

Kernel Neural Operators (KNOs) for Scalable, Memory-efficient, Geometrically-flexible Operator Learning

Anonymous authors

Paper under double-blind review

Abstract

This paper introduces the Kernel Neural Operator (KNO), a provably convergent operator-learning architecture that utilizes compositions of deep kernel-based integral operators for function-space approximation of operators (maps from functions to functions). The KNO decouples the choice of kernel from the numerical integration scheme (quadrature), thereby naturally allowing for operator learning with explicitly-chosen trainable kernels on irregular geometries. On irregular domains, this allows the KNO to utilize domain-specific quadrature rules. To help ameliorate the curse of dimensionality, we also leverage an efficient dimension-wise factorization algorithm on regular domains. More importantly, the ability to explicitly specify kernels also allows the use of highly expressive, non-stationary, neural anisotropic kernels whose parameters are computed by training neural networks. We present universal approximation theorems showing that both the continuous and fully discretized KNO are universal approximators on operator learning problems. Numerical results demonstrate that on existing benchmarks the training and test accuracy of KNOs is comparable to or higher than popular operator learning techniques while typically using an order of magnitude fewer trainable parameters, with the more expressive kernels proving important to attaining high accuracy. KNOs thus facilitate low-memory, geometrically-flexible, deep operator learning, while retaining the implementation simplicity and transparency of traditional kernel methods from both scientific computing and machine learning.

1 Introduction

Operator learning is a rapidly evolving field that focuses on the approximation of mathematical operators, often those arising from partial differential equations (PDEs). These operators map between infinite-dimensional function spaces and are increasingly employed to reduce the computational cost of simulation-based analyses which require repeated simulations of computationally expensive models. Recent approaches for operator learning include the DeepONet family of neural operators Lu et al. (2021; 2022); Zhang et al. (2023); Jin et al. (2022); the family of Fourier neural operators (FNOs) Li et al. (2021); Kovachki et al. (2021b); Li et al. (2023; 2024); graph neural operators (GNOs) Li et al. (2020b;a); kernel/Gaussian-process-based methods Battle et al. (2024); and transformer-based architectures such as the generalized neural operator transformer (GNOT) Hao et al. (2023) and the Transolver Wu et al. (2024). While these methods have been successfully used to approximate certain nonlinear operators, they often face limitations in scalability, flexibility, and computational efficiency.

In this paper, we propose a novel method, **the kernel neural operator (KNO)**, which extends the Fourier Neural Operator (FNO) family by introducing greater geometric, architectural, and approximation flexibility through the explicit learning of highly expressive, closed-form kernels. Unlike methods that rely on implicit kernel learning through specific discretizations — such as the FNO, which uses a fast Fourier transform (FFT) on an equispaced grid to learn a diagonal matrix-valued kernel in spectral space, or the GNO, which employs a graph-based parametrization to discretize the integral — the KNO directly parameterizes closed-form kernels using shallow neural networks, enabling the use of non-stationary and anisotropic kernels. This explicit kernel representation allows desirable properties to be encoded directly into the kernel while avoiding restrictive assumptions, such as the radial, stationary, and periodic constraints inherent in FNOs. On regular grids, the KNO employs a fast dimension-wise factorization algorithm to mitigate the curse of dimensionality, ensuring computational efficiency in high-dimensional settings. Furthermore, the KNO supports irregular geometries and scattered data locations by combining interpolation methods with quadrature

rules, making it applicable to a wider range of problem domains. While recent transformer-based architectures such as the GNOT are able to tackle irregular domains also, the KNO is able to do so using far fewer trainable parameters.

Our numerical experiments demonstrate that the KNO achieves comparable or superior accuracy to FNO architectures across a variety of problems. Furthermore, KNO consistently outperforms the more modern transformer-based GNOT in terms of accuracy on several benchmark problems, while requiring **1-2 orders of magnitude fewer trainable parameters** than reported in the literature for FNO, GNOT, and Transolver. This significant reduction in parameter count results in a much smaller memory footprint, making KNO a more memory-efficient alternative. Importantly, the KNO is both faster to train and infer with than the GNOT and Transolver on even three-dimensional problems, demonstrating that its reduced parameter count, improved accuracy, and ability to generalize to irregular domains does not come at the expense of scalability.

1.1 Connections to other methods

Kernel methods have been a cornerstone of machine learning and scientific computing for decades Rasmussen & Williams (2006); Cortes & Vapnik (1995); Boser et al. (1992); Broomhead & Lowe (1988); Sharma & Shankar (2022), with applications ranging from data fitting McCourt et al. (2018); Fasshauer & McCourt (2015) and sparsification Han et al. (2023); Sharma & Shankar (2025) to accelerating physics-informed neural networks Sharma & Shankar (2022) and enhancing DeepONets Sharma & Shankar (2025). They have also been widely used in scientific computing for integral operators Gingold & Monaghan (1977); Peskin (2002); Kassen et al. (2022a;b); Hsiao & Wendland (2008); Cortez (2001); Shankar & Olson (2015) and finite difference methods Wright & Fornberg (2006); Fornberg & Flyer (2015); Bayona et al. (2019); Fasshauer & McCourt (2015); Shankar et al. (2014); Shankar & Fogelson (2018). More recently, interpolation-based kernel methods have been applied to operator learning Battelle et al. (2024), achieving high efficiency with few trainable parameters but lower accuracy compared to the KNO. The KNO builds on this rich body of work, combining insights from kernel methods and deep operator learning to strike a balance between parameterization and accuracy, outperforming kernel/GP methods and achieving comparable or superior accuracy to FNOs with substantially smaller parameterizations.

In addition to improving accuracy and reducing parameter complexity, the KNO is natively capable of approximating operators on irregular domains without the challenges faced by existing methods. For example, the DeepONet family Lu et al. (2022); Peyvan et al. (2024) can handle irregular domains but requires all input functions to be sampled at the same domain locations, limiting flexibility. The FNO has been generalized to arbitrary domains through architectures like “dgFNO+” Lu et al. (2022) and GeoFNO Li et al. (2023; 2024), which learn both the operator and a mapping to a regular grid for FFT use; however, such mappings may not always exist or be feasible to compute. Transformer-based neural operators Hao et al. (2023); Wu et al. (2024) can also generalize to irregular domains but at the cost of substantially large parameterizations. In contrast, the KNO overcomes these limitations by using straightforward function sampling to transfer information to quadrature points, similar to Solodskikh et al. (2023), but without being restricted to regular grids or increasing parameterization complexity. This approach leverages quadrature techniques to provide a simple, flexible, and powerful framework for operator learning on irregular domains.

2 Kernel Neural Operators (KNOs)

Given Euclidean domains Ω_u, Ω_y and $d_u, d_y \in \mathbb{N}$, neural operators learn mappings from a Banach space $\mathcal{U} = (\Omega_u; \mathbb{R}^{d_u})$ of \mathbb{R}^{d_u} -valued functions to a Banach space $\mathcal{Y} = \mathcal{Y}(\Omega_y; \mathbb{R}^{d_y})$ of \mathbb{R}^{d_y} -valued functions through supervised training on a finite number of input-output measurements. From a statistical learning point of view, neural operators are learned from measurements of input functions drawn from a probability measure ν on $\mathcal{U}(\Omega_u; \mathbb{R}^{d_u})$. In the following, we present the formulation of KNOs, which are a special class of neural operators that leverage properties of certain kernel functions for the benefit of efficiency and accuracy.

