Under review as a conference paper at ICLR 2026

LACONIC: LENGTH-AWARE CONSTRAINED REIN-

FORCEMENT LEARNING FOR LLM

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning (RL) has enhanced the capabilities of large language mod-
els (LLMs) by enabling self-evolution through reward-driven training. Nevertheless,
this process can introduce excessively long responses that inflate inference latency
and computational overhead. To address this issue, existing RL-based length
control methods often incorporate fixed penalties or heuristic reward shaping to
encourage outputs of a desired length. However, such strategies may misalign
the optimization objective with the underlying task, resulting in suboptimal per-
formance and limited generalization across model architectures and datasets. In
this work, we propose LACONIC, a lightweight reinforcement learning method
that enforces a target token budget during training. Specifically, we update policy
models using an augmented objective that combines the task reward with a length-
based cost applied only to tokens exceeding the specified budget. Furthermore, to
balance brevity and task performance, the cost scale is adjusted online throughout
training. This formulation directly optimizes task reward subject to an explicit
token budget constraint, delivering precise and performance-preserving length
control. Across mathematical reasoning models and datasets, LACONIC preserves
or improves pass@1 while reducing output length by up to 43%. It maintains
out-of-domain performance on general knowledge and multilingual benchmarks
with a 44% reduction in tokens. Moreover, LACONIC integrates into standard RL

fine-tuning with no inference changes and minimal deployment overhead.

1 INTRODUCTION

Large language mOdels (LLMS) SUCh as GPT [Ope- RL fine-tuning with fixed heuristic length-aware reward shaping

nAl et al., 2024; OpenAl, 2025], Gemini [Comanici
et al., 2025], DeepSeek [DeepSeek-Al, 2025], and
Claude[Anthropic, 2025] have witnessed unprecedented
success in its applications from software agents to enter-
prise analytics [Team et al., 2025; Li et al., 2025b; Jin et al.,
2025; Feng et al., 2025]. The impressive capabilities of
LLMs have been significantly enhanced by reinforcement
learning based fine-tuning [Li et al., 2025a; Wu et al., 2025;
Li et al., 2025b], a procedure that aligns pretrained models
with task-specific rewards through interaction with an en-
vironment. This process has been pivotal in refining LLM
reasoning skills, enhancing generalization, and achieving
state-of-the-art performance across diverse benchmarks
[Wang et al., 2024; Hsiao et al., 2025; Shi et al., 2025; Qu

Objective
——

etal., 2025]. However, RL-tuned language models often Figure 1: Heuristic reward shaping
suffer from generating unnecessarily long thinking traces. yields suboptimal task rewards, while
This problem is particularly acute on reasoning and mathe- adaptive length-aware objective realigns
matics tasks, where the model is asked to spell out logical optimization with true rewards, preserv-
steps [Chen et al., 2025, Sui et al., 2025] In practice, 1ng performance under length control.

excessive verbosity inflates training and inference time,
increases memory pressure, and ultimately degrades user experience.

Under review as a conference paper at ICLR 2026

LACONIC

Primal update Reward

2 r-Ae >4

2= Ay —>] Az

I
g <=
<

€1 N — ey — Ay
Ly

Average length: L Average length: L

Y
v
P
/\
Y

Figure 2: Illustration of LACONIC. LACONIC alternates two steps: (1) in a primal update, the
policy model is updated on an augmented objective that trades off task reward r with a length-aware
cost ¢ scaled by the dual variable A; (2) in a dual update, A is adaptively updated to enforce a token
budget constraint B by increasing when the average length L exceeds the budget B and decreasing
otherwise. Together, these updates maximize task reward while meeting the budget on average.

Recent work on length-aware LLMs has explored positional encoding, prompt engineering, and
post-generation truncation [Li et al., 2025a; Wu et al., 2025; Li et al., 2025b]. A straightforward
method is to design new reward functions to incorporate response length signals into RL-tuning
[Aggarwal & Welleck, 2025; Cheng et al., 2025; Huang et al., 2025; Yuan et al., 2025]. These
methods hard-code a length-aware reward, typically with a fixed penalty or heuristic shaping that
stays fixed throughout training. Fine-tuning with these rewards optimizes a surrogate objective that is
misaligned with true task reward, and often demands per-setting hyperparameter tuning. Figure 1
(top) visualizes this issue by showing a sketch of training process. The fixed heuristic objective differs
from the true objective, so optimizing it yields policies with suboptimal task rewards.

In this paper, we address length control in RL-tuning by maximizing task reward subject to an average
token budget constraint. We introduce LACONIC (Length-Aware Constrained Policy Optimization),
a primal-dual algorithm. During training, the model samples candidate responses for each prompt.
Besides the task reward (e.g., correctness or usefulness) as in the standard RL-tuning, we assign
to each candidate response also a length-aware cost proportional to its budget violation. We then
construct a learning signal that combines task reward with length cost, scaled by an adaptively learned
multiplier. We alternatively update the policy model and the multiplier. The policy is updated by a
policy optimization step where advantages and objectives are calculated from the constructed signal.
Then we update the multiplier based on the average response length of the current batch. We raise
the multiplier if the current batch violates the token budget constraint on average, and lower it if
the current batch falls short. This feedback automatically steers the model’s average output length
towards the token budget. Particularly, when the model consistently stays within the token budget, the
multiplier naturally drops to zero and our training steps reduce to standard RL-tuning steps, allowing
the model to recover task rewards with shortened responses. As illustrated in figure 1, LACONIC
adopts an adaptive objective that dynamically align the optimization with true rewards, steering the
policy towards the length-aware optimum.

