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Abstract

In this paper, we bridge Variational Autoencoders (VAEs) [17] and kernel density
estimations (KDEs) [25],[23] by approximating the posterior by KDEs and deriving
an upper bound of the Kullback-Leibler (KL) divergence in the evidence lower
bound (ELBO). The flexibility of KDEs makes the optimization of posteriors in
VAEs possible, which not only addresses the limitations of Gaussian latent space in
vanilla VAE but also provides a new perspective of estimating the KL-divergence in
ELBO. Under appropriate conditions [9],[3], we show that the Epanechnikov kernel
is the optimal choice in minimizing the derived upper bound of KL-divergence
asymptotically. Compared with Gaussian kernel, Epanechnikov kernel has compact
support which should make the generated sample less noisy and blurry. The
implementation of Epanechnikov kernel in ELBO is straightforward as it lies in the
"location-scale" family of distributions where the reparametrization tricks can be
directly employed. A series of experiments on benchmark datasets such as MNIST,
Fashion-MNIST, CIFAR-10 and CelebA further demonstrate the superiority of
Epanechnikov Variational Autoenocoder (EVAE) over vanilla VAE in the quality
of reconstructed images, as measured by the FID score and Sharpness[27].

1 Introduction

In variational inference, an autoencoder learns to encode the original data x using learnable function
f−1
ϕ (x) and then to reconstruct x using a decoder gθ. [17] proposed a stochastic variational inference

and learning algorithm called Variational Autoencoders (VAEs) which can be further used to generate
new data. According to VAE, a lower bound on the empirical likelihood, which is known as ELBO,
is maximized so that the fitted model pθ(x|z) = N (x; gθ(x), ID) and qϕ(z|x) = N (x; fϕ(x), ID)
can approximate the true conditional distributions p(x|z) and p(z|x) , respectively. As illustrated in
[17] employing Guassian as a default choice for prior and posterior distribution is mathematically
convenient since the corresponding ELBO is analytic. Due to the flexibility of data type nowadays,
many variants of VAEs have been proposed to enrich the expressibility of latent space. There are
three main directions for extending VAEs:

Approximate posterior qϕ(z|x):
Normalizing flow (NF) [24] applies a sequence of invertible transformations to initial density q0(z0)
to achieve more expressive posteriors. β-VAE [14] introduced a new parameter β in balancing the re-
construction loss with disentangled latent representation qϕ(z|x). Importance weighted Autoencoders
(IWAE) [5] improved log-likelihood lower bound by importance weighting. It also approximated the
posterior with multiple samples and enriched latent space representations. However, while pursuing
more flexible posterior, most literature along this direction don’t modify the standard normal prior
assumption for the sake of analytic loss function.

Prior distribution of latent variable p(z):
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Instead of approximating posterior, we can replace Gaussian prior with other flexible distributions.
For instance, [8] used a simple Gaussian mixture prior and [28] introduced a mixture prior called
"VampPrior" which consists of a mixture distribution with components given by variational posteriors.
The possibility of non-parametric priors is explored in [22], which utilized a truncated stick-breaking
process. [12] and [6] attempted to replace Gaussian prior by von Mises-Fisher(vMF) distribution.
The intuition is that Guassian distribution may have limited coverage if the true latent space is hyper-
spherical. [6] also pointed out that, as a special case of vMF, the uniform prior on the hypersphere
allows the even spread of data concentration with no directional bias.

Manifold learning The vanilla VAE [17] assumes the Euclidean latent space. In more complex data
structures, the flatness of Euclidean has hard time to capture the geometric property of latent space.
[16] enriched structures of VAE by replacing Gaussian prior with a Riemannian Brownian motion
prior. Utilizing the invertible transformations, NF can be connected with the manifold learning of
latent space such as Pseudo-invertible encoder(PIE) [2], Manifold flow (M-flow) [4] and Denosing
Normalizing Flow(DNF) [15]. They all model the VAE as a manifold learning procedure. Again,
the flexibility of those methods is still restricted by the choice of variational family since they all
assumed that the distribution of variables in latent spaces and noises in manifolds are all Gaussian.

It’s now natural to ask the following question:

• In which sense of optimality there exists an optimal functional form of posteriors given
certain technical conditions?

In this paper, we answer this question by the following steps, which are also the main contributions
of our work:

1. We first formulate the latent space learning process in VAE as a problem of kernel density
estimation.

2. Inspired by the results in [3] , we approximate the posterior in KL-divergence by a kernel
density estimator and establish some asymptotic results based on the conclusion in [3]. See
details in section 2.2.

3. After that, we utilize the conclusion from [3] and show that the optimal kernel in minimizing
an upper bound of KL-divergence is Epanechnikov kernel, which is simple and easy to
implement. The derivation connects the expectation of a statistic with KL-divergence, which
to our best knowledge, is the first attempt to bridge the concept of asymptotic distribution of
KDEs with VAE.

4. Thanks to the reparametrization trick, the implementation of Epanechnikov kernel in VAE is
also straightforward. We conduct a detailed comparison of the performance of Epanechnikov
VAE (EVAE) and Gaussian VAE in many benchmark image datasets under standard encoder-
decoder structure. The experiments indeed demonstrate the superiority of Epanechnikov
kernel over vanilla VAE.

