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Abstract001

While natural language is processed incremen-002
tally, it is unclear whether the syntactic struc-003
ture prediction process is universal across lan-004
guages or language-specific. This study investi-005
gates this question by revisiting parsing strate-006
gies of syntactic language models that incre-007
mentally predict both the next token and the008
associated syntactic structure. Unlike previous009
studies that have focused on a few strategies,010
we examine a wide range of strategies by intro-011
ducing different parameterizations of “specu-012
lation”, which quantifies the degree to which013
a model predicts syntactic structure before en-014
countering the corresponding tokens. The ex-015
periments with 10 typologically diverse lan-016
guages reveal that the optimal strategy differs017
depending on the language and the beam size.018

1 Introduction019

Understanding how syntactic structure is incremen-020

tally processed during language comprehension is a021

fundamental challenge in computational linguistics022

and cognitive science. Syntactic language model-023

ing (SLM), also known as syntax-aware language024

modeling, provides a direct approach to addressing025

this question (Choe and Charniak, 2016; Dyer et al.,026

2016; Qian et al., 2021; Sartran et al., 2022). SLM027

is a task that jointly performs parsing and next-028

token prediction, thereby explicitly modeling the029

interplay between syntactic structure and incremen-030

tal sequence processing. This approach has proven031

valuable for offering insights into the cognitive032

mechanisms of human language processing (Hale033

et al., 2018; Yoshida et al., 2021; Sugimoto et al.,034

2024).035

While SLM provides a framework for modeling036

syntactic processing, there exist multiple ways to037

incrementally process the same sequence of tokens038

and syntactic structures depending on the timing of039

structure prediction (Figure 1). These differences040

in processing are captured by the concept of “pars-041

Figure 1: Example of incremental structure prediction
process.

ing strategy,” (Abney and Johnson, 1991). For ex- 042

ample, Figure 1 illustrates the two most commonly 043

used strategies in parsing: top-down and bottom- 044

up. Top-down is a strategy that predicts structure 045

before tokens, while bottom-up is a strategy that 046

predicts structure after tokens. Previous studies in 047

SLM, however, have primarily focused on a lim- 048

ited set of strategies, such as top-down, bottom-up, 049

and left-corner, and, moreover, lack cross-linguistic 050

comparisons (Kuncoro et al., 2018; Yoshida et al., 051

2021), leaving it unclear whether optimal strategies 052

are universal or language-specific. 053

This paper aims to address this gap in the liter- 054

ature by conducting a comprehensive analysis of 055

parsing strategies for SLM across a diverse set of 056

languages. To this end, we explore a wide range 057

of parsing strategies from the perspective of “spec- 058

ulation”, which quantifies the degree to which a 059

model predicts syntactic structure before encoun- 060

tering the corresponding tokens. For example, the 061

top-down strategy is highly speculative because it 062

cannot use token information for structure predic- 063

tion, and the predicted structure may be incorrect 064

depending on subsequent tokens. In this work, we 065

consider strategies based on 4 different parameter- 066

izations of speculation and evaluate a total of 15 067

distinct strategies on SLM tasks in 10 typologically 068

diverse languages. While less speculative strategies 069

might intuitively seem more advantageous, our ex- 070
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periment demonstrates that it is not always the case:071