2.1 Function Space Formulation

Architecture Let \mathcal{G} be an unknown operator we wish to learn that is an element of the L^2 -type Bochner space $L_\nu^2(\mathcal{U}; \mathcal{Y})$, i.e., \mathcal{G} is a mapping from \mathcal{U} to \mathcal{Y} that is Borel-measurable with respect to the probability measure ν on \mathcal{U} . We are interested in learning a KNO \mathcal{G}^\dagger that minimizes a loss function L measuring how well functions predicted by the operator match the training data. For example, the loss function may be the L_ν^2 norm on operators,

$$L(\mathcal{H}, \mathcal{G}) = \|\mathcal{H} - \mathcal{G}\|_{L_\nu^2(\mathcal{U}; \mathcal{Y})}^2 = \mathbb{E}_{f \sim \nu} \|\mathcal{H}(f) - \mathcal{G}(f)\|_{\mathcal{Y}}^2,$$

which is the loss function we use in our experiments, with the addition of some regularization on the kernel scale parameters and a scaling term to account for relative error. The corresponding statistical learning problem is

$$\mathcal{G}^\dagger = \arg \min_{\mathcal{H} \in \text{KNOs}} L(\mathcal{H}, \mathcal{G}), \quad (1)$$

where KNOs are operators of the form

$$\mathcal{H} = \mathcal{P} \circ \sigma \circ \mathcal{I}_L^p \circ \sigma \circ \mathcal{I}_{L-1}^p \circ \sigma \circ \dots \sigma \circ \mathcal{I}_1^p \circ \mathcal{L}. \quad (2)$$

The operators $\mathcal{I}_\ell, \mathcal{L}, \mathcal{P}$ are all trainable, and an appropriate parameterization of these defines a KNO, and $p \in \mathbb{N}^+$ is a hyperparameter that defines a *channel* dimension. The function σ is a nonlinear activation that operates pointwise: $(\sigma \cdot f)(x) := \sigma(f(x))$; we used GeLU Hendrycks & Gimpel (2023). Additionally, the initial operator \mathcal{L} is a *lifting operator* that takes \mathbb{R}^{d_u} -valued functions to \mathbb{R}^p -valued functions, i.e., creates p channels. The ultimate operator \mathcal{P} is a *projection operator* that takes \mathbb{R}^p -valued functions and compresses them down to \mathbb{R}^{d_y} -valued functions.

Integral operators The integral operators \mathcal{I}_ℓ^p are linear operator mappings from vector-valued functions to vector-valued functions. These operators are defined by,

$$\mathcal{I}_\ell^p(\mathbf{f}_\ell) = \int_{\Omega_y} \mathbf{K}^{(\ell)}(x, y) \mathbf{f}_\ell(y) dy, \quad (3)$$

$$\mathbf{f}_\ell : \Omega_y \rightarrow \mathbb{R}^p, \quad \mathbf{g}_\ell = \mathcal{I}_\ell^p(\mathbf{f}) : \Omega_y \rightarrow \mathbb{R}^p, \quad (4)$$

where $\mathbf{K}^{(\ell)} : \Omega_y \times \Omega_y \rightarrow \mathbb{R}^{p \times p}$ is a matrix-valued kernel function,

$$\mathbf{K}^{(\ell)}(x, y) = \begin{pmatrix} K_{1,1}^{(\ell)}(x, y) & \dots & K_{1,p_{\ell-1}}^{(\ell)}(x, y) \\ K_{2,1}^{(\ell)}(x, y) & \dots & K_{2,p_{\ell-1}}^{(\ell)}(x, y) \\ \vdots & \ddots & \vdots \\ K_{p_\ell,1}^{(\ell)}(x, y) & \dots & K_{p_\ell,p_{\ell-1}}^{(\ell)}(x, y) \end{pmatrix}. \quad (5)$$

The overall structure closely resembles FNOs, but differs in an important aspect: FNOs implicitly impose a diagonal structure on this matrix-valued kernel (as we also do), but further force that the individual scalar-valued kernels be isotropic and stationary due to the parametrization of the integral operators \mathcal{I}_ℓ via the FFT. In contrast, the KNO *decouples the discretization of the integral operators \mathcal{I}_ℓ^p from the choice of kernel, thereby allowing the use of very general and highly-expressive kernels*. The actual integration is accomplished through multi-dimensional quadrature in the general case, though we also leverage a special dimension-wise factorization algorithm on regular grids that removes the need for multi-dimensional quadrature. The strength of the KNO lies in this decoupling: the ability to freely choose kernels allows us to choose highly expressive kernels with a very small number of trainable parameters (in comparison to other neural operators), while the ability to freely select quadrature locations allows us to tackle arbitrary domains (while also efficiently tackling regular ones). We now describe the KNO in further detail; mathematical formulations are shown in (2) and (14).

Remarks As in many neural operator formulations, we augment our kernel integral operators (3) at the discrete level with dense cross-channel affine transformations (“pointwise convolutions”) having trainable parameters; we describe these in Appendix A.1.1.

2.2 Choosing kernels

The KNO allows for (and requires) kernel choices to be done at two levels. First, a choice must be made on the structure of the matrix-valued kernel (MVK) defined over the channels, then the individual scalar-valued kernels within the MVK must be chosen. We chose a diagonal MVK in this work by setting

$$\left(\mathbf{K}^{(\ell)}(x, y) \right)_{ij} = \begin{cases} K_{i,j}^{(\ell)}(x, y), & \text{if } i = j \\ 0, & \text{otherwise} \end{cases}, \quad (6)$$

where $i, j = 1, \dots, p$. We also found other MVKs with greater fill-in to be beneficial when using single-parameter scalar-valued kernels and a small channel dimension p , but concluded that the diagonal MVK was the easiest to train

and the most robust across problems when a sufficiently-expressive scalar-valued kernel was used; for experimental evidence, see Appendix A.7.2. As in the FNO, we use pointwise convolutions to ensure that information mixes across the p channels, but we found that removing these convolutions only resulted in a mild degradation of accuracy; see Appendix A.7.4. Next, the individual scalar-valued kernel entries in the matrix-valued kernel must be chosen. After exploring a variety of kernels (including compactly-supported kernels, purely radial kernels, and many others), we settled on two highly expressive kernels. The best-performing across kernel across most problems was a *neural*, non-stationary, anisotropic, generalized spectral mixture kernel (NS-GSM) given by Remes et al. (2018)

$$K_{\text{NS-GSM}}^\ell(x, y) = \sum_{i=1}^Q w_i(x) w_i(y) k_{\text{Gibbs},i}(x, y) g_i(x, y), \quad (7)$$

where $\mu_1(x), \dots, \mu_Q(x)$ are each vector-valued latent frequency functions; $w_1(x), \dots, w_Q(x)$ are scalar-valued latent amplitude functions; and $g_i(x, y) = \cos(2\pi(\mu_i(x)^\top x - \mu_i(y)^\top y))$. Here, $k_{\text{Gibbs},i}(x, y)$ is the Gibbs kernel (itself a non-stationary generalization of the Gaussian kernel Gibbs (1997); Heinonen et al. (2016); Paciorek & Schervish (2004)) given by

$$k_{\text{Gibbs},i}(x, y) = \sqrt{\frac{2s_i(x)s_i(y)}{r_i(x, y)}} \exp\left(\frac{-(x-y)^2}{r_i(x, y)}\right),$$

where $s_i(x)$ is a latent length-scale function that is the i -th component of a vector-valued length scale function $\mathbf{s}(x) = [s_1(x), \dots, s_Q(x)]$, and $r_i(x, y) = s_i(x)^2 + s_i(y)^2$. The latent length-scale, frequency, and amplitude functions are each obtained as the outputs of a single shallow feedforward neural network of the form $\text{NN} : \mathbb{R}^{d_y} \rightarrow \mathbb{R}^{2Q+Qd_y}$ with a single hidden layer; we used a SELU activation on the hidden layer Klambauer et al. (2017) and a softplus activation on the output layer Dugas et al. (2000), the latter ensuring that the latent quantities are always positive. We also explored use of the following stationary Gaussian spectral mixture (GSM) kernel, which simply omits the non-stationary Gibbs kernel and uses trainable weights w_i , frequencies μ_i , and diagonal covariances Σ_i (not output by neural networks):

$$K_{\text{GSM}}^\ell(x, y) = \sum_{i=1}^Q w_i \exp\left(-\frac{1}{2}(x-y)^\top \Sigma_i(x-y)\right) \cos(2\pi\mu_i^\top(x-y)). \quad (8)$$

In general, we found that the NS-GSM kernel outperformed the GSM kernel on all but two test problems. This is further discussed in Section 4. We also present further ablations over kernel types in Appendix A.7.1.