We conduct extensive experiments to evaluate our method LACONIC and present the evaluation
results in section 3. We apply LACONIC to fine-tune two reasoning models DeepScaleR-1.5B-
Preview [Luo et al., 2025] and Qwen2.5-Math-1.5B-Instruct [Yang et al., 2024]. The experimental
results show that our LACONIC-tuned models can significantly outperform existing length control
baseline L1 [Aggarwal & Welleck, 2025] and match GRPO on pass@ 1 across common mathematics
benchmarks, while effectively shortening response lengths by using 44% and 26% fewer tokens than
the base model and L1-Max respectively. LACONIC also preserves accuracy on benchmarks outside
our RL-tuning domain while reducing response length by 44% compared to GRPO. Furthermore, we
perform ablation analysis on the hyperparameters of our method in section 4. Ablation experiments
show that LACONIC provides robust and length control.

Under review as a conference paper at ICLR 2026

2 METHODOLOGY

2.1 PRELIMINARY BACKGROUND

RL fine-tuning casts text generation as a sequential decision process, where the prompt ¢ together
with the partial output sequence constitutes the state, selecting the next token is the action, and the
language model parameterized by 6 serves as the policy my that maps states to action probabilities.
After generating the response, the model receives task rewards (g, o) assigned by a reward model.
Policy gradient algorithms such as Proximal Policy Optimization (PPO) [Schulman et al., 2017] and
Group Relative Policy Optimization (GRPO) [Shao et al., 2024a] then translate such rewards into
token-level gradients, so that the model can be updated to increase the corpus-level expected rewards,
i.e, maxg Ey p(Q),0~mo(-lq)[7(¢, 0)]. In practice, GRPO updates the policy model’s parameters ¢ by
optimizing the following surrogate objective

o]

G
1 1 . .
T(O) =By o, | G2 o 2amin(preAies ciplpi 1= 1+€))= SDscrfmolmee] | (1)

o414 (061,00, <)
likelihood ratio clipping and an extra KL-divergence penalty are adopted to stabilize policy updates.

where p; ;, = is the likelihood ratio, and A; ; is the group-relative advantage. The

2.2 LACONIC: LENGTH-AWARE CONSTRAINED POLICY OPTIMIZATION

To add explicit control over response length, we extend standard RL fine-tuning to a constrained
setting that maximizes task reward under an average token count constraint B, a pre-specified budget
reflecting deployment targets such as latency and computational resources in practice. We treat the
token budget as a given hyperparameter and learn a policy whose average response length respects
the budget B. Formally, letting L(0) denote the length of response o, we address

Max By p(Q),0nm (10) (5 0)]s 8.t By p(Q),0mmo (10 [L(0)] < B. @

In this formulation, we enforce a corpus-level average token budget rather than a more strict per-
sequence length constraint. Response lengths naturally vary across prompts. As an example, a math
olympiad problem typically requires more tokens to solve than a simple arithmetic query. The average
budget constraint in equation (2) allows the model to generate more tokens where they improve
reward and shorten responses on easier cases while still meeting the overall budget constraint.

Length-aware cost. In order to enforce the budget constraint during training, we assign each
response a sequence-level cost that measures its budget violation. Specifically, for a prompt ¢ and a
response o generated by the policy model 7y, we define the cost as

o(q,0) = max{L(O)B_B,o}. 3)

The cost is zero for responses no longer than B, and increases linearly with the number of over-budget
tokens. This design discourages unnecessary verbosity while preserving exploration as the model can
freely use up to B tokens without penalty. While task rewards often lie in [0, 1], response lengths can
range widely from a few hundreds to over 100K across backbones, prompt distributions, and output
length caps in practice. We add the 1/B normalization to keep the cost on a comparable scale across
different magnitudes of lengths and budgets.

Lagrangian reward. We incorporate the cost into the learning objective via a Lagrangian relaxation.
With a nonnegative multiplier A > 0, also known as a dual variable, we define the Lagrangian reward

E/\(qa O) = ’I"(q, O) —A- C(q7 0)' (4)

Primal updates. To tackle the constrained optimization in equation (2), we alternate a primal
(policy) update and a dual (multiplier) update. In the primal update, we hold A fixed and take a policy
gradient step to optimize expected Lagrangian reward, i.e., maxy E, ,[¢x(q, 0)]. This is essentially the
standard RL-tuning objective with the task reward r replaced by the Lagrangian reward). Therefore,

10

11
12

13

14
15

Under review as a conference paper at ICLR 2026

Algorithm 1: LACONIC (Length-Aware Constrained Policy Optimization)
Input: initial policy model 7y, ; reward models r; task prompts D; token budget B; step size 1;

initial dual variable A;y;
policy model 7y < 7y,
dual variable A < A
for iteration =1,...,1 do
reference model 7o < g
for step =1,...,M do
Sample a batch D;, from D
Update the old policy model 7y, < g
Sample G outputs {0;}& , ~ w4, (+|q) for each question g € D,
Compute rewards {r;} ; for each sampled output o; by running r,,
Compute costs {ci}iG:1 for each sampled output o; by equation (3)

Compute Lagrangian rewards {¢, ;}$, for each sample output by equation (4)
Compute advantages A, ; for the ¢-th token of o; by equation (5)

// Primal update

Update the policy model 7y by maximizing the GRPO-style objective

// Dual update

Update the dual variable X by equation (6)

Update 7,

Output: 7y

we adapt the GRPO-style policy update with the objective computed from ¢y . Specifically, for each

prompt ¢, we sample a group of candidate outputs 0 = {01,09,...,0c} from the current policy
model 7y, and compute their task rewards r = {ry,72,...,7¢} and costs ¢ = {c1,¢a,...,cq} by
equation (3). We then compute the Lagrangian rewards £y = {{x,,fx2,...,¢x,c} where £ ; =

r; — Ac;. For each token o; ¢, we construct the GRPO-style advantage as the normalized Lagrangian
reward, i.e.,
Ay =T = £y,; —mean(f))
' ’ std(€y)
The policy model is optimized by maximizing the GRPO objective in equation (1) where advantages
are calculated by equation (5).

