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Abstract

In the emerging paradigm of Federated Learn-
ing (FL), large amount of clients such as mo-
bile devices are used to train possibly high-
dimensional models on their respective data. Com-
bining (dimension-wise) adaptive gradient meth-
ods (e.g., Adam, AMSGrad) with FL has been
an active direction, which is shown to outperform
traditional SGD based FL in many cases. In this
paper, we focus on the problem of training feder-
ated deep neural networks, and propose a novel
FL framework which further introduces layer-wise
adaptivity to the local model updates to acceler-
ate the convergence of adaptive FL methods. Our
framework includes two variants based on two re-
cent locally adaptive federated learning algorithms.
Theoretically, we provide a convergence analysis
of our layer-wise FL methods, coined Fed-LAMB
and Mime-LAMB, which match the convergence
rate of state-of-the-art results in adaptive FL and
exhibits linear speedup in terms of the number of
workers. Experimental results on various datasets
and models, under both IID and non-IID local data
settings, show that both Fed-LAMB and Mime-
LAMB achieve faster convergence speed and better
generalization performance, compared to various
recent adaptive FL methods.

1 INTRODUCTION

A growing and important task while learning models on
observed data, is the ability to train over a large number of
clients which could either be personal devices or distinct en-
tities. In the paradigm of Federated Learning (FL) [Konečnỳ
et al., 2016, McMahan et al., 2017], a central server orches-
trates the optimization over those clients under the constraint
that the data can neither be gathered nor shared among the

clients. This is computationally more efficient, since more
distributed computing resources are used; also, this is a
very practical scenario which allows individual data holders
(e.g., mobile devices) to train a model jointly without leak-
ing private data. In this paper, we consider the following
optimization problem:

min
θ
f(θ) :=

1

n

n∑
i=1

fi(θ) =
1

n

n∑
i=1

Eξ∼Xi
[Fi(θ; ξ)], (1)

where the nonconvex function (e.g., deep networks) fi repre-
sents the average loss over the local data samples for worker
i ∈ JnK, and θ ∈ Rd the global model parameter. Xi is the
data distribution on each client i. There are two general sce-
narios of FL [Yang et al., 2019]: (i) cross-silo setting where
n is small/moderate and the clients can be, e.g., different
data servers; (ii) cross-device setting, where n can be large
(e.g., millions) and the clients are mobile devices. While
(1) reminds that of standard distributed optimization, the
principle and setting of FL are different from the classical
distributed paradigm. Two of the main differences are: (i)
Local updates: FL allows clients to perform multiple up-
dates on the local models before the global aggregation,
which improves the computational resource efficiency and
reduces the frequency of communication; (ii) Data hetero-
geneity: in FL, the local data distributions Xi are usually
different across workers, hindering the convergence of the
global model. Federated learning aims at finding a global
solution of (1) in fewest number of communication rounds.

One of the standard and most popular frameworks for FL is
called Fed-SGD [McMahan et al., 2017]: we adopt multi-
ple local Stochastic Gradient Descent (SGD) steps in each
device, send those local models to the server that computes
the average over the received local model parameters, and
broadcasts it back to the devices. Moreover, momentum
can be added to local SGD training for faster convergence
and better learning performance [Yu et al., 2019]. On the
other hand, adaptive gradient methods (e.g., Adam [Kingma
and Ba, 2015], AMSGrad [Reddi et al., 2018]) have shown
great success in many deep learning tasks. For instance, the
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update rule of Adam at step t reads as

θt = θt−1 − α
mt√
vt
, mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g2
t ,

(2)

where α is the learning rate and gt is the gradient at time t.
We note that the effective learning rate of Adam is α/

√
v,

which is different across dimensions, i.e., dimension-wise
adaptive. Recently, we have seen growing research efforts
in the design of FL frameworks that adopt adaptive gradi-
ent methods as the protocols for local model training in-
stead of SGD. Examples include federated AMSGrad (Fed-
AMS) [Chen et al., 2020] and Mime [Karimireddy et al.,
2020] with Adam updates. Specifically, in both methods, in
each round the global server not only aggregates the local
models, but also broadcasts to the workers a “global” second
moment estimation to reconcile the dimension-wise adaptive
learning rates across the clients. Therefore, this step can be
regarded as a natural mitigation to data heterogeneity, which
is a common and important practical scenario that affects the
performance of FL algorithms [Li et al., 2020a, Liang et al.,
2019, Karimireddy et al., 2019]. Adaptive-optimizer based
FL have been shown to outperform many SGD based FL
methods on various tasks, making it a promising direction
in FL system design.