The remaining sections of this paper are organized as following schema. In section 2, we provide
some preliminaries involving VAE, kernel density estimation and few assumptions. In section 3, we
derive the optimal kernel in bounding the KL-divergence is Epanechnikov kernel. Based on results
in section 3, we propose the Epanechnikov VAE (EVAE) in section 4. The comparison between
EVAE and vanilla VAE in benchmark datasets is illustrated in section 5. Section 6 discusses few
characteristics and limitations of EVAE and suggests some future directions. The pytorch codes
for the implementation of EVAE and experiments are available in supplementary materials. All
simulations and experiments are performed on a laptop with 12th Gen Intel(R) Core(TM) i7-12700H
(2.30 GHz) ,16.0 GB RAM and NVIDIA 4070 GPU.

2 Preliminary

2.1 VAE formulation

Consider a dataset X = {x(i)}ni=1 consists of n i.i.d samples from space X whose dimension is d.
In VAE, we assume that every observed data x(i) ∈ X is generated from a latent variable z(i) ∈ Z
whose dimension is p. Then the data generation process can be summarized in 2 steps. It first
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produces a variable z(i) from some parametric prior distribution pθ(z). Then given the value of
z(i), an observed value x(i) is generated from certain conditional distribution pθ(x|z). We typically
assume d > p and prior p(z) and likelihood pθ(x|z) are differentiable parametric distributions w.r.t θ
and z.

To maximize the empirical log likelihood logpθ(x), we need to evaluate the intractable integral in the
form

logpθ(x) = log
∫

pθ(x, z)dz = log
∫

pθ(x|z)p(z)dz

which is not available in most cases. Fortunately, we can instead maximizing its log evidende lower
bound (ELBO) L with the help of Jensen’s inequality:

logpθ(x) = log
∫

pθ(x, z)dz = log
∫

qϕ(z|x)
pθ(x, z)

qϕ(z|x)
dz ≥ Eqϕ(z|x)

[
log

pθ(x, z)

qϕ(z|x)

]
:= L(θ, ϕ)

Note that L(θ, ϕ) can be rewritten as follows:

L(θ, ϕ) = Eqϕ(z|x)[logpθ(x|z) + logp(z)− logqϕ(z|x)]
= Eqϕ(z|x)[logpθ(x|z)]−KL(qϕ(z|x)||p(z))

(1)

where KL(·||·) represents the KL-divergence between two distributions.

The conditional likelihood pθ(x|z), approximate posterior qϕ(z|x) and the prior distribution
p(z) can be chosen independently. For convenience, most applications of VAE employ Gaus-
sian parametrization for all three likelihoods. Since we’d like to investigate optimal posterior
and prior rather than the form of conditional likelihood pθ(x|z), we can assume a multivariate
Bernoulli or Gaussian model w.r.t pθ(x|z) for simplicity. For example, under multivariate Gaus-
sian, we have logpθ(x|z) = logN (x; gθ(z), I). As to multivariate Bernoulli model, we have
logpθ(x|z) =

∑
i[xiloggθ(z) + (1 − xi)log(1 − gθ(z))] where gθ(z) : Z → X are typically

neural-network parametrizations.

To maximize ELBO, we now need to minimize the following target function:

E
x∼p

z∼qϕ(·|x)

[−logpθ(x|z) +KL(qϕ(z|x)||p(z))] (2)

The two terms in equation (2) are named as "reconstruction error" and "divergence" or "regularization
term" , respectively. The "divergence" term regularizes the mismatch between approximate posterior
and prior distribution.

2.2 Kernel density estimation

2.2.1 Approximate the posterior in KL-divergence by kernel functions

A common assumption of latent space in VAE is the factorization of approximate posterior, i.e. dimen-
sions/features of latent space are independent with each other. Under this assumption, we only need
to consider the formulation of kernel density estimation in one-dimensional case. Similar arguments
can be applied to mulit-dimensional cases by additivity of KL-divergence under independence,

Given X1, ..., Xn be i.i.d random variables with a continuous density function f , [23] and [25]
proposed kernel density density estimate fn(x) for estimating f(x) at a fixed point x ∈ R,

fn(x) =
1

nbn

n∑
i=1

K

[
x−Xi

bn

]
=

1

bn

∫
K

[
x− t

bn

]
dFn(t) (3)

where Fn is the sample distribution function, K is an appropriate kernel function such that∫
K(x)dx = 1 and the positive number bn is called bandwidth such that bn → 0, nbn → ∞

as n → ∞1.
1We omit the limits of integrals if they are −∞ to ∞.
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Let the kernel function be

K(x) =
1√
2πσ2

exp
(
− (x− µ)2

2σ2

)
then the Gaussian VAE is a reminiscent of a kernel density estimator. More specifically, in one-
dimensional case we can rewrite the approximate posterior qϕ(z|x(i)) at data point x(i) as follows:

qϕ(z|x(i)) =
1√

2πσϕ(x(i))
exp

(
(z − µϕ(x

(i)))2

2σ2
ϕ

)
where µϕ : X → Z and σϕ : X → Z+ are neural network parametrizations of the conditional
mean and variance of qϕ(z|x(i)) . Z+ represents the positive region for latent space Z . Note that the
bandwidth σϕ(x

(i)) is now learnable.