the optimal strategy can vary across languages and072

depends on the beam size. Furthermore, we also073

analyze the fundamental question: does syntac-074

tic structure contribute to token prediction? By075

comparing strategies with different degrees of spec-076

ulation, we show that syntactic structure indeed077

captures information about tokens, while also sug-078

gesting that exact parsing might not be necessary079

for token prediction.080

2 Background081

Early studies argued that the left-corner strategy is082

more efficient and cognitively plausible than top-083

down or bottom-up strategies (Abney and John-084

son, 1991; Resnik, 1992).1 These arguments relied085

primarily on analyzing the maximum stack size086

required by shift-reduce parsers (Abney and John-087

son, 1991; Resnik, 1992; Noji and Miyao, 2014).088

However, as Resnik (1992) points out, the differ-089

ence in stack efficiency between strategies depends090

on the specific implementation of the parser. For091

instance, implementations of Recurrent Neural Net-092

work Grammar (RNNG) (Dyer et al., 2016; Noji093

and Oseki, 2021) require O(n) stack size for right-094

branching structures even with the top-down strat-095

egy unlike claimed to be O(1) in (Abney and John-096

son, 1991). Therefore, it is unclear to what extent097

stack efficiency influences the choice of incremen-098

tal processing strategies.099

In the context of SLM, recent studies have ex-100

plored the impact of different parsing strategies101

on downstream tasks such as language modeling102

and parsing. For example, Kuncoro et al. (2018)103

compared top-down, bottom-up, and left-corner104

strategies for English number agreement, finding105

that top-down parsing yielded better performance.106

Yoshida et al. (2021) compared top-down and left-107

corner strategies for Japanese language modeling,108

demonstrating the effectiveness of the left-corner109

strategy. Kuribayashi et al. (2024) compared top-110

down and left-corner strategies using an artificial111

language dataset with varying word order. How-112

ever, these studies are limited in several aspects.113

First, they focus on a limited set of parsing strate-114

gies, e.g., top-down, bottom-up, and left-corner,115

due to the ease of implementation. Second, there116

is a lack of comprehensive cross-linguistic com-117

parisons using real-world natural language data,118

1The left-corner strategy predicts a phrase structure imme-
diately after reading the leftmost token of that phrase.

top-down left-n-corner

uniform-speculation local-first

global-first bottom-up

Table 1: Examples of parsing strategies. The numbers
inside the circles indicate the order of node enumeration,
and the numbers to the right of each nonterminal node
represent its iv .

leaving it unclear whether optimal parsing strate- 119

gies are universal or language-specific. 120

To this end, this study conducts a more com- 121

prehensive analysis of parsing strategies for SLM, 122

both in terms of strategies and languages. 123

3 Formulating Various Strategies 124

Following the general formulation of Abney and 125

Johnson (1991), we formalize various parsing 126

strategies. The difference between parsing strate- 127

gies is defined by the timing at which each nonter- 128

minal node is opened. This allows us to express 129

each strategy as a specific enumeration order of 130

the nodes in a syntactic tree. Abney and Johnson 131

(1991) demonstrated that different parsing strate- 132

gies can be represented by strategy parameters iv 133

for each node v.2 Let u1, . . . , un be the children of 134

v; iv = i indicates that the parent node v is opened 135

immediately after its i-th child ui is completed. 136

The case of iv = 0 indicates that v is opened be- 137

fore any of its children are created. By assigning 138

iv to every node v in a given syntactic tree, we 139

can uniquely determine an incremental process of 140

2While Abney and Johnson (1991) originally defined the
parameters for grammar rules, we generalize it to the nodes in
syntactic trees.
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predicting the syntactic tree. Strategies represented141

by this parameterization are called syntax-directed142

strategies (Abney and Johnson, 1991).143

In this study, we formulate a variety of distinct144

strategies within the class of syntax-directed strate-145

gies to investigate whether the optimal strategy is146

language-universal or language-specific. Our for-147

mulation is based on the concept of “speculation”,148

which refers to the degree to which a model pre-149

dicts syntactic structure before encountering the150

corresponding tokens. We consider 4 different pa-151

rameterizations of speculation, each capturing a152

different aspect of this concept. By exploring mul-153

tiple parameter settings within each parameteriza-154

tion, we analyze a total of 15 strategies. Table 1155

shows some examples of the strategies used in this156

study. Note that both top-down and bottom-up157

strategies can be expressed by specific parameter158

settings within any of the four parameterizations.159

3.1 Left-n-corner strategy160

Besides top-down and bottom-up strategies, the161

left-corner strategy is another major strategy used162

in parsing research. In this study, we also ex-163

periment with a generalization of the left-corner164

strategy formulated by Abney and Johnson (1991),165

which we refer to as the “left-n-corner strategy”.3166

In a left-n-corner strategy, the parent node v is pre-167

dicted after at most n of its children have been168

completed. Formally, left-n-corner strategies are169

defined by a speculation parameter n as iv =170

min(n, nv). When n = 0, the left-n-corner strat-171

egy is equivalent to the top-down strategy. When172

n =∞, it is equivalent to the bottom-up strategy.173

3.2 Uniform-speculation Strategy174

In the left-n-corner strategies, the number of chil-175

dren completed before predicting the parent n is176

constant for all nodes. However, with this parame-177

terization, whether the timing of opening the parent178

node v is closer to top-down or bottom-up can vary179

across nodes, depending on the number of children180

nv. Therefore, in this study, we introduce strategies181

in which the timing of opening the parent node v182

is less dependent on nv and is consistent across all183

nodes.184

Intuitively, this strategy, which we call the185

“uniform-speculation strategy”, is defined by a real-186

3This formulation is called “uniform syntax-directed strat-
egy” in (Abney and Johnson, 1991). However, we use the
name left-n-corner instead to emphasize that it is a generaliza-
tion of the left-corner strategy.