In this work, we specifically focus on further improving
the convergence speed and learning performance of locally
adaptive FL algorithms. Our construction is based on intro-
ducing a special learning rate schedule into the local training
of FL, which has not been proposed in the literature before.
For (single-machine) training of deep neural networks using
Adam, [You et al., 2020] proposed a layer-wise adjusted
learning rate scheme called LAMB, where in each update,
the effective update mt/

√
vt is further normalized by the

weight of each layer in the deep neural network, respec-
tively. In [You et al., 2020], the authors proved that LAMB
matches the convergence rate of Adam theoretically, and
demonstrated the superior performance of LAMB empiri-
cally. With this weight-dependent adjusted learning rates,
LAMB allows large-batch training which could in partic-
ular speed up training large datasets and models like Ima-
geNet [Deng et al., 2009] and BERT [Devlin et al., 2019].

Contributions. Despite that layer-wise learning rate has
been successfully implemented in (single-machine) model
learning, one question that has not been explored is: can
we also use methods like LAMB in the local training in
federated learning? Is it able to also speedup the global
model convergence? In this paper, we propose an improved
framework for locally adaptive FL algorithms, integrating
both dimension-wise and layer-wise adaptive learning rates
in each device’s local update. We provide theoretical and
empirical justification on the efficacy of such layer-wise
adaptivity in local federated training. More specifically, our
contributions are summarized as follows:

• We develop Fed-LAMB and Mime-LAMB, two in-
stances of our layer-wise adaptive optimization frame-
work for FL, following a layer-wise adaptive strategy
to accelerate the training of deep neural networks.

• We show that our algorithm converges at the rate of
O
(

1√
nhR

)
to a stationary point, where h is the number

of layers of the network, n is the number of clients
and R is the number of communication rounds. This
matches the convergence rate of LAMB, AMSGrad, as
well as the state-of-the-art results in federated learning.
The theoretical communication efficiency matches that
of Fed-AMS [Chen et al., 2020].

• We empirically compare several recent adaptive FL
methods under both homogeneous and heterogeneous
data setting on various benchmark datasets. Our re-
sults confirm the accelerated empirical convergence
of Fed-LAMB and Mime-LAMB over the baseline
methods, including Fed-AMS and Mime. In addition,
Fed-LAMB and Mine-LAMB can also reach similar, or
better, test accuracy than their corresponding baselines.

2 BACKGROUND

We summarize some relevant work on adaptive optimization,
layer-wise adaptivity and federated learning.

Adaptive gradient methods. Adaptive methods have
proven to be the spearhead for many nonconvex optimiza-
tion tasks. Gradient based optimization algorithms alleviate
the possibly high nonconvexity of the objective function
by adaptively updating each coordinate of their learning
rate using past gradients. Common used examples include
RMSprop [Tieleman and Hinton, 2012], Adadelta [Zeiler,
2012], Adam [Kingma and Ba, 2015], Nadam [Dozat, 2016]
and AMSGrad [Reddi et al., 2018]. Their popularity owes
to their great performance in training deep neural networks.
They generally combine the idea of adaptivity from Ada-
Grad [Duchi et al., 2011, McMahan and Streeter, 2010], as
explained above, and the idea of momentum from Nesterov’s
Method [Nesterov, 2003] or Heavy ball method [Polyak,
1964] using past gradients. AdaGrad displays superiority
when the gradient is sparse compared to other classical
methods [Duchi et al., 2011]. Yet, when applying AdaGrad
to train deep neural networks, it is observed that the learn-
ing rate might decay too fast. Consequently, [Kingma and
Ba, 2015] developed Adam whose updating rule is pre-
sented in (2). A variant, called AMSGrad [Reddi et al.,
2018], forces v to be monotone to fix the convergence is-
sue. [Loshchilov and Hutter, 2019] proposed AdamW that
combines weight decay with Adam. The convergence and
generalization of adaptive methods and their application in
decentralized learning are studied in, e.g., [Zhou et al., 2018,
Chen et al., 2019, Zhou et al., 2020, Wang et al., 2021, Chen
et al., 2022], among others.
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Figure 1: Illustration of Fed-LAMB framework (Algorithm 1), with a three-layer network and φ(x) = x as an example. For
device i and each local iteration in round r, the adaptive ratio of j-th layer ψjr,i is normalized according to ‖θjr,i‖, and then
used for updating the local model. At the end of each round r, client i sends θr,i = [θ`r,i]

h
`=1 and vr,i to the central server,

which transmits back aggregated θ and v̂ to devices to complete a round of training.