Dimension-Wise Factorization For problems with data lying on regular grids, we employ a factorization of (3) that eliminates the need for multi-dimensional quadrature and reduces the size of the kernel Gramians. Letting $\Omega_y = [a, b]^d$ (without loss of generality), $x = (x_1, \dots, x_d)$, and $y = (y_1, \dots, y_d)$, we write:

$$\mathcal{I}_\ell^p(\mathbf{f})(x) = \sum_{j=1}^d \int_a^b \mathbf{K}_j^{(\ell)}(x_j, y) \mathbf{f}(x_1, \dots, x_{j-1}, y, x_{j+1}, \dots, x_d) dy, \quad (9)$$

where $\mathbf{K}_j^{(\ell)}$ are MVKs chosen for each coordinate direction. In practice, since we use diagonal MVKs, one only needs to choose coordinate-wise scalar-valued kernels in the KNO. Regardless, this now requires only the use of univariate quadrature.

2.3 Sampling and outer discretization

Numerically constructing (2) requires sampling from ν and a discretization of $\|\cdot\|_{\mathcal{Y}}$. To this end, we trained our KNOs using M independent and identically distributed input samples of functions $f^{(m)} \sim \nu$ drawn from \mathcal{U} and the associated output function data $g^{(m)} := \mathcal{G}(f^{(m)})$, for $m \in [M]$. We used a *set of training points (locations)*, $X_T = \{x_j\}_{j \in [N_T]} \subset \Omega$, to both discretize the input and output functions $f^{(m)}$ and $g^{(m)}$ and to approximate the norm $\|\cdot\|_{\mathcal{Y}}$. Hence, during learning we optimized

$$\|\mathcal{H} - \mathcal{G}\|_{L_\mu^2(\mathcal{U}, \mathcal{Y})}^2 \stackrel{f^{(m)} \sim \nu}{\simeq} \frac{1}{MN_T} \sum_{(m, j) \in [M] \times [N_T]} \left\| \mathcal{H}(f_{X_T}^{(m)})(x_j) - g^{(m)}(x_j) \right\|_2^2. \quad (10)$$

Since the KNO potentially decouples the training grid from the integral operators, we now have two distinct cases to tackle.

Irregular Domains In the most general case (on irregular domains), the training grid X_T is typically distinct from the quadrature points used for numerical integration (to be introduced shortly). In this case, we first employ the channel lift \mathcal{L} which produces samples of \mathbb{R}^p -valued functions on the training grid, then use a trainable kernel interpolant to transfer the lifted function \mathbf{f} to the quadrature points:

$$\mathbf{f}_{X_T}(x) \approx \sum_{n \in [N_T]} K(x, x_n) \mathbf{c}_n, \quad (11)$$

where the \mathbf{c}_n are determined through a size- N_T linear system solve that enforces $\mathbf{f}_{X_T}(x_n) = \mathbf{f}(x_n)$; this particular system has p right hand sides. We also explored using the interpolation *before* the channel lift \mathcal{L} . While both choices performed well, we found that using the interpolation after the lift operator reduced the need for pointwise convolutions in the integration layers since the interpolant itself produces coupling between the layers; see Appendix A.7.4 for ablations. Further, we found that interpolating after the channel lift alleviated the Runge phenomenon, which is seen when interpolating infinitely-smooth target functions sampled on grids of equispaced points Platte et al. (2011); this is likely because the lifted input functions are not as smooth as the input functions themselves.

Regardless, this interpolant can be viewed as part of the lifting operator \mathcal{L} and allows for evaluation of \mathbf{f} at the quadrature points to be introduced shortly. We also leverage a separate kernel interpolant similar to the one in (11) to transfer information from the quadrature points *back* to the training points to evaluate the objective function in (10); this second interpolant can be viewed as part of the projection operator \mathcal{P} . For these interpolants, we ablated over a variety of kernels and used problem-dependent kernels (selected through ablation). We discuss these in Section 4.

Regular Grids When the training points form a regular (tensor-product) grid, we exploit the tensor-product structure to perform the dimension-wise factorization (9) in conjunction with simple univariate quadrature rules (discussed shortly). Consequently, in this scenario, the training points also serve as quadrature points and kernel interpolants are not needed for data transfer.

2.4 Integral operator discretization: Quadrature

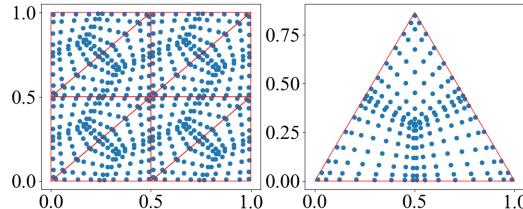


Figure 1: Clustered quadrature points on $[0, 1]^2$ (left) and a reference triangle (right).

In order to propagate \mathbf{f}_{X_T} through \mathcal{H} in (10), one must discretize all the integral operators; we accomplished this with quadrature. Consider the discretization of an integral operator $\int_{\Omega} K(x, y) f(y) d\mu(y)$ that acts on a scalar-valued function $f : \mathbb{R}^d \rightarrow \mathbb{R}$; the generalization to vector-valued functions is straightforward. Then given a *quadrature rule* $\{w_i^q, y_i^q\}_{i=1}^{N_Q}$, where $w_i^q \in \mathbb{R}$ are *quadrature weights* and $y_i^q \in \mathbb{R}^d$ are *quadrature points*, the quadrature-based discretization of a KNO integral operator is

$$\int_{\Omega} K(x, y) f(y) d\mu(y) \approx \sum_{i=1}^{N_Q} w_i^q K(x, y_i^q) f(y_i^q). \quad (12)$$

We tailor the choice of quadrature rule to the domain of the problem, and thus employ several quadrature rules in this work, discussed below.

Irregular Domains On 2D irregular domains Ω , we tessellated Ω with a triangle mesh that divided Ω into some set of nonoverlapping triangles Ω_ℓ , $\ell = 1, \dots, N_\Omega$ such that

$$\int_{\Omega} K(x, y) f(y) d\mu(y) = \sum_{\ell=1}^{N_\Omega} \int_{\Omega_\ell} K(x, y) f(y) d\mu(y). \quad (13)$$

Following standard scientific computing practices Karniadakis & Sherwin (2005); Cantwell et al. (2015) we discretized (13) using a quadrature rule for each of the subdomains Ω_ℓ affinely-mapped from a symmetric quadrature rule on a standard (“reference”) simplex Ω_{ref} in \mathbb{R}^d Freno et al. (2020); see Figure 1. In Section A.4.2, we also present results on a 3D problem within the unit ball that utilized a quadrature rule specially tailored for that domain von Winckel (2025). In general, one can use any reasonable quadrature rule in the KNO. In general, the use of quadrature introduces the curse of dimensionality into the discretization of the KNO; for general domains, this can be potentially ameliorated with sparse grids Holtz (2011) or Monte Carlo Dick (2016) techniques. We further discuss the computational complexity of quadrature in Appendix A.1.4.