valued speculation parameter θ ∈ [0, 1], represent- 187

ing the proportion of children created before the 188

parent. For a node v with nv children, iv is cal- 189

culated as iv = ⌊θ · (nv + 1)⌋. Here, θ → 0 190

corresponds to strategies closer to top-down, while 191

θ → 1 corresponds to strategies closer to bottom- 192

up. 193

3.3 Local/global-first Strategy 194

The two strategies discussed above, left-n-corner 195

and uniform-speculation, determine the timing of 196

opening a node v independently of its position 197

within the syntactic tree. In this study, we also 198

analyze strategies where the timing of opening v – 199

that is, the degree of speculation – varies depending 200

on whether v belongs to a local or global structure. 201

Defining whether a structure is local or global 202

is not trivial. Here, we use the height and depth 203

of each node to define local and global structures, 204

and use these as parameters to control the degree 205

of speculation of the strategies. Intuitively, nodes 206

closer to leaf nodes, i.e., nodes with smaller height, 207

are considered local, while nodes closer to the root 208

node, i.e., nodes with smaller depth, are considered 209

global. 210

First, we consider a “local-first strategy”, which 211

predicts local structures in a top-down manner and 212

global structures in a bottom-up manner. Specifi- 213

cally, the speculation parameter of this strategy is a 214

height threshold h: 215

iv =

{
0, if hv ≤ h

nv, otherwise
216

where hv is the height of node v.4 217

Similarly, we can also consider a “global-first 218

strategy”, which predicts global structures in a top- 219

down manner and local structures in a bottom-up 220

manner. This strategy is parameterized by a depth 221

threshold d as follows: 222

iv =

{
0, if dv ≤ d

nv, otherwise
223

where dv is the depth of node v.5 224

When h → ∞, the local-first strategy is closer 225

to top-down, and when h = 0, it is equivalent to 226

bottom-up. Similarly, when d → ∞, the global- 227

first strategy is closer to top-down, and when d < 0, 228

it becomes bottom-up. 229

4We define the height of leaf nodes to be 0.
5We define the depth of the root node to be 0.
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4 Shift-reduce Syntactic Language230

Modeling231

This section formalizes the syntactic language mod-232

eling task (SLM). In SLM, structure prediction is233

typically performed by a shift-reduce parser with234

a stack (Dyer et al., 2016; Noji and Oseki, 2021;235

Choe and Charniak, 2016; Qian et al., 2021; Sar-236

tran et al., 2022; Kuncoro et al., 2018). Stack-based237

parsing is performed by predicting a sequence of238

actions defined as stack operations. However, pre-239

vious work designed a separate action set for each240

parsing strategy, making it difficult to handle vari-241

ous strategies within a unified framework (Kuncoro242

et al., 2018). To address this limitation, we gener-243

alize the action set used by a shift-reduce parser to244

represent a wide range of strategies with a single,245

unified set of actions.246

4.1 Generalizing Shift-reduce Actions247

A simple approach to represent various strategies248

with a single action set is to extend the stack op-249

erations beyond push and pop to include an “in-250

sert” operation. This allows us to open nonterminal251

nodes at different positions within the stack, effec-252

tively controlling the timing of structure prediction.253

Specifically, we define the following action set:254

• NT(X; n): Inserts an open nonterminal node255

“(X” at the n-th position from the top of the256

stack, opening a phrase with category X. Note257

that a new phrase cannot be opened deeper258

than any already open phrase.6259

• SHIFT: Pushes the next token onto the stack.260

• REDUCE: Completes the topmost open261

phrase on the stack, popping and combining262

its elements into a single constituent.263

While strategies other than top-down typically re-264

quire a special FINISH action to terminate the pars-265

ing process (Kuncoro et al., 2018), we do not explic-266

itly introduce a FINISH action. Instead, we termi-267

nate the parsing process when the end-of-sentence268

(EOS) token is shifted. This simplifies the formula-269

tion of syntactic language modeling and the beam270

search procedure, which will be described later.271

This generalized action set can represent various272

parsing strategies by restricting how actions are273

selected. For example, if the position to open a274

phrase is always n = 0, i.e., the top of the stack,275

6This restriction is for implementation simplicity.