Layer-wise Adaptivity. When training deep networks, in
many cases the scale of gradients differs a lot across the
network layers. When we use the same learning rate for the
whole network, the update might be too conservative for
some specific layers (with large weights) which may slow
down the convergence. Based on this observation, [You
et al., 2018] proposed LARS, an extension of SGD with
layer-wise adjusted scaling, whose performance, however,
is not consistent accross tasks. Later, [You et al., 2020]
proposed LAMB, an analogous layer-wise adaptive variant
of Adam. The update rule of LAMB for the `-th layer of the
network can be expressed as

θ`t = θ`t−1 −
α‖θ`t−1‖
‖ψ`t‖

ψ`t , with ψ`t = m`
t/
√
v`t ,

where mt and vt are defined in (2). Intuitively, for the `-th
layer, when the gradient magnitude is too small compared to
the scale of the model parameter, we increase the effective
learning rate to make the model move sufficiently far. The-
oretically, [You et al., 2020] showed that LAMB achieves
the same convergence rate as Adam; empirically, LAMB
can significantly accelerate the convergence of Adam, al-
lowing the use of large mini-batch size with fewer training
iterations for large datasets.

Federated learning. An extension of the classic dis-
tributed training paradigm is called Federated Learning
(FL) [Konečnỳ et al., 2016, McMahan et al., 2017] which
has seen many applications in various fields [Yang et al.,
2019, Leroy et al., 2019, Bonawitz et al., 2019, Niknam
et al., 2020, Xu et al., 2021]. For Fed-SGD (where clients
perform SGD-based updates), recent variants and theoreti-

cal analysis on the convergence can be found in [Yu et al.,
2019, Karimireddy et al., 2019, Khaled et al., 2020, Li et al.,
2020c, Woodworth et al., 2020, Wang et al., 2020].

Many works have considered adaptive gradient methods in
FL. [Reddi et al., 2021] proposed Adp-Fed where the central
server applies Adam-type updates and the local clients per-
form SGD updates. [Li et al., 2022, Li and Li, 2023] studied
distributed and federated adaptive method under communi-
cation compression. [Chen et al., 2020, Karimireddy et al.,
2020] proposed Fed-AMS and Mime respectively, to adopt
Adam/AMSGrad at the client level. Both works mitigate
the influence of data heterogeneity by “sharing” the second
moment v which controls the effective learning rates (more
details will be provided later). Locally adaptive FL has also
been applied to decentralized training [Zhao et al., 2022].
On many tasks, these methods outperform Fed-SGD and
other popular methods like SCAFFOLD [Karimireddy et al.,
2019] and FedProx [Li et al., 2020b, Yuan and Li, 2022].
Charles et al. [2021] empirically tested a FL method where
LARS (i.e., layer-wise SGD) [You et al., 2018] is applied
at the central server in local SGD, which is very different
from our work in that the layer-wise adjustment happens
locally with AMSGrad as the local optimizer. That is, our
local models are trained with dual adaptivity.

3 LAYER-WISE LOCALLY ADAPTIVE
FEDERATED LEARNING

In this section, we introduce our proposed FL framework,
admitting both dimension-wise adaptivity (of adaptive learn-
ing rate) and layer-wise adaptivity (of layer-wise scaling).



Algorithm 1 Fed-LAMB and Mime-LAMB

1: Input: 0 < β1, β2 < 1; learning rate α; weight decay-
ing rate λ ∈ [0, 1]; frequency parameter Z.

2: Initialize: θ0,i ∈ Θ ⊆ Rd; m0
0,i = v̂0

0,i = v0
0,i = 0,

∀i ∈ JnK; θ̄0 = 1
n

∑n
i=1 θ0,i; v̂0 = ε

3: for r = 1 to R do
4: Sample a set of clients Dr

5: for parallel for device i ∈ Dr do
6: Set θ0

r,i = θ̄r−1, m0
r,i = mT

r−1,i , v0
r,i = v̂r−1

7: for t = 1 to T do
8: Sample a mini-batch from the local data
9: Compute stochastic gradient gtr,i at θt−1

r,i

10: mt
r,i = β1m

t−1
r,i + (1− β1)gtr,i

11: vtr,i = β2v
t
r−1,i + (1− β2)(gtr,i)

2

12: Compute the ratio ψtr,i = mt
r,i/
√
v̂r−1.