Cartesian Grids On Cartesian grids, we used the dimension-wise factorized kernel (9), and thus only required univariate quadrature rules. We found that the (composite) univariate trapezoidal rule was sufficiently accurate Davis & Rabinowitz (1984); Quarteroni et al. (2000); Atkinson (1989); Stoer & Bulirsch (2002); this rule converges as $O(h^2)$ for general functions (where h is the grid spacing) and exponentially for periodic functions Trefethen & Weideman (2014)¹. This discretization is highly efficient and avoids the curse of dimensionality as it allows for $O(\mathbb{R}^{d_y})$ sums of N_Q terms each rather than one $O(N_Q^{d_y})$ sum.

2.5 Discretized KNO

In summary, the discretized KNO $\tilde{\mathcal{H}}$ that we used to numerically construct \mathcal{H} in (2) can be written as a function that takes in f_{X_T} and returns an approximation to the output function $\mathcal{H}(f)$ evaluated at X_T :

$$\tilde{\mathcal{H}}(f_{X_T}) = (\mathcal{P} \circ \sigma \circ \tilde{\mathcal{I}}_L^p \circ \dots \sigma \circ \tilde{\mathcal{I}}_1^p \circ \mathcal{L})(f_{X_T}) \quad (14)$$

where $(\tilde{\mathcal{I}}_k^p)$ are now the discretized integral operators incorporating pointwise convolutions, \mathcal{L} is a discretized lifting operator (potentially incorporating an interpolant of the form (11)), and \mathcal{P} is a discretized projection operator (potentially also incorporating an interpolant); details on the neural network architectures used in \mathcal{L} and \mathcal{P} are presented in Appendix A.1.2. Much like in the FNO, the discretized integral operators also include a pointwise convolution that aggregates information across channels; this is discussed in Appendix A.1.1.

3 Universal Approximation Theorems

We now present two universal approximation theorems for the KNO; we defer their proofs to Appendix B. The first theorem is a universal approximation theorem for the infinite-dimensional KNO (2).

Theorem 3.1. *Let $\Omega \subset \mathbb{R}^d$ be compact, and let $A \subset (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2(\Omega)})$ be compact. Let $\mathcal{G} : A \rightarrow (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2(\Omega)})$ be a continuous operator. For any $\epsilon > 0$, there exists a KNO $\mathcal{H} : A \rightarrow L^2(\Omega; \mathbb{R})$ of the form (2) with continuous positive-definite kernels $K_{i_\ell, j_\ell}^{(\ell)}$ such that*

$$\sup_{f \in A} \|\mathcal{H}[f] - \mathcal{G}[f]\|_{L^2(\Omega)} < \epsilon. \quad (15)$$

Proof. The proof is given in Appendix B.1. □

The second theorem shows that the fully discretized KNO (14) can recover the infinite-dimensional version to arbitrary accuracy.

Theorem 3.2. *Adopt the same assumptions as Theorem 3.1, but with $A' \subset C^1(\Omega; \mathbb{R})$, compact with respect to the $\|\cdot\|_{L^\infty}$ norm and with uniformly bounded first derivatives. Additionally, let $\{\mathbf{w}^{(M)}\}_{M \in \mathbb{N}}$ and $\{\mathbf{x}^{(M)}\}_{M \in \mathbb{N}}$ define a sequence of M -point quadrature rules on Ω . Suppose that there exists $C > 0$ such that, for any $f \in C^1(\Omega; \mathbb{R})$,*

$$\left| \sum_{m \in [M]} w_m^{(M)} f(x_m^{(M)}) - \int_{\Omega} f(x) dx \right| \leq \frac{C \|\nabla f\|_{L^\infty}}{M}.$$

For any $\epsilon > 0$, there exists $M \in \mathbb{N}$, $\nu > 0$, and $\tilde{\mathcal{H}}_M : \mathbb{R}^{N_T} \rightarrow \mathbb{R}^{N_T}$ of the form (14) such that

$$\sup_{f \in A'} \left\| \tilde{\mathcal{H}}_M(f_T) - (\mathcal{G}[f])|_{X_T} \right\|_{\ell^\infty(\mathbb{R}^M)} < \epsilon + \nu h_{\Omega, X_T}, \quad (16)$$

¹If necessary, one can always use the KNO with a higher-order accurate quadrature rule, but we found that quadrature errors were generally smaller than training errors.

where $\mathbf{f}_T = \{f(x)\}_{x \in X_T}$,

$$h_{\Omega, X_T} = \sup_{x \in \Omega} \min_{x_i \in X_T} \|x - x_i\|$$

is the fill distance, and $\tilde{\mathcal{H}}_M$ depends parametrically on the quadrature nodes $X_M = \{x_m^{(M)}\}_{m \in [M]}$.

Proof. The proof is given in Appendix B.2. \square

4 Results

We now describe our numerical experiments with KNOs and other state-of-the-art neural operators on seven different benchmark problems from literature. We present results on both tensor-product domains (all of which used boundary-anchored equidistant grids) and irregular domains (which used regular grids, triangle meshes, or point clouds). The KNO models were all trained using the Adam optimizer Kingma & Ba (2017) with a cyclic cosine annealing learning rate schedule. All models were trained for 10,000 epochs on all benchmark problems; the exception was on the NS-Pipe example (below), where we trained the KNO for 500 epochs (to match the reported GeoFNO, GNOT, and Transolver results). Other technical details are described in Appendix A.1. We measured the accuracy of our KNOs by computing the mean and standard error of the ℓ_2 relative errors (on generalization) of each KNO obtained from four different training runs with different random model parameter initializations. These errors were compared to those of the FNO Li et al. (2021), the GNOT Hao et al. (2023), the Transolver Wu et al. (2024), and KM Battle et al. (2024); Appendix A.2.2 discusses these other models in greater detail. We used publicly available code for the FNO, the GNOT, and the Transolver to generate all results except those for the NS-Pipe example; for this latter example, we report the GNOT and Transolver result from Wu et al. (2024) and the (Geo-)FNO result from Li et al. (2023). For the two problems on irregular domains – Darcy (triangle) and Reaction-Diffusion – we report results from the Geo-FNO Li et al. (2023) in the FNO column, since the FNO cannot be directly applied to these domains. We normalized the training inputs to have mean zero and unit standard deviation, and re-scaled the predicted functions based on these inputs to match the scaling of the ground truth output functions in all cases. Below, we briefly describe the problems

Table 1: Problem geometries and data sampling locations.

Problem	Geometry	Sample Locs.
Burgers'	Unit interval	Regular grid
Beijing-Air	Unit interval	Regular grid
Darcy (PWC)	Unit square	Regular grid
Darcy (triangle)	Triangle	Triangle mesh
NS-Pipe	Cubic spline (curved)	Regular grid
NS Mach 1.0	Unit cube	Regular grid
React-Diff.	Unit ball	Point Cloud

that we compared the different methods on. These problems are described in greater detail in Appendices A.3 and A.4. In Table 1, we summarize the type of the problem geometry and the data sample locations.