&)

Dual updates. In the dual update, we adjust the dual variable X based on how the batch compares
to the token budget. Let L. denote the average response length of the current batch. We update

A(—max{)\—l—n(g—l),()}, (6)

with the step size 7 > 0. When the batch violates the token budget on average (L > B), the update
increases A, raising the effective price of tokens in £). Longer responses then receive lower (often
negative) advantages than shorter responses with similar task rewards, so the next primal update shifts
the policy toward shorter outputs. If the batch falls within the budget, A relaxes towards 0. Notably,
when \ = 0, ¢, reduces to the task reward r, and the next primal update is exactly a GRPO step.
This feedback adapts A to track the budget constraint throughout training as the policy and length
distribution evolve.

We present LACONIC in algorithm 1 and illustrate the workflow with two sample steps in figure 2.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Models and Datasets. For the training dataset, we use DeepScaleR-Preview-Dataset [Luo et al.,
2025], a math dataset containing 40.3K rows of question-answer pairs sampled from AIME (prior to
2023), AMC (prior to 2023), Omni-MATH [Gao et al., 2024], and STILL [Min et al., 2024]. For

Under review as a conference paper at ICLR 2026

Table 1: Evaluation results across five math benchmarks.

AIME2024 MATH Minerva Olympiad Macro Average
Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens Pass@1 # Tokens

Model

DeepScaleR-1.5B

+ GRPO 26.25 4462 83.44 1657 28.81 1982 46.59 2600 46.27 2675

+ L1-Exact 21.88 3754 82.44 3614 28.70 3612 44.55 3687 44.39 1188 3667 137%
+ L1-Max 25.00 2879 83.50 1794 28.28 1624 44.96 2025 45.44 1083 2080 122%

+ LACONIC 27.50 2451 83.72 1000 28.84 1113 45.82 1496 46.47 102 1515 143%

Qwen-Math-1.5B

+ GRPO 11.46 952 74.86 570 25.14 656 39.84 808 37.89 747

+ L1-Exact 9.79 1309 69.69 988 22.52 1277 37.17 1128 34.79 131 1176 1571%
+ L1-Max 11.04 1229 70.39 779 22.93 1239 37.07 1063 35.3612.53 1078 144%

+ LACONIC 11.46 674 73.85 464 25.25 524 38.39 603 37.24 1065 566 124%

base models, we use DeepScaleR-1.5B-Preview [Luo et al., 2025] (DeepScaleR-1.5B for short) and
Qwen2.5-Math-1.5B-Instruct [Yang et al., 2024] (Qwen-Math-1.5B for short). DeepScaleR-1.5B is a
1.5B-parameter reasoning model fine-tuned from DeepSeek-R1-Distilled-Qwen-1.5B [DeepSeek-Al,
2025] on DeepScaleR-Preview-Dataset, and Qwen-Math-1.5B is a 1.5B-parameter instruction-tuned
math model. In line with previous works, we set the maximum response length to 4K tokens per
prompt during training and 8K tokens during evaluation for DeepScaleR-1.5B. We set the maximum
response length to 2K tokens per prompt during training and evaluation for Qwen-Math-1.5B, because
the model supports only up to 4K context lengths.

Baselines. We fine-tune the base models with the following algorithms to serve as baselines and
compare with our algorithm LACONIC: (i) GRPO [Shao et al., 2024a]: the standard RL-tuning
algorithm originally used in the post-training of DeepScaleR-1.5B and Qwen math models; (ii) L1-
Exact [Aggarwal & Welleck, 2025]: a length-controlled policy optimization algorithm that fine-tunes
models to satisfy exact token-length constraints; (iii) L1-Max [Aggarwal & Welleck, 2025]: a variant
of L1-Exact that further fine-tunes models to observe a maximum token budget.

Evaluation. We evaluate models on 4 common mathematics benchmarks: AIME2024, MATH
[Hendrycks et al., 2021], Minerva [Lewkowycz et al., 2022], and Olympiad-Bench [He et al., 2024].
To assess the mathematical reasoning ability of the models, we report pass@1, the fraction of
questions for which the model’s first response matches the correct answer. To quantify the verbosity
of the model’s output, we report the average response length.

3.2 MAIN RESULTS

In this section, we first present in table 1 the main results of all baselines and LACONIC on the 4
mathematics benchmarks. Then we present in table 2 the results on out-of-domain benchmarks,
GPQA, LSAT, and MMLU, which probe general knowledge and logic reasoning.

LACONIC outperforms existing length-control methods and matches vanilla RL-tuning while
significantly reducing response lengths. On DeepScaleR-1.5B, after fine-tuning, LACONIC out-
performs GRPO and both L1 variants on pass@1 while significantly shortening its answers by
emitting 43%, 58%, and 26% fewer tokens per prompt on average than GRPO, L1-Exact, and L1-Max
respectively. Specifically, LACONIC-tuned model outperforms the three baselines with the highest
pass@1 in AIME2024, MATH, and Minerva benchmarks while using significantly fewer tokens. On
Qwen-Math-1.5B, after fine-tuning, LACONIC virtually preserves the pass@1 performance of GRPO
and outperforms both L1 variants, while substantially shortening its answers by emitting 24%, 52%,
and 47% fewer tokens per prompt on average than GRPO, L1-Exact, and L1-Max respectively. No-
tably, LACONIC generates least tokens across all benchmarks on both base models with comparable
or higher pass@1.

LACONIC preserves out-of-domain (OOD) capabilities. LACONIC preserves GRPO’s macro
average accuracy while generating 44% fewer tokens on average. Our method matches vanilla RL-

Under review as a conference paper at ICLR 2026

Table 2: Evaluation results across out-of-domain (OOD) benchmarks.

