Under review as submission to TMLR

Kernel Neural Operators (KNOs) for Scalable, Memory-
efficient, Geometrically-flexible Operator Learning

Anonymous authors
Paper under double-blind review

Abstract

This paper introduces the Kernel Neural Operator (KNO), a provably convergent operator-learning
architecture that utilizes compositions of deep kernel-based integral operators for function-space
approximation of operators (maps from functions to functions). The KNO decouples the choice of
kernel from the numerical integration scheme (quadrature), thereby naturally allowing for operator
learning with explicitly-chosen trainable kernels on irregular geometries. On irregular domains, this
allows the KNO to utilize domain-specific quadrature rules. To help ameliorate the curse of dimen-
sionality, we also leverage an efficient dimension-wise factorization algorithm on regular domains.
More importantly, the ability to explicitly specify kernels also allows the use of highly expressive,
non-stationary, neural anisotropic kernels whose parameters are computed by training neural net-
works. We present universal approximation theorems showing that both the continuous and fully
discretized KNO are universal approximators on operator learning problems. Numerical results
demonstrate that on existing benchmarks the training and test accuracy of KNOs is comparable to or
higher than popular operator learning techniques while typically using an order of magnitude fewer
trainable parameters, with the more expressive kernels proving important to attaining high accuracy.
KNOs thus facilitate low-memory, geometrically-flexible, deep operator learning, while retaining
the implementation simplicity and transparency of traditional kernel methods from both scientific
computing and machine learning.

1 Introduction

Operator learning is a rapidly evolving field that focuses on the approximation of mathematical operators, often those
arising from partial differential equations (PDEs). These operators map between infinite-dimensional function spaces
and are increasingly employed to reduce the computational cost of simulation-based analyses which require repeated
simulations of computationally expensive models. Recent approaches for operator learning include the DeepONet
family of neural operators |Lu et al.| (2021} 2022)); |[Zhang et al.| (2023)); Jin et al|(2022); the family of Fourier neural
operators (FNOs) [Li et al|(2021)); Kovachki et al.| (2021b); |Li et al.| (2023} 2024)); graph neural operators (GNOs) |L1
et al.| (2020bza); kernel/Gaussian-process-based methods Batlle et al.|(2024)); and transformer-based architectures such
as the generalized neural operator transformer (GNOT) |Hao et al.| (2023)) and the Transolver [Wu et al.|(2024). While
these methods have been successfully used to approximate certain nonlinear operators, they often face limitations in
scalability, flexibility, and computational efficiency.

In this paper, we propose a novel method, the kernel neural operator (KNQO), which extends the Fourier Neural
Operator (FNO) family by introducing greater geometric, architectural, and approximation flexibility through the ex-
plicit learning of highly expressive, closed-form kernels. Unlike methods that rely on implicit kernel learning through
specific discretizations —- such as the FNO, which uses a fast Fourier transform (FFT) on an equispaced grid to learn
a diagonal matrix-valued kernel in spectral space, or the GNO, which employs a graph-based parametrization to dis-
cretize the integral -— the KNO directly parameterizes closed-form kernels using shallow neural networks, enabling
the use of non-stationary and anisotropic kernels. This explicit kernel representation allows desirable properties to
be encoded directly into the kernel while avoiding restrictive assumptions, such as the radial, stationary, and periodic
constraints inherent in FNOs. On regular grids, the KNO employs a fast dimension-wise factorization algorithm to
mitigate the curse of dimensionality, ensuring computational efficiency in high-dimensional settings. Furthermore, the
KNO supports irregular geometries and scattered data locations by combining interpolation methods with quadrature

Under review as submission to TMLR

rules, making it applicable to a wider range of problem domains. While recent transformer-based architectures such
as the GNOT are able to tackle irregular domains also, the KNO is able to do so using far fewer trainable parameters.

Our numerical experiments demonstrate that the KNO achieves comparable or superior accuracy to FNO architectures
across a variety of problems. Furthermore, KNO consistently outperforms the more modern transformer-based GNOT
in terms of accuracy on several benchmark problems, while requiring 1-2 orders of magnitude fewer trainable
parameters than reported in the literature for FNO, GNOT, and Transolver. This significant reduction in parameter
count results in a much smaller memory footprint, making KNO a more memory-efficient alternative. Importantly,
the KNO is both faster to train and infer with than the GNOT and Transolver on even three-dimensional problems,
demonstrating that its reduced parameter count, improved accuracy, and ability to generalize to irregular domains does
not come at the expense of scalability.

1.1 Connections to other methods

Kernel methods have been a cornerstone of machine learning and scientific computing for decadesRasmussen &
Williams| (2006)); (Cortes & Vapnik|(1995)); Boser et al.| (1992)); Broomhead & Lowel|(1988));\Sharma & Shankar|(2022),
with applications ranging from data fittingMcCourt et al.| (2018)); [Fasshauer & McCourt (2015) and sparsificationHan
et al.| (2023); Sharma & Shankar| (2025) to accelerating physics-informed neural networksSharma & Shankar| (2022
and enhancing DeepONetsSharma & Shankar| (2025). They have also been widely used in scientific computing for
integral operatorsGingold & Monaghan| (1977); |Peskin| (2002); Kassen et al.| (2022a3b)); Hsiao & Wendland| (2008));
Cortez (2001); [Shankar & Olson| (2015) and finite difference methodsWright & Fornberg| (2006); [Fornberg & Flyer
(2015)); Bayona et al.[(2019); |[Fasshauer & McCourt (2015)); Shankar et al.| (2014); |Shankar & Fogelson| (2018). More
recently, interpolation-based kernel methods have been applied to operator learningBatlle et al.| (2024), achieving
high efficiency with few trainable parameters but lower accuracy compared to the KNO. The KNO builds on this
rich body of work, combining insights from kernel methods and deep operator learning to strike a balance between
parameterization and accuracy, outperforming kernel/GP methods and achieving comparable or superior accuracy to
FNOs with substantially smaller parameterizations.

In addition to improving accuracy and reducing parameter complexity, the KNO is natively capable of approximating
operators on irregular domains without the challenges faced by existing methods. For example, the DeepONet fam-
ilyLu et al.|(2022)); Peyvan et al.|(2024) can handle irregular domains but requires all input functions to be sampled at
the same domain locations, limiting flexibility. The FNO has been generalized to arbitrary domains through architec-
tures like “dgFNO+"TLu et al.| (2022) and GeoFNOLI et al.| (2023};[2024), which learn both the operator and a mapping
to a regular grid for FFT use; however, such mappings may not always exist or be feasible to compute. Transformer-
based neural operatorgHao et al.| (2023); [Wu et al.| (2024) can also generalize to irregular domains but at the cost
of substantially large parameterizations. In contrast, the KNO overcomes these limitations by using straightforward
function sampling to transfer information to quadrature points, similar to |Solodskikh et al.|(2023)), but without being
restricted to regular grids or increasing parameterization complexity. This approach leverages quadrature techniques
to provide a simple, flexible, and powerful framework for operator learning on irregular domains.

2 Kernel Neural Operators (KNOs)

Given Euclidean domains €2,, 2, and d,,d, € N, neural operators learn mappings from a Banach space i/ =
(Q4;R%) of R¥-valued functions to a Banach space Y = Y(,;R%) of R%- valued functions through super-
vised training on a finite number of input-output measurements. From a statistical learning point of view, neural
operators are learned from measurements of input functions drawn from a probability measure v on U (Qu; Rd“).
In the following, we present the formulation of KNOs, which are a special class of neural operators that leverage
properties of certain kernel functions for the benefit of efficiency and accuracy.

2.1 Function Space Formulation

Architecture Let G be an unknown operator we wish to learn that is an element of the L2-type Bochner space
L2(U;Y), ie., G is a mapping from U to) that is Borel-measurable with respect to the probability measure v on U.
We are interested in learning a KNO G that minimizes a loss function L measuring how well functions predicted by
the operator match the training data. For example, the loss function may be the L2 norm on operators,

L(H,G) = [H = G172 00y) = Esn[H(F) = G(N3

Under review as submission to TMLR

which is the loss function we use in our experiments, with the addition of some regularization on the kernel scale
parameters and a scaling term to account for relative error. The corresponding statistical learning problem is

G' = argmin L(#,G), (1)
HEKNOs
where KNOs are operators of the form
H=PoooIloocoll oco0...00IoL.)

The operators Z,, £, P are all trainable, and an appropriate parameterization of these defines a KNO, and p € N* is
a hyperparameter that defines a channel dimension. The function o is a nonlinear activation that operates pointwise:
(o0« f)(z) = o(f(x)); we used GeLU Hendrycks & Gimpel| (2023). Additionally, the initial operator L is a lifting
operator that takes R -valued functions to R”-valued functions, i.e., creates p channels. The ultimate operator P is a
projection operator that takes RP-valued functions and compresses them down to R% -valued functions.

Integral operators The integral operators 7, are linear operator mappings from vector-valued functions to vector-
valued functions. These operators are defined by,

7(f,) = / KO(z,4)f(y)dy, 3

2
fo:Qy =R, g, =T)(f): Q, — RP, 4

where K - Q, x Q, — RP*? is a matrix-valued kernel function,

¢ ¢
K%(w y) .. K%,%é,l (z,y)
y; ‘
K5i(z, ... K x,
KOy = | F20Y o Kape(50) -
. . o
Kigz?l (‘T7 y) s KZ(M?WA (x, y)

The overall structure closely resembles FNOs, but differs in an important aspect: FNOs implicitly impose a diagonal
structure on this matrix-valued kernel (as we also do), but further force that the individual scalar-valued kernels be
isotropic and stationary due to the parametrization of the integrals operators Z, via the FFT. In contrast, the KNO
decouples the discretization of the integral operators I, from the choice of kernel, thereby allowing the use of very
general and highly-expressive kernels. The actual integration is accomplished through multi-dimensional quadrature
in the general case, though we also leverage a special dimension-wise factorization algorithm on regular grids that
removes the need for multi-dimensional quadrature. The strength of the KNO lies in this decoupling: the ability to
freely choose kernels allows us to choose highly expressive kernels with a very small number of trainable parameters
(in comparison to other neural operators), while the ability to freely select quadrature locations allows us to tackle arbi-
trary domains (while also efficiently tackling regular ones). We now describe the KNO in further detail; mathematical
formulations are shown in (2)) and (14).