13: Update local model for each layer ` ∈ JhK:

θ`,tr,i = θ`,t−1
r,i −

αrφ(‖θ`,t−1
r,i ‖)(ψ`,tr,i + λθ`,t−1

r,i )

‖ψ`,tr,i + λθ`,t−1
r,i ‖

(3)

14: end for
15: Communicate θTr,i = [θ`,Tr,i ]h`=1 to server

16: Communicate vTr,i to server

17: Communicate∇fi(θ̄r−1) using full local data
18: end for
19: Server compute θ̄r = 1

|Dr|
∑
i∈Dr θTr,i

20: Server compute v̂r = max(v̂r−1,
1
|Dr|

∑
i∈Dr vTr,i)

21: Compute∇f(θ̄r−1) = 1
|Dr|

∑
i∈Dr

∇fi(θ̄r−1)

22: Compute vr = β2vr−1 + (1− β2)∇f(θ̄r−1)2)

23: Update v̂r = max(v̂r−1, vr)
24: end for

We mainly consider AMSGrad [Reddi et al., 2018] as the
prototype adaptive gradient method. We assume the loss
function f(·) is induced by a multi-layer neural network,
which includes a broad class of network architectures like
MLP, CNN, ResNet and Transformers.

Notations. We denote by θ the vector of parameters taking
values in Rp. Suppose the neural network has h layers, each
with size p` (thus, p =

∑h
`=1 p`). For each layer ` ∈ JhK,

denote θ` as the sub-vector corresponding to the `-th layer.
Let R be the number of communication rounds and T be
the number of local iterations per round. Moreover, θ`,tr,i is
the model parameter of layer ` at round r, local iteration t
and for worker i.

Algorithm. In general, our proposed algorithm can be
viewed as a novel extension of LAMB to the more com-

plicated federated learning setting. Based on the two recent
works regarding locally adaptive FL mentioned above, we
present the framework with two instances, Fed-LAMB and
Mime-LAMB, as summarized in Algorithm 1 and depicted
in Figure 1. We differentiate the steps of these two meth-
ods by blue (Fed-LAMB) and red (Mime-LAMB) boxes
surrounding the text. Both methods use layer-wise adap-
tive LAMB for local updates (Line 13). The update in (3)
on local workers can be expressed as

θ ← θ − α φ(‖θ‖)
‖ψ + λθ‖

(ψ + λθ),

where φ(·) : R+ 7→ R+ is a scaling function (usually cho-
sen to be the identity function in practice) and λ is the
weight decay rate. This way, the gradients are effectively
normalized by the magnitude of layer weights, forcing the
model move sufficiently far at every layer. Such normaliza-
tion effect may accelerate the convergence of the model.

The main difference between the two variants, Fed-LAMB
and Mime-LAMB, is the way the second moment v̂ is syn-
chronized, i.e., the dimension-wise adaptive learning rate.
Both methods maintain a global v̂ at the central server:

• Fed-LAMB (Line 20) : at the end of each round, the i-
th client communicates the local vi; the server updates
the global v̂ by the max operation with the averaged v
among all clients, and sends back the global v̂.

• Mime-LAMB (Line 21-23) : in each round r, the
client computes and transmits the gradient at the global
model θ̄r using full local data; the server updates the
global v and v̂ in the same manner as AMSGrad.

When implementing the algorithms, note that in Mime-
LAMB, the global v is directly calculated using full-batches
(averaged over all clients). As a result, Mime-LAMB needs
to calculate the gradients twice, leading to twice the com-
putational cost as Fed-LAMB. We also note that, the local
update of Fed-LAMB (Line 13 of Algorithm 1) also in-
corporates the “decoupled ”weight decay, which is same
as the weight decay mechanism used in the AdamW algo-
rithm [Loshchilov and Hutter, 2019].

Data Heterogeneity: Conceptually, both the two ap-
proaches aim at alleviating the impact of data heterogeneity
by globally reconciling the adaptive learning rates. We call
this “moment sharing”. Therefore, in some sense, Algo-
rithm 1 is naturally capable of balancing the heterogene-
ity in different local data distributions. Indeed, in [Chen
et al., 2020] and [Karimireddy et al., 2020], the authors
have shown that Fed-AMS and Mime would perform much
worse, or even diverge, without aggregating and sharing the
second moment v̂ (please refer to the papers for details).
Intuitively, synchronizing v̂ makes all the clients “on the
same pace” which is crucial for the convergence of locally
adaptive FL methods.