Model GPQA LSAT MMLU Macro Average

Accuracy # Tokens Accuracy # Tokens Accuracy # Tokens Accuracy # Tokens

DeepScaleR-1.5B

+ GRPO 28.88 2229 24.6 3426 43.30 719 32.26 2125

+ L1-Exact 22.88 1475 25.19 1374 36.67 766 28.25 1401 1205 143%
+ L1-Max 28.72 1773 26.58 2321 38.48 863 31.2611.00 1652 122%

+ LACONIC 27.20 1167 24.53 1923 43.36 497 31.69 1057 1196 144%

tuning on MMLU and LSAT with 31% and 44% fewer tokens respectively, and trades 1.68 percentage
points on GPQA for a 48% length reduction. Compared with both L1 variants, LACONIC attains
higher macro pass@1 with fewer tokens. The results indicate strong OOD task reward preservation
with substantially shorter outputs.

4 FURTHER ANALYSIS

In this section, we present additional ablation analysis related to hyperparameters, and examine the
computational resources required by LACONIC, including runtime, FLOPs, and memory usage.

4.1 ABLATION ANALYSIS ON BUDGET B

We vary the token budget B € {3000, 2000, 1750, 1500} on DeepScaleR-1.5B while keeping all
other settings and hyperparameters (including the dual step size) fixed, and train for 300 steps.
Figure 3 shows the training dynamics of (a) accuracy reward; (b) average response length; (c) dual
variable \; and (d) average response length to budget ratio L/ B. We evaluate the step-300 checkpoints
on the four mathematics benchmarks. Table 3 reports pass@ 1 and average response lengths.

LACONIC provides reliable, hyperparameter-tuning-free length control. Across token budgets,
training rapidly drives the average response length under the budget and maintains it near the budget
once stabilized. Even under tight constraints on a backbone that naturally produces long responses,
LACONIC keeps the average length near the budget. Although prompt distributions during evaluation
differ from training, table 3 shows a clear monotonic relation between the token budget B and average
response length. In practice, B acts as a single knob and no re-tuning of other hyperparameters is
required to achieve effective length control.

LACONIC achieves better reward with less tokens than GRPO and existing length control
methods across a wide range of token budgets. We compare the evaluation results of LACONIC
with token budgets ranging from 1500 to 3000 in table 3 to GRPO and both L1 variants in table 1.
Across a wide range of token budgets, LACONIC consistently outperforms all baselines (GRPO and
L1) on most benchmarks while using substantially fewer tokens at the same time. This shows the
superiority of LACONIC to preserve reward under constrained token budgets.

Overall, these results demonstrate LACONIC’s controllability (the achieved lengths drop as the budget
shrinks), stability (training lengths remain near the budget), and decoupling (changing token budgets
B require no re-tuning of other hyperparameters).

4.2 ABLATION ANALYSIS ON DUAL STEP SIZE 7

We vary the step size for dual updates n € {0.002,0.01,0.02} while keeping all other settings fixed
and train Qwen-Math-1.5B for 350 steps under a token budget B = 550. We set the token budget
B = 550 for all runs. For n = 0.02, we also set a ceiling \y.x = 0.1 for the dual variable. Figure 4
plots the training dynamics of (a) accuracy reward; (b) average response length; (c) dual variable
A; (d) average response length to budget ratio L/ B. We evaluate the step-350 checkpoints on the 4
mathematics benchmarks, and report the pass@ 1 and average response lengths in table 4.

Under review as a conference paper at ICLR 2026

Accuracy Reward Average Response Length

— B=3000 — B=2000
—— B=1750 — GRPO
— B=1500

0.500

0.475 3000

0.450

2500
0.425

#Tokens

2000

Accuracy Reward

o o
@ =
4y 3
& 8

0.350 1500

— B=3000 — B=2000
0325 B=1750 —— GRPO

— B=1500
0.300 1000
0

50 100 150 200 250 300 0 50 100 150 200 250 300
Step Step

(a) Accuracy reward over training steps (b) Average response length over training steps

Dual Variable A Average Response Length to Budget Ratio (L/B)

— B=3000 — B=1500 2.2 — B=3000 —— B=1500
— B=1750 — B=2000 —— B=1750 —— B=2000

50 100 150 200 250 300 50 100 150 200 250 300
Step Step

(c) Dual variable A over training steps (d) Average length to budget L/ B over training steps
Figure 3: Ablation on token budget B. All plots are smoothened over 10 steps except (c) dual
variable.

Table 3: Evaluation results across 4 math benchmarks.

Model AIME2024 MATH Minerva Olympiad Macro Average

Pass@1 #Tokens Pass@l #Tokens Pass@l #Tokens Pass@1 #Tokens Pass@1 # Tokens

DeepScaleR-1.5B
+ GRPO 26.25 4462 83.44 1657 28.81 1982 46.59 2600 46.27 2675
+ LACONIC (3000) 29.79 3642 84.46 1490 29.76 1921 47.07 2386 47.77 1150 2360 L12%
+ LACONIC (2000) 30.83 3558 85.70 1454 31.02 1839 48.94 2357 49.12 1285 2302 L14%
+ LACONIC (1750) 30.21 3477 84.62 1388 30.52 1659 48.78 2221 48.53 1226 2186 118%

+ LACONIC (1500) 27.50 3124 84.39 1297 31.60 1494 48.65 2048 48.0411.77 1991 126%

LACONIC is insensitive to the dual step size 1. Across different dual step sizes, LACONIC
delivers consistent length control. With 1 = 0.002 versus 0.01, the training dynamics of average
response length are virtually identical throughout, and the final policies match after stabilization.
With n = 0.02 (plus a A-ceiling), the curves settle into the same stabilized dynamics and reach
comparable final reward. This shows that LACONIC is robust to an order-of-magnitude change in the
dual step size 7).

