RL training pipelines for LLMs. More recently, GRPO [Shao et al.,
2024b] proposed group-relative advantage estimation, which eliminates the need for a learned value
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function, reducing variance and improving computational efficiency. This innovation has catalyzed a
wave of follow-up methods aimed at improving sample efficiency, stability, and performance in RL
fine-tuning.

Several GRPO-based extensions have been introduced to address specific challenges in LLM training.
SRPO [Zhang et al., 2025] addresses the problem of ineffective samples through history resampling,
enhancing credit assignment in sparse-reward settings. DAPO [Yu et al., 2025] introduces dynamic
sampling and a token-level gradient loss to better handle complex, multi-step reasoning tasks such as
chain-of-thought (CoT) generation. Other variants include VAPO [Yue et al., 2025], which adapts
advantage estimation to better capture variance across different reasoning depths; GSPO [Zheng
et al., 2025], which emphasizes group-level structure in sampling; GFPO [Shrivastava et al., 2025],
which focuses on sample efficiency in long-horizon settings; and GMPO [Zhao et al., 2025], which
explores geometric averaging of policy gradients for improved robustness. Collectively, these methods
demonstrate the growing sophistication of RL fine-tuning techniques and the community’s effort to
make them more scalable, stable, and effective for large-scale LLM alignment.

Length-Aware LLMs. Recent work has investigated various approaches for making large language
models (LLMs) aware of output length, including modifications to positional encoding, prompt
engineering techniques, and post-hoc truncation methods [Li et al., 2025a; Wu et al., 2025; Li et al.,
2025b]. A common strategy involves incorporating length preferences into reinforcement learning
(RL) fine-tuning through manually designed reward functions that penalize or incentivize certain
output lengths [Aggarwal & Welleck, 2025; Cheng et al., 2025; Huang et al., 2025; Yuan et al., 2025].
These methods typically rely on fixed heuristics or penalty terms that remain constant throughout
training, and thus optimize a surrogate objective that may be misaligned with the true downstream
task reward. This misalignment can lead to suboptimal performance and often requires extensive
hyperparameter tuning to balance length control with task-specific quality. Recent efforts have also
explored dynamic decoding strategies and curriculum learning to improve length adaptation, but
these approaches still depend on manually specified schedules or heuristics. Our work differs in that
it aims to align length control with task reward in a more adaptive and data-driven manner, avoiding
the limitations of fixed shaping objectives.

6 CONCLUSION

We present LACONIC, a budgeted, feedback-driven formulation for length-aware reinforcement
learning (RL) fine-tuning that integrates seamlessly into standard PPO/GRPO pipelines with minimal
modifications. The method introduces a zero-penalty window up to a user-specified token budget
and applies a single adaptive dual variable beyond that threshold, enabling the model to align incen-
tives for concise reasoning without compromising accuracy. Unlike prior approaches that rely on
fixed heuristics or extensive hyperparameter tuning, LACONIC learns to balance task reward and
response length in a principled, data-driven manner. Across a suite of reasoning and code-generation
benchmarks, the method consistently reduces average output length while preserving or even im-
proving pass@1. Controlled ablations that vary only the token budget confirm precise and stable
controllability: training lengths closely track the target, and evaluated models shorten proportionally
as the threshold tightens—without the need to retune the dual learning rate or other hyperparameters.
Furthermore, the method generalizes across tasks with minimal tuning, demonstrating robustness and
scalability. In conclusion, LACONIC provides a simple and effective mechanism to trade off quality
for cost, elevating length control to a first-class, reliable component of RL-based LLM fine-tuning.

LIMITATIONS AND FUTURE WORK.

While LACONIC is effective and lightweight, it has several limitations. It currently enforces a global
average token budget, which may not capture prompt-specific or context-dependent needs. Extending
to per-prompt or adaptive budgets could improve flexibility. The method also assumes a fixed, reliable
reward model, which may be unrealistic in noisy or subjective tasks—robust or uncertainty-aware
variants are a promising direction. Our experiments are limited to math reasoning; future work
could validate generality on dialogue, summarization, or code. Finally, LACONIC handles a single
constraint, but the framework naturally extends to multi-constraint settings such as latency or safety.
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LLM USAGE

We used LLMs as general-purpose writing and debugging assistants. Specifically, LLMs were
employed to help polish the writing (e.g., improving sentence clarity, grammar, and flow) and
occasionally to assist with debugging minor implementation issues (e.g., identifying syntax errors or
suggesting code refactoring). However, all core ideas, research questions, methodological designs,
codebase implementations, experiments, and analyses were entirely conceived, developed, and
conducted by the authors. No part of the intellectual contribution, experimental framework, or
scientific reasoning was generated by an LLM.