the strategy becomes equivalent to top-down. If 276

REDUCE action is always performed immediately 277

after NT(X; n) action, the strategy becomes equiv- 278

alent to bottom-up, because the prediction of a 279

phrase with n children always occurs after all its 280

children are completed. 281

4.2 Model Formulation 282

First, we introduce the notations used to formu- 283

late SLM. Let A be the set of actions defined 284

above. We define Ak ⊂ A∗ as the set of action 285

sequences that contain exactly k SHIFT actions 286

and end with a SHIFT action. For an action se- 287

quence a = (a1, . . . , aT ), let li denote the index of 288

the i-th SHIFT action ali in a. 289

Given a token sequence x and an action sequence 290

a, the syntactic language model M defines the 291

following joint probability: 292

pMjoint(x, a) ≡
|a|∏
t=1

pMaction(at | a<t, x≤s(a<t)) 293

·
|x|∏
i=1

pMtoken(xi | a<li , x<i), 294

where pMjoint is the joint distribution of the token 295

sequence and the parsing action sequence, pMaction 296

is the conditional probability of the next parsing ac- 297

tion, pMtoken is the conditional probability of the next 298

token, and s(a<t) denotes the number of SHIFT 299

actions in the given action sequence. While the 300

probability of generating a token is not typically 301

separated into pMaction and pMtoken in the formula- 302

tion, the probabilities are typically separated in the 303

implementations (Dyer et al., 2016; Noji and Os- 304

eki, 2021). Here, we introduce a formulation that 305

aligns more closely with actual implementations. 306

During supervised training, the model is trained to 307

maximize log pMjoint(x, a) on the train dataset. 308

The probability distribution over token se- 309

quences of length |x| is computed as follows: 310

pM(x) =
∑

a∈A|x|

pMjoint(x, a). 311

To calculate the probability distribution over sen- 312

tences of arbitrary length, one can simply calculate 313

pM for token sequences x that end with the EOS 314

token. 315

4.3 Modeling Incremental Inference Process 316

The goal of this study is to evaluate the incremental 317

structure prediction process in natural language. 318
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Previous work on SLM has primarily focused on319

evaluating models by approximating pM using a320

trained modelM.321

Approaches to approximating pM in SLM can322

be broadly categorized into two types. The first323

approach uses candidate actions Ã obtained from324

an external parser (Dyer et al., 2016; Kuncoro et al.,325

2018; Sartran et al., 2022). The second approach326

uses word-synchronous beam search (Stern et al.,327

2017) and approximates pM by the set of inferred328

action sequences (Hale et al., 2018; Noji and Oseki,329

2021; Yoshida et al., 2021), which we denote by330

p̃M. In this study, we focus on the latter approach331

since the former does not involve inference with332

the SLM model itself.333

The process of word-synchronous beam search334

aims to model the joint prediction of the next token335

and its corresponding syntactic structure. For a336

token sequence x, the process can be represented337

by a sequence of sets of action sequences ending338

with SHIFT: B0, B1, . . . , B|x|. Here, Bi represents339

the set of (partial) syntactic structures in the beam340

when predicting token xi, corresponding to the i-th341

step of word-synchronous beam search, and satis-342

fying Bi ⊆ Ai. Note that B0 = ∅, and each Bi is343

deterministically computed based on Algorithm 1.344

While previous work (Stern et al., 2017) introduces345

a word beam bottleneck, we instead limit the max-346

imum number of actions between SHIFT actions347

to kn to reduce inference time. The score func-348

tion for selecting an action sequence b′c is the joint349

probability:350 {
pMjoint(x<ixi, b

′c), if c == SHIFT,

pMjoint(x<i, b
′c), otherwise.