On the other hand, by Taylor expansion of KL-divergence, we can bound the KL-divergence by a
quadratic functional which is the first order approximation of KL-divergence. We present the claim
in following Lemma 2.1

Lemma 2.1 Suppose continuous density functions p(z) and q(z) satisfy
max

z∈D1∩D2

|(q(z)− p(z))/p(z)| ≤ C

where D1 is the domain of p(z), D2 is the domain of q(z) and 0 < C ≤ 1. then we have

KL(q(z)||p(z)) ≤ C̃

∫
(q(z)− p(z))2

p(z)
dz

where C̃ is a positive constant.

The uniform bound condition in Lemma 2.1 restricts the local deviation of posterior and prior. This is
consistent with the intuition that the KL-term penalizes the mismatches between two distributions. If
we model the posterior qϕ(z|x(i)) as the expectation of a kernel density estimator of p(z), by Lemma
2.1 and Cauchy–Schwarz inequality, we obtain

KL(qϕ(z|x(i))||p(z)) ≤ C̃

∫
[E0(q

(i)
m,ϕ(z))− p(z)]2

p(z)
dz ≤ C̃E0

[∫
(q

(i)
m,ϕ(z)− p(z))2

p(z)
dz

]
(4)

where

q
(i)
m,ϕ(z) =

1

mb(m)

m∑
j=1

Kϕ,x(i)

[
z − Zj

b(m)

]
, Zj

i.i.d∼ p(z)

is a kernel density estimator of qϕ(z|x(i)) and expectation E0 is take w.r.t the samples from prior
distribution p(z). The subscript ϕ of Kernel function implies that the parameters in Kernel can be
learned by neural networks. Our main goal is to find the optimal Kernel function Kϕ,x(i) with other
model parameters ϕ and data point fixed. For now, we interprete m as the number of latent variable
Z generated from prior distribution which should be distinguished from original sample size n. In
the estimation theory, [9] showed that the Epanechnikov kernel minimizes

∫
E0[q

(i)
m,ϕ(z)− p(z)]2dz

asymptotically, which gives us a hint of the potential optimization of kernel K in quantity (4). Before
we derive the optimal kernel in VAE, we ’d like to briefly introduce some main assumptions and
notations in following section.

2.2.2 Assumptions

We mainly borrow the terminologies and assumptions in [25] which is the pioneering work in measur-
ing deviations of density function estimates. Note that [25] studied the asymptotic distribution of the
quadratic functional

∫
[fn(x)− f(x)]2a(x)dx under appropriate weight function a and conditions as

sampling size n approaches to infinity. In (4), we just saw that the weight function is the reciprical of
prior density in our case.

Assumptions A1 − A4 are listed as follows:
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(A1): The kernel function K is bounded, integrable, symmetric (about 0) and
∫
K(x)dx =

1,
∫
x2K(x)dx < ∞,

∫
K2(x)dx < ∞. Also, K either (a) is supported on an closed

and bounded interval [−B,B] and is absolutely continuous on [−B,B] with derivative
K ′ or (b) is absolutely continuous on the whole real line with derivative K ′ satisfying∫
|K ′(x)|kdx < ∞, k = 1, 2. Moreover,∫

x≥3

|x| 32 [loglog|x|] 12 [|K ′(x)|+ |K(x)|]dx < ∞

(A2): The underlying density f is continuous, positive and bounded.

(A3): Squared density f1/2 is absolutely continuous and its derivative is bounded in absolute
value.

(A4): The second derivative f ′′ exists and is bounded.

We can see that the Gaussian kernel satisfy those assumptions, indicating that the kernel density
estimation theory also works for Gaussian VAE. Similarly, most priors and posteriors we listed in
section 1 lie in conditions A1 − A4, demonstrating the promising applications of kernel estimate
theory in variants of VAE.

3 Optimal kernel of VAE

Let m be the number of latent variable Z generated from prior distribution, as defined in 4. Let fm(x)
be a kernel density estimate of a continuous density function f at x, as defined in (3), we construct a
statistic Tm as follows:

Tm = mb(m)

∫
[fm(x)− f(x)]2a(x)dx

where a(x) is an appropriate weight function. We now restate the main result of [3] as Theorem 3.1:

Theorem 3.1 ([3]) Let A1 − A4 hold and suppose that the weight function a is integrable piecewise
continuous and bounded. Suppose b(n) = o(n− 2

9 ) and o(b(n)) = n− 1
4 (log(n))

1
2 (loglogn)

1
4 as

n → ∞, then b−
1
2 (n)(Tn − I(K)

∫
f(x)a(x)dx) is asymptotically normally distributed with mean

0 and variance 2J(K)
∫
a2(x)f2dx as n → ∞, where

I(K) =

∫
K2(z)dz, J(K) =

∫ [∫
K(z + y)K(z)dz

]2
dy (5)

In other words, under Theorem 3.1, we have

E[Tm] → I(K)

∫
f(x)a(x)dx , as m → ∞

Let mb(m)/n = C̃ where C̃ is the constant in Lemma 2.1 and b(m) satisfies the conditions in
Theorem 3.1, by the asymptotic result of Theorem 3.1, the inequality (4) becomes

KL(qϕ(z|x(i))||p(z)) ≤ mb(m)

n
E0

[∫
(q

(i)
m,ϕ(z)− p(z))2

p(z)
dz

]

=
E[Tm]

n

n large
≈

I(Kϕ,x(i))
∫
p(z) 1

p(z)dz

n
= B(i) I(Kϕ,x(i))

n

(6)

where B(i) is the length of support interval of p(z) under i-th datapoint. Note that if the prior has
infinite length of support, the inequality 6 becomes useless. Instead of minimizing the analytic
form of KL-divergence, we can now find an optimal kernel function I(Kϕ,x(i)) which minimizes
I(Kϕ,x(i)) given fixed parameters and data point. Lemma 3.2 shows that Epanechnikov kernel is the
optimal choice.
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Lemma 3.2 Let K be the set of all L1(−∞,∞) functions K satisfying