Remarks As in many neural operator formulations, we augment our kernel integral operators (3)) at the discrete level
with dense cross-channel affine transformations (“pointwise convolutions”) having trainable parameters; we describe

these in Appendix

2.2 Choosing kernels

The KNO allows for (and requires) kernel choices to be done at two levels. First, a choice must be made on the
structure of the matrix-valued kernel (MVK) defined over the channels, then the individual scalar-valued kernels
within the MVK must be chosen. We chose a diagonal MVK in this work by setting

K¢, ifi=1
(KOG@,y) = Retes B=d ©)
ij 0, otherwise
where i, = 1,...,p. We also found other MVKs with greater fill-in to be beneficial when using single-parameter

scalar-valued kernels and a small channel dimension p, but concluded that the diagonal MVK was the easiest to train

Under review as submission to TMLR

and the most robust across problems when a sufficiently-expressive scalar-valued kernel was used; for experimental
evidence, see Appendix[A.7.2] As in the FNO, we use pointwise convolutions to ensure that information mixes across
the p channels, but we found that removing these convolutions only resulted in a mild degradation of accuracy; see
Appendix Next, the individual scalar-valued kernel entries in the matrix-valued kernel must be chosen. After
exploring a variety of kernels (including compactly-supported kernels, purely radial kernels, and many others), we
settled on two highly expressive kernels. The best-performing across kernel across most problems was a neural,
non-stationary, anisotropic, generalized spectral mixture kernel (NS-GSM) given by Remes et al.| (2018))

KNS asm(@,9) sz Y)kaivbs,i (2, y)g: (2, y), (7

where 1 (), . . ., ug(z) are each vector-valued latent frequency functions; wy (), . . ., wg () are scalar-valued latent
amplitude functions; and g;(x,y) = cos (27 (pi(z) "z — i (y) 'y)). Here, kgivbs,i (2, y) is the Gibbs kernel (itself
a non-stationary generalization of the Gaussian kernel |Gibbs| (1997); [Heinonen et al.| (2016); [Paciorek & Schervish
(2004)) given by

2si@)sily) (_(x - y)2> ;

kcibbs,i(z,y) =

Ti(xay) ri(xvy)
where s;(z) is a latent length-scale function that is the i-th component of a vector-valued length scale function s(x) =
[s1(2),...,s0(x)], and r;(z,y) = s;(z)? + s;(y)?. The latent length-scale, frequency, and amplitude functions are

each obtained as the outputs of a single shallow feedforward neural network of the form NN : R — R2Q+Qdy
with a single hidden layer; we used a SELU activation on the hidden layer Klambauer et al.| (2017) and a softplus
activation on the output layer |Dugas et al.| (2000), the latter ensuring that the latent quantities are always positive.
We also explored use of the following stationary Gaussian spectral mixture (GSM) kernel, which simply omits the
non-stationary Gibbs kernel and uses trainable weights w;, frequencies p;, and diagonal covariances ¥; (not output by
neural networks):

K (z,9) Zwl exp(—3 (z — y) " Sz — y)) cos (27r,u;-r(:v —y)). 8)

In general, we found that the NS-GSM kernel outperformed the GSM kernel on all but two test problems. This is
further discussed in Section[d] We also present further ablations over kernel types in Appendix

Dimension-Wise Factorization For problems with data lying on regular grids, we employ a factorization of (3] that
eliminates the need for multi-dimensional quadrature and reduces the size of the kernel Gramians. Letting Q,, = [a, b]?
(without loss of generality), © = (z1,...,24), and y = (y1,...,Yd), Wwe write:

d
= Z/K;e)(x_ﬂy)f(xla ey Ti—1,Y, Ljt1s - - 733d)dy7 (9)
=1

where K ﬁ are MVKs chosen for each coordinate direction. In practice, since we use diagonal MVKs, one only needs
to choose coordinate-wise scalar-valued kernels in the KNO. Regardless, this now requires only the use of univariate
quadrature.

2.3 Sampling and outer discretization

Numerically constructing (2) requires sampling from v and a discretization of || - ||y. To this end, we trained our
KNOs using M independent and identically distributed input samples of functions f(") ~ v drawn from &/ and
the associated output function data (™ = G(f(™), for m € [M]. We used a set of training points (locations),
X1 ={2;}eny) C ©, to both discretize the input and output functions f (m) and ¢("™) and to approximate the norm
|| - || Hence, during learning we optimized

FICONOTS | m . 2
R =D DR (¢ S [CARAICHI i (10)
(m,j)€[M]x[Nr]
Since the KNO potentially decouples the training grid from the integral operators, we now have two distinct cases to
tackle.

Under review as submission to TMLR

Irregular Domains In the most general case (on irregular domains), the training grid X is typically distinct from
the quadrature points used for numerical integration (to be introduced shortly). In this case, we first employ the channel
lift £ which produces samples of RP-valued functions on the training grid, then use a trainable kernel interpolant to
transfer the lifted function f to the quadrature points:

Fxp@)~ Y K(w,xm)cn, (11

n€[Nr]

where the ¢, are determined through a size- N linear system solve that enforces f . (z,) = f(x,); this particular
system has p right hand sides. We also explored using the interpolation before the channel lift £. While both choices
performed well, we found that using the interpolation after the lift operator reduced the need for pointwise convolutions
in the integration layers since the interpolant itself produces coupling between the layers; see Appendix [A.7.4] for
ablations. Further, we found that interpolating after the channel lift alleviated the Runge phenomenon, which is seen
when interpolating infintely-smooth target functions sampled on grids of equispaced points [Platte et al.| (2011); this is
likely because the lifted input functions are not as smooth as the input functions themselves.

Regardless, this interpolant can be viewed as part of the lifting operator £ and allows for evaluation of f at the
quadrature points to be introduced shortly. We also leverage a separate kernel interpolant similar to the one in (1)) to
transfer information from the quadrature points back to the training points to evaluate the objective function in (T0);
this second interpolant can be viewed as part of the projection operator P. For these interpolants, we ablated over a
variety of kernels and used problem-dependent kernels (selected through ablation). We discuss these in Section 4]

Regular Grids When the training points form a regular (tensor-product) grid, we exploit the tensor-product structure
to perform the dimension-wise factorization (9) in conjunction with simple univariate quadrature rules (discussed
shortly). Consequently, in this scenario, the training points also serve as quadrature points and kernel interpolants are
not needed for data transfer.

2.4 Integral operator discretization: Quadrature

Figure 1: Clustered quadrature points on [0, 1}2 (left) and a reference triangle (right).

In order to propagate fx, through # in (I0), one must discretize all the integral operators; we accomplished this
with quadrature. Consider the discretization of an integral operator [, K (z,y) f(y)dju(y) that acts on a scalar-valued
function f : R? — R; the generalization to vector-valued functions is straightforward. Then given a quadrature
rule {w},y; }Z), where w! € R are quadrature weights and y; € R? are quadrature points, the quadrature-based
discretization of a KNO 1ntegra1 operator is

/QK(:my)f Zw (@, yd) fly]). (12)

We tailor the choice of quadrature rule to the domain of the problem, and thus employ several quadrature rules in this
work, discussed below.

Irregular Domains On 2D irregular domains €2, we tesselated (2 with a triangle mesh that divided € into some set
of nonoverlapping triangles £2,, ¢ =1, ..., N such that

/Qm,y)f Z Kl) (y)duty). (13)

Under review as submission to TMLR

Following standard scientific computing practices|Karniadakis & Sherwin|(2005);|Cantwell et al.|(2015)) we discretized
(T3) using a quadrature rule for each of the subdomains 2, affinely-mapped from a symmetric quadrature rule on a
standard (“reference”) simplex 2, in R?|Freno et al.| (2020); see Figure In Section we also present results on
a 3D problem within the unit ball that utilized a quadrature rule specially tailored for that domain von Winckel| (2025).
In general, one can use any reasonable quadrature rule in the KNO. In general, the use of quadrature introduces the
curse of dimensionality into the discretization of the KNO; for general domains, this can be potentially ameliorated
with sparse grids |Holtz| (2011)) or Monte Carlo Dick| (2016) techniques. We further discuss the computational com-
plexity of quadrature in Appendix[A.T.4]

Cartesian Grids On Cartesian grids, we used the dimension-wise factorized kernel (@), and thus only required
univariate quadrature rules. We found that the (composite) univariate trapezoidal rule was sufficiently accurate |Davis
& Rabinowitz|(1984); Quarteroni et al.| (2000); Atkinson|(1989));|Stoer & Bulirsch|(2002); this rule converges as O(h2)
for general functions (where is the grid spacing) and exponentially for periodic functions [Trefethen & Weideman
(2014ﬂ This discretization is highly efficient and avoids the curse of dimensionality as it allows for O(R%) sums of

Ng terms each rather than one O(N, gy) sum.
2.5 Discretized KNO

In summary, the discretized KNO H that we used to numerically construct H in (2) can be written as a function that
takes in fy.. and returns an approximation to the output function H(f) evaluated at Xr:

ﬁ(fXT):(Poaofﬁo...aojfoﬁ)(fXT) (14)

where (fg) are now the discretized integral operators incorporating pointwise convolutions, £ is a discretized lifting
operator (potentially incorporating an interpolant of the form (T1)), and P is a discretized projection operator (poten-
tially also incorporating an interpolant); details on the neural network architectures used in £ and P are presented in
Appendix [A.T.2] Much like in the FNO, the discretized integral operators also include a pointwise convolution that
aggregates information across channels; this is discussed in Appendix [A.T.1]

3 Universal Approximation Theorems

We now present two universal approximation theorems for the KNO; we defer their proofs to Appendix [B] The first
theorem is a universal approximation theorem for the infinite-dimensional KNO (2).

Theorem 3.1. Let Q C R? be compact, and let A C (L*(Q;R), || - || 12(q)) be compact. Let G : A — (L*(;R), || -
| L2(0)) be a continuous operator. For any € > 0, there exists a KNO H : A — L*(Q;R) of the form @) with

continuous positive-definite kernels K i(f)jg such that

sup [H[f] = Glf]ll L2(q) <e- (15)
feA

Proof. The proof is given in Appendix [B.1] O
The second theorem shows that that the fully discretized KNO (I4) can recover the infinite-dimensional version to
arbitrary accuracy.

Theorem 3.2. Adopt the same assumptions as Theorem |3.1] . but with A’ c C* (Q R), compact Wllh respect to the
| - ||z norm and with uniformly bounded first derivatives. Additionally, let {w™)} yren and {& ™)} yren define a
sequence of M-point quadrature rules on . Suppose that there exists C > 0 such that, for any f € C*(S;R),

< GVl
> wi D fal) / fla m
Wy, .
me[M]

For any € > 0, there exists M € N, v > 0, and 7-lM : RNT — RNT of the form (T4)) such that

s Hfﬁmm — @My,

poggery = €T vha, Xy (16)

'If necessary, one can always use the KNO with a higher-order accurate quadrature rule, but we found that quadrature errors were generally
smaller than training errors.

Under review as submission to TMLR

where fT = {f(x)}zexT,
h = Ssu min ||r — x;
Q,Xr zep 2iEX ” z“

is the fill distance, and H M depends parametrically on the quadrature nodes X p; = {x%w)}me[M-

Proof. The proof is given in Appendix O

4 Results

We now describe our numerical experiments with KNOs and other state-of-the-art neural operators on seven different
benchmark problems from literature. We present results on both tensor-product domains (all of which used boundary-
anchored equidistant grids) and irregular domains (which used regular grids, triangle meshes, or point clouds). The
KNO models were all trained using the Adam optimizer |Kingma & Ba|(2017) with a cyclic cosine annealing learning
rate schedule. All models were trained for 10,000 epochs on all benchmark problems; the exception was on the
NS-Pipe example (below), where we trained the KNO for 500 epochs (to match the reported GeoFNO, GNOT, and
Transolver results). Other technical details are described in Appendix [A.T] We measured the accuracy of our KNOs
by computing the mean and standard error of the ¢ relative errors (on generalization) of each KNO obtained from
four different training runs with different random model parameter initializations. These errors were compared to
those of the FNO |L1 et al.| (2021)), the GNOT |Hao et al.[(2023)), the Transolver |Wu et al.| (2024}, and KM |Batlle et al.
(2024); Appendix [A.2.2]discusses these other models in greater detail. We used publicly available code for the FNO,
the GNOT, and the Transolver to generate all results except those for the NS-Pipe example; for this latter example,
we report the GNOT and Transolver result from Wu et al.| (2024) and the (Geo-)FNO result from [Li et al.| (2023)). For
the two problems on irregular domains — Darcy (triangle) and Reaction-Diffusion — we report results from the Geo-
FNO L1 et al.|(2023)) in the FNO column, since the FNO cannot be directly applied to these domains. We normalized
the training inputs to have mean zero and unit standard deviation, and re-scaled the predicted functions based on these
inputs to match the scaling of the ground truth output functions in all cases. Below, we briefly describe the problems

Table 1: Problem geometries and data sampling locations.

Problem Geometry Sample Locs.
Burgers’ Unit interval Regular grid
Beijing-Air Unit interval Regular grid
Darcy (PWC)) Unit square Regular grid
Darcy (triangle) Triangle Triangle mesh
NS-Pipe Cubic spline (curved) Regular grid
NS Mach 1.0 Unit cube Regular grid
React-Diff. Unit ball Point Cloud

that we compared the different methods on. These problems are described in greater detail in Appendices [A.3] and
[A.4] In Table[T] we summarize the type of the problem geometry and the data sample locations.