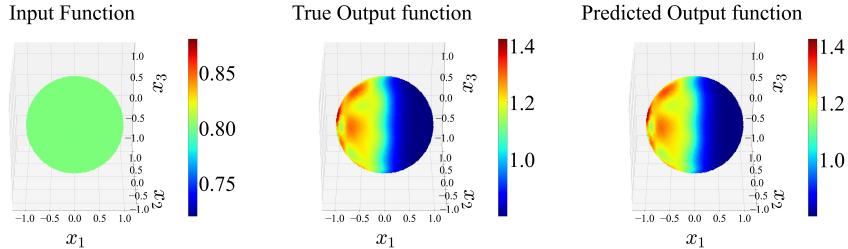


Figure 2: The 3D reaction-diffusion problem A.4.2, where an input function is given (left), the true output function (center), and a prediction from the KNO (right).

1D Burgers’ Equation: Predict the solution $u_1 : (0, 1) \rightarrow \mathbb{R}$ of the one-dimensional viscous Burgers’ equation at time $t = 1$, given the initial condition $u_0 : (0, 1) \rightarrow \mathbb{R}$, with the viscosity set to $\nu = 0.1$.

1D Beijing-Air Problem: Predict the hourly concentration of CO over the following week based on the previous week’s measurements of SO₂, CO, PM2.5, and PM10, using the Beijing-Air² dataset. This dataset contains hourly measurements of several air pollutants in Beijing collected between 2014 and 2017. For this task, 5,000 weeks were randomly selected for training and 1,000 weeks for testing. The KNO results are visualized in Appendix A.3.2.

2D Darcy Flow (PWC): Predict the pressure field $u : [0, 1]^2 \rightarrow \mathbb{R}$ from the given piecewise constant (PWC) permeability field $c : [0, 1]^2 \rightarrow \mathbb{R}$, based on the Darcy flow equation Lu et al. (2022). The permeability fields are sampled from Gaussian random fields and thresholded to create PWC functions.

2D Darcy Flow on a Triangular Domain: Predict the pressure field $h(x, y)$, computed using Darcy’s equation, from the given boundary condition on a triangular domain Lu et al. (2022), with the permeability set to 0.1 and the forcing set to -1 . The boundary condition fields are sampled from Gaussian random fields, and the data lies on an 861-node uniform triangular mesh.

2D Incompressible Navier–Stokes Equation in a Pipe: Predict the final velocity field for flow in a 2D pipe governed by the incompressible Navier–Stokes equations with viscosity $\nu = 0.005$, based on the benchmark problem from Li et al. (2023); the input function is the pipe geometry itself. A parabolic inlet profile $\mathbf{v} = [1, 0]$ is imposed, with a free outflow boundary condition at the outlet and no-slip walls. The pipe (length 10, width 1) follows a centerline defined by a piecewise cubic polynomial formed by the vertical positions and slopes at five spatially uniform control nodes. While the domain is irregular, the data is provided on a structured mesh. The final velocity field is taken from the dataset in Li et al. (2023), though the final time is not reported in that work.

3D Compressible Navier–Stokes (NS) Equations in a Torus: Predict the velocity field $v_1 : [0, 1]^3 \rightarrow \mathbb{R}$ after one time step from an initial random velocity field $v_0 : [0, 1]^3 \rightarrow \mathbb{R}$, based on the compressible Navier–Stokes equations in a challenging setting with a Mach number of 1.0. Periodic boundary conditions create a toroidal geometry, as described in Takamoto et al. (2024).

3D Reaction-Variable-Coefficient-Diffusion on a Point Cloud: Predict the chemical concentration $c(y, t = 0.5) : \mathbb{R}^3 \rightarrow \mathbb{R}$ at $t = 0.5$ from uniform initial concentrations $c(y, t = 0) : \mathbb{R}^3 \rightarrow \mathbb{R}$, based on the reaction-diffusion equation with a spatially varying diffusion coefficient and discontinuous reaction rates. The problem is solved within the interior of the unit ball, where the concentrations at the final time exhibit sharp spatial gradients. The data is sampled on a point cloud inside the unit ball, as described in Sharma & Shankar (2025). KNO predictions are visualized in Figure 2.

4.1 Relative errors

Table 2: Percent ℓ_2 Relative Errors on Generalization. The table reports the errors for the best-performing KNO, FNO, GNOT, KM, and Transolver operators. Standard errors are provided in Section A.5. The entry “–” indicates that the Transolver can not make predictions when the output and input functions have heterogeneous grids, as is the case in the Darcy (triangle) problem (this was not a focus of their implementation).

Problem	FNO	GNOT	Transolver	KM	KNO
Burgers’	0.276	0.89	1.077	2.831	0.574
Beijing-Air	55.33	40.3	26.273	50.982	24.941
Darcy (PWC)	1.79	2.58	1.99	3.06	1.55
Darcy (triangle)	0.043	0.111	–	0.033	0.045
NS-Pipe	0.67	0.47	0.33	2.742	0.588
NS Mach 1.0	58.05	81.5	48.127	54.150	52.602
React.-Diff.	6.68e-3	4.47e-3	8.09e-3	8.75e-05	9.20e-4

We evaluated the performance of the KNO on the aforementioned benchmarks, which span varied geometries, dimensionalities, and physical systems. The results, presented in Table 2, highlight the KNO’s ability to achieve high accuracy across all tasks, demonstrating its effectiveness in modeling complex operator mappings. Additionally, Table 3 provides details on the kernel and quadrature choices used for each problem, showcasing the adaptability of the KNO’s architecture to different computational requirements and domains.

²<https://archive.ics.uci.edu/dataset/501/beijing+multi+site+air+quality+data>

Before presenting the results, we note that for problems on irregular grids (Table 1), we used an anisotropic Gaussian kernel for interpolation between the training grid and quadrature points, defined by a trainable Mahalanobis distance $(x - y)^T L L^T (x - y)$, where $L \in \mathbb{R}^{d_y \times d_y}$ is learned. For regular grids, interpolation was unnecessary, as dimension-wise factorization with the composite trapezoidal rule allowed the KNO to directly process the training data.

Table 2 demonstrates that the KNO achieves comparable accuracy to the FNO, GNOT, KM, and Transolver across most benchmark problems, with notably superior performance on the challenging Beijing-Air problem, where the KNO is approximately 30% more accurate than FNO and 15% more accurate than the GNOT; the KNO is only 2% more accurate than the Transolver on this problem. The 3D compressible Navier–Stokes problem (Mach 1.0) proves difficult for all methods, highlighting the limitations of current operator learning techniques, with the Transolver achieving the best result. Interestingly, despite the periodic boundary conditions inherent to this problem, the KNO achieves approximately 6% higher accuracy than FNO, with the best results obtained using the GSM kernel rather than the NS-GSM kernel. The Darcy (triangle) problem also warrants attention. While the GeoFNO appears to slightly outperform KNO on this task³, the standard errors reported in Table 8 indicate that the results are nearly identical for both methods. Furthermore, as shown in Table 4, the GeoFNO required several million trainable parameters to achieve this level of accuracy, whereas the KNO achieved comparable performance with only approximately 50k parameters. Table 3 further highlights that the best KNO results across most benchmarks were obtained using the NS-GSM kernel,

Table 3: Kernel and Quadrature Choices. The table lists the integration kernel (“Int.”), use of dimension-wise factorization (“Dim. Fac.”), and quadrature rule (“Quad.”), including trapezoidal (“Trap.”), symmetric (“Sym.”), and spherical (“Spherical”) rules. See Section 2.4 for mathematical details and Section A.2.1 for implementation specifics.