351

5 Experiments352

Evaluation. Here, we describe the overall flow353

of the experiments. For each treebank and strat-354

egy, we convert the gold trees to action sequences355

and train a base modelM in a supervised manner.356

We then perform inference using word synchronous357

beam search with the trained model to obtain the set358

of action sequences B|x|. We evaluate performance359

across a range of beam sizes, k ∈ {50, 200, 800}.360

To reduce inference time, we utilize fast-track selec-361

tion with ks = k/50 and limit the maximum num-362

ber of actions between SHIFT actions to kn = 20.363

For each setting, we train models with 3 different364

random seeds and report the average performance.365

Algorithm 1 Word synchronous beam search with
fast track selection and a step limit.

Input: x≤i ▷ Token sequence
Input: B = (k, ks, kn) ▷ Beam search params
Input: Bi−1 ▷ Last beam

B′
i ← Bi−1

for j = 1, . . . do
Cfast ← topks({b′ · SHIFT | b′ ∈ B′

i})
Bi ← Bi ∪ Cfast ▷ Fast track selection
C ←

⋃
b′∈B′

i
{b′c | c ∈ A}

B′
i ← topk(C \ Cfast) ▷ Select candidates

for b′c ∈ B′
i do

if c == SHIFT then
Bi ← Bi ∪ {b′c} ▷ Update beam
B′

i ← B′
i \ {b′c}

if |Bi| = k ∨ j ≥ kn then
Break ▷ Quit search when the beam is

full or the step limit is reached
return Bi

Dataset. We use treebanks from 10 languages: 366

English (Penn Treebank (Marcus et al., 1993)), 367

Chinese (Chinese Treebank (Palmer et al., 2005)), 368

French, German, Korean, Basque, Hebrew, Hungar- 369

ian, Polish, and Swedish (SPMRL (Seddah et al., 370

2013)). Following Noji and Oseki (2021), we re- 371

move POS tags and split words into subwords. All 372

evaluations in this paper are performed on the val- 373

idation datasets. To reduce the size of the action 374

set and simplify model training, we limit the n in 375

NT(X;n) actions to a maximum of 10. To ensure 376

consistent parsability across strategies, we restrict 377

the train and validation data to instances where 378

the gold trees are parsable by all strategies with 379

n ≤ 10. Furthermore, we only use sentences that 380

are parsable with n ≤ 10 and kn = 20 for evalua- 381

tion. Further details are provided in Appendix A. 382

Strategy. In our experiments, we analyze a to- 383

tal of 15 strategies: top-down, bottom-up, left- 384

n-corner with n ∈ {1, 2, 3}, uniform-speculation 385

with θ ∈ {0.26, 0.35, 0.65, 0.74}, local-first with 386

h ∈ {1, 2, 3}, and global-first with d ∈ {1, 2, 3}.7 387

For simplicity, we consider the insertion position 388

of NT actions at the subword level rather than the 389

word level. 390

Model. For the model, we extend the commonly 391

used syntactic language model the Recurrent Neu- 392

ral Network Grammar (RNNG) (Dyer et al., 2016) 393

7The values of θ are chosen such that iv changes for a node
v with nv = 2, 3, 4 depending on θ.
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Beam English Chinese French German Korean
50 BU (88.7±0.3) LC-1 (86.1±0.2) TD (81.8±0.2) LC-1 (86.4±0.1) BU (84.5±0.1)

LF-2 (87.3±0.1) BU (86.1±0.1) BU (79.6±0.1) LC-2 (85.8±0.1) LC-2 (84.1±0.1)

200 LF-2 (89.4±0.1) LC-1 (87.0±0.2) TD (83.3±0.2) LC-1 (87.3±0.1) BU (84.5±0.1)

LF-3 (89.4±0.0) BU (86.6±0.3) US-0.26 (81.1±0.1) LC-2 (86.5±0.0) LF-1 (84.2±0.1)

800 TD (90.9±0.1) LC-1 (87.0±0.2) TD (83.7±0.2) TD (87.7±0.1) BU (84.4±0.1)

LF-3 (90.2±0.0) BU (86.7±0.2) US-0.26 (81.8±0.1) LC-1 (87.4±0.1) LF-1 (84.2±0.1)

Beam Basque Hebrew Hungarian Polish Swedish
50 BU (83.0±0.1) LF-1 (80.8±0.3) LC-1 (87.2±0.1) GF-1 (78.9±0.3) LC-1 (72.8±0.2)

LF-1 (82.8±0.1) LC-1 (80.5±0.3) LC-2 (86.6±0.1) BU (77.1±0.1) US-0.26 (69.8±0.1)