K ≥ 0,

∫
K(x)dx = 1,

∫
xK(x)dx = µ,

∫
(x− µ)2K(x)dx =

1

5
r2

where µ ∈ (−∞,∞), r > 0. Then the functional I(K) in (5) is minimized on K uniquely by

K∗(x) =

{
3
4r

(
1−

(
x−µ
r

)2)
x ∈ [µ− r, µ+ r]

0 otherwise

and minKI(K) = I(K∗) = 3
5r . The optimal kernel K∗ is named as Epanechnikov kernel[9].

The proof is based on the idea of Lagrange multiplier. Few observations from Lemma 3.2 and Figure
S1 in Appendix A.2 (plots of standard Epanechnikov kernel (µ = 0, r = 1) and standard Gaussian) :

1. The support of Epanechnikov kernel is closed and bounded (i.e compact). However, the
support of Gaussian distribution is unbounded, which may lead to the noisy or blurry
regenerated images. Thus we posit that Epanechnikov kernel could regenerate sharper
regenerated. Empirical evidence is reported in section 5. Note that we add 1/5 just for
simplicity of the results.

2. The distribution function of Epanechnikov kernel lies in the "location-scale" family as
well, which indicates that the implementation of Epanechnikov kernel VAE is simple and
straightforward by reparametrization tricks. See section 4 for details.

3. I(K∗) doesn’t include µ, indicating that µ is only optimized in the reconstruction term in
ELBO. The parameter B(i) in (6) controls the support of prior distribution. If we set B(i) as
a constant all the time, then EVAE can be connected to β-VAE [14] which adds a weight
parameter β in front of the KL term.

4 Epanechnikov VAE

Getting inspired by the optimality of Epanechnikov kernel in controlling KL-divergence, we propose
the Epanechnikov Variational Autoencoder (EVAE) whose resampling step is based on Epanechnikov
kernel. There are two main differences between EVAE and VAE. The latent distribution in EVAE
is assumed to be estimated by the Epanechnikov kernel rather than multivariate isotropic Gaussian.
And EVAE is trained to minimize a different target function (7), which is an upper bound of the one
(2) used in ordinary VAE.

E
x∼p

z∼qϕ(·|x)

[
logpθ(x|z) +B

I(K∗
ϕ)

n

]
(7)

where n can be the sample size or minibatch size, B, ϕ are outputs of the encoding network and K∗

is Epanechnikov kernel. The sample version of (7) at datapoint x(i) is

L̃(θ, ϕ,B;x(i)) ≈ 1

L

L∑
l=1

(logpθ(x(i))|z(i,l)) +
D∑

d=1

(
3

5M
·
B

(i)
d

r
(i)
d

)
(8)

where D is the dimension for latent space, B(i) = (B
(i)
1 , ..., B

(i)
D ), r(i) = (r

(i)
1 , ..., r

(i)
D ) are outputs

of the encoding networks with variational parameters ϕ and M is minibatch size. In vanilla VAE,
[17] suggested that the number of regenerated samples L can be set to 1 as long as the minibatch size
is relatively large, which is also the case for EVAE. To sample from the posterior, we need to derive
the density of qϕ(z|x(i)):

qϕ(z|x(i)) = E

 1

mb(m)

m∑
j=1

K∗
ϕ,x(i)

(
z − Zj

b(m)

)
= E

[
1

b(m)
K∗

ϕ,x(i)

(
z − Z1

b(m)

)]
=

∫
1

b(m)
K∗

ϕ,x(i)

(
z − z̃

b(m)

)
fz(z̃)dz̃

(9)
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where fz is the density of prior distribution. Given a datapoint x(i), let qϕ(z|x(i)) be the density of
random variable Z(x(i)) , K∗

ϕ,x(i)(z) be the density of random variable K∗(x(i)) and prior fz be
the random variable of Z, then it’s clear to see that the posterior is now a convolution between two
random variables, i.e

Z(x(i)) = b(m)K∗(x(i)) + Z (10)

Identity (10) decomposes the posterior into two parts. One is the prior information, the other
represents the incremental updates from new information (x(i)). The Epanechnikov kernel can
be viewed as the "optimal" direction of perturbing the prior distribution and the coefficient b(m)
can be interpreted as "step size". The resampling step in EVAE can be divided into two parts as
well, as described in Algorithm 1. For the sake of finite support and simplicity, we assume that
the prior distribution is uniformly distributed and step size b(m) is the same for all dimensions.
The theoretical conditions for b(m) is demanding. In practice we found that setting step size as
b(100) = 100−2/9 ≈ 0.3594 is good enough.

Algorithm 1 Resampling step in a minibatch of EVAE

Require: Latent space dimension dz; mean µϕ(x) , spread rϕ(x) and prior support interval length
B(x), which are all learned by encoder networks. Minibatch size M . Step size b(m).

1: Sample a M × dz matrix U where each (i, j) entry of the random matrix U is sampled from
Unif[−B(x)i,j ,B(x)i,j ].

2: Sample a M × dz matrix K where each (i, j) entry of the random matrix K is sampled from an
standard Epanechnikov kernel supported on [−1, 1].