Input Function True Output function Predicted Output function

1.0 I 1.0 Il'4 1.0 I14
LI 0.85 05 o s 2
00 / # 0w 1.2 y # 00 1.2
-0 -0 05
-10 0.80 \ ’ -10 \ ' -10
o Lo q1o Lo Lo
f’éus § 0.75 &105 E} 2505 E}

10 -05 00 05 10 10-05 00 05 10" 10-05 00 05 10"

T T T

Figure 2: The 3D reaction-diffusion problem |A.4.2} where an input function is given (left), the true output function
(center), and a prediction from the KNO (right).

Under review as submission to TMLR

1D Burgers’ Equation: Predict the solution u; : (0,1) — R of the one-dimensional viscous Burgers’ equation at
time ¢ = 1, given the initial condition ug : (0,1) — R, with the viscosity set to v = 0.1.

1D Beijing-Air Problem: Predict the hourly concentration of CO over the following week based on the previous
week’s measurements of SO,, CO, PM2.5, and PM10, using the Beijing—AiIE] dataset. This dataset contains hourly
measurements of several air pollutants in Beijing collected between 2014 and 2017. For this task, 5,000 weeks were
randomly selected for training and 1,000 weeks for testing. The KNO results are visualized in Appendix [A.3.2]

2D Darcy Flow (PWC): Predict the pressure field u : [0, 1]> — R from the given piecewise constant (PWC) perme-
ability field ¢ : [0,1]?> — R, based on the Darcy flow equation [Lu et al.[(2022). The permeability fields are sampled
from Gaussian random fields and thresholded to create PWC functions.

2D Darcy Flow on a Triangular Domain: Predict the pressure field h(x, y), computed using Darcy’s equation, from
the given boundary condition on a triangular domain |Lu et al.|(2022), with the permeability set to 0.1 and the forcing
set to —1. The boundary condition fields are sampled from Gaussian random fields, and the data lies on an 861-node
uniform triangular mesh.

2D Incompressible Navier-Stokes Equation in a Pipe: Predict the final velocity field for flow in a 2D pipe governed
by the incompressible Navier—Stokes equations with viscosity v = 0.005, based on the benchmark problem from [Li
et al.| (2023); the input function is the pipe geometry itself. A parabolic inlet profile v = [1, 0] is imposed, with a free
outflow boundary condition at the outlet and no-slip walls. The pipe (length 10, width 1) follows a centerline defined
by a piecewise cubic polynomial formed by the vertical positions and slopes at five spatially uniform control nodes.
While the domain is irregular, the data is provided on a structured mesh. The final velocity field is taken from the
dataset in|Li et al.|(2023]), though the final time is not reported in that work.

3D Compressible Navier-Stokes (NS) Equations in a Torus: Predict the velocity field v, : [0, 1]3 — R after one
time step from an initial random velocity field v : [0, 1]®> — R, based on the compressible Navier-Stokes equations
in a challenging setting with a Mach number of 1.0. Periodic boundary conditions create a toroidal geometry, as
described in (Takamoto et al.| (2024).

3D Reaction-Variable-Coefficient-Diffusion on a Point Cloud: Predict the chemical concentration c(y,t = 0.5) :
R?® — Ratt = 0.5 from uniform initial concentrations c(y,t = 0) : R? — R, based on the reaction-diffusion equation
with a spatially varying diffusion coefficient and discontinuous reaction rates. The problem is solved within the interior
of the unit ball, where the concentrations at the final time exhibit sharp spatial gradients. The data is sampled on a
point cloud inside the unit ball, as described in|Sharma & Shankar| (2025). KNO predictions are visualized in Figure

2

4.1 Relative errors

Table 2: Percent {5 Relative Errors on Generalization. The table reports the errors for the best-performing KNO, FNO,
GNOT, KM, and Transolver operators. Standard errors are provided in Section|[A.5] The entry “~” indicates that the
Transolver can not make predictions when the output and input functions have heterogeneous grids, as is the case in
the Darcy (triangle) problem (this was not a focus of their implementation).

Problem FNO GNOT Transolver KM KNO
Burgers’ 0.276 0.89 1.077 2.831 0.574
Beijing-Air 55.33 40.3 26.273 50.982 24.941
Darcy (PWC) 1.79 2.58 1.99 3.06 1.55
Darcy (triangle) 0.043 0.111 - 0.033 0.045
NS-Pipe 0.67 0.47 0.33 2.742 0.588
NS Mach 1.0 58.05 81.5 48.127 54.150 52.602
React.-Diff. 6.68e-3 4.47e-3 8.09e-3 8.75e-05 9.20e-4

We evaluated the performance of the KNO on the aforementioned benchmarks, which span varied geometries, di-
mensionalities, and physical systems. The results, presented in Table |2 highlight the KNO’s ability to achieve high
accuracy across all tasks, demonstrating its effectiveness in modeling complex operator mappings. Additionally, Table
[3] provides details on the kernel and quadrature choices used for each problem, showcasing the adaptability of the
KNO’s architecture to different computational requirements and domains.

2https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data

https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data

Under review as submission to TMLR

Before presenting the results, we note that for problems on irregular grids (Table[I)), we used an anisotropic Gaussian
kernel for interpolation between the training grid and quadrature points, defined by a trainable Mahalanobis distance
(v —y)TLLT (z — y), where L € R%*%v is learned. For regular grids, interpolation was unnecessary, as dimension-
wise factorization with the composite trapezoidal rule allowed the KNO to directly process the training data.

Table E] demonstrates that the KNO achieves comparable accuracy to the FNO, GNOT, KM, and Transolver across
most benchmark problems, with notably superior performance on the challenging Beijing-Air problem, where the
KNO is approximately 30% more accurate than FNO and 15% more accurate than the GNOT; the KNO is only 2%
more accurate than the Transolver on this problem. The 3D compressible Navier—Stokes problem (Mach 1.0) proves
difficult for all methods, highlighting the limitations of current operator learning techniques, with the Transolver
achieving the best result. Interestingly, despite the periodic boundary conditions inherent to this problem, the KNO
achieves approximately 6% higher accuracy than FNO, with the best results obtained using the GSM kernel rather than
the NS-GSM kernel. The Darcy (triangle) problem also warrants attention. While the GeoFNO appears to slightly
outperform KNO on this taskﬂ the standard errors reported in Table [8|indicate that the results are nearly identical for
both methods. Furthermore, as shown in Table[d] the GeoFNO required several million trainable parameters to achieve
this level of accuracy, whereas the KNO achieved comparable performance with only approximately 50k parameters.
Table 3 further highlights that the best KNO results across most benchmarks were obtained using the NS-GSM kernel,

Table 3: Kernel and Quadrature Choices. The table lists the integration kernel (“Int.”), use of dimension-wise fac-
torization (“Dim. Fac.”), and quadrature rule (“Quad.”), including trapezoidal (“Trap.”), symmetric (“Sym.”), and
spherical (“Spherical”) rules. See Section [2.4|for mathematical details and Section for implementation specifics.

Problem Int. Dim. Fac. Quad.
Burgers’ NS-GSM Yes Trap.
Beijing-Air GSM Yes Trap.
Darcy (PWC) NS-GSM Yes Trap.
Darcy (triangle) NS-GSM No Sym.
NS-Pipe NS-GSM Yes Trap.

NS Mach 1.0 GSM Yes Trap.
React.-Diff. NS-GSM No Spherical

which is anisotropic, non-stationary, and trainable. However, exceptions were observed for the Beijing-Air and NS
Mach 1.0 problems, where the GSM kernel outperformed the NS-GSM kernel. This discrepancy may be attributed
to difficulties in training the NS-GSM kernel due to the complex loss landscapes associated with these problems.
Notably, this underscores another strength of the KNO: in challenging settings, it is straightforward to switch to a
simpler kernel, thanks to the KNO’s inherent ability to explicitly specify kernels. It is also useful to note that the
one-parameter KM performs very well on problems with smooth operator maps, such as the Darcy (triangle) and the
reaction-diffusion problem; this method can naturally be viewed as a particular edge case of the KNO, indicating that
lower parameter counts and greater architectural simplicity may be important for certain operator learning problems.

4.2 Parameter counts

Table 4: Parameter Counts. The table reports the trainable parameter counts for all methods. The entry marked with
“** indicates that the GNOT parameter count was not provided. in|Wu et al.| (2024)).

Problem FNO GNOT Transolver KNO
Burgers’ 221,889 2,843,013 382,993 43,137
Beijing-Air 353,217 2,182,532 2,806,849 335,617
Darcy (PWC) 4,743,937 2,183,812 2,811,073 61,121
Darcy (triangle) 5,967,619 885,062 — 49,863
NS-Pipe 1,188,385 *k 2,810,817 171,265

NS Mach 1.0 14,164,513 1,523,587 3,791,377 31,105
Reaction—Diffusion 17,746,276 886,470 372,257 32,647

3This may be attributed to the simplicity of the mapping from the triangular domain to the unit square used in GeoFNO, which may not be true
for other general domains.

Under review as submission to TMLR

The trainable parameter counts for the KNO are presented in Table @} we did not include the KM which only needed
one trainable parameter. Except for the Beijing-Air dataset, the KNO consistently required 1-2 orders of magnitude
fewer trainable parameters compared to the FNO, GNOT and Transolver while achieving comparable or superior
accuracy. Although this reduction in parameter count did not directly translate to faster training or inference times (see
Section 4.3, it does result in a substantially smaller memory footprint once the model is trained. For instance, with
weights stored in fp32, the largest FNO model required approximately 54 MB of storage, the largest GNOT model
required approximately 5.8 MB of storage, and the largest Transolver model required 15.2 MB of storage (all for the
3D NS Mach 1.0 problem). In contrast, the KNO required only 0.11 MB of storage for the same problem, highlighting
its favorable memory scaling properties compared to the FNO, GNOT, and Transolver.

For problems on regular grids and simplicial meshes, integrals can be computed on the fly, eliminating the need for
storage of quadrature rules. This makes the KNO particularly appealing from a memory efficiency perspective. We
anticipate that these favorable memory scaling properties will persist for higher-dimensional and larger problems,
making KNO an excellent candidate for on-chip surrogate modeling in low-memory environments.

4.3 Timings

Table 5: Average Training Time per Epoch (in seconds). Training times were averaged over 100 epochs using mini-
batches of size 10 on a NVIDIA GeForce RTX 4080. For KMs we report the time for a single linear system solve
instead.

Problem FNO GNOT Transolver KM KNO

Beijing-Air 2.56e-3 1.00e-2 9.60e-3 1.49 7.46e-3
Darcy (PWC) 4.44e-3 1.49e-2 1.53e-2 1.49e¢-2 4.56e-3
Reaction-Diffusion 4.77e-2 4.91e-2 2.94e-2 3.84 7.60e-2

Table 6: Average Inference Time (in seconds). Inference times were averaged over 100 epochs on a NVIDIA GeForce
RTX 4080 with mini-batches of 10.

Problem FNO GNOT Transolver KM KNO

Beijing-Air 6.91le—4 3.60e-3 2.50e-3 6.15¢-3 1.13e-3
Darcy (PWC) 8.82e—4 52le-3 4.96e-3 2.32¢-3 9.14e4
Reaction-Diffusion 1.58e-2 2.05e-2 1.03e-2 6.10e-3 2.03e-2

We present training times (Table E[) and inference times (Table @) for the KNO, FNO, GNOT, KM and Transolver
across 1D, 2D, and 3D problems. The KNO was implemented in Jax, while the original implementations of FNO
and GNOT by their respective authors were in PyTorch. Table [5] shows that the FNO trains nearly twice as fast as
KNO, likely due to its use of the FFT and custom CUDA kernels. In contrast, the KNO relies solely on Jax-level
optimizations for integral computations, which may contribute to slower training times. The GNOT and Transolver
appear comparable to the KNO in training speed, with some evidence suggesting slightly better scaling for the 3D
problem.