Problem	Int.	Dim. Fac.	Quad.
Burgers'	NS-GSM	Yes	Trap.
Beijing-Air	GSM	Yes	Trap.
Darcy (PWC)	NS-GSM	Yes	Trap.
Darcy (triangle)	NS-GSM	No	Sym.
NS-Pipe	NS-GSM	Yes	Trap.
NS Mach 1.0	GSM	Yes	Trap.
React.-Diff.	NS-GSM	No	Spherical

which is anisotropic, non-stationary, and trainable. However, exceptions were observed for the Beijing-Air and NS Mach 1.0 problems, where the GSM kernel outperformed the NS-GSM kernel. This discrepancy may be attributed to difficulties in training the NS-GSM kernel due to the complex loss landscapes associated with these problems. Notably, this underscores another strength of the KNO: in challenging settings, it is straightforward to switch to a simpler kernel, thanks to the KNO’s inherent ability to explicitly specify kernels. It is also useful to note that the one-parameter KM performs very well on problems with smooth operator maps, such as the Darcy (triangle) and the reaction-diffusion problem; this method can naturally be viewed as a particular edge case of the KNO, indicating that lower parameter counts and greater architectural simplicity may be important for certain operator learning problems.

4.2 Parameter counts

Table 4: Parameter Counts. The table reports the trainable parameter counts for all methods. The entry marked with “**” indicates that the GNOT parameter count was not provided. in Wu et al. (2024).

Problem	FNO	GNOT	Transolver	KNO
Burgers'	221,889	2,843,013	382,993	43,137
Beijing-Air	353,217	2,182,532	2,806,849	335,617
Darcy (PWC)	4,743,937	2,183,812	2,811,073	61,121
Darcy (triangle)	5,967,619	885,062	–	49,863
NS-Pipe	1,188,385	**	2,810,817	171,265
NS Mach 1.0	14,164,513	1,523,587	3,791,377	31,105
Reaction-Diffusion	17,746,276	886,470	372,257	32,647

³This may be attributed to the simplicity of the mapping from the triangular domain to the unit square used in GeoFNO, which may not be true for other general domains.

The trainable parameter counts for the KNO are presented in Table 4; we did not include the KM which only needed one trainable parameter. Except for the Beijing-Air dataset, the KNO consistently required 1-2 orders of magnitude fewer trainable parameters compared to the FNO, GNOT and Transolver while achieving comparable or superior accuracy. Although this reduction in parameter count did not directly translate to faster training or inference times (see Section 4.3), it does result in a substantially smaller memory footprint once the model is trained. For instance, with weights stored in fp32, the largest FNO model required approximately 54 MB of storage, the largest GNOT model required approximately 5.8 MB of storage, and the largest Transolver model required 15.2 MB of storage (all for the 3D NS Mach 1.0 problem). In contrast, the KNO required only 0.11 MB of storage for the same problem, highlighting its favorable memory scaling properties compared to the FNO, GNOT, and Transolver.

For problems on regular grids and simplicial meshes, integrals can be computed on the fly, eliminating the need for storage of quadrature rules. This makes the KNO particularly appealing from a memory efficiency perspective. We anticipate that these favorable memory scaling properties will persist for higher-dimensional and larger problems, making KNO an excellent candidate for on-chip surrogate modeling in low-memory environments.

4.3 Timings

Table 5: Average Training Time per Epoch (in seconds). Training times were averaged over 100 epochs using mini-batches of size 10 on a NVIDIA GeForce RTX 4080. For KMs we report the time for a single linear system solve instead.

Problem	FNO	GNOT	Transolver	KM	KNO
Beijing-Air	2.56e-3	1.00e-2	9.60e-3	1.49	7.46e-3
Darcy (PWC)	4.44e-3	1.49e-2	1.53e-2	1.49e-2	4.56e-3
Reaction-Diffusion	4.77e-2	4.91e-2	2.94e-2	3.84	7.60e-2

Table 6: Average Inference Time (in seconds). Inference times were averaged over 100 epochs on a NVIDIA GeForce RTX 4080 with mini-batches of 10.

Problem	FNO	GNOT	Transolver	KM	KNO
Beijing-Air	6.91e-4	3.60e-3	2.50e-3	6.15e-3	1.13e-3
Darcy (PWC)	8.82e-4	5.21e-3	4.96e-3	2.32e-3	9.14e-4
Reaction-Diffusion	1.58e-2	2.05e-2	1.03e-2	6.10e-3	2.03e-2

We present training times (Table 5) and inference times (Table 6) for the KNO, FNO, GNOT, KM and Transolver across 1D, 2D, and 3D problems. The KNO was implemented in Jax, while the original implementations of FNO and GNOT by their respective authors were in PyTorch. Table 5 shows that the FNO trains nearly twice as fast as KNO, likely due to its use of the FFT and custom CUDA kernels. In contrast, the KNO relies solely on Jax-level optimizations for integral computations, which may contribute to slower training times. The GNOT and Transolver appear comparable to the KNO in training speed, with some evidence suggesting slightly better scaling for the 3D problem.

Table 6 indicates that the FNO is also faster during inference, likely for the same reason (the use of FFT). However, the KNO demonstrates faster inference times than the GNOT and Transolver (save for Transolver on the Reaction-Diffusion problem) likely due to its significantly smaller number of trainable parameters. Interestingly, the gap in inference speed between the KNO, GNOT and Transolver does not fully align with the disparity in their parameter counts, potentially pointing to implementation inefficiencies in the KNO. Addressing these inefficiencies may require re-implementing the KNO layers using standard machine learning paradigms, such as convolution layers or attention mechanisms.

5 Conclusion

We presented the kernel neural operator (KNO), a simple and transparent architecture that leverages kernel-based deep integral operators discretized by numerical quadrature. By employing highly-expressive, closed-form kernels

parametrized by shallow neural networks, the KNO achieved comparable or superior accuracy with far fewer trainable parameters than other neural operators, both on regular and irregular domains. This reduction in parameter count resulted in a significantly smaller memory footprint, making the KNO particularly appealing for resource-constrained applications. Additionally, the KNO demonstrated competitive training and inference times compared to other neural operators, though an analysis of timings relative to parameter counts revealed potential implementation inefficiencies.

For future work, we aim to address these inefficiencies by recasting KNO operations using efficient machine learning paradigms, such as convolution layers and attention mechanisms. We also plan to explore interpretable lifting and projection operators, problem-specific architectures tailored to linear operators, and novel quadrature schemes. Beyond approximating PDE solution operators, we anticipate that KNO will be widely applicable to various machine learning tasks, particularly as an on-chip surrogate model in low-memory environments, which will be another focus of our future research.

References

Mauricio A. Alvarez, Lorenzo Rosasco, and Neil D. Lawrence. Kernels for vector-valued functions: a review, 2012. URL <https://arxiv.org/abs/1106.6251>.

Kendall E. Atkinson. *An Introduction to Numerical Analysis*. John Wiley & Sons, New York, 2nd edition, 1989. ISBN 978-0471624899.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are competitive for operator learning. *Journal of Computational Physics*, 496:112549, 2024. ISSN 0021-9991. doi: <https://doi.org/10.1016/j.jcp.2023.112549>. URL <https://www.sciencedirect.com/science/article/pii/S0021999123006447>.

Víctor Bayona, Natasha Flyer, and Bengt Fornberg. On the role of polynomials in RBF-FD approximations: III. Behavior near domain boundaries. *Journal of Computational Physics*, 380:378–399, 2019. doi: 10.1016/j.jcp.2018.12.013.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the Fifth Annual Workshop on Computational Learning Theory*, pp. 144–152. ACM, 1992.

David S Broomhead and David Lowe. Multivariable functional interpolation and adaptive networks. *Complex Systems*, 2(3):321–355, 1988.

C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, and S.J. Sherwin. Nektar++: An open-source spectral/hp element framework. *Computer Physics Communications*, 192:205–219, 2015. ISSN 0010-4655. doi: <https://doi.org/10.1016/j.cpc.2015.02.008>. URL <https://www.sciencedirect.com/science/article/pii/S0010465515000533>.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine learning*, 20(3):273–297, 1995.