LACONIC works consistently with a A-ceiling. Across runs with and without a ceiling, the training
curves and final policies are essentially the same once stabilized. In both cases LACONIC tracks
the token budget and recovers reward. The A-ceiling is a preference safeguard. Our primary goal
is to favor correct responses over incorrect ones, even when correct answers are longer. With the
Lagrangian reward, an excessively large A can flip preferences and make very short but incorrect
outputs score higher than correct long outputs. Specifically, for an indicator reward function (g, 0) =
16 s correcty» We require £x(q,0.) = 1 — A(L(o.) — B)/B > 0, where o, is any correct response.
This translates to an upper bound of A\ < B/(L(o.) — B) for any correct response o.. It suffices
to set a ceiling of Ayax = B/(Lmax — B), where Ly, is the maximum response length cap. In
cases where a A-ceiling A\, is present, we augment the dual update to a projected version: A\ <—

clip(\ + 7 (% _ 1) 0, Lina)-

4.3 COMPUTATIONAL RESOURCE ANALYSIS

Under review as a conference paper at ICLR 2026

Accuracy reward

— =001

— 1=0.02, Anex=01

Average Response Length

7=0.002 — GRPO

Accuracy reward

Step

#Tokens

— n=001

— 0=0.02, Anax=
7=0002 — GRPO

0

50

(a) Accuracy reward over training steps

100 150

200
Step

250 300

350

(b) Average response length over training steps

Dual Variable A

0.175
0.150
0.125
0.100
~<
0.075
0.050
0.025

0.000

— =001
n=0.002

— 12002, Anex=01

50

100

150

200
Step

250 300

Average Response Length to Budget Ratio (L/B)

— n=001

n=0.002

— N=0.02, Anex=01

50

(c) Dual variable A over training steps

100 150

Step

300

350

(d) Average response length to budget ratio L/ B over

training steps

Figure 4: Ablation of the length-aware fine-tuning: (a) reward accuracy, (b) mean response length,

(c) length-penalty multiplier A, (d) ratio of average response length over threshold.

Table 4: Evaluation results across 4 math benchmarks.

Model AIME2024 MATH Minerva Olympiad Macro Average
Pass@1 #Tokens Pass@1 #Tokens Pass@l #Tokens Pass@1 #Tokens Pass@1 # Tokens
Qwen-Math-1.5B
+ GRPO 11.46 952 74.86 570 25.14 656 39.84 808 37.89 747
+ LACONIC (0.02) 11.04 661 73.73 466 25.34 539 37.72 601 36.96 1093 567 124%
+ LACONIC (0.01) 11.46 674 73.85 464 25.25 524 38.39 603 37.24 1065 566 124%
+ LACONIC (0.002) 10.42 652 73.74 464 25.32 527 38.43 609 36.98 1091 563 125%

We report in figure 5 wall-clock step time,
step time per token, and NVML GPU mem-
ory, averaged over training steps. LACONIC
is end-to-end cheaper than vanilla RL-
tuning. Our method is 19% faster and uses
22% less GPU memory. Per-token cost is
nearly unchanged, with a small bookkeep-
ing overhead for the length cost and dual
update. Overall, LACONIC adds negligible

Average step time

Average step time per token

Average GPU memory usage

492s

398s

0.67ms

0.77ms

18GB

14GB

Figure 5: Average computational resource usage of
LACONIC (green) and GRPO (blue).

kernel-level overhead and reduces overall runtime and memory by learning to generate fewer tokens.

5 RELATED WORK

RL fine-tuning. Reinforcement learning has become a crucial component of LLM post-training,
particularly for enhancing large-scale reasoning and aligning model behavior with human preferences
or task-specific objectives. One of the most widely used approaches for policy optimization in this
setting is the policy gradient algorithm [Sutton & Barto, 2018]. To address the instability of early
methods such as REINFORCE [Williams, 1992], Proximal Policy Optimization (PPO) [Schulman
et al., 2017] introduced a clipped importance sampling ratio to constrain policy updates, which has
since become a standard in RL training pipelines for LLMs. More recently, GRPO [Shao et al.,
2024b] proposed group-relative advantage estimation, which eliminates the need for a learned value

Under review as a conference paper at ICLR 2026

function, reducing variance and improving computational efficiency. This innovation has catalyzed a
wave of follow-up methods aimed at improving sample efficiency, stability, and performance in RL
fine-tuning.

Several GRPO-based extensions have been introduced to address specific challenges in LLM training.
SRPO [Zhang et al., 2025] addresses the problem of ineffective samples through history resampling,
enhancing credit assignment in sparse-reward settings. DAPO [Yu et al., 2025] introduces dynamic
sampling and a token-level gradient loss to better handle complex, multi-step reasoning tasks such as
chain-of-thought (CoT) generation. Other variants include VAPO [Yue et al., 2025], which adapts
advantage estimation to better capture variance across different reasoning depths; GSPO [Zheng
et al., 2025], which emphasizes group-level structure in sampling; GFPO [Shrivastava et al., 2025],
which focuses on sample efficiency in long-horizon settings; and GMPO [Zhao et al., 2025], which
explores geometric averaging of policy gradients for improved robustness. Collectively, these methods
demonstrate the growing sophistication of RL fine-tuning techniques and the community’s effort to
make them more scalable, stable, and effective for large-scale LLM alignment.

Length-Aware LLMs. Recent work has investigated various approaches for making large language
models (LLMs) aware of output length, including modifications to positional encoding, prompt
engineering techniques, and post-hoc truncation methods [Li et al., 2025a; Wu et al., 2025; Li et al.,
2025b]. A common strategy involves incorporating length preferences into reinforcement learning
(RL) fine-tuning through manually designed reward functions that penalize or incentivize certain
output lengths [Aggarwal & Welleck, 2025; Cheng et al., 2025; Huang et al., 2025; Yuan et al., 2025].
These methods typically rely on fixed heuristics or penalty terms that remain constant throughout
training, and thus optimize a surrogate objective that may be misaligned with the true downstream
task reward. This misalignment can lead to suboptimal performance and often requires extensive
hyperparameter tuning to balance length control with task-specific quality. Recent efforts have also
explored dynamic decoding strategies and curriculum learning to improve length adaptation, but
these approaches still depend on manually specified schedules or heuristics. Our work differs in that
it aims to align length control with task reward in a more adaptive and data-driven manner, avoiding
the limitations of fixed shaping objectives.