200 BU (83.1±0.1) TD (82.2±0.3) LC-1 (88.1±0.1) GF-1 (79.5±0.1) LC-1 (73.5±0.1)

LC-1 (83.1±0.2) LF-1 (81.6±0.3) LC-2 (87.1±0.0) BU (77.2±0.2) TD (73.0±0.3)

800 LF-1 (83.3±0.2) TD (83.7±0.2) LC-1 (88.1±0.1) GF-1 (79.5±0.1) TD (74.9±0.3)

LC-1 (83.1±0.2) LF-3 (82.3±0.2) TD (87.9±0.1) BU (77.0±0.3) LC-1 (73.6±0.2)

Table 2: Top-2 strategies for the labeld parsing f1 scores for each dataset and beam size. TD and BU denote
top-down and bottom-up strategies, and LC, US, LF, and GF denote left-n-corner, uniform-speculation, local-first,
and global-first strategies with their corresponding parameters. Mean f1 scores and standard errors are shown in the
parentheses.

to handle the proposed generalized shift-reduce394

action set. The implementation is based on the395

batched version of RNNG (Noji and Oseki, 2021).396

For the action set implementation, we simply rep-397

resent SHIFT, REDUCE, and each NT(X;n) ac-398

tion by one-hot vectors. For each setting, we399

train a model for either 80 epochs or 8000 steps,400

whichever is larger, and evaluate the model with401

the lowest validation loss. Details of the training402

settings are provided in Appendix B.403

5.1 Results on Parsing404

First, we analyze parsing performance. We calcu-405

late the labeled F1 score using the highest-scoring406

action sequence in B|x|. Table 2 shows the top407

two performing strategies for each language, and408

Figure 2 presents the parsing performance for all409

strategies. Note that in Figure 2, strategies are410

sorted from top-down to bottom-up from left to411

right for each speculation parameterization. The re-412

sults reveal that the strategy that maximizes parsing413

performance depends on the language and beam414

size. For example, for English, bottom-up per-415

forms best when k = 50, local-first (h = 2, 3)416

performs best when k = 200, and top-down when417

k = 800. Similarly, top-down shows higher F1418

scores than other strategies for French, German,419

Hebrew, and Swedish when k = 800. In con-420

trast, for Chinese, Korean, and Basque, bottom-up,421

left-n-corner (n = 1), or local-first (h = 1) ob-422

tain higher F1 scores for all beam sizes. For these 423

languages, the performance of top-down is lower 424

compared to other strategies, especially when the 425

beam size is small (Figure 2). The sentence prob- 426

ability marginalized over the beam, p̃M, showed 427

a similar overall trend to the parsing performance. 428

We show the results for p̃M in Appendix C. 429

5.2 Results on Structure-conditioned Token 430

Probability 431

Figure 3 shows the perplexity based on the pMtoken 432

for the best action sequence obtained by beam 433

search for English, Chinese, German, and Ko- 434

rean.89 Generally, higher speculation leads to lower 435

perplexity, i.e., higher pMtoken, regardless of the spec- 436

ulation parameterization. However, for Chinese 437

and Korean, Basque, Hungarian, and Polish, per- 438

plexity tends to be higher when the degree of spec- 439

ulation is too high when the beam size is smaller.10 440

6 Discussion 441

6.1 Is the Optimal Strategy Universal across 442

Languages? 443

The results of the experiments suggest that the opti- 444

mal strategy for incremental structure prediction in 445

syntactic language models is not universal across 446

8This is different from the sentence probability pM.
9The results for other languages are shown in Appendix C.

10Basque, Hungarian, and Polish also show similar trend
(Appendix C).
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Figure 2: Labeled parsing F1 scores for all datasets.
Error bars show the standard error of the mean.