Ricardo Cortez. The method of regularized stokeslets. *SIAM Journal on Scientific Computing*, 23(4):1204–1225, 2001.

Philip J. Davis and Philip Rabinowitz. *Methods of Numerical Integration*. Academic Press, Orlando, FL, 2nd edition, 1984. ISBN 0-12-206360-0.

Josef Dick. Higher order quasi-Monte Carlo integration for holomorphic parametric models. *SIAM Journal on Numerical Analysis*, 54(1):595–618, 2016. doi: 10.1137/140985913.

Josef Dick, Frances Y. Kuo, and Ian H. Sloan. High-dimensional integration: The quasi-Monte Carlo way. *Acta Numerica*, 22:133–288, 2013. doi: 10.1017/S0962492913000044.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-order functional knowledge for better option pricing. In *Advances in Neural Information Processing Systems 13 (NIPS 2000)*, pp. 472–478, 2000. URL <https://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf>.

Gregory E. Fasshauer and Michael J. McCourt. *Kernel-based Approximation Methods Using MATLAB*, volume 19 of *Interdisciplinary Mathematical Sciences*. World Scientific, 2015. ISBN 9789814630139. URL <https://books.google.com/books?id=QdfjrQEACAAJ>.

Bengt Fornberg and Natasha Flyer. Solving PDEs with radial basis functions. *Acta Numerica*, 24:215–258, 2015. doi: 10.1017/S0962492914000181.

Brian A. Freno, William A. Johnson, Brian F. Zinser, and Salvatore Campione. Symmetric triangle quadrature rules for arbitrary functions. *Computers & Mathematics with Applications*, 79(10):2885–2896, May 2020. ISSN 0898-1221. doi: 10.1016/j.camwa.2019.12.021. URL <http://dx.doi.org/10.1016/j.camwa.2019.12.021>.

M. N. Gibbs. *Bayesian Gaussian Processes for Regression and Classification*. PhD thesis, 1997.

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. *Monthly Notices of the Royal Astronomical Society*, 181(3):375–389, 1977.

Mingxuan Han, Varun Shankar, Jeff M. Phillips, and Chenglong Ye. Locally adaptive and differentiable regression. *Journal of Machine Learning for Modeling and Computing*, 4(4):103–122, 2023. ISSN 2689-3967.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng, Jian Song, and Jun Zhu. GNOT: A general neural operator transformer for operator learning, 2023. URL <https://arxiv.org/abs/2302.14376>.

M. Heinonen, H. Mannerström, J. Rousu, S. Kaski, and H. Lähdesmäki. Non-stationary Gaussian process regression with Hamiltonian Monte Carlo. In *Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS)*, volume 51, pp. 732–740, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023.

Markus Holtz. *Sparse Grid Quadrature in High Dimensions With Applications in Finance and Insurance*. Springer, 2011. ISBN 978-3-642-16003-5.

George C Hsiao and Wolfgang L Wendland. *Boundary integral equations*, volume 164. Springer, 2008.

Pengzhan Jin, Shuai Meng, and Lu Lu. MIONet: Learning multiple-input operators via tensor product. *SIAM Journal on Scientific Computing*, 44(6):A3490–A3514, 2022. doi: 10.1137/22M1477751. URL <https://doi.org/10.1137/22M1477751>.

George Em Karniadakis and Spencer J. Sherwin. *Spectral/hp Element Methods for Computational Fluid Dynamics*. Oxford University Press, 2nd edition, 2005.

Andrew Kassen, Aaron Barrett, Varun Shankar, and Aaron L. Fogelson. Immersed boundary simulations of cell-cell interactions in whole blood. *Journal of Computational Physics*, 469:111499, 2022a. ISSN 0021-9991. doi: <https://doi.org/10.1016/j.jcp.2022.111499>. URL <https://www.sciencedirect.com/science/article/pii/S0021999122005617>.

Andrew Kassen, Varun Shankar, and Aaron L Fogelson. A fine-grained parallelization of the immersed boundary method. *The International Journal of High Performance Computing Applications*, 36(4):443–458, 2022b. doi: 10.1177/10943420221083572. URL <https://doi.org/10.1177/10943420221083572>.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing neural networks. In *Advances in Neural Information Processing Systems 30 (NIPS 2017)*, pp. 971–980, 2017. doi: 10.48550/arXiv.1706.02515. URL <https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf>.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds for Fourier neural operators, 2021a. URL <https://arxiv.org/abs/2107.07562>.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. *CoRR*, abs/2108.08481, 2021b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations. *arXiv preprint arXiv:2003.03485*, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations. In *Proceedings of the 34th International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020b. Curran Associates Inc. ISBN 9781713829546.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator with learned deformations for PDEs on general geometries. *Journal of Machine Learning Research*, 24(388):1–26, 2023. URL <http://jmlr.org/papers/v24/23-0064.html>.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed neural operator for large-scale 3D PDEs. *Advances in Neural Information Processing Systems*, 36, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. *Nature Machine Intelligence*, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/s42256-021-00302-5. URL <http://dx.doi.org/10.1038/s42256-021-00302-5>.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions) based on FAIR data. *Computer Methods in Applied Mechanics and Engineering*, 393:114778, April 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2022.114778. URL <http://dx.doi.org/10.1016/j.cma.2022.114778>.

Michael McCourt, Gregory Fasshauer, and David Kozak. A nonstationary designer space-time kernel. *arXiv preprint arXiv:1812.00173*, 2018.

Christopher J. Paciorek and Mark J. Schervish. Nonstationary covariance functions for Gaussian process regression. In *Advances in Neural Information Processing Systems 16 (NIPS 2003)*, pp. 273–280, 2004. Also appears as technical report / extended version.

Gabriel Parra and Felipe Tobar. Spectral mixture kernels for multi-output gaussian processes, 2017. URL <https://arxiv.org/abs/1709.01298>.

Charles S Peskin. The immersed boundary method. *Acta Numerica*, 11:479–517, 2002. doi: 10.1017/S0962492902000077.

Ahmad Peyvan, Vivek Oommen, Ameya D Jagtap, and George Em Karniadakis. RiemannONets: Interpretable neural operators for Riemann problems. *arXiv preprint arXiv:2401.08886*, 2024.

Rodrigo B Platte, Lloyd N Trefethen, and Arno BJ Kuijlaars. Impossibility of fast stable approximation of analytic functions from equispaced samples. *SIAM review*, 53(2):308–318, 2011.

Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. *Numerical Mathematics*. Springer, New York, 2nd edition, 2000. ISBN 978-0387989592.

Carl Edward Rasmussen and Christopher KI Williams. *Gaussian Processes for Machine Learning*. The MIT Press, 2006.

Sami Remes, Markus Heinonen, and Samuel Kaski. Neural non-stationary spectral kernel, 2018. URL <https://arxiv.org/abs/1811.10978>.

Varun Shankar and Aaron L. Fogelson. Hyperviscosity-based stabilization for radial basis function-finite difference (RBF-FD) discretizations of advection-diffusion equations. *Journal of Computational Physics*, 372:616–639, 2018. doi: 10.1016/j.jcp.2018.06.042.

Varun Shankar and Sarah D Olson. Radial basis function (RBF)-based parametric models for closed and open curves within the method of regularized stokeslets. *International Journal for Numerical Methods in Fluids*, 79(6):269–289, 2015.

Varun Shankar, Grady B. Wright, Robert M. Kirby, and Aaron L. Fogelson. A radial basis function (RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces. *Journal of Scientific Computing*, 60(2):342–368, 2014. doi: 10.1007/s10915-013-9796-7.