6 CONCLUSION

We present LACONIC, a budgeted, feedback-driven formulation for length-aware reinforcement
learning (RL) fine-tuning that integrates seamlessly into standard PPO/GRPO pipelines with minimal
modifications. The method introduces a zero-penalty window up to a user-specified token budget
and applies a single adaptive dual variable beyond that threshold, enabling the model to align incen-
tives for concise reasoning without compromising accuracy. Unlike prior approaches that rely on
fixed heuristics or extensive hyperparameter tuning, LACONIC learns to balance task reward and
response length in a principled, data-driven manner. Across a suite of reasoning and code-generation
benchmarks, the method consistently reduces average output length while preserving or even im-
proving pass@1. Controlled ablations that vary only the token budget confirm precise and stable
controllability: training lengths closely track the target, and evaluated models shorten proportionally
as the threshold tightens—without the need to retune the dual learning rate or other hyperparameters.
Furthermore, the method generalizes across tasks with minimal tuning, demonstrating robustness and
scalability. In conclusion, LACONIC provides a simple and effective mechanism to trade off quality
for cost, elevating length control to a first-class, reliable component of RL-based LLM fine-tuning.

LIMITATIONS AND FUTURE WORK.

While LACONIC is effective and lightweight, it has several limitations. It currently enforces a global
average token budget, which may not capture prompt-specific or context-dependent needs. Extending
to per-prompt or adaptive budgets could improve flexibility. The method also assumes a fixed, reliable
reward model, which may be unrealistic in noisy or subjective tasks—robust or uncertainty-aware
variants are a promising direction. Our experiments are limited to math reasoning; future work
could validate generality on dialogue, summarization, or code. Finally, LACONIC handles a single
constraint, but the framework naturally extends to multi-constraint settings such as latency or safety.

Under review as a conference paper at ICLR 2026

REFERENCES

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv.org/abs/2503.04697.

Anthropic. Claude opus 4.1. https://www.anthropic.com/news/claude-opus—4-1,
August 2025. Accessed: 2025-08-06.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu.
Do not think that much for 2+3=? on the overthinking of ol-like llms, 2025. URL https:
//arxiv.org/abs/2412.21187.

Xiaoxue Cheng, Junyi Li, Zhenduo Zhang, Xinyu Tang, Wayne Xin Zhao, Xinyu Kong, and Zhigiang
Zhang. Incentivizing dual process thinking for efficient large language model reasoning, 2025.
URL https://arxiv.org/abs/2505.16315.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier
with advanced reasoning, multimodality, long context, and next generation agentic capabilities.
arXiv preprint arXiv:2507.06261, 2025.

DeepSeek-Al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, Zhengyang Tang, Benyou Wang, Daoguang Zan, Shanghaoran Quan,
Ge Zhang, Lei Sha, Yichang Zhang, Xuancheng Ren, Tianyu Liu, and Baobao Chang. Omni-
math: A universal olympiad level mathematic benchmark for large language models, 2024. URL
https://arxiv.org/abs/2410.07985.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurlIPS,
2021.

Vincent Hsiao, Morgan Fine-Morris, Mark Roberts, Leslie N Smith, and Laura M. Hiatt. A critical
assessment of LLMs for solving multi-step problems: Preliminary results. In AAAI 2025 Workshop
LM4Plan, 2025. URL https://openreview.net/forum?id=kFrqoVtMIy.

Chengyu Huang, Zhengxin Zhang, and Claire Cardie. Hapo: Training language models to reason
concisely via history-aware policy optimization, 2025. URL https://arxiv.org/abs/
2505.11225.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning. arXiv preprint arXiv:2503.09516, 2025.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay
Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with language
models. In Advances in Neural Information Processing Systems, 2022.

10

https://arxiv.org/abs/2503.04697
https://www.anthropic.com/news/claude-opus-4-1
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2505.16315
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.07985
https://openreview.net/forum?id=kFrqoVtMIy
https://arxiv.org/abs/2505.11225
https://arxiv.org/abs/2505.11225

Under review as a conference paper at ICLR 2026

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-ol: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025a.

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025b.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing ol-preview
with a 1.5b model by scaling rl, 2025. Notion Blog.

Yinggian Min, Zhipeng Chen, Jinhao Jiang, Jie Chen, Jia Deng, Yiwen Hu, Yiru Tang, Jiapeng Wang,
Xiaoxue Cheng, Huatong Song, Wayne Xin Zhao, Zheng Liu, Zhongyuan Wang, and Ji-Rong Wen.
Imitate, explore, and self-improve: A reproduction report on slow-thinking reasoning systems,
2024. URL https://arxiv.org/abs/2412.09413.

OpenAl. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
August 2025. Accessed: 2025-08-13.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao
Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi,
Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong
Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts,
Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David
Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong,
Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin,
Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian
O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quifionero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin
Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus,
Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk,
Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko
Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz,
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe,
Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang,
Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowd-
hury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg
Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias,
Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny
Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi
Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago
Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir
Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted
Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng,
Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie
Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou,

11

https://arxiv.org/abs/2412.09413
https://cdn.openai.com/gpt-5-system-card.pdf

Under review as a conference paper at ICLR 2026

Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai,
Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai ol system card,
2024. URL https://arxiv.org/abs/2412.16720.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu, and
Ji-rong Wen. Tool learning with large language models: a survey. Frontiers of Computer Science,
19(8), January 2025. ISSN 2095-2236. doi: 10.1007/s11704-024-40678-2. URL http://dx.
doi.org/10.1007/s11704-024-40678-2.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024a. URL https://arxiv.org/abs/
2402.03300.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin, Suzan
Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language models as automatic
tool agents, 2025. URL https://arxiv.org/abs/2405.16533.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl, and
Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for concise
reasoning, 2025. URL https://arxiv.org/abs/2508.09726.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on efficient
reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.164109.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen, Yanru
Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv preprint
arXiv:2507.20534, 2025.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An.
Q*: Improving multi-step reasoning for llms with deliberative planning, 2024. URL https:
//arxiv.org/abs/2406.14283.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A streamlined
framework for enhancing 1lm reasoning with agentic tools. arXiv preprint arXiv:2502.04644, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical expert
model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie
Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. Dapo: An
open-source 1lm reinforcement learning system at scale, 2025.