Figure 3: Perplexity based on pMtoken. Error bars show
the standard error of the mean.

languages, but rather language-specific. Previous 447

research has suggested that left-corner is a better 448

strategy due to its stack size efficiency, but our find- 449

ings indicate that it is not necessarily the best in 450

practical tasks. 451

What factors contribute to these differences 452

between languages? If we simply consider the 453

amount of information available during inference, 454

less speculative strategies should be advantageous 455

even with larger beam sizes. However, contrary to 456

this expectation, top-down outperforms less spec- 457

ulative strategies in some languages. We hypothe- 458

size that this is due to a combination of two factors: 459

the ease of learning of each strategy and the re- 460

quired parallel inference capacity. 461

First, Figure 4 shows the validation loss, i.e., 462

negative joint log-likelihood − log pMjoint, for En- 463

glish, Chinese, German, and Korean for the same 464

data points as in Figure 2.11 Generally across all 465

languages except Korean, top-down has the lowest 466

loss, followed by left-n-corner (n = 1), indicat- 467

ing that these strategies, especially top-down, are 468

easier to learn.12 469

11The results for other languages are shown in Appendix C.
12For other strategies, except for global-first parameteri-

zation, we generally observe that lower speculation leads to
better learning, i.e., lower validation loss. However, bottom-
up sometimes shows lower loss than strategies other than
top-down.
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Second, top-down requires larger beam size, i.e.,470

parallel inference capacity, than other less specu-471

lative strategies because top-down cannot use to-472

ken information to predict structures. Furthermore,473

top-down requires even larger beam size for left-474

branching languages as discussed in the previous475

work (Abney and Johnson, 1991; Yoshida et al.,476

2021).477

Overall, the top-down strategy exhibits a trade-478

off between ease of learning, which contributes to479

strong performance, and the difficulty of inference480

due to the required large beam size. The differences481

in the optimal strategy across languages might be482

attributed to differences in the balance of this trade-483

off. For example, in English, German, Hebrew, and484

Swedish, the parsing performance of top-down is485

low when the beam size is small, but it significantly486

improves as the beam size increases, becoming the487

best strategy at k = 800 (Figure 2). In Chinese488

and Korean, which are more left-branching than489

English, the performance of top-down tends to be490

lower than that of less speculative strategies like491

bottom-up, even with beam size k = 800.492

6.2 Does syntactic structure contribute to493

token prediction?494

In speculative strategies, token prediction is condi-495

tioned on the already-predicted syntactic structures.496

Thus, if pMtoken increases with the degree of specula-497

tion, i.e., the amount of structures usable for token498

prediction, syntactic structure is likely to be infor-499

mative for token prediction. As shown in Figure 3,500

pMtoken tends to increase with the degree of specu-501

lation, suggesting that syntactic structure indeed502

captures information about tokens. For some lan-503

guages, e.g., Korean, Chinese, Basque, and Polish,504

pMtoken decreases for more speculative strategies,505

likely due to inference failure. Nevertheless, with506

gold actions, pMtoken increases with the degree of507

speculation across all languages, which also sup-508

ports the informativeness of syntactic structures.509

Meanwhile, for all languages and strategies, the510

token probability conditioned on the gold tree is511

lower than that conditioned on the structures in-512

ferred by the model. This result suggests that, from513

the perspective of token prediction, a certain level514

of parsing accuracy is sufficient, and exact parsing515

may not be necessary. In fact, it is also argued516

that human language processing only utilizes par-517

tial shallow structures (Sanford and Sturt, 2002;518

Ferreira et al., 2002; Ferreira and Patson, 2007),519

and Noji and Oseki (2023) showed that syntactic520

Figure 4: Validation loss, i.e., − log pMjoint. Error bars
show the standard error of the mean.

ablation, i.e., removing some syntactic categories, 521

improves the syntactic generalization ability of top- 522

down models in English. Therefore, to further in- 523

vestigate the extent to which syntax is necessary for 524

token prediction, it would be necessary to perform 525

syntactic ablation across various strategies in future 526

work. 527

7 Conclusion 528

This study analyzed whether the incremental struc- 529

ture prediction process in natural language is uni- 530

versal across languages or language-specific. We 531

considered a total of 15 strategies based on 4 differ- 532

ent parameterizations of speculation. Experiments 533

on 10 typologically diverse languages suggest that 534

the optimal strategy can vary across languages and 535

is influenced by two factors: the ease of learning 536

and the required parallel inference capacity. Fur- 537

thermore, a comparison between strategies with 538

different degrees of speculation reveals that the syn- 539

tactic structure of natural language is indeed infor- 540

mative for token prediction, while also suggesting 541

that exact parsing might not be necessary. Finally, 542

this study focused on phrase structure; however, 543

natural language also encompasses other structures 544

such as dependency and semantic structures. Fu- 545

ture work examining strategies for such structures 546

is expected to further reveal universals and differ- 547

ences across languages. 548
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