Table @ indicates that the FNO is also faster during inference, likely for the same reason (the use of FFT). However,
the KNO demonstrates faster inference times than the GNOT and Transolver (save for Transolver on the Reaction-
Diffusion problem) likely due to its significantly smaller number of trainable parameters. Interestingly, the gap in
inference speed between the KNO, GNOT and Transolver does not fully align with the disparity in their parameter
counts, potentially pointing to implementation inefficiencies in the KNO. Addressing these inefficiencies may require
re-implementing the KNO layers using standard machine learning paradigms, such as convolution layers or attention
mechanisms.

5 Conclusion

We presented the kernel neural operator (KNO), a simple and transparent architecture that leverages kernel-based
deep integral operators discretized by numerical quadrature. By employing highly-expressive, closed-form kernels

10

Under review as submission to TMLR

parametrized by shallow neural networks, the KNO achieved comparable or superior accuracy with far fewer trainable
parameters than other neural operators, both on regular and irregular domains. This reduction in parameter count
resulted in a significantly smaller memory footprint, making the KNO particularly appealing for resource-constrained
applications. Additionally, the KNO demonstrated competitive training and inference times compared to other neural
operators, though an analysis of timings relative to parameter counts revealed potential implementation inefficiencies.

For future work, we aim to address these inefficiencies by recasting KNO operations using efficient machine learning
paradigms, such as convolution layers and attention mechanisms. We also plan to explore interpretable lifting and pro-
jection operators, problem-specific architectures tailored to linear operators, and novel quadrature schemes. Beyond
approximating PDE solution operators, we anticipate that KNO will be widely applicable to various machine learning
tasks, particularly as an on-chip surrogate model in low-memory environments, which will be another focus of our
future research.

References

Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions: a review, 2012.
URLhttps://arxiv.org/abs/1106.6251.

Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley & Sons, New York, 2nd edition, 1989. ISBN
978-0471624899.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive for op-
erator learning. Journal of Computational Physics, 496:112549, 2024. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2023.112549. URL https://www.sciencedirect.com/science/article/pii/
S50021999123006447.

Victor Bayona, Natasha Flyer, and Bengt Fornberg. On the role of polynomials in RBF-FD approximations: III.
Behavior near domain boundaries. Journal of Computational Physics, 380:378-399, 2019. doi: 10.1016/j.jcp.2018.
12.013.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144—152. ACM, 1992.

David S Broomhead and David Lowe. Multivariable functional interpolation and adaptive networks. Complex Systems,
2(3):321-355, 1988.

C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.-E. Lom-
bard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby,
and S.J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer Physics Communi-
cations, 192:205-219, 2015. ISSN 0010-4655. doi: https://doi.org/10.1016/j.cpc.2015.02.008. URL https:
//www.sciencedirect.com/science/article/pii/S0010465515000533.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.

Ricardo Cortez. The method of regularized stokeslets. SIAM Journal on Scientific Computing, 23(4):1204-1225,
2001.

Philip J. Davis and Philip Rabinowitz. Methods of Numerical Integration. Academic Press, Orlando, FL, 2nd edition,
1984. ISBN 0-12-206360-0.

Josef Dick. Higher order quasi-Monte Carlo integration for holomorphic parametric models. SIAM Journal on Nu-
merical Analysis, 54(1):595-618, 2016. doi: 10.1137/140985913.

Josef Dick, Frances Y. Kuo, and Ian H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. Acta
Numerica, 22:133-288, 2013. doi: 10.1017/S0962492913000044.

Charles Dugas, Yoshua Bengio, Francois Bélisle, Claude Nadeau, and René Garcia. Incorporating second-
order functional knowledge for better option pricing. In Advances in Neural Information Process-
ing Systems 13 (NIPS 2000), pp. 472-478, 2000. URL https://papers.nips.cc/paper/
1920-incorporating—-second-order—-functional-knowledge-for-better-option-pricing.
pdf.

11

https://arxiv.org/abs/1106.6251
https://www.sciencedirect.com/science/article/pii/S0021999123006447
https://www.sciencedirect.com/science/article/pii/S0021999123006447
https://www.sciencedirect.com/science/article/pii/S0010465515000533
https://www.sciencedirect.com/science/article/pii/S0010465515000533
https://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf
https://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf
https://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf

Under review as submission to TMLR

Gregory E. Fasshauer and Michael J. McCourt. Kernel-based Approximation Methods Using MATLAB, volume 19
of Interdisciplinary Mathematical Sciences. World Scientific, 2015. ISBN 9789814630139. URL https://
books.google.com/books?1d=Qdf JrQEACAAJ.

Bengt Fornberg and Natasha Flyer. Solving PDEs with radial basis functions. Acta Numerica, 24:215-258, 2015. doi:
10.1017/S0962492914000181.

Brian A. Freno, William A. Johnson, Brian F. Zinser, and Salvatore Campione. Symmetric triangle quadrature rules for
arbitrary functions. Computers & Mathematics with Applications, 79(10):2885-2896, May 2020. ISSN 0898-1221.
doi: 10.1016/j.camwa.2019.12.021. URL http://dx.doi.org/10.1016/j.camwa.2019.12.021.

M. N. Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD thesis, 1997.

Robert A Gingold and Joseph] Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical
stars. Monthly Notices of the Royal Astronomical Society, 181(3):375-389, 1977.

Mingxuan Han, Varun Shankar, Jeff M. Phillips, and Chenglong Ye. Locally adaptive and differentiable regression.
Journal of Machine Learning for Modeling and Computing, 4(4):103-122, 2023. ISSN 2689-3967.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song, and
Jun Zhu. GNOT: A general neural operator transformer for operator learning, 2023. URL https://arxiv.
org/abs/2302.14376l

M. Heinonen, H. Mannerstrom, J. Rousu, S. Kaski, and H. Lahdesmiki. Non-stationary Gaussian process regression
with Hamiltonian Monte Carlo. In Proceedings of the 19th International Conference on Artificial Intelligence and
Statistics (AISTATS), volume 51, pp. 732-740, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023.

Markus Holtz. Sparse Grid Quadrature in High Dimensions With Applications in Finance and Insurance. Springer,
2011. ISBN 978-3-642-16003-5.

George C Hsiao and Wolfgang L. Wendland. Boundary integral equations, volume 164. Springer, 2008.

Pengzhan Jin, Shuai Meng, and Lu Lu. MIONet: Learning multiple-input operators via tensor product. SIAM Journal
on Scientific Computing, 44(6):A3490-A3514, 2022. doi: 10.1137/22M1477751. URL https://doi.org/
10.1137/22M1477751.

George Em Karniadakis and Spencer J. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics.
Oxford University Press, 2nd edition, 2005.

Andrew Kassen, Aaron Barrett, Varun Shankar, and Aaron L. Fogelson. Immersed boundary simulations of cell-cell
interactions in whole blood. Journal of Computational Physics, 469:111499, 2022a. ISSN 0021-9991. doi: https:
//doi.org/10.1016/j.jcp.2022.111499. URL https://www.sciencedirect.com/science/article/
i11/50021999122005617.

Andrew Kassen, Varun Shankar, and Aaron L Fogelson. A fine-grained parallelization of the immersed boundary
method. The International Journal of High Performance Computing Applications, 36(4):443-458, 2022b. doi:
10.1177/10943420221083572. URL https://doi.org/10.1177/10943420221083572,

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Giinter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks. In
Advances in Neural Information Processing Systems 30 (NIPS 2017), pp. 971-980, 2017. doi: 10.48550/arXiv.1706.
02515. URL https://papers.nips.cc/paper/6698-self-normalizing—neural—-networks.
pdf.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds for Fourier
neural operators, 2021a. URL https://arxiv.org/abs/2107.07562,

12

https://books.google.com/books?id=QdfjrQEACAAJ
https://books.google.com/books?id=QdfjrQEACAAJ
http://dx.doi.org/10.1016/j.camwa.2019.12.021
https://arxiv.org/abs/2302.14376
https://arxiv.org/abs/2302.14376
https://doi.org/10.1137/22M1477751
https://doi.org/10.1137/22M1477751
https://www.sciencedirect.com/science/article/pii/S0021999122005617
https://www.sciencedirect.com/science/article/pii/S0021999122005617
https://doi.org/10.1177/10943420221083572
https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf
https://arxiv.org/abs/2107.07562

Under review as submission to TMLR

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces. CoRR, abs/2108.08481, 2021b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. arXiv preprint
arXiv:2003.03485, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, NIPS *20, Red Hook, NY, USA,
2020b. Curran Associates Inc. ISBN 9781713829546.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and
Anima Anandkumar. Fourier neural operator for parametric partial differential equations, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned
deformations for PDEs on general geometries. Journal of Machine Learning Research, 24(388):1-26, 2023. URL
http://jmlr.org/papers/v24/23-0064.html.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian, Maximilian
Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed neural operator for large-scale 3D
PDEs. Advances in Neural Information Processing Systems, 36, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqgiang Zhang, and George Em Karniadakis. Learning nonlinear operators via
DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3(3):218-229,
March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL http://dx.doi.org/10.1038/
542256-021-00302-5.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqgiang Zhang, and George Em Karni-
adakis. A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR
data. Computer Methods in Applied Mechanics and Engineering, 393:114778, April 2022. ISSN 0045-7825. doi:
10.1016/j.cma.2022.114778. URL http://dx.doi.org/10.1016/j.cma.2022.114778|

Michael McCourt, Gregory Fasshauer, and David Kozak. A nonstationary designer space-time kernel. arXiv preprint
arXiv:1812.00173, 2018.

Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions for Gaussian process regression. In
Advances in Neural Information Processing Systems 16 (NIPS 2003), pp. 273-280, 2004. Also appears as technical
report / extended version.

Gabriel Parra and Felipe Tobar. Spectral mixture kernels for multi-output gaussian processes, 2017. URL https:
//arxiv.org/abs/1709.01298\

Charles S Peskin. The immersed boundary method. Acta Numerica, 11:479-517, 2002. doi: 10.1017/
S50962492902000077.

Ahmad Peyvan, Vivek Oommen, Ameya D Jagtap, and George Em Karniadakis. RiemannONets: Interpretable neural
operators for Riemann problems. arXiv preprint arXiv:2401.08886, 2024.

Rodrigo B Platte, Lloyd N Trefethen, and Arno BJ Kuijlaars. Impossibility of fast stable approximation of analytic
functions from equispaced samples. SIAM review, 53(2):308-318, 2011.

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Springer, New York, 2nd edition, 2000.
ISBN 978-0387989592.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning. The MIT Press,
2006.

Sami Remes, Markus Heinonen, and Samuel Kaski. Neural non-stationary spectral kernel, 2018. URL https:
//arxiv.org/abs/1811.10978.

13

http://jmlr.org/papers/v24/23-0064.html
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1038/s42256-021-00302-5
http://dx.doi.org/10.1016/j.cma.2022.114778
https://arxiv.org/abs/1709.01298
https://arxiv.org/abs/1709.01298
https://arxiv.org/abs/1811.10978
https://arxiv.org/abs/1811.10978

Under review as submission to TMLR

Varun Shankar and Aaron L. Fogelson. Hyperviscosity-based stabilization for radial basis function-finite difference
(RBF-FD) discretizations of advection-diffusion equations. Journal of Computational Physics, 372:616-639, 2018.
doi: 10.1016/j.jcp.2018.06.042.

Varun Shankar and Sarah D Olson. Radial basis function (RBF)-based parametric models for closed and open curves
within the method of regularized stokeslets. International Journal for Numerical Methods in Fluids, 79(6):269-289,
2015.

Varun Shankar, Grady B. Wright, Robert M. Kirby, and Aaron L. Fogelson. A radial basis function (RBF)-finite
difference (FD) method for diffusion and reaction-diffusion equations on surfaces. Journal of Scientific Computing,
60(2):342-368, 2014. doi: 10.1007/s10915-013-9796-7.