12

https://arxiv.org/abs/2412.16720
http://dx.doi.org/10.1007/s11704-024-40678-2
http://dx.doi.org/10.1007/s11704-024-40678-2
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2405.16533
https://arxiv.org/abs/2508.09726
https://arxiv.org/abs/2503.16419
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283

Under review as a conference paper at ICLR 2026

Danlong Yuan, Tian Xie, Shaohan Huang, Zhuocheng Gong, Huishuai Zhang, Chong Luo, Furu Wei,
and Dongyan Zhao. Efficient 1 training for reasoning models via length-aware optimization, 2025.
URL https://arxiv.org/abs/2505.12284.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu,
Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and reliable
reinforcement learning for advanced reasoning tasks, 2025.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, Shimiao Jiang, Shigi Kuang, Shouyu Yin, Chaohang
Wen, Haotian Zhang, Bin Chen, and Bing Yu. Srpo: A cross-domain implementation of large-scale
reinforcement learning on Illm, 2025.

Yuzhong Zhao, Yue Liu, Junpeng Liu, Jingye Chen, Xun Wu, Yaru Hao, Tengchao Lv, Shaohan
Huang, Lei Cui, Qixiang Ye, Fang Wan, and Furu Wei. Geometric-mean policy optimization, 2025.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang, Yuqiong
Liu, Rui Men, An Yang, Jingren Zhou, and Junyang Lin. Group sequence policy optimization,
2025.

13

https://arxiv.org/abs/2505.12284

Under review as a conference paper at ICLR 2026

LLM USAGE

We used LLMs as general-purpose writing and debugging assistants. Specifically, LLMs were
employed to help polish the writing (e.g., improving sentence clarity, grammar, and flow) and
occasionally to assist with debugging minor implementation issues (e.g., identifying syntax errors or
suggesting code refactoring). However, all core ideas, research questions, methodological designs,
codebase implementations, experiments, and analyses were entirely conceived, developed, and
conducted by the authors. No part of the intellectual contribution, experimental framework, or
scientific reasoning was generated by an LLM.

APPENDIX

A CASE STUDY

Prompt: Every morning Aya goes for a 9-kilometer-long walk and stops at a coffee shop afterwards.
When she walks at a constant speed of s kilometers per hour, the walk takes her 4 hours, including
t minutes spent in the coffee shop. When she walks s + 2 kilometers per hour, the walk takes her
2 hours and 24 minutes, including ¢ minutes spent in the coffee shop. Suppose Aya walks at s + %
kilometers per hour. Find the number of minutes the walk takes her, including the ¢ minutes spent in
the coffee shop. You FIRST think about the reasoning process as an internal monologue and then
provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags.
The final answer MUST BE put in \boxed{ }.

Ground truth answer: 204.

Alright, let’s tackle this problem step by step.

First, let’s understand what’s given. Aya walks a total distance of 9 kilometers. The time she
takes depends on her walking speed. She stops at a coffee shop, and the time spent there is ¢
minutes.

We are given two scenarios:

1. When her speed is s km/h, the total time (walking plus coffee) is 4 hours. 2. When her speed
increases to s + 2 km/h, the total time becomes 2 hours and 24 minutes, which is 2 + % =24
hours.

We need to find the total time when her speed is s + 0.5 km/h.

Let’s denote the time spent in the coffee shop as ¢ minutes. Since the coffee shop time is the
same in both scenarios, we can set up equations based on the total time.

In the first scenario: Total time = walking time + ¢ minutes. Walking time = distance / speed
= 9/s hours. Therefore, 9/s + ¢ = 4 hours.

In the second scenario: Walking time = 9/(s + 2) hours. Total time = 9/(s + 2) + t = 2.4
hours.

Now, we have two equations: 1. 9/s+t=42.9/(s+2) +t=2.4

We can subtract equation 2 from equation 1 to eliminate ¢:
(9/s+t)—(9/(s+2)+t)=4—-24

Simplify: 9/s —9/(s +2) = 1.6

Factor out 9: 9[1/s — 1/(s + 2)] = 1.6

Compute the difference inside the brackets:

1/s=1/(s+2)=(s+2—35)/(s(s+2) =2/(s(s+2)) So,9%(2)/(s(s+2)) =1.6
Simplify: 18/(s(s + 2)) = 1.6

Multiply both sides by s(s + 2): 18 = 1.6 s(s + 2)

Divide both sides by 1.6: s(s + 2) = 18/1.6

Calculate 18/1.6: 18/1.6 = 11.25

So, s2 +2s—11.25=0

Now, solve the quadratic equation: s + 25 — 11.25 = 0

Using quadratic formula: s = [—2 £ /4 + 45]/2

Since speed can’t be negative: s = [—2 + v/49]/2 /49 =7

14

Under review as a conference paper at ICLR 2026

Thus, s = (—2+7)/2 =5/2 = 2.5 km/h

Now, we can find ¢ from equation 1: 9/s +t =49/2.5+t =4
Compute 9/2.5 = 3.6 So,3.6 +t =4

Thus, ¢ = 0.4 hours = 0.4 * 60 = 24 minutes.

Now, when her speed is s + 0.5 = 2.5 + 0.5 = 3 km/h.

We need to find the total time including coffee shop.

First, compute walking time: 9/3 = 3 hours.