APPENDIX

A CASE STUDY

Prompt: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including
t minutes spent in the coffee shop. When she walks s+ 2 kilometers per hour, the walk takes her
2 hours and 24 minutes, including t minutes spent in the coffee shop. Suppose Aya walks at s+ 1

2
kilometers per hour. Find the number of minutes the walk takes her, including the t minutes spent in
the coffee shop. You FIRST think about the reasoning process as an internal monologue and then
provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags.
The final answer MUST BE put in \boxed{}.

Ground truth answer: 204.

LACONIC Output (#Tokens = 855)

Alright, let’s tackle this problem step by step.
First, let’s understand what’s given. Aya walks a total distance of 9 kilometers. The time she
takes depends on her walking speed. She stops at a coffee shop, and the time spent there is t
minutes.
We are given two scenarios:
1. When her speed is s km/h, the total time (walking plus coffee) is 4 hours. 2. When her speed
increases to s+ 2 km/h, the total time becomes 2 hours and 24 minutes, which is 2 + 24

60 = 2.4
hours.
We need to find the total time when her speed is s+ 0.5 km/h.
Let’s denote the time spent in the coffee shop as t minutes. Since the coffee shop time is the
same in both scenarios, we can set up equations based on the total time.
In the first scenario: Total time = walking time + t minutes. Walking time = distance / speed
= 9/s hours. Therefore, 9/s+ t = 4 hours.
In the second scenario: Walking time = 9/(s+ 2) hours. Total time = 9/(s+ 2) + t = 2.4
hours.
Now, we have two equations: 1. 9/s+ t = 4 2. 9/(s+ 2) + t = 2.4
We can subtract equation 2 from equation 1 to eliminate t:
(9/s+ t)− (9/(s+ 2) + t) = 4− 2.4
Simplify: 9/s− 9/(s+ 2) = 1.6
Factor out 9: 9[1/s− 1/(s+ 2)] = 1.6
Compute the difference inside the brackets:
1/s− 1/(s+ 2) = (s+ 2− s)/(s(s+ 2)) = 2/(s(s+ 2)) So, 9 ∗ (2)/(s(s+ 2)) = 1.6
Simplify: 18/(s(s+ 2)) = 1.6
Multiply both sides by s(s+ 2): 18 = 1.6 s(s+ 2)
Divide both sides by 1.6: s(s+ 2) = 18/1.6
Calculate 18/1.6: 18/1.6 = 11.25
So, s2 + 2s− 11.25 = 0
Now, solve the quadratic equation: s2 + 2s− 11.25 = 0
Using quadratic formula: s = [−2±

√
4 + 45]/2

Since speed can’t be negative: s = [−2 +
√
49]/2

√
49 = 7
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Thus, s = (−2 + 7)/2 = 5/2 = 2.5 km/h
Now, we can find t from equation 1: 9/s+ t = 4 9/2.5 + t = 4
Compute 9/2.5 = 3.6 So, 3.6 + t = 4
Thus, t = 0.4 hours = 0.4 ∗ 60 = 24 minutes.
Now, when her speed is s+ 0.5 = 2.5 + 0.5 = 3 km/h.
We need to find the total time including coffee shop.
First, compute walking time: 9/3 = 3 hours.
Total time = walking time + coffee shop time = 3 + 0.4 = 3.4 hours.
Convert to minutes: 3.4 ∗ 60 = 204 minutes.
So, the total time is 204 minutes.
</think>
The total time Aya takes when walking at s+ 1

2 km/h is 204 minutes.

DSR-4K (#Tokens = 1763)

Okay, so I have this problem about Aya’s walking and coffee shop time. Let me try to figure it
out step by step.
First, the problem says that Aya walks 9 kilometers every morning and stops at a coffee shop.
When she walks at a speed of s km/h, it takes her 4 hours, including t minutes spent in the
coffee shop. Then, when she increases her speed to s+ 2 km/h, the walk takes her 2 hours and
24 minutes, but this time includes the same t minutes in the coffee shop.
I need to find the time it takes for Aya to walk at a speed of s+ 1

2 km/h, including the t minutes
in the coffee shop.
Let me break down the information given:

1. When walking at speed s km/h, the total time taken is 4 hours, including t minutes in
the coffee shop. So, the walking time is 4 hours minus t minutes. But since speed is in
km/h, maybe it’s better to convert everything into hours.

2. When walking at speed s+ 2 km/h, the total time is 2 hours and 24 minutes, which is
2 + 24

60 = 2.4 hours. Again, the walking time is total time minus t minutes.