Extension: skip synchronization of v̂t. In practice, when
trained with the same number of rounds R and local it-
erations T , Mime, Fed-LAMB and Fed-Mime all require
communicating two tensors (the local model update, and
second moment v), while Fed-SGD [McMahan et al., 2017]
and Adp-Fed [Reddi et al., 2021] only communicate one
local update tensor. Hence, locally adaptive methods in gen-
eral tend to require more communication. We now discuss a
simple implementation trick of our algorithm that reduces
this extra cost. Note that, as long as v̂t is consistent across
clients, we may not need to update and broadcast it in ev-
ery round. To reduce the extra communication overhead of
transmitting v̂, one trick is to reduce the aggregation fre-
quency of v̂ in Algorithm 1 (e.g., we synchronize v̂ every Z
rounds). It can be shown that this “skip” aggregation of the
second moment does not affect the convergence rate of our
Fed-LAMB (see Theorem 5). Yet it can effectively reduce
the communication of v̂ by a factor of Z, which to a great
extent alleviates the extra communication cost of locally
adaptive methods. We will also show empirical evidence of
this strategy in our experiments.

4 THEORETICAL ANALYSIS

In the context of nonconvex stochastic optimization for
federated learning, we will make the following standard
analytical assumptions.

Assumption 1 (Smoothness). For all i ∈ JnK and
` ∈ JhK, the local loss function is L`-smooth:∥∥∇fi(θ`)−∇fi(ϑ`)∥∥ ≤ L` ∥∥θ` − ϑ`∥∥.

Assumption 2 (Unbiased and bounded gradient). The
stochastic gradient is unbiased for ∀r, t, i: E[gtr,i] =

∇fi(θtr) and bounded by
∥∥gtr,i∥∥ ≤M .

Assumption 3 (Bounded variance). The stochastic gradient
admits (locally) E[|gjr,i −∇fi(θr)j |2] ≤ σ2, and (globally)
1
n

∑n
i=1 ||∇fi(θr)−∇f(θr)||2] ≤ G2.

Assumption 1 and Assumption 2 are commonly used in the
analysis of adaptive gradients methods [Reddi et al., 2018,
Chen et al., 2019, Reddi et al., 2021, Karimireddy et al.,
2020]. Assumption 3 characterizes the data heterogeneity
among local devices, and G = 0 when local data are IID.

Same as in [You et al., 2020], we further make the following
assumption on the scaling function φ.

Assumption 4 (Bounded scaling function). For any a > 0,
there exist φm > 0, φM > 0 such that φm ≤ φ(a) ≤ φM .

Assumption 4 can be satisfied when, for example, we let
φ(a) = min{a + ζ, φM} be the identity map plus a small
constant ζ with an upper clipping threshold at some φM .

We now state our main result regarding the convergence rate
of the proposed Algorithm 1.

Theorem 5. Under Assumption 1-Assumption 4, consider
{θr}r>0 obtained from Algorithm 1 with a constant learn-
ing rate α. Suppose λ = 0. Then the squared gradient of
the global model uniformly chosen from round 1, ..., R is
bounded by

1

R

R∑
r=1

E

[∥∥∥∥∇f(θr)

v̂
1/4
r

∥∥∥∥2
]

≤
√
M2p

n

4
hαR

+
4α2LM2T 2φ2

M (1− β2)p√
ε

+ 4α2M
2

√
ε

+
φMσ

2

Rn

√
1− β2

M2p
+ 4α2

[
φ2
M

√
M2 + pσ2

]
+ 4

α2L√
ε
M2T 2G2(1− β2)p+ 4α

[
φM

hσ2

√
n

]
, (4)

where4 = E[f(θ̄1)]−min
θ∈Θ

f(θ) and L =
∑h
`=1 L`.

Remark 6. Theorem 5 applies to both Fed-LAMB and
Mime-LAMB variants. Also, the manifestation of p in the
rate is because the variance bound is assumed on each di-
mension in Assumption 3. This dependency on p can be
removed when Assumption 3 is assumed globally, which
is also common in optimization literature. Moreover, this
result also holds for Algorithm 1 with skip synchronization
of v̂t as discussed earlier.