3: Shift and scale sampled K by the location-scale formula: Z = µϕ(x) + rϕ(x)⊙K.
4: Return: b(m)⊙ Z+U

In Algorithm 1, we apply reparametrization trick to sample z from general Epanechnikov kernel, i.e
z(i,l) = µ(i) + r(i) ⊙ k(l), where k(l) is sampled from standard Epanechnikov kernel supported on
[−1, 1] as it lies in the "location-scale" family. We use ⊙ to signify the element-wise product. There
are many ways to sample from standard Epanechnikov kernel, such as accept-rejection method. For
efficiency, we provide a faster sampling procedure in Algorithm 2. The theoretical support is given in
section A.3.

Algorithm 2 Sampling from centered Epanechnikov kernel supported on [−1, 1]

1: Sample U1, U2, U3
i.i.d∼ Unif[−1, 1].

2: Set U = Median(U1, U2, U3)
3: Return: U

As we mentioned in section 3, the regularization term in (7) doesn’t include µϕ(x). It is only
optimized in the reconstruction term in (8). In Gaussian VAE, the prior distribution has infinite
support which limits the capability of latent space while the extra parameter B(i) induced by KDEs
controls the support of prior distribution, which makes EVAE more flexible. To maximize (8)
empirically, the spread parameter r tends to be small, which may lead to numerical issue in back
propagation. However, the numerator B(i) on the second part of equation 8 plays an rule to stabilize
scaling effect in (8). What’s more, if we set B(i) as a constant all the time, then EVAE can be
connected to β-VAE [14] which adds a weight parameter β in front of the KL term to control the
disentanglement of learned model. We leave the potential disentanglement learned by EVAE as future
work.

5 Experiments

In this section, we will compare the proposed EVAE model with (vanilla) VAE whose posterior
and prior are modelled by isotropic multivariate Gaussian in real datasets. To assess the quality of
reconstructed images, we employ the Frechet Inception Distance (FID) score [13] to measure the
distribution of generated images with the distribution real images. The lower, the better. Inception_v3
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[26] is employed as default model to generate features of input images, which is a standard implemen-
tation in generative models. In section 3, we mentioned that the compact support for Epanechnikov
kernel could help EVAE generate less blurry or noisy images. To check this claim empirically, we
calculated sharpness[27] for generated images by a 3× 3 Laplace filter. See details in Appendix C.

We trained EVAE and VAE on four benchmark datasets: MNIST[7], Fashion-MNIST[29], CIFAR-
10[18] and CelebA[20]. The detailed information for training parameters are attached in Appendix C.
For comparison, we applied a classical CNN architecture (Appendix B) in encoding and decoding
part for all datasets. Consequently, the main differences between EVAE and VAE in implementation
stem from the resampling step and target function in training procedure. All FID scores and sharpness
are based on hold-out samples. We also evaluated VAE and EVAE with different dimensions dz of
latent spaces. Table 1 and Table 2 summarize the results on four datasets.

Table 1: VAE and EVAE results on MNIST and Fashion-MNIST datasets
Datasets MNIST Fashion-MNIST

dz
VAE EVAE VAE EVAE

FID Sharpness FID Sharpness FID Sharpness FID Sharpness

8 16.39 0.0217 14.20 0.0245 41.33 0.0154 34.77 0.0186
16 12.66 0.0244 10.52 0.0314 39.01 0.0166 25.05 0.0222
32 12.57 0.0252 8.13 0.0340 37.66 0.0166 17.98 0.0250
64 12.53 0.0245 5.67 0.0359 39.49 0.0163 11.87 0.0276

Table 2: VAE and EVAE results on CIFAR10 and CelebA datasets
Datasets CIFAR-10 CelebA

dz
VAE EVAE VAE EVAE

FID Sharpness FID Sharpness FID Sharpness FID Sharpness

8 229.2 0.0354 217.0 0.0343 189.4 0.0149 193.2 0.0145
16 182.9 0.0349 163.9 0.0346 145.2 0.0153 139.8 0.0159
32 147.2 0.0353 117.9 0.0358 100.8 0.0162 94.40 0.0160
64 146.6 0.0356 79.78 0.0360 76.48 0.0165 58.84 0.0168

In terms of FID score, we observe that EVAE has an edge in high dimensions (dz = 32, 64) ,
indicating the better quality of regenerated images from EVAE. Additionally, when dz = 64, EVAE
generate larger sharpness of reconstructed images for all datasets, as illustrated in Table 1 and Table 2.
This result empirically justifies the positive effect of having compact support in posteriors and priors.
As to CIFAR-10, EVAE has larger sharpness in high dimensions (dz = 32, 64) while it is mediocre in
low dimensions. Possible reasons include low-resolution(blurriness) of original images and deficient
expressibility of simple CNN models in low dimensions. But the validation reconstruction loss curves
in Appendix E indeed authenticate the superiority of EVAE over benchmark datasets, including
CelebA.

Appendix D presents figures for some test reconstructed samples from trained VAE and EVAE with
dz = 64. For MNIST and Fashion-MNIST, many images generated from EVAE are able to pick up
local features better than the VAE. And reconstructed samples from CIFAR-10 are clearer and closer
to the original images, as indicated by large the gap between FID scores. The statistical analysis from
binomial test based on total experiments (Appendix C) shows that EVAE significantly outperforms
VAE in FID and sharpness.