So, let me denote:

• Walking speed: s km/h
• Walking speed in the second case: s+ 2 km/h
• Total time in first case: 4 hours
• Total time in second case: 2.4 hours
• Both cases include t minutes in the coffee shop.

We need to find the total time when walking speed is s+ 1
2 km/h.

First, let’s convert the walking times into hours to make calculations easier.
For the first scenario:
Total time = 4 hours
Time spent walking = 4− t

60 hours (since t is in minutes)
Distance walked is 9 km, so using the formula:
Distance = speed × time
So, 9 = s×

(
4− t

60

)
Similarly, for the second scenario:
Total time = 2.4 hours
Time spent walking = 2.4− t

60 hours
Distance walked is 9 km again:
9 = (s+ 2)×

(
2.4− t

60

)
Now, we have two equations:
1) 9 = s×

(
4− t

60

)
2) 9 = (s+ 2)×

(
2.4− t

60

)
Since both equal 9, we can set them equal to each other:
s×

(
4− t

60

)
= (s+ 2)×

(
2.4− t

60

)
Let me expand both sides:
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Left side: 4s− s
(

t
60

)
Right side: (s+ 2)

(
2.4− t

60

)
= 2.4s− s

(
t
60

)
+ 4.8− 2

(
t
60

)
Simplify both sides:

Left: 4s− st

60

Right: 2.4s− st

60
+ 4.8− 2t

60
Now, let’s write the equation:

4s− st

60
= 2.4s− st

60
+ 4.8− 2t

60

Notice that the − st

60
terms on both sides cancel each other out. So we can subtract 2.4s from

both sides:
4s− 2.4s = − st

60
+

st

60
+ 4.8− 2t

60
Simplify:

1.6s = 4.8− 2t

60

Simplify 1.6s = 4.8− t

30
Let me write that as:
1.6s+

t

30
= 4.8

Equation (A): 1.6s+
t

30
= 4.8

Now, let’s go back to the first equation:
9 = s×

(
4− t

60

)
Let me write this as:
9 = 4s− st

60
Multiply both sides by 60 to eliminate denominators:
9× 60 = 4s× 60− st
540 = 240s− st
Let’s write this as:
st = 240s− 540
Divide both sides by s (assuming s ̸= 0):

t = 240− 540

s

Equation (B): t = 240− 540

s
Now, substitute Equation (B) into Equation (A):

1.6s+
240− 540

s

30
= 4.8

Simplify:

1.6s+
240

30
− 540

30s
= 4.8

Calculate:
1.6s+ 8− 18

s
= 4.8

Now, subtract 4.8 from both sides:

1.6s+ 8− 18

s
− 4.8 = 0

Simplify:

1.6s+ 3.2− 18

s
= 0

Multiply both sides by s to eliminate denominator:
1.6s2 + 3.2s− 18 = 0
Now, we have a quadratic equation:
1.6s2 + 3.2s− 18 = 0
Let me multiply both sides by 10 to eliminate decimals:
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16s2 + 32s− 180 = 0
Divide all terms by 4 to simplify:
4s2 + 8s− 45 = 0
Now, solve for s using quadratic formula:

s =
−b±

√
b2 − 4ac

2a
Where a = 4, b = 8, c = −45
Calculate discriminant:
D = 82 − 4× 4× (−45) = 64 + 720 = 784

Square root of D:
√
784 = 28

So,

s =
−8± 28

2× 4
=
−8± 28

8
We have two solutions:
1) s =

−8 + 28

8
=

20

8
= 2.5 km/h

2) s =
−8− 28

8
=
−36
8

= −4.5 km/h
Since speed cannot be negative, s = 2.5 km/h
Now, find t using Equation (B):

t = 240− 540

s
= 240− 540

2.5

Calculate
540

2.5
:

540/2.5 = 216
So,
t = 240− 216 = 24 minutes
So, t = 24 minutes.
Now, when Aya walks at s+ 1

2 km/h, which is 2.5 + 0.5 = 3 km/h.
We need to find the total time including t minutes in the coffee shop.
First, calculate the walking time at 3 km/h.

Distance is 9 km, speed is 3 km/h, so time is
9

3
= 3 hours.

But total time is walking time plus t minutes.
Walking time is 3 hours, which is 180 minutes.
Plus t = 24 minutes.
So total time is 180 + 24 = 204 minutes.
Therefore, the walk takes her 204 minutes, including the t minutes spent in the coffee shop.
</think>
The number of minutes the walk takes her, including the t minutes spent in the coffee shop, is
204 .
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