Using the uniform boundedness of the second moment ac-
cumulator ‖v̂r‖ (which can be shown by Assumption 2) and
by choosing a suitable decreasing learning rate, we have the
following simplified statement.

Corollary 7. Under the same setting as Theorem 5, with
α = O( 1√

hR
), it holds that

1

R

R∑
r=1

E
[∥∥∇f(θr)

∥∥2
]

≤ O

( √
p

√
nhR

+

√
hσ2

√
nR

+
G2T 2p

Rh

)
. (5)

The leading two terms display a dependence of the conver-
gence rate of Fed-LAMB on the initialization and the local
variance of the stochastic gradients (Assumption 3). The last
term involves the number of local updates T , and the global
variance G2 characterizing the data heterogeneity. Next, we
provide detailed discussion and comparison of our result to
related prior works.

LAMB bound in [You et al., 2020]: We start our dis-
cussion with the comparison of our convergence rate with
that of LAMB, Theorem 3 in [You et al., 2020]. In the
single-machine setting, the convergence rate of LAMB is
O(
√
p
√
hT ) where T is the number of training iterations.

Note the convergence rate of Fed-LAMB is different from



that of LAMB in the sense that, the convergence criterion
is given at the averaged parameters (global model) at the
end of each round. In Corollary 7, our rate would match
LAMB if we take number of local step T = 1. This is
also true for any fixed T and R sufficiently large. In addi-
tion, the O( 1√

nR
) rate of Fed-LAMB implies an important

linear speedup effect: the number of iterations to reach a
δ-stationary point of Fed-LAMB decreases linearly in n,
which displays the merit of distributed (federated) learning.

Fed-AMS bound in [Chen et al., 2020]: We now compare
our method theoretically with Fed-AMS, the baseline dis-
tributed adaptive method developed in [Chen et al., 2020].
Their results state that when T ≤ O(R1/3), the convergence
rate of Fed-AMS is O( 1√

nR
). Firstly, when the number of

rounds R is sufficiently large, both our rate (5) and the rate
of Fed-AMS are dominated byO( 1√

nR
), improving the con-

vergence rate of the standard AMSGrad, e.g. [Zhou et al.,
2018] by O(1/

√
n) (i.e., linear speedup). Secondly, in (5),

the last term containing the number of local updates T is
small as long as T 4 ≤ O(RhG2 ). If we further assume h ' T ,
then we get the same rate of convergence as Fed-AMS with
T ≤ O(R1/3) local iterations, identical to the condition of
Fed-AMS. Under these analytic settings and conditions , the
convergence rate of Fed-LAMB also matches many popu-
lar federated learning methods in nonconvex optimization,
e.g., Fed-SGD [McMahan et al., 2017], Mime [Karimireddy
et al., 2020] and Adp-Fed [Reddi et al., 2021]. Moreover,
when G is small (less data heterogeneity), the bound on
T would increase, i.e., we can conduct more local updates.
This is intuitive, for example, when G = 0 in the IID data
setting, T can be very large.

As a brief summary, Fed-LAMB achieves the same asymp-
totic convergence rate as Fed-AMS in the federated (dis-
tributed) learning setting. Our method also exhibits the fa-
vorable linear speedup property regarding the number of
clients in the system. Next, we will show that Fed-LAMB
and its variants provide impressive acceleration empirically
in our experimental study presented next.

5 EXPERIMENTS

In this section, we conduct experiments on benchmark
datasets with various network architectures to justify the ef-
fectiveness of our proposed method in practice. Our method
empirically confirms its merit in terms of convergence speed.
Basically, Fed-LAMB and Mime-LAMB reduce the num-
ber of rounds and thus the communication cost required to
achieve a similar stationary point (or test accuracy) than the
baseline methods. In many cases, Fed-LAMB also brings
notable improvement in generalization over baselines.

Methods. We evaluate the following five FL algorithms,
mainly focusing on recent federated optimization ap-
proaches based on adaptive gradient methods:

1. Fed-SGD [McMahan et al., 2017], standard federated
averaging with local SGD updates.

2. Adp-Fed (Adaptive Federated Optimization, see Ap-
pendix for more details), the federated adaptive algo-
rithm proposed by [Reddi et al., 2021]. Adp-Fed per-
forms local SGD updates. In each round r, the changes
in local models,4i = wTr,i−w0

r,i, i = 1, ..., n, are sent
to the central server for an aggregated Adam update.