Ramansh Sharma and Varun Shankar. Accelerated training of physics-informed neural networks (PINNs) using mesh-
less discretizations. In Advances in Neural Information Processing Systems, volume 35, pp. 1034-1046. Curran As-
sociates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
0764db1151b936acab59249e2c1386101-Paper-Conference.pdf.

Ramansh Sharma and Varun Shankar. Ensemble and mixture-of-experts DeepONets for operator learning. Transac-
tions on Machine Learning Research, 2025. ISSN 2835-8856. URL https://openreview.net/forum?
1d=MGdydNfWzQl

Kirill Solodskikh, Azim Kurbanov, Ruslan Aydarkhanov, Irina Zhelavskaya, Yury Parfenov, Dehua Song, and Stama-
tios Lefkimmiatis. Integral neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 16113-16122, 2023.

Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis. Springer, New York, 3rd edition, 2002. ISBN
978-0387954521.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk Pfliiger, and
Mathias Niepert. PDEBENCH: An extensive benchmark for scientific machine learning, 2024. URL https:
//arxiv.org/abs/2210.07182.

Lloyd N Trefethen and JAC Weideman. The exponentially convergent trapezoidal rule. SIAM review, 56(3):385-458,
2014.

Greg von Winckel. Quadrature rules for spherical volume integrals, 2025.
URL https://www.mathworks.com/matlabcentral/fileexchange/
10750-gquadrature-rules—for—-spherical-volume—integrals. MATLAB Central File Ex-
change. Retrieved September 23, 2025.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal de-
gree. Advances in Computational Mathematics, 4:389-396, 1995.

Holger Wendland. Scattered Data Approximation. Cambridge University Press, 2005. ISBN 9780521843355.
URL https://www.cambridge.org/core/books/scattered-data—approximation/
3A1DE17B4F64DFDEE0S530100007F089CL

Grady B. Wright and Bengt Fornberg. Scattered node compact finite difference-type formulas generated from radial
basis functions. Journal of Computational Physics, 212(1):99-123, 2006. doi: 10.1016/j.jcp.2005.06.019.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast transformer solver
for PDEs on general geometries, 2024. URL https://arxiv.org/abs/2402.02366,

Zecheng Zhang, Leung Wing Tat, and Hayden Schaeffer. BelNet: Basis enhanced learning, a mesh-free neural opera-
tor. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2276):20230043,
2023. doi: 10.1098/rspa.2023.0043. URL https://royalsocietypublishing.org/doi/abs/10.
1098/rspa.2023.0043.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://openreview.net/forum?id=MGdydNfWzQ
https://openreview.net/forum?id=MGdydNfWzQ
https://arxiv.org/abs/2210.07182
https://arxiv.org/abs/2210.07182
https://www.mathworks.com/matlabcentral/fileexchange/10750-quadrature-rules-for-spherical-volume-integrals
https://www.mathworks.com/matlabcentral/fileexchange/10750-quadrature-rules-for-spherical-volume-integrals
https://www.cambridge.org/core/books/scattered-data-approximation/3A1DE17B4F64DFDEE0530100007F089C
https://www.cambridge.org/core/books/scattered-data-approximation/3A1DE17B4F64DFDEE0530100007F089C
https://arxiv.org/abs/2402.02366
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0043
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0043

Under review as submission to TMLR

A Appendix

A.1 Architectural and Computational Details of KNO

A.1.1 Cross-channel Affine Transformations

Similar to other neural operators |Li et al.| (2021), each layer of KNO is augmented with a cross-channel affine trans-
formation (commonly referred to as a "pointwise convolution"). This operation, implemented as a dense layer, adds
its output to the result of the integral operator. Formally, the integral operators act on and output vectors of function
evaluations on X¢ = {y] }icno):

TG, = Wod, + (bo)1 i, + (Z0d,) |, L€ [L]. (17)

Q
Here, §, € RP*Na represents evaluations of the function g, : Q — R? on X, and W, € RP*P and b, € RP
are trainable weights. Note that we slightly abuse notation in (Z} g,) | xg» 3 the integral operator acts on the vector
g, evaluated at quadrature points rather than a function. The final discretized integral operator outputs values on the
training grid X, which are used to evaluate the loss.

A.1.2 Lifting and Projection Operators

As with other neural operators, KNO employs standard multilayer perceptrons (MLPs) to parameterize the lifting and
projection operators £ and P, which act on discretized inputs. The lifting operator Lx.. : RN? — RP maps gridded
function values to channel vectors in R? using an MLP. Similarly, the projection operator P combines all p channels
of the hidden layers to produce a single approximation of the output function(s). Specfically, the projection operator
consists of two consecutive dense layers of width p (A : RP — RP) with nonlinear activation functions, followed by a
final dense layer of width d, (A : RP — R9) without an activation function. In all cases, we use the GeLU activation
function Hendrycks & Gimpel| (2023).

A.1.3 Details on Quadrature Rules

Table 7: The number of quadrature points we used for each problem.

Problem Burgers’ Beijing-Air Darcy (PWC) Darcy (triangle) NS-Pipe NS Mach 1.0 React.-Diff.
Nq 128 168 29 147 129 64 729

For problems on regular grids, we used dimension-wise factorizable kernels with a univariate trapezoidal quadrature
rule to perform integration directly on the grid, as reflected in the main results in Table[2} For the Reaction-Diffusion
problem, we employed a spherical volume quadrature rule von Winckel| (2025)), visualized in Figure[3] For the Darcy
(triangle) problem, we used the quadrature rule from [Freno et al.|(2020), described in the main article.

In Table [/} we report the number of quadrature nodes used for each problem. While adaptive, problem-specific
quadrature rules could further optimize performance and reduce X, we leave such explorations for future work.

Spherical Volume Quadrature Rule

10 05 00 05 10
Iy

Figure 3: The quadrature rule used for for the 3D reaction-diffusion problem.

15

Under review as submission to TMLR

A.1.4 Complexity of Computing Integrals via Quadrature

We now discuss the complexity of evaluating the kernel integrals using quadrature and contrast this with the FNO.
First, we note that the classic FNO utilizes the FFT and the same training and quadrature grids; thus, given a training
grid with N grid points, the FFT can be computed in O(Nr log N7). In the case of the KNO, we have three distinct
scenarios:

1. Regular grids: On regular grids, the KNO uses a dimension-wise factorization in conjunction with univariate
composite (local) quadrature directly on the training grid. Consequently, the quadrature cost is linear in the
number of grid points, i.e., ©(Nr) even in high dimensions (high d,). Thus, at least on regular grids, the
KNO scales to high dimensions without being afflicted by the curse of dimensionality.

2. Triangle meshes: Given n, quadrature points per triangle and N, triangles in total, the cost on the triangle
mesh is O(n,Nq). This cost scales exponentially for simplicial meshes in higher dimensions, though this
exponential scaling can be combated with sparse grid methods |Holtz (2011) and Monte Carlo methods Dick:
et al.| (2013).

3. Point clouds: For point clouds, one typically estimates the cost based directly on the total number of quadra-
ture points, since global quadrature is typically used. This cost also scales exponentially with dimension
since exponentially more quadrature points are needed to fill hypervolumes in higher dimensions, but can be
combated similarly with sparse grids and Monte Carlo (or quasi-Monte Carlo) methods.

A.1.5 Zero-shot Super-resolution

K(z,y) h(z,y) h'(z,y)

i -IL AL AN

(b) | . . 0.0

Figure 4: Illustration of zero-shot super-resolution. The KNO was trained on the Darcy (PWC) dataset using a 29 x 29
grid (row a) and evaluated at a resolution of 211 x 211 (row b). The permeability field input (left), actual pressure
field (middle), and predicted pressure field (right) are shown.

The KNO, like the FNO, can achieve zero-shot super-resolution due to its function-space operations at every layer.
This capability allows KNO to produce operator solutions at arbitrary resolutions without requiring retraining. Figure
[demonstrates this property, where KNO was trained on a 29 x 29 grid and successfully evaluated on a much finer
211 x 211 grid.

A.2 Hyperparameter Tuning and Training

In this section, we outline the hyperparameter tuning and training protocols for competing models, including FNO,
Geo-FNO, and GNOT, to ensure a fair and consistent comparison with KNO.

A.2.1 KNO

For the KNO, all trainable parameters associated with kernels were initialized by sampling from A (1,0.01), followed
by a softplus transform to ensure that all kernel shape parameters remained positive. The number of Gaussians in the
mixture for all GSM/NS-GSM kernels was fixed at Q = 2. For nonstationary kernels, the shallow SELU networks
used had a width of 8.

For hyperparameters that were tuned, we performed a grid search using a random seed different from the one used for
collecting the final results. The hyperparameters included:

* Number of integration layers: searched over {2, 3,4}.

* Number of channels: searched over {8, 16, 32,64, 128, 256}.

16

Under review as submission to TMLR

* Type of integration kernel: details provided in Appendix

* Type of interpolation kernel: searched between an anisotropic Gaussian kernel and an isotropic Gaussian
kernel, with better results observed using the anisotropic kernel.

* Number of quadrature nodes: tuned based on the specific problem, with details provided in Appendix
A 13|

A.2.2 Alternative Operator Models

We performed a grid search to identify the best-performing hyperparameters for each alternate model, and the details
are provided below.

FN(ﬂ The hyperparameters included the number of modes, varied over {8, 10,12, 16,20}, the number of channels
for channel lifting, varied over {8, 16, 32,64, 128,256}, and the number of Fourier layers, varied over {2, 3,4}. We
used GELU activation, which is the default choice in the official library.

Geo-FN(ﬂ For this model, we searched over the one-dimensional resolution of the uniform tensor-product grid that
is mapped to (denoted s in their codebase), with the maximum number of modes set for each case. We then searched
for the optimal number of modes. For the Darcy Triangular problem, s was varied over {15, 20, 25, 30,35} and the
modes over {8, 10, 12, 16}. For the Diffusion-Reaction problem, s was varied over {8, 10, 12, 14} and the modes over
{4,6,8}.

GNO'Iﬂ The hyperparameters included the number of attention layers, varied over {2, 3,4, 5}, the dimensions of the
embeddings, varied over {8, 16, 32,64, 128,256}, and the inclusion of mixture-of-expert-based gating, specified as
either {yes, no}. We used GELU activation, which is the default choice in the official library.

’Il'ansolvelﬂ The hyperparameters included the number of attention layers, varied over {4, 6,8}, the dimensions of
the embeddings, varied over {32, 64, 128}, the number of heads, varied over {4, 8}, and the number of slices, varied
over {32,64}. We used GELU activation, which is the default choice in the official library.

KM: We report the best result on a given dataset from the choice of Matern Kernels with degree of freedom v =
{1/2,3/2,5/2,13/2} and a Gaussian kernel. In each case the scale parameter was manually tuned.

The hyperparameters included the number of attention layers, varied over {4, 6, 8}, the dimensions of the embeddings,
varied over {32, 64, 128}, and the number of heads, varied over {4, 8}. We used GELU activation, which is the default
choice in the official library.

For the NS-Pipe Flow dataset, we used the result from Wu et al.[(2024) for GNOT, which was collected under the same
hyperparameter search we employed and Transolver, which reports itself. For FNO, we cite the authors’ result from
Li et al.| (2023). To ensure fairness, all models (including KNO) for this dataset were trained for 500 epochs. For all
other datasets, FNO and GNOT were trained for 10, 000 epochs with batch sizes of 100 to ensure convergence. Initial
learning rates were selected from {107°,5 x 107°,107%,4 x 1073,1073}. All models were trained on the NCSA
Delta GPU cluste using NVIDIA A100 and A40 GPUs.

A.3 Descriptions of Benchmark Problems Defined on Regular Domains
In this section, we describe problems on regular domains in greater detail (where not sufficiently described in the main
article).