6 Discussion and Limitation

Approximating the posterior through KDEs, we have derived the optimal kernel in bounding the
KL-divergence and built a novel kernel based VAE called Epanechnikov VAE. The finite support
for Epanechnikov kernel addresses the issue of generating blurry images under Gaussian posterior.
Experiments on benchmark datasets demonstrate the power of EVAE compared to vanilla VAE. The
result of presented paper paves the way for various promising research directions for future works.
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Connections between EVAE and β-VAE

When the length of support interval B is constant, the target function in 8 becomes

L̃(θ, ϕ,B;x(i)) ≈ 1

L

L∑
l=1

(logpθ(x(i))|z(i,l)) +
D∑

d=1

(
3

5
· B

M
· 1

r
(i)
d

)

where the ratio B
M now acts as a weight parameter in penalizing the kernel term. This formula is

similar to the ELBO given in β-VAE. It would be interesting to compare the disentenglement and
implicit regularization effect [19] of EVAE and β-VAE. In fact, in EVAE the weight parameter B

M is
derived from the global deviation result for KDEs (i.e. Theorem [3]), where the constant B should be
interpreted as the length of support interval for the prior.

Geometric Interpretation of EVAE

Identity (10) provides another interpretation of VAE. By approximating the posterior with kernel
densities, the posterior can be decomposed with the sum of prior and distribution of new information
and the Epanechnikov kernel can be viewed as the optimal direction of updating posterior from
the prior. This decomposition bridges EVAE and Information Geometry[1] which analyzes the
relationship between probability distributions through modern differential geometry.

Applying Epanechnikov kernel in other generative models

Empirical results in section 5 exhibited the promising improvement of Epanechnikov kernel in VAE
under classical CNN architecture. Extending the implementation of Epanechnikov kernel in more
complicated generative models such as GAN[11], normalizing flow [15] and other variants of VAEs
is one of our future works.

A more precise approximation of KL-divergence

In Lemma 2.1, we bounded the KL-term by first order approximation from Taylor expansion, which
limits the more general cases for posteriors and priors. It’s possible to derive sharper bounds with
higher order approximation where the Epanechnikov kernel may not be the optimal one. Lemma
2.1 also assumes a small deviation between posterior and prior, which limits the candidates for prior
distribution in practice.

Optimal kernel under different criterions

In this paper, we mainly focused on the L2 deviation of KDEs, which is measured by the functional
I(K) proposed in Theorem 3.1. However, in the general theory of KDEs, different functionals
correspond to different optimal kernels. For example, we didn’t put too much attention on the
convolution functional J(K) =

∫ [∫
K(z + y)K(z)dz

]2
dy, which is related to the asymptotic

variance of statistic Tm defined in section 3. If we want to minimize the asymptotic variance of Tm,
the optimal kernel is just the uniform kernel, as derived by [10].

The factorization of approximate posterior

Our derivation of the new target function (8) is based on the independence among hidden dimensions,
which is a fairly strong condition in practice. Exploring the theory of KDEs with dependent latent
dimensions would be another compelling direction.

Manifold assumption

Like ordinary VAE, EVAE assumes the Euclidean latent space which is deficient when the data
manifold is non-Euclidean, e.g., hyperspherical. With invertible transformations, Normalizing flow
[21], Manifold flow (M-flow) [4] and Denosing Normalizing Flow(DNF) [15] are designed to learn
complicated structures of manifolds. Combining manifold learning methods with Epanechnikov
kernel is also a promising extension of EVAE.

In summary, applying the idea of kernel density estimations in VAE opens a new way of approximating
the posterior and enriches the structure of latent space in VAE. Many variants of VAE are based on
Gaussian posterior because of it’s convenient properties. While the limited expressiveness of Gaussian
deteriorates the performance of VAE in many image regeneration tasks. This paper illustrates the
potential of replacing the Guassian posterior with Epanechnikov kernel in building generative models.
Broader impacts are discussed in Appendix F.
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Appendix

A Proofs

A.1 Proof of Lemma 2.1

Recall the Taylor expansion of function f(x) = xlogx around 1 is

xlogx = f(1) + f ′(1)(x− 1) + f ′′(1)
(x− 1)2

2
+ f ′′′(1)

(x− 1)3

3!
+ . . .

= 0 + x− 1 +
(x− 1)2

2
− (x− 1)3

3!
+ . . .

(11)

Now for KL-divergence, we have

KL(q||p) =
∫

q(z)log
q(z)

p(z)
dz =

∫
q(z)

p(z)
log

q(z)

p(z)
p(z)dz

=

∫ (
q(z)

p(z)
− 1 +

1

2

(
q(z)

p(z)
− 1

)2

− 1

3!

(
q(z)

p(z)
− 1

)3

+ . . .

)
p(z) Taylor expansion

=

∫ (
1

2

(q(z)− p(z))2

p(z)
− 1

3!

(q(z)− p(z))3

p2(z)
+

1

4!

(q(z)− p(z))4

p3(z)
+ . . .

)
dz

=

∫
(q(z)− p(z))2

p(z)

(
1

2
− 1

3!

(q(z)− p(z))

p(z)
+

1

4!

(q(z)− p(z))2

p2(z)
+ . . .