3. Fed-AMS [Chen et al., 2020], locally adaptive AMS-
Grad algorithm.

4. Mime [Karimireddy et al., 2020] with AMSGrad,
which performs adaptive local updates with central-
server-guided global adaptive learning rate.

5. Our proposed Fed-LAMB and Mime-LAMB methods
(Algorithm 1).

For all the adaptive gradient methods, we set β1 = 0.9, β2 =
0.999 by default [Reddi et al., 2018]. We present the results
of n = 50 clients with 0.5 participation rate, i.e., we ran-
domly pick half of the clients to be active for training in
each round, and the local mini-batch size is set as 128. In
each round, the training samples are allocated to the active
devices, and one local epoch is completed after all the local
devices run one pass over their received samples via mini-
batch training. Results with more clients can be found in the
Appendix, which give the same conclusions as what we will
present below.

We tune the learning rate α for each algorithm over a fine
grid. For Adp-Fed, there are two learning rates involved
(global and local), both of which are tuned. More tun-
ing details can be found in the Appendix. For Fed-LAMB
and Mime-LAMB, the weight decay rate λ is tuned from
{0, 0.01, 0.1}, and φ(x) = x is the identity mapping. For
each run, we report the best test accuracy. The results are
averaged over 3 runs each from a same initialization point.

Datasets and models. We experiment with four popular
benchmark image classification datasets: MNIST [LeCun,
1998], Fashion MNIST (FMNIST) [Xiao et al., 2017],
CIFAR-10 [Krizhevsky and Hinton, 2009] and TinyIma-
geNet [Deng et al., 2009]. For MNIST, we apply 1) a sim-
ple multi-layer perceptron (MLP), which has one hidden
layer containg 200 cells; 2) Convolutional Neural Network
(CNN), which has two max-pooled convolutional layers fol-
lowed by a dropout layer and two fully-connected layers
with 320 and 50 cells respectively. This CNN is also imple-
mented for FMNIST. For CIFAR-10 and TinyImageNet, we
use ResNet-18 [He et al., 2016].

5.1 COMPARISON UNDER IID SETTINGS

In Figure 2, we report the test accuracy of MLP trained
on MNIST, and of CNN trained on MNIST and FMNIST,
where the data are IID allocated among the clients. We test
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Figure 2: IID data setting. Test accuracy against the num-
ber of communication rounds.

1 local epoch and 3 local epochs. In all the figures, we ob-
serve a clear advantage of Fed-LAMB over the competing
methods in terms of the convergence speed. In particular,
we can see that Fed-LAMB is able to achieve the same ac-
curacy with fewest number of communication rounds, thus
improving the model training efficiency. For instance, this
can be observed as follows: on MNIST + CNN (1 local
epoch), Fed-AMS requires 20 rounds to achieve 90% accu-
racy, while Fed-LAMB only takes 5 rounds. This implies a
75% reduction in the communication cost and training time.
Moreover, on MNIST, Fed-LAMB also leads to improved
generalisation performance, i.e., test accuracy. We can draw
same conclusions with 3 local epochs. Also, similar com-
parison holds for Mime-LAMB vs. Mime. In general, the
Mime-LAMB and Fed-LAMB perform similarly.

5.2 COMPARISON UNDER NON-IID SETTINGS

In Figure 3, we provide the results on MNIST and FMNIST
with non-IID local data distribution. In particular, in each
round of federated training, every local device only receives
samples from one or two classes (out of ten). We see that for
experiments with 1 local epoch, in all cases our proposed
Fed-LAMB outperforms all the baseline methods. Similar to
the IID data setting, Fed-LAMB provides faster convergence
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Figure 3: non-IID data setting. Test accuracy against the
number of communication rounds.

speed and achieves higher test accuracy than Fed-SGD and
Fed-AMS. The advantage is especially significant for the
CNN model, e.g., it improves the accuracy of Fed-SGD
and Fed-AMS by more than 10% on FMNIST at the 50-
th round. The other baseline method, Adp-Fed, performs
as good as our Fed-LAMB on FMNIST, but worse than
other methods on MNIST. Mime-LAMB also considerably
improves Mime, in all the runs, see Figure 3.

The relative comparison is basically the same for 3 local
epochs, but the advantage of Fed-LAMB becomes less sig-
nificant than what we observed in Figure 2 with IID data.
One plausible reason is that when the local data is highly
non-IID. Intuitively, with more local steps, learning the local
models fast might not always do good to the global model,
as local models target at different loss functions.