A.3.1 1D Burgers’ Equation
We first considered Burgers’ equation in one dimension with periodic boundary conditions:

ou Ou 0%u

— — =V, € (0,1), te(0,1),

g o Vg T 10D

with the viscosity coefficient fixed to v = 0.1. Specifically, we learned the mapping from the initial condition
u(x,0) = up(x) to the solution u(x,t) att = 1, i.e., G : ug — u(-,1). The input functions uy were generated

4https://github.com/neuraloperator/neuraloperator
Shttps://github.com/neuraloperator/Geo-FNO
Shttps://github.com/HaoZhongkai/GNOT
"Thttps://github.com/thuml/Transolver
Shttps://www.ncsa.illinois.edu/research/project-highlights/delta/

17

https://github.com/neuraloperator/neuraloperator
https://github.com/neuraloperator/Geo-FNO
https://github.com/HaoZhongkai/GNOT
https://github.com/thuml/Transolver
https://www.ncsa.illinois.edu/research/project-highlights/delta/

Under review as submission to TMLR

by sampling ug ~ p, where . = N(0,625(—A + 251)~2) with periodic boundary conditions, and the Laplacian A
was numerically approximated on X . The solution was generated as described in (Li et al., 2021, Appendix A.3.1).
The full spatial resolution of this dataset was 8192, but the models were trained and evaluated on input-output function
pairs both defined on the same downsampled 128 grid (as were the errors). 1000 examples were used for training and
200 for testing.

A.3.2 1D Beijing Air problem

Input Concentration (week 1) Output Concentration (week 2)
100 .“ ® true i
= A ~,1f" 2500(+ pred]
R o X AR s W‘
§ 0 _Q o MNv * w- (o Lets® %
= 0 50 100 150 0 50 100 150
3 200 v v
g 2000
Qo
. \ -*" "’"' ’\)V . %a K Wm
100 150 50 150

time (hours)

Figure 5: An input pollutant concentration (left) and the corresponding ground truth and KNO predictions of output
pollutant concentration (right) for the Beijing-Air problem.

This problem was fully described in the main article. However, here we also present Figure [5} which shows the KNO
predictions as compared to the ground truth on the Beijing-Air dataset. Despite the noise in the dataset, the KNO gives
the best performing result of the neural operators tested.

A.3.3 2D Darcy Flow (PWC)
We used KNOs to learn an operator G : K +— h associated with 2D Darcy flow

-V (K(x,y)Vh(a:,y)) = f(x,y), (m,y) € Q.

on the 2 = [0, 1]2. The permeability field was generated via K = (), where o ~ N(0, (—A + 91)72), and 1/ is
a function that pointwise converts all non-negative values to 12 and all negative values to 3. Accordingly we refered
to this problem as “Darcy (PWC)”. Both problems used 1000 training functions and 200 test functions. The Darcy
(PWC) training functions were computed on a 4212 grid and subsampled to a 292 grid [Lu et al.|{(2022).

A.3.4 3D Compressible Navier-Stokes (NS) Equations.
The KNO was also tested on a problem involving the 3D compressible NS equations:

athF V- (pV) = 07
p(Orv +v-Vv) = =Vp+nAv+(C+1/3)V(V-v),

2 2
at[e+”;}]+v[<e+p+p;’)v—v~a’]:o (18)

with periodic boundary conditions on the unit hypercube [0, 1]3. Here p is the mass density, v is the velocity, p is
the gas pressure, ¢ = p/(I" — 1) is the internal energy, I' = 5/3, ¢’ is the viscous stress tensor, and 7, { are the
shear and bulk viscosity, respectively. The behavior of the fluid is affected by the Mach number M = |v|/cs, where
¢s = v/I'p/p. We considered the high Mach number case (M = 1.0), where the fluid behavior is complex and highly
compressible. The input and output functions were discretized on a uniform grid of size 64 x 64 x 64. This data was
made available through PDEBench [Takamoto et al.|(2024)), which offers many widely used benchmarks for scientific
machine learning.

A.4 Descriptions of Benchmark Problems Defined on Irregular Domains

In this section, we describe problems on irregular domains in greater detail (where not sufficiently described in the
main article).

A.4.1 Darcy (triangular)

We also examined a Darcy flow problem where the input and output functions were discretized on an irregular spatial
domain. Specifically, as in |Lu et al.| (2022)), we learned the mapping from the Dirichlet boundary condition to the

18

Under review as submission to TMLR

pressure field over the entire domain, i.e., the operator G : h(z,y)|,q + h(x,y). Here K(z,y) = 0.1 and f = —1.

The input functions h(x,y)|,, were generated as follows. First, we generated h(z) ~ GP(0,K(z,2')), K(z,z2') =
N2 ~

exp|— (1;;)], where I = 0.2 and z, 2’ € [0, 1]. We then simply evaluated h(z) at the z-coordinates of the boundary

points of each unstructured mesh to obtain h(z, y) ‘ oo The Matlab PDE Toolbox was used both to generate unstruc-

tured meshes and numerical solutions [Lu et al.| (2022)). This problem utilized an 861 vertex unstructured mesh with

120 points lying on the boundary; see Lu et al.|(2022) with 1900 training examples and 100 test examples.

A.4.2 3D Reaction-Variable-Coefficient-Diffusion

Finally, we investigated a 3D problem reaction-diffusion problem in the unit ball, (i.e., the interior of the unit sphere)
where a chemical with concentration c(y, t) is governed by:

Oc
5; = kion (R — ¢) Camp — kot ¢+ V - (K(y)Ve), y € Q, t €[0,0.5],
where y = (y1,%2,y3) and K(y) = 0 on 990. Here, R = 2.0 throttles the reaction, and the k,, and kg are

discontinuous reaction constants that introduce a sharp solution gradient at y; = 1.0:

- 27 Y1 < 107 R 02, Y1 < 107
o 0, otherwise, o 0, otherwise.

The diffusion coefficient is also a spatially varying function with a steep gradient given by:

C

K(y):B+m((

A — 3)tanh(8z — 5) — (A — 15) tanh(8z + 5) + A tanh(A)),

where A = 9, B = 0.0215, and C' = 0.005. camp = (1 4 cos(2my;) cos(27ys) sin(27ys))el =™ is a background
source of chemical accessible for reaction. We set the initial condition to be ¢(y, 0) ~ ¢(0, 1), and learned the solution
operator G : ¢(y,0) — ¢(y,0.5). The PDE was solved on 4325 collocation points using a 4th-order accurate RBF-FD
solver Shankar & Fogelson| (2018) to generate 1000/200 train and test input/output function pairs, respectively.

A.5 Results including standard errors

Table 8: Percent ¢5 Relative Errors and Standard Errors.

Problem FNO GNOT Transolver KM KNO
Burgers v = 0.1 0.276 + 0.004 0.89 +0.014 1.077 £0.101 2.831 0.574 + 0.011
Beijing-Air 55.33 £ 0.18 40.3 +£0.21 41.68 +0.332 50.982 24.941 + 0.161
Darcy (PWC) 1.79 4+ 0.025 2.58 £0.034 1.989 £ 0.0278 3.064 1.512 +£0.012
Darcy (triangle) 0.043 +0.003 0.111 £ 0.013 - 0.033 0.045 + 0.002
NS-Pipe 0.67 0.47 +£0.02 0.33 +0.02 2.742 0.588 £ 0.009
NS Mach 1.0 58.05 +4.77 81.5+2.18 48.127 +0.483 54.150 52.602 £ 0.142
React.-Diff. 6.68e-3 £ 2.77e-4 4.47e-3 +9.45e-5 &.10e-3 +1.89¢-5 8.75e-05 9.20e-4 £+ 1.02e-4

Table[|replicates Table[2] but also shows standard errors for each result. As mentioned previously, the Darcy (triangle)
result is notable in that the (Geo)FNO and KNO results match almost exactly.
A.6 Dataset Summary

Table 0] summarizes important features of the datasets used in this work. “#Mesh” indicates the number of sample
locations. For the Darcy (triangle) problem, we map from 120 boundary vertices to 861 interior and boundary vertices
in total. The “#Dataset” column indicates the number of training and test functions.

A.7 Ablation Studies

In this section, we present experiments that analyze the sensitivity of the KNO to various hyperparameter choices. All
results are reported as the percent /5 relative error on generalization, averaged over four random model initializations.

19

Under review as submission to TMLR

Table 9: Training Dataset Summary.

Geometry Benchmarks #Dim #Mesh Input Output #Dataset
Regular Grid Beijing-Air 1D 168 SO2, CO, PM2.5, PM10 CO conc. (1000, 200)
Burgers 1D 168 Init. velocity Final velocity (5000, 1000)
Darcy 2D 841 Permeability Pressure (1000, 200)
Navier-Stokes Mach 1.0 3D 262,144 Init. velocity Final velocity (90,10)
Structured Mesh Pipe 2D 16,641 Structure Final velocity (1000, 200)
Darcy (triangle) 2D 120/861 Boundary Condition Pressure (1900, 100)
Point Cloud Reaction-Diffusion 3D 4,325 Init. conc. Final conc. (1000, 200)

Table 10: Percent 5 relative errors (averaged over four random seeds) for different kernels, with the best results highlighted in
bold.

Problem Gaussian ~ Gibbs GSM NS-GSM
Burgers 1.061 1.169 0.783 0.574
Beijing-Air 27.748 31.477 24.941 26.540
Darcy (PWC) 2.085 2.385 1.792 1.549
Darcy (triangle) 0.264 0.271 0.102 0.045
NS-Pipe 0.749 0.697 0.719 0.588

A.7.1 Impact of Kernel Properties on Performance

In this section, we describe an ablation study over integration kernels with the goal of isolating the effect of non-
stationarity and evaluating the importance of the number of trainable parameters. We compare the one-parameter
Gaussian kernel, the Gibbs kernel (i.e., nonstationary Gaussian kernels), Gaussian Spectral Mixture (GSM) kernel,
and the Nonstationary-Gaussian Spectral Mixture (NS-GSM) kernel, as shown in Table [I0] The trainable parameter
counts for the Gaussian, Gibbs, GSM, and NS-GSM kernels used in this 1D example were 1, 25, 6, and 70, respectively,
showcasing a spectrum of increasing expressivity (at least in theory).

Surprisingly, the KNO with just the one-parameter Gaussian kernel delivers strong performance, outperforming both
GNOT and FNO on the challenging Beijing-Air problem (~ 28% relative error compared to ~ 40% for GNOT
and ~ 55% for FNO). It also surpassed GNOT and Transolver on the Darcy (PWC) problem (1.79% relative error
compared to 2.58%) and matched the FNO’s result with the GSM kernel. Additionally, the KNO with the GSM
kernel demonstrated superior performance over the GNOT and Transolver on the Burgers problem (0.783 vs. 0.89)
and 1.077) respectively, and the GNOT on the Darcy (triangle) problem (0.10 vs. 0.11), while also matching FNO’s
result on the Darcy problem. Clearly, Table[I0]shows that increasing kernel expressivity leads to improved results, but
primarily as the problem itself becomes more challenging.

Table 11: Percent /5 relative errors (averaged over four random seeds) for different kernels, with the best results highlighted in
bold.

Problem Gaussian Matern C> Matern Cs Wendland C> Wendland Csg
Burgers 1.061 1.427 1.489 1.197 1.168
Beijing-Air 27.748 35.726 37.0170 24.167 24.170
Darcy (PWC) 2.085 3.560 3.666 2.138 2.143

In addition to testing kernels with global support and infinite smoothness, we also explored the use of compactly-
supported kernels and kernels of finite smoothness. The Wendland Kernel Wendland| (1995) possesses both these
features, while the Matern kernel only has the latter. The results are presented in table[TT] In all cases, the compactly-
supported Wendland Kernels outperformed the Matern kernels and performs on-par with Gaussian kernels. In the
Beijing-Air problem, the Wendland kernel outperforms the Gaussian kernel; in fact it outperforms all other models,
suggesting sparsity is a desirable trait, which can be leveraged to achieve speedups via sparse-matrix operations (when
these are supported by the underlying libraries). Otherwise, the Gaussian kernel tends to perform better overall as
reflected by its performance on the Burgers and Darcy (PWC) problem.