)
dz

≤ C̃

∫
(q(z)− p(z))2

p(z)
dz

(12)

where C̃ is an upper bound for the sum of alternate series in the last equality, which is finite under
the assumptions of deviation between q(z) and p(z):

max
z∈D1∩D2

|(q(z)− p(z))/p(z)| ≤ C, 0 < C ≤ 1

A.2 Proof of Lemma 3.2

For simplicity, we first consider the following constraints

K ≥ 0,

∫
K(x)dx = 1,

∫
xK(x)dx = 0,

∫
x2K(x)dx =

1

5

By the method of undermined multipliers, it’s equivalent to minimize the following target functional
without constraints: ∫

K2(x) + aK(x) + cz2K(x)dz

with simplified constraints above and a, c are undermined real coefficients. We ignore the term xK(x)
as it does not contribute to the unconstrained target function now.

For fixed x, denote y(K) = K2 + aK + cx2K, (K ≥ 0). Note that the quadratic function y(K)
achieves minimum when K = − c

2x
2 − a

2 .

It follows that y(K) is minimized subject to K ≥ 0 by

K(x) =

{
− c

2x
2 − a

2 − c
2x

2 − a
2 ≥ 0

0 − c
2x

2 − a
2 < 0
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We can rewrite it as

K(x) =

{
A(B2 − x2) |x| ≤ B

0 otherwise

for some number A,B. By simplified assumptions
∫
xK(x)dx = 0,

∫
x2K(x)dx = 1

5 , we can find
that A = 3

4 , B = 1.

Under general moment conditions in Lemma 3.2, optimal K∗ can be written as

K∗(x) =

{
3
4r

(
1−

(
x−µ
r

)2) |x− µ| ≤ r

0 otherwise

by location-scale formula. In literature [9], this kernel is called Epanechnikov kernel. We put 1/5
in front of the constraint of second moment in order to make the resulting support interval cleaner,
which won’t change the optimal kernel. The corresponding optimal value of I(K) is I(K∗) = 3

5r .

Plots of Standard Epanechnikov kernel and Guassian kernel

Figure S1: Red curve: Standard Epanechnikov kernel. Green curve: Standard Gaussian kernel.

A.3 Theoretical support for Algorithm 2

Given U1, U2, U3
i.i.d.∼ Unif[−1, 1], we only need to show the density of median(U1, U2, U3) is

standard Epanechnikov kernel.

Denote Y = Median(U1, U2, U3), we have

P (Y ≤ t) = P (Median(U1, U2, U3) ≤ t)

= P (Exactly two of U1, U2, U3 are less than t) + P (All of U1, U2, U3 are less than t)

=

(
3

2

)(
1 + t

2

)2(
1− t

2

)
+

(
3

3

)(
1 + t

2

)3

=
1

2
+

3

4
t− t3

4

Then the density fY (t) of Y is

fY (t) =
3

4
− 3

4
t2 =

3

4
(1− t2)

which is essentially the standard Epanechnikov kernel.
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B Model architecture

B.1 MNIST and Fashion-MNIST

We used fully convolutional architectures with 4×4 convolutional filters for both encoder and decoder
in EVAE and VAE, as described following. All convolutions in the encoder and decoder employed
SAME padding.

We resized images in MNIST and Fashion-MNIST from 28× 28 to 32× 32 at beginning. In the last
conv layer, the sigmoid activation function was used to restrict the range of output as we assumed
Bernoulli type model of pθ(x|z) and the binary cross entropy loss employed used (reduction to sum).
Dimensions dz for latent space : {8, 16, 32, 64}
Encoder qϕ:

x ∈ R32×32 → 32 Conv, Stride 2 → BatchNorm → RelU
→ 64 Conv, Stride 2 → BatchNorm → RelU
→ 128 Conv, Stride 2 → BatchNorm → RelU
→ 256 Conv, Stride 2 → BatchNorm → RelU
→ Fully connected (1 ∗ 1 ∗ 256× dz) for each parameters

Decoder pθ:

z ∈ Rdz×dz → Fully connected (dz × 1 ∗ 1 ∗ 256)
→ 126 ConvTran, Stride 1 → BatchNorm → RelU
→ 64 ConvTran, Stride 2 → BatchNorm → RelU
→ 32 ConvTran, Stride 2 → BatchNorm → RelU
→ 1 ConvTran, Stride 2 → Sigmoid

B.2 CIFAR-10

Again, we used fully convolutional architectures with 4× 4 convolutional filters for both encoder
and decoder in EVAE and VAE for CIFAR-10 model. In encoder, we employed a layer of Adaptive
Average pool filter. Other settings are the same with MNIST and Fashion-MNIST.

Encoder qϕ:

x ∈ R32×32 → 32 Conv, Stride 2 → BatchNorm → RelU
→ 64 Conv, Stride 2 → BatchNorm → RelU
→ 128 Conv, Stride 2 → BatchNorm → RelU
→ 256 Conv, Stride 2 → BatchNorm → RelU
→ AdaptiveAvgPool2d
→ Fully connected (1 ∗ 1 ∗ 256× dz) for each parameters

Decoder pθ:

z ∈ Rdz×dz → Fully connected (dz × 1 ∗ 1 ∗ 256)
→ 128 ConvTran, Stride 1 → BatchNorm → RelU
→ 64 ConvTran, Stride 2 → BatchNorm → RelU
→ 32 ConvTran, Stride 2 → BatchNorm → RelU
→ 3 ConvTran, Stride 2 → Sigmoid
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B.3 CelebA

For CelebA dataset, we used 5× 5 convolutional filters for both encoder and decoder in EVAE and
VAE. Simiar to CIFAR-10, we employed a layer of Adaptive Average pool filter before the fully
connected layer in encoder. We first scaled images with Center Crop to 140× 140 and resized them
to 64× 64.