In Figure 4, we present the results on CIFAR-10 and TinyIm-
ageNet datasets trained by ResNet-18. When training these
two models, we decrease the learning rate to 1/10 at the 30-
th and 70-th communication round. From Figure 4, we can
draw similar conclusion as before: the proposed Fed-LAMB
is the best method in terms of both convergence speed and
generalization accuracy. In particular, on TinyImageNet, we
see that Fed-LAMB has a significant advantage over all the
four baselines without layer-wise acceleration. Although
Adp-Fed performs better than Fed-SGD and Fed-AMS, it is



Fed-SGD Adp-Fed Fed-AMS Fed-LAMB Mime Mime-LAMB
CIFAR-10 90.75 ± 0.48 91.57 ± 0.38 90.93 ± 0.22 92.44 ± 0.53 90.94 ± 0.13 92.00 ± 0.21

TinyImageNet 67.58 ± 0.21 74.17 ± 0.43 64.86 ± 0.83 76.00 ± 0.26 67.82 ± 0.24 73.46 ± 0.25

Table 1: Test accuracy with ResNet-18 network after 100 communication rounds.
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Figure 4: non-IID data. Test accuracy of CIFAR-10 and
TinyImagenet on ResNet-18.
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Figure 5: non-IID data. Fed-LAMB and Mime-Fed with
skip synchronization of v̂: the global v̂t is synchronized
every Z = 3 or 5 rounds.

considerably worse than Fed-LAMB. We report the test ac-
curacy at the end of training in Table 1. Fed-LAMB achieves
the highest accuracy on both datasets. Mime-LAMB also
substantially improves Mime.

Skip synchronization. In Figure 5, we further present the
results of methods with skip synchronization of v̂, where
the server updates and broadcasts v̂ every Z = 3, 5 rounds,
instead of in very single round. This reduces the communi-
cation cost of transmitting the second moment v by a factor
of 3 or 5. We see that, the empirical performance of skip syn-
chronization is similar to the standard design; some times
it may converge even faster. Our results demonstrate the
efficacy of this more efficient strategy in practice.

5.3 SUMMARY OF EMPIRICAL FINDINGS

Here, we provide a brief summary of our empirical results.
On all the datasets, in terms of both convergence and gener-
alization, the primary comparisons between our proposed

methods and their baselines appear evident:

Fed-LAMB≈Mime-LAMB>Fed-AMS≈Mime.

The proposed scheme (with two variants Fed-LAMB and
Mime-LAMB) exhibits faster convergence and better gen-
eralisation accuracy than recently proposed adaptive FL
algorithms. Our results suggest that, using layer-wise accel-
eration in the local training can speedup the overall model
performance of locally adaptive federated learning. More-
over, in practice we may adopt the skip aggregation strategy
to further reduce the additional communication required for
our proposed approach, without losing utility. As discussed
earlier, Mime-LAMB typically requires more gradient com-
putation than Fed-LAMB. Therefore, with similar perfor-
mance as Mime-LAMB, the Fed-LAMB protocol might be
more efficient and convenient in practical applications.

6 CONCLUSION

We study a doubly adaptive method in the particular frame-
work of federated learning (FL). Built upon the acceleration
effect of layer-wise learning rate scheduling and of state-
of-the-art adaptive gradient methods, we derive a locally
layer-wise FL framework that performs local updates using
adaptive AMSGrad on each worker and periodically aver-
ages local models stored on each device. The core of our
Fed-LAMB scheme, is to speedup up local training by adopt-
ing layer-wise adaptive learning rates. To our knowledge,
this is the first FL algorithm in literature that possess both
the dimension-wise adaptivity (by AMSGrad) and layer-
wise adaptivity (by layer-wise adjusted learning rate).

We provide the convergence analysis of Fed-LAMB that
matches many existing methods, with a linear speedup
against the number of clients. We also provide a skip aggre-
gation trick to further reduce the communication overhead.
Extensive experiments on various datasets and models, un-
der both IID and non-IID data settings, validate that both
Fed-LAMB and Mime-LAMB are able to provide faster
convergence which in turn leads to reduced communication
and training time to reach a certain accuracy. In many cases,
our framework also improves the overall performance of fed-
erated learning over prior methods.

Adaptive FL (at central server) with communication com-
pression has been studied in [Li et al., 2022, Li and Li, 2023].
In the future, we may also study Fed-LAMB type locally
adaptive algorithms with communication compression.
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