Total time = walking time + coffee shop time = 3 + 0.4 = 3.4 hours.
Convert to minutes: 3.4 * 60 = 204 minutes.

So, the total time is 204 minutes.

</think>

The total time Aya takes when walking at s + 3 km/h is minutes.

Okay, so I have this problem about Aya’s walking and coffee shop time. Let me try to figure it
out step by step.

First, the problem says that Aya walks 9 kilometers every morning and stops at a coffee shop.
When she walks at a speed of s km/h, it takes her 4 hours, including ¢ minutes spent in the
coffee shop. Then, when she increases her speed to s + 2 km/h, the walk takes her 2 hours and
24 minutes, but this time includes the same ¢ minutes in the coffee shop.

I need to find the time it takes for Aya to walk at a speed of s + % km/h, including the ¢ minutes
in the coffee shop.

Let me break down the information given:

1. When walking at speed s km/h, the total time taken is 4 hours, including ¢ minutes in
the coffee shop. So, the walking time is 4 hours minus ¢ minutes. But since speed is in
km/h, maybe it’s better to convert everything into hours.

2. When walking at speed s + 2 km/h, the total time is 2 hours and 24 minutes, which is
2+ % = 2.4 hours. Again, the walking time is total time minus ¢ minutes.

So, let me denote:

» Walking speed: s km/h

» Walking speed in the second case: s + 2 km/h
* Total time in first case: 4 hours

* Total time in second case: 2.4 hours

* Both cases include ¢ minutes in the coffee shop.

We need to find the total time when walking speed is s + % km/h.

First, let’s convert the walking times into hours to make calculations easier.
For the first scenario:

Total time = 4 hours

Time spent walking = 4 — GLO hours (since ¢ is in minutes)

Distance walked is 9 km, so using the formula:

Distance = speed X time

S0,9=s5x (4— &)

Similarly, for the second scenario:

Total time = 2.4 hours

Time spent walking = 2.4 — £ hours

Distance walked is 9 km again:

9=(s+2) x (24— &)

Now, we have two equations:

1)9=sx (4 — &)
2)9=(s+2)x (24— &)
Since both equal 9, we can set them equal to each other:
sx(d—&)=(s+2)x (24— &)

Let me expand both sides:

15

Under review as a conference paper at ICLR 2026

Left side: 4s — s (&)

0
Right side: (s +2) (24 — &) =24s — s (&) + 4.8 -2 (&)

60 60
Simplify both sides:
Left: 4s — S—t
60 t 2t
s
Right: 2.4s — — +4.8 — —
& "% " 60

Now, let’s write the equation:

st st
ds— L —o4s— L4
*7 60 A

. st .
Notice that the ~%0 terms on both sides cancel each other out. So we can subtract 2.4s from
both sides:

2t

st st 2t
ds—24s=— + 2 4 48— =
ST = T a0 T 60
Simplify:
2t
1.6s =4.8 — —
® 60 t
Simplify 1.6s = 4.8 — —
implify 1.6s 30

Let me v;f/rite that as:
1.6 — =438
s+ 30

t
Equation (A): 1.6s + 30 = 4.8

Now, let’s go back to the first equation:

9=5x (4— L)

Let me write this as:

9=4s— g—o

Multiply both sides by 60 to eliminate denominators:

9 x 60 = 4s x 60 — st

540 = 240s — st

Let’s write this as:

st = 240s — 540

Divide both sides by s (assuming s # 0):
4

t =240 - 22
S

540
Equation (B): t = 240 — —

s
Now, substitute Equation (B) into Equation (A):

_ 540
1.6 —5 =4
L °
Simplify:
240 540
1. — — — =4,
6s + 30 308 4.8
Calculate:

1
1.6s +8 — ?8 =4.8
Now, subtragt 4.8 from both sides:
1.65+8——8—4.8:0

S
Simplify:

18

16s+32——=0

Multiply both gides by s to eliminate denominator:
1.652 +325s—18=0

Now, we have a quadratic equation:

1.652 +3.25 — 18 =0

Let me multiply both sides by 10 to eliminate decimals:

16

Under review as a conference paper at ICLR 2026

16s% + 325 — 180 = 0

Divide all terms by 4 to simplify:

45> + 85— 45=0

Now, solve for s using quadratic formula:

. —b 4+ Vb? — dac

2a,
Wherea =4,b=8,c= —45
Calculate discriminant:
D=8 —4x4x(—45) =64 + 720 = 784
Square root of D: /784 = 28

So,
_ —8+28 —8+28
2x4 8
‘We have two solutio%:
s=——"=2="=295kmh
'’ 88 28 836
2)5:T:T:—4.5km/h

Since speed cannot be negative, s = 2.5 km/h
Now, find ¢ using Equation (B):
540 540
=240 — — =240 — —
S 2.5

Calculate 24—0:

540/2.5 = 216

So,

t = 240 — 216 = 24 minutes

So, ¢ = 24 minutes.

Now, when Aya walks at s + % km/h, which is 2.5 + 0.5 = 3 km/h.
We need to find the total time including ¢ minutes in the coffee shop.
First, calculate the walking time at 3 km/h.

9
Distance is 9 km, speed is 3 km/h, so time is 3 = 3 hours.

But total time is walking time plus ¢ minutes.

Walking time is 3 hours, which is 180 minutes.

Plus ¢ = 24 minutes.

So total time is 180 + 24 = 204 minutes.

Therefore, the walk takes her 204 minutes, including the ¢ minutes spent in the coffee shop.
</think>

The number of minutes the walk takes her, including the ¢ minutes spent in the coffee shop, is

204 |.

17

	Introduction
	Methodology
	Preliminary Background
	LACONIC: Length-Aware Constrained Policy Optimization

	Experiment
	Experimental Setup
	Main Results

	Further Analysis
	Ablation Analysis on Budget B
	Ablation Analysis on Dual Step Size
	Computational Resource Analysis

	Related Work
	Conclusion
	Case Study