20

Under review as submission to TMLR

A.7.2 Impact of Matrix-valued Kernel Structure on Performance

In this section, we experiment with a symmetric banded matrix-valued kernel on the Darcy (PWC) problem and the
Burgers’ problem, incorporating a hyperparameter k that reflects an additional number of non-zero off diagonal entries
incorporated into the MVK (mirrored across the matrix), each with a unique set of kernel parameters. Thus if £ is
equal to the channel dimension p, the MVK is fully dense. These KNOs tended to be slightly more expressive with
potential for further improvement given more careful tuning of the optimization procedure. From Table [I2] we can
glean that a denser MVK is more helpful with respect to errors when the channel dimension is small than it is when
the channel dimension is large.

We also trained models with the The Linear Model of Coregionalization (equation 20, section 4.2.1) |Alvarez et al.

(2012) and the Multi-output Spectral-Mixture kernel |Parra & Tobar (2017), but the results were not competitive and
so we omit them here.

Table 12: Relative errors for different kernels across channel dimensions and k values.

Problem Channels k=0 k=1 k=2 k=4 k=8 k=C
Burgers* 16 1.247 1.101 1.068 0939 0.816 0.823
32 0.718 0.654 0.595 0.550 0.504 0.509
64 0.574 0.546 0555 0.563 0.527 2.161
Darcy (PWC) 16 1.595 1.573 1496 1466 1462 1.611
32 1483 1.445 1455 1464 1.625 4.572
64 1.689 1.616 1.614 1.632 1.649 1.724

A.7.3 Impact of Model Size on Performance

Table 13: Ablation study of the KNO on the number of integration layers (depth) and channel dimension for the Darcy (PWC)
problem. The base model uses 4 integration layers, 64 channels, and the NS-GSM kernel. The best results are highlighted in bold.

(a) Depth L: the number of layers.

Depth 2 3 4 5 6
%rel bo 2380 1.825 1.549 1.534 1.569

(b) The number of latent channels C'.

Channels 8 16 32 64 128 256
% rel £y 3.072 2230 1.643 1.549 1.868 2.282

This section examines the effect of channel dimension and the number of integration layers on KNO’s performance,
as shown in Tables[I3]and[T4] The goal of this ablation study was to understand how increasing model size influenced
scalability and accuracy, and to identify optimal configurations for different datasets. Experiments were conducted on
the Darcy (PWC) dataset and the Beijing-Air dataset to analyze these effects. In general, we observed diminishing
returns in performance improvements beyond a certain model size. For the Darcy (PWC) dataset, increasing the
channel dimension beyond 64 and the number of integration layers beyond 5 did not improve accuracy. In contrast, for
the Beijing-Air dataset, scaling the model size consistently improved performance, with the best results achieved at a
channel dimension of 512 and 6 integration layers. This difference likely reflects the higher complexity and variability
of the Beijing-Air dataset compared to Darcy (PWC).

These findings suggest that while larger models may be beneficial for complex datasets, careful tuning of model size
is necessary to avoid over-parameterization and diminishing returns, particularly for simpler datasets.

A.7.4 Impact of Integration Layers and Pointwise Convolution

This section examines the role of integration layers and pointwise convolution in the KNO’s performance, as shown
in Table[T5] The goal of this ablation study is to evaluate the individual contributions of these components to KNO’s
accuracy and identify their relative importance for different datasets. Experiments were conducted on the Darcy (PWC)
and NS-Pipe datasets to analyze how removing these components affects accuracy.

21

Under review as submission to TMLR

Table 14: Ablation study of KNO on the number of integration layers (depth) and channel dimension for the Beijing-Air problem.
The base model uses 4 integration layers, 256 channels, and the GSM kernel. The best results are highlighted in bold.

(a) Depth L: the number of layers.

Depth 2 3 4 5 6
%rel bo 2893 2494 22115 18.37 15.52

(b) The number of latent channels C'.

Channels 8 16 32 64 128 256 512
%rel b 5823 5493 4959 41.89 32.16 2215 13.67

Table 15: KNO ablation study on removing the pointwise convolution or integration layer, with a fixed architecture otherwise.
Each number reported represents the percent /2 relative error.

Problem No Pointwise Conv ~ No integral ~ Full Model
Darcy (PWC) 1.915 17.058 1.512
NS-Pipe 0.792 14.870 0.588

The results clearly demonstrate the necessity of integration kernels, as removing the integration layer reduces model
accuracy by an order of magnitude. For example, on the Darcy (PWC) dataset, removing the integration layer increased
the relative error from 1.512% to 17.058%, while removing the pointwise convolution resulted in a much smaller
increase to 1.915%. Similar trends were observed for the NS-Pipe dataset, where removing the integration layer again
caused over a tenfold increase in error. These findings suggest that integration layers are critical for capturing complex
operator mappings, while pointwise convolution provides only marginal additional benefits.

A.7.5 Impact of Quadrature Type and Resolution

Table 16: Experiments analyzing the impact of the number of quadrature nodes (Nq) on accuracy. The best results are highlighted
in bold.

(a) Effect of increasing resolution of the Gauss-Legendre quadrature rule on the 1D Burgers’ problem. The base model uses a
NS-GSM kernel with 4 integration layers and a channel dimension of 64.

Nq 8 16 32 64 96 128 196 256
%rel bo 2620 25.00 6.88 125 0.651 0.540 0.671 0.635

(b) Effect of increasing quadrature resolution on the 2D Darcy (triangle) problem. The base model uses a GSM kernel with 4
integration layers and a channel dimension of 64.

Nq 3 12 27 48 75 108 149 192
%rel b 3482 7596 1.528 0551 0.239 0.131 0.102 0.111

This section examines the relationship between quadrature type, resolution, and accuracy, as shown in Table[TI6] The
goal of this ablation study is to evaluate how different quadrature rules and resolutions affect the KNO’s accuracy and
computational efficiency, and to identify optimal configurations for specific datasets. Experiments were conducted
on the Darcy (triangle) and Burgers’ datasets to analyze these effects. For the Darcy (triangle) problem, we used a
quadrature rule from |Freno et al.|(2020) (described in the main article), while for the Burgers’ problem, we employed
a Gauss-Legendre rule. For the latter, it is worth noting that our main results in Table 2|used a trapezoidal quadrature
rule, which allowed us to omit interpolation and perform integration directly on the grid where the data lay. In this
study, however, we used a GSM interpolant to project the functions onto the Gauss-Legendre nodes. For the same
number of quadrature nodes, the Gauss-Legendre rule slightly outperformed the trapezoidal rule, achieving 0.540%
relative error compared to 0.588%. The Darcy (triangle) problem also shows improvements when increasing the
accuracy of the quadrature rule. However, interestingly, both sets of results show that while increasing the number of

22

Under review as submission to TMLR

quadrature points initially improves accuracy, using too many points eventually leads to a degradation in performance.
These findings suggest that both the quadrature type and the number of quadrature points should be carefully tailored
to the specific requirements of each problem such as smoothness, dimension, and geometry. As mentioned in the
main article, using lower-order quadrature rules can introduce numerical damping, which can be beneficial or harmful
depending on the smoothness of the integrands.

A.7.6 Impact of Dimension-wise Factorizations

Table 17: Comparison of training time (using mini-batches of size 10) and performance between dimension-wise factorized kernels
and non-factorized kernels.

Problem Dimension-wise Full

Time % rel Lo Time % rel Lo

Darcy (PWC) 4.56e-3 1.549 4.88e-2 1.535

This section examines the effect of dimension-wise factorization on the KNO’s accuracy and training speed, as shown
in Table[I7} The goal of this ablation study is to evaluate the trade-offs between computational efficiency and accuracy
when using dimension-wise factorization compared to full n-dimensional quadrature. Dimension-wise factorization
allows the use of univariate quadrature rules, whereas models without factorization require n-dimensional quadrature
rules. Experiments were conducted on the 2D Darcy (PWC) problem to analyze these differences.

The results indicate that while the model with dimension-wise factorization experiences only a slight degradation in
accuracy, it is an order of magnitude faster to train compared to the non-factorized model. For example, the factorized
model achieved a relative error of 1.549%, compared to 1.535% for the non-factorized (full) model, while reducing
training time from 4.88 x 10~2 seconds per epoch to 4.56 x 10~3 seconds per epoch. These findings highlight the
trade-off between computational efficiency and accuracy, suggesting that dimension-wise factorization is particularly
advantageous for problems where training speed is a priority.

Interestingly, while the 2D Darcy (PWC) problem showed only a slight accuracy degradation with dimension-wise
factorization, similar experiments on higher-dimensional problems may reveal stronger dependencies on factorization.
Future work could explore hybrid approaches that balance factorization with accuracy preservation for more complex
problems.

B Universal Approximation

B.1 Infinite-Dimensional Case

The following is a restatement and proof of Theorem 3.1}

Theorem Let Q C R be compact, and let A C (L*(4;R), || - || 12(q)) be compact. Let G : A — (L*(;R), || -
| L2(0)) be a continuous operator. For any € > 0, there exists a KNO H : A — L*(Q;R) of the form @) with

continuous positive-definite kernels K i(f,)jz such that

sup [H[f] = Glfll L2y <€ (19)
feA

Proof. The structure of this proof is based on the approach of |Kovachki et al.|(2021a)). However, we exclusively use
diagonal kernels and do not assume that b; depends on 2. We use the L? inner product, and all LP norms are over)
unless otherwise noted.

Let € > 0 be arbitrary. Let K (z,y) be an arbitrary continuous positive-definite kernel on £2, i.e.

ALJ”(%)M%M@) dzdy >0 forany f,g € L*(). (20)

By Mercer’s theorem, there exist {\; }reny C Ry and {1y, }ren C L2(£2) such that

| By = hanta), Kaw) = 3 Mnle)into)

keN

23

Under review as submission to TMLR

and {1y, } ren forms an orthonormal basis of L?(§2) with respect to || - || 2. Now let
Gn=TnoGo TN

where for any f € A,
Talfl = D (f) vn @1

n€([N]

i.e. Ty is the projection onto the first NV Mercer eigenfunctions. Note that forany N € N, f € A,and H : A —
L?(2;R) we have
171 =Gz < IHIf) = Gnlflllez + 1198 [F] = Gz -

Since G is continuous, 7y is a projector, and A is compact, then there exists N € N such that

sup [Gn[f] = Glf]llLz < €/2,

feA

and all that remains is to construct H such that

sup [H[f] = Gn[flllee < €/2. (22)
feA

We define

By : Span{wn}nG[N] - RNa (BN[f])n = <fa wn>7 Bgfl [c}(:v) = Z ann(w) (23)

née[N]

along with @V ‘RY 5 RY as N
Gy = By oGy o By,

which gives

(By' oG o By)Lf] = Gnlf] (24)

for each f € A. All that remains is to approximate By and B]}l with nonlinear operators and to approximate G N asa
sequence of integral operators
(Ig)Looo~~~ooo(Ié’)0. (25)

as in 2)-(3). We will address G here and consider By and B! in the following two lemmas.

Approximation of G N: G N is a continuous finite-dimensional map, and since A is compact, then the domain
Bn(TnA) = D C RN of Gy is also compact, where the operators apply elementwise on sets. Therefore, by universal
approximation theorem for multilayer perceptrons (MLPs), for any € > 0 there exists an MLP G such that

sup [[G() - G (@) g (mvy < €. (26)
TE
‘We can write B

Gn(@) = WHo(W Oz 4 b®) 27)

for some p € N, W ¢ RP*N 1) ¢ RN*P and b(®) € RP. Since K(z,y) = 0 satisfies (20), then defines
a sequence of integral operators (23) with L = 1, p = N, and K O =g =9 NxN Where we interpret the inputs
and outputs of (Z¥)o and (Z%); as constant functions g :Q — D, g™ :Q — D' This interpretation is justified in

light of Lemmas[B.T|and [B.2}

Construction of #: Select P, QA ~, and £ as follows.