Encoder qϕ:

x ∈ R64×64 → 64 Conv, Stride 2 → BatchNorm → RelU
→ 128 Conv, Stride 2 → BatchNorm → RelU
→ 256 Conv, Stride 2 → BatchNorm → RelU
→ 512 Conv, Stride 2 → BatchNorm → RelU
→ AdaptiveAvgPool2d
→ Fully connected (1 ∗ 1 ∗ 512× dz) for each parameters

Decoder pθ:

z ∈ Rdz×dz → Fully connected (dz × 8 ∗ 8 ∗ 512)
→ 256 ConvTran, Stride 1 → BatchNorm → RelU
→ 128 ConvTran, Stride 2 → BatchNorm → RelU
→ 64 ConvTran, Stride 2 → BatchNorm → RelU
→ 3 ConvTran, Stride 2 → Sigmoid

C Datasets and Training details

We list details for each benchmark dataset in following table

Datasets # Training samples # Hold-out samples Original image size
MNIST 60000 10000 28*28
Fashion-MNIST 60000 10000 28*28
CIFAR-10 50000 10000 32*32
CelebA 162770 19867 178*218

Note that for MNIST,Fashion-MNIST and CIFAR-10, we used default splittings of training sets and
testing sets provided in Pytorch (torchvision.datasets). For CelebA, we used default validation set as
hold-out samples.

As to the training details, we used same training parameters for all algorithms and datasets, as
described in following table

Latent space dimensions dz 8,16,32,64
Optimizer Adam with learning rate 1e-4
Batch size 100
Epochs 50

Calculation of Sharpness

We follow the way in [27] in calculating the sharpness of an image. For each generated image, we

first transformed it into grayscale and convolved it with the Laplace filter

(
0 1 0
1 −4 1
0 1 0

)
, computed

the variance of the resulting activations and took the average of all variances. The resulting number
is denoted as sharpness (larger is better). The blurrier image will have less edges. As a result, the
variance of activations will be small as most activations will be close to zero. Note that we averaged
the sharpness of all reconstructed images from hold-out samples for each dataset.
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Binomial test for two models

If EVAE and VAE have similar performance in FID score, the probability that EVAE has lower FID
score should be 0.5 in each independent experiment. (Same hypothesis for sharpness). However,
according to Table 1 and 2, EVAE wins all experiments for FID score in all datasets. The p-value of
winning 15 experiments under null hypothesis is

P (X ≥ 15) =

(
16

16

)
(0.5)16 +

(
16

15

)
(0.5)16 ≈ 2.6× 10−4 < 0.05.

P-value is smaller than 0.05 significance level thus EVAE significantly outperforms VAE in FID.
Similar calculation can be applied to sharpness, whose p-value of winning 12 experiments is P (X ≥
12) =

∑16
i=12

(
16
i

)
0.516 ≈ 0.0384 < 0.05 and we achieved the same conclusion for the significance

of EVAE’s superiority in sharpness.

D Sampled reconstructed images

(a) Real images (b) VAE reconstructed images (c) EVAE reconstructed images

Figure S2: (a) Sampled real images from hold-out samples in MNIST (b) Reconstructed images by VAE. (c)
Reconstructed images by EVAE. Dimension dz = 64 for both models. See section B for Model architectures.

(a) Real images (b) VAE reconstructed images (c) EVAE reconstructed images

Figure S3: (a) Sampled real images from hold-out samples in Fashion-MNIST (b) Reconstructed images by
VAE. (c) Reconstructed images by EVAE. Dimension dz = 64 for both models.
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(a) Real images (b) VAE reconstructed images (c) EVAE reconstructed images

Figure S4: (a) Sampled real images from hold-out samples in CIFAR-10 (b) Reconstructed images by VAE. (c)
Reconstructed images by EVAE. Dimension dz = 64 for both models.

(a) Real images (b) VAE reconstructed images (c) EVAE reconstructed images

Figure S5: (a) Sampled real images from hold-out samples in CelebA (b) Reconstructed images by VAE. (c)
Reconstructed images by EVAE. Dimension dz = 64 for both models.

E Validation curves

(a) MNIST (b) Fashion-MNIST

Figure S6: Reconstruction validation loss curves as function of Epochs. (dz = 64). Red curve is for EVAE
and yellow one represents VAE. Binary cross entropy loss is reduced to sum for each batch (a) MNIST (b)
Fashion-MNIST.
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(a) CIFAR-10 (b) CelebA

Figure S7: Reconstruction validation loss curves as function of Epochs. (dz = 64). Red curve is for EVAE
and yellow one represents VAE. Binary cross entropy loss is reduced to sum for each batch (a) CIFAR-10 (b)
CelebA.

F Broader Impacts

This paper aims to propose a new perspective in designing the posterior in generative models. The
theoretical results should not have negative societal impacts. One possible negative impact resulting
from EVAE might be the misuse of generative models in producing fake images which may lead to
security issues in some face recognition based systems. Few mitigation strategies: (1) gate the release
of models for commercial use;(2) add a mechanism for monitoring fake images generated by models
such as the discriminator in GAN models. We can also restrict the private datasets used in training
the generative model. All benchmark datasets used in this paper are public and well known to the
machine learning community.
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