1. Choose P from Lemma corresponding to an approximation accuracy of /4. Since P is continuous, then
there exists 6.") such that |P[z] — Ply]|l12 < ¢/8 whenever || — y||s~ < 6.

2. Choose Gy corresponding to an approximation accuracy of € = 5§1). Since G is continuous, there exists
5% such that |Gy [z] — G [y]|le~ < 6 whenever || — y|l¢~ < 6.

24

Under review as submission to TMLR

3. Choose L from Lemmacorresponding to an approximation accuracy of (5£2)

Now set B
H=PoGnoL. (28)

Let f € A be arbitrary. Then the triangle inequality gives

IH[f] = Gnflllz < IPGNL[f] = PGNBN[f]IlL2 @
+[IPGn (By(f]) — PGn (Bu[f))] 2 (In
+ |P(GNBN[f]) - BEI@NBNU])HB . (11I)

We bound (I) by noting that the uniform approximation in Lemma [B-T] gives, for any z € Q,
ILLf1(@) = Ba[f1(@)[le vy < 62,
so by continuity, (I) < ¢/8. In (I), for any ¢ € BNy Ty (A),
G () = G (€) | gy < 0L,
so (I) < /8. Lastly, we have (IIT) < €/4 by construction. The result (T9) immediately follows. O]

Lemma B.1. Let N € N be arbitrary. Let A C (L*(€;R), | - ||12(2)) be compact. For any € > 0, there exists a
continuous operator L : A — L%*(Q; RY) such that

sup |IL[f](x) — BN[f](z) e @mr) < €.
feEA zeQ

Proof. Let A C (L*(;R), || - ||£2(q2)) be compact. Let N € N and € > 0 be arbitrary. Let K (x,y) be a continuous
positive-definite kernel on €2 with eigenfunctions ,,(x). Observe that for any f € A,

/Q U @) () dy = (Fy) u(2), mEN.

Note that the kernel K, (z, y) = 1, ()b, (y) is positive-definite. By defining K (z,y) = (K, (z, Y))ne[n]» We have

/K T y dy— (<f>¢n> ¢n)n€[N]

where 70 : 4 — AN Now define the affine operator Z()) : AN — A by Z() [f1(z) = 1n(f(z)), which gives
@V oZNf@) = Y {f.9n) tu(x) = Tv[f)(z)
n€[N]
forall f € A.

Next, consider the mapping & : R*! — RN+ defined as h(a,z) = (a,11(z), ..., ¥n(x)). We wish to restrict A to
a compact domain and apply the universal approximation theorem for MLPs. To do that, we need to bound

sup || 7w [f1l L -
feA

Since K (z,y) is continuous, then 1), is continuous for all n € N, and since € is compact, then each 1,, attains
some finite maximum M,, < oo on Q. As a result, for each n € [N], we have ||t [L= < Q = max,e[n] M.
Furthermore, for any f € A, Holder’s inequality gives

1/2
Z (f.)| < < > 1frn)]) VN = VN|[Tw[]2

n€[N]

25

Under review as submission to TMLR

since (¢¥n, ¥m) = Onm. Since A is compact, then there exists C' > 0 such that for any f € A, ||f||z2 < C. But
175 (2> < [Ifllz2s so

1T lflllz= < D0 [da)l [nlli~ < QCVN = C.

n€e[N]

So now take h : [-C',C] x Q — RN defined by h(a,z) = (at)1(z), . ,ay)n()). Since each 1), is continuous, then
h is a continuous function on a compact set, so there exists an MLP N i : [-C,C] x Q — RY such that

sup [N"(a,2) = (a1 (@), ..., an (@) [l my < €/p(R),
ae[f%'iC]
xe

where 1 is the standard Lebesgue measure. Set
L) = [A (@D < ZO)f1(w).v) dv.
Q

Since N is uniformly continuous, then Nis continuous, and since integration is continuous, then £ is continuous. For
any f € A, x € Q, and n € [N], we have

(LLF@))n — (fron)] = \ /Q N T [£1(0).) dy — /Q £ (@)n () dy|
< [IV)0~ Tl om0 dy
<€,

which completes the proof. O

Lemma B.2. Let N € N be arbitrary. Let {tb,, }nen be a continuous and orthonormal basis for L?(€; R), and let
A C (L*(5R), || - ||L2) be compact. Define S = span{iy }nein) N A. For any € > 0, there exists a continuous
operator P : RN — L2(Q; R) such that, for all f € S,

[P, 01)s -5 (o UN)) = fllzz) < €.

Proof. Let N € N and € > 0 be arbitrary. For any f € S, we have

1/2

ne N]

by
any f € Sandn € [N],

[(f,4m) < CVN
Consider the mapping & : [-Cv/N, Cv/ NN x Q — RV defined by

h(al, ey aN,x) = (alwl(x), ey CLNwN(JZ)) .

Since each 1),, is continuous, then h is continuous and defined on a compact set. So by the universal approximation
theorem for MLPs, there exists an MLP A/P™ such that

sup INPi (s, ... an, @) = h(ar,. .. an,)|l @y < €/ (N«/p(ﬂ)) ,
a€[CVN,CV NN, z€Q

26

Under review as submission to TMLR

where 1 is the standard Lebesgue measure. Define the pointwise operator Z : L?(; RY) — L2(;R) as Z[f](z) =
15(f(x)). Set Play, ... ,an](z) = Z o N?i(ay,...,ax,x). Forany f € S,

IPBUN = 3 = [| 30 ATB(S)~ (Fn)int) | do
2 \ el
2
< / > — |
£ n€[N] N Vv M(Q)
= 62 5
from which the result immediately follows. O

B.2 Finite-Dimensional Case

The following is a restatement and proof of Theorem 3.2}

Theorem n 3.2l Adopt the same assumptions as Theorem . but with A" ¢ C*! (Q]R) compact with respect to the
| - | norm and with uniformly bounded first derivatives. Additionally, let {w™)} pren and Xy = {2} pren
define a sequence of M -point quadrature rules on). Suppose that there exists C > 0 such that, for any f € C*(£;R),

(_ Il
ZwM /f Y .

me[M]

For any € > 0, there exists M € N, v > 0, and ﬁM : RNt 5 RNT of the form (]EI) such that

<e+v hQ’XT R 29)

sup HﬁM(fT) - (g[f])|XT £00(RM)

fear

where fr = {f(z)}rexs

hax, = sup mip o]

is the fill distance, and H M depends parametrically on the quadrature nodes X py = {m%w)}me[M]-

Proof. Let K (z,y) be a positive-definite kernel used to interpolate values from X to Xj;. For any M € N, H M :
RM 5 R, H: A — CY;R),and f € A’, we have

1Har(f) = GLAXT) e < W Har(F) = HIFUXD) e + IHIF(X7) = GLFIT) e

Note that A" C L*(€;R) and is compact with respect to || - || 2(q), s0 Theoremapplies. There exists N € N and
H=PoGnoL

as defined by (28) such that
sup [|H[f] = G[f]ll2) <€/2.
fear

Since A’ is compact and H and G are continuous (by construction and by assumption, respectively), then the image
(H — G)(A’) is compact, so there exists a constant © such that, for all f € A’,

IHLf1(X7) = G (XD goo mivry < Dhaxr +€/2. (30)

Consider H. The projector P is already an MLP, and G can be expressed as (T7) with K) = 0. It remains to
construct an MLP lifting operator L.

27

Under review as submission to TMLR

Since A’ is compact, there exists 3 > 0 such that, for all f € A’, ||V |/~ < . Therefore, for all f € A’,

5wt~ [oyae < &
me[M]

where the constants are independent of f. Moreover, any continuous map F of A’ has a similar bound, which depends
on F.

Consider N, 71 and Z(®) as defined in the proof of Lemma We may assume, without loss of generality, that
o () is Lipschitz continuous, which makes A/l Lipschitz continuous. Let € > 0 be arbitrary and y denote the standard
Lebesgue measure. Since N is Lipschitz, there exists vz, > 0 such that | N (a,z) — N'(b,2)| = < vr|a — b|. We
can also write N/t as

N a,2) = Wo (W(O) [;j + b(0)>

for some W(® ¢ REx2, W) ¢ RNXP_and b € RP. Furthermore, note that max, e[y [[¢n| == Q < oo, where ¥,

are the Mercer eigenfunctions of f((z,y) and N is the truncation level (i.e., the channel dimension). Next, define the
kernel interpolant of f, denoted f, as

fl@)y=> ojK(x,z;), ;€ Xr,
JEINT]

provided that the matrix _
Aij :K(xi,xj), Ty Tj e Xr
is invertible. From (Wendland, 2005, Thm. 11.13), and the compactness of A’, there exists 7 > 0 such that for all
feA .
|f = fll <P hq xr -

since A’ is compact. There also exists M (which is independent of f but can depend on {%n }ne[n) such that, for all
M > M;and f € A,

€

max Z wmf(xm)z/}n(xm)—/Qf(a?)iﬁn(x)dx < NOw @)

nelNT

Defining

gives, for any = € (),

~ 5 €
Z qu/}n Z dnwn = Z (lcn *an”q;Z]n”oo < 'YL M(Q) .

n€[N] n€[N] n€[N]

Now, define the matrices

K=| : |, K=oy, M), ijem,

and set

|
Loi(fq) = WDg (W(O) [1} reshape(K KM_,FTKT,TfTa (N, M))
Xn

+ b<0>> w) (1)

28

Under review as submission to TMLR

where o (z) is Lipschitz continuous and non-polynomial, all vectors are understood as column vectors, and

— _ . y
(K*,T)ij:K(xE),xﬁ»”), w™) = (™ w0y

— -1
Unpacking (31), the matvec K ps, 7K 7 1 fr maps the function values on X7 to the kernel interpolant evaluated on
Xs. The matrix K approximates the integral

/Q (@) (0) F(3) dy

and the reshape and multiplication by 1; sums over the IV basis functions to yield

Z ann(zgnM)) .

n€([N]

The final multiplication by w(*) approximates the integral

n€[N]

Lastly, by assumption, the quadrature rule exactly integrates constant functions, so by taking M > M, we obtain

L0 (1) = (LU, oo @y < MNEar(Fr) = Laa (Far)lles @)
T ar) — (LD g, e)
<P ho, x, + €,

where f,, uses X7 = X .

To build ’;QM,We set _ o
Hyr =Px, 0G0 Ly

where Py, is the projection from channel space onto X7. We then note that, without loss of generality, Px.,. and G
are Lipschitz continuous, with constants vp and 7. Taking € = €/(2vp7y¢) and setting v = ypyayL? + ¥ [cf. (30)]
completes the proof. O

29

	Introduction
	Connections to other methods

	Kernel Neural Operators (KNOs)
	Function Space Formulation
	Choosing kernels
	Sampling and outer discretization
	Integral operator discretization: Quadrature
	Discretized KNO

	Universal Approximation Theorems
	Results
	Relative errors
	Parameter counts
	Timings

	Conclusion
	Appendix
	Architectural and Computational Details of KNO
	Cross-channel Affine Transformations
	Lifting and Projection Operators
	Details on Quadrature Rules
	Complexity of Computing Integrals via Quadrature
	Zero-shot Super-resolution

	Hyperparameter Tuning and Training
	KNO
	Alternative Operator Models

	Descriptions of Benchmark Problems Defined on Regular Domains
	1D Burgers' Equation
	1D Beijing Air problem
	2D Darcy Flow (PWC)
	3D Compressible Navier–Stokes (NS) Equations.

	Descriptions of Benchmark Problems Defined on Irregular Domains
	Darcy (triangular)
	3D Reaction-Variable-Coefficient-Diffusion

	Results including standard errors
	Dataset Summary
	Ablation Studies
	Impact of Kernel Properties on Performance
	Impact of Matrix-valued Kernel Structure on Performance
	Impact of Model Size on Performance
	Impact of Integration Layers and Pointwise Convolution
	Impact of Quadrature Type and Resolution
	Impact of Dimension-wise Factorizations

	Universal Approximation
	Infinite-Dimensional Case
	Finite-Dimensional Case