Ramansh Sharma and Varun Shankar. Accelerated training of physics-informed neural networks (PINNs) using meshless discretizations. In *Advances in Neural Information Processing Systems*, volume 35, pp. 1034–1046. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf.

Ramansh Sharma and Varun Shankar. Ensemble and mixture-of-experts DeepONets for operator learning. *Transactions on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=MGdydNfWzQ>.

Kirill Solodskikh, Azim Kurbanov, Ruslan Aydarkhanov, Irina Zhelavskaya, Yury Parfenov, Dehua Song, and Stamatios Lefkimiatis. Integral neural networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16113–16122, 2023.

Josef Stoer and Roland Bulirsch. *Introduction to Numerical Analysis*. Springer, New York, 3rd edition, 2002. ISBN 978-0387954521.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk Pflüger, and Mathias Niepert. PDEBENCH: An extensive benchmark for scientific machine learning, 2024. URL <https://arxiv.org/abs/2210.07182>.

Lloyd N Trefethen and JAC Weideman. The exponentially convergent trapezoidal rule. *SIAM review*, 56(3):385–458, 2014.

Greg von Winckel. Quadrature rules for spherical volume integrals, 2025. URL <https://www.mathworks.com/matlabcentral/fileexchange/10750-quadrature-rules-for-spherical-volume-integrals>. MATLAB Central File Exchange. Retrieved September 23, 2025.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. *Advances in Computational Mathematics*, 4:389–396, 1995.

Holger Wendland. *Scattered Data Approximation*. Cambridge University Press, 2005. ISBN 9780521843355. URL <https://www.cambridge.org/core/books/scattered-data-approximation/3A1DE17B4F64DFDEE0530100007F089C>.

Grady B. Wright and Bengt Fornberg. Scattered node compact finite difference-type formulas generated from radial basis functions. *Journal of Computational Physics*, 212(1):99–123, 2006. doi: 10.1016/j.jcp.2005.06.019.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast transformer solver for PDEs on general geometries, 2024. URL <https://arxiv.org/abs/2402.02366>.

Zecheng Zhang, Leung Wing Tat, and Hayden Schaeffer. BelNet: Basis enhanced learning, a mesh-free neural operator. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 479(2276):20230043, 2023. doi: 10.1098/rspa.2023.0043. URL <https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0043>.

A Appendix

A.1 Architectural and Computational Details of KNO

A.1.1 Cross-channel Affine Transformations

Similar to other neural operators Li et al. (2021), each layer of KNO is augmented with a cross-channel affine transformation (commonly referred to as a "pointwise convolution"). This operation, implemented as a dense layer, adds its output to the result of the integral operator. Formally, the integral operators act on and output vectors of function evaluations on $X_Q := \{y_i^q\}_{i \in [N_Q]}$:

$$\tilde{\mathcal{I}}_\ell^p \tilde{\mathbf{g}}_\ell = \mathbf{W}_\ell \tilde{\mathbf{g}}_\ell + (\mathbf{b}_\ell) \mathbf{1}_{N_Q}^\top + (\mathcal{I}_\ell^p \tilde{\mathbf{g}}_\ell) \big|_{X_Q}, \ell \in [L]. \quad (17)$$

Here, $\tilde{\mathbf{g}}_\ell \in \mathbb{R}^{p \times N_Q}$ represents evaluations of the function $\mathbf{g}_\ell : \Omega \rightarrow \mathbb{R}^p$ on X_Q , and $\mathbf{W}_\ell \in \mathbb{R}^{p \times p}$ and $\mathbf{b}_\ell \in \mathbb{R}^p$ are trainable weights. Note that we slightly abuse notation in $(\mathcal{I}_\ell^p \tilde{\mathbf{g}}_\ell) \big|_{X_Q}$, as the integral operator acts on the vector $\tilde{\mathbf{g}}_\ell$ evaluated at quadrature points rather than a function. The final discretized integral operator outputs values on the training grid X_T , which are used to evaluate the loss.

A.1.2 Lifting and Projection Operators

As with other neural operators, KNO employs standard multilayer perceptrons (MLPs) to parameterize the lifting and projection operators \mathcal{L} and \mathcal{P} , which act on discretized inputs. The lifting operator $\mathcal{L}_{X_T} : \mathbb{R}^{N_T} \rightarrow \mathbb{R}^p$ maps gridded function values to channel vectors in \mathbb{R}^p using an MLP. Similarly, the projection operator \mathcal{P} combines all p channels of the hidden layers to produce a single approximation of the output function(s). Specifically, the projection operator consists of two consecutive dense layers of width p ($\mathcal{A} : \mathbb{R}^p \rightarrow \mathbb{R}^p$) with nonlinear activation functions, followed by a final dense layer of width d_y ($\mathcal{A} : \mathbb{R}^p \rightarrow \mathbb{R}^{d_y}$) without an activation function. In all cases, we use the GeLU activation function Hendrycks & Gimpel (2023).

A.1.3 Details on Quadrature Rules

Table 7: The number of quadrature points we used for each problem.

Problem	Burgers'	Beijing-Air	Darcy (PWC)	Darcy (triangle)	NS-Pipe	NS Mach 1.0	React.-Diff.
N_Q	128	168	29	147	129	64	729

For problems on regular grids, we used dimension-wise factorizable kernels with a univariate trapezoidal quadrature rule to perform integration directly on the grid, as reflected in the main results in Table 2. For the Reaction-Diffusion problem, we employed a spherical volume quadrature rule von Winckel (2025), visualized in Figure 3. For the Darcy (triangle) problem, we used the quadrature rule from Freno et al. (2020), described in the main article.

In Table 7, we report the number of quadrature nodes used for each problem. While adaptive, problem-specific quadrature rules could further optimize performance and reduce X_Q , we leave such explorations for future work.

Spherical Volume Quadrature Rule

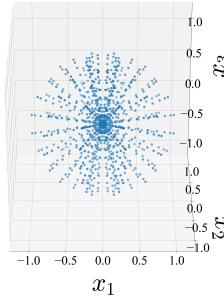


Figure 3: The quadrature rule used for the 3D reaction-diffusion problem.

A.1.4 Complexity of Computing Integrals via Quadrature

We now discuss the complexity of evaluating the kernel integrals using quadrature and contrast this with the FNO. First, we note that the classic FNO utilizes the FFT and the same training and quadrature grids; thus, given a training grid with N_T grid points, the FFT can be computed in $O(N_T \log N_T)$. In the case of the KNO, we have three distinct scenarios:

1. **Regular grids:** On regular grids, the KNO uses a dimension-wise factorization in conjunction with univariate composite (local) quadrature directly on the training grid. Consequently, the quadrature cost is linear in the number of grid points, i.e., $\Theta(N_T)$ even in high dimensions (high d_y). Thus, at least on regular grids, the KNO scales to high dimensions without being afflicted by the curse of dimensionality.
2. **Triangle meshes:** Given n_q quadrature points per triangle and N_Ω triangles in total, the cost on the triangle mesh is $O(n_q N_\Omega)$. This cost scales exponentially for simplicial meshes in higher dimensions, though this exponential scaling can be combated with sparse grid methods Holtz (2011) and Monte Carlo methods Dick et al. (2013).
3. **Point clouds:** For point clouds, one typically estimates the cost based directly on the total number of quadrature points, since global quadrature is typically used. This cost also scales exponentially with dimension since exponentially more quadrature points are needed to fill hypervolumes in higher dimensions, but can be combated similarly with sparse grids and Monte Carlo (or quasi-Monte Carlo) methods.

A.1.5 Zero-shot Super-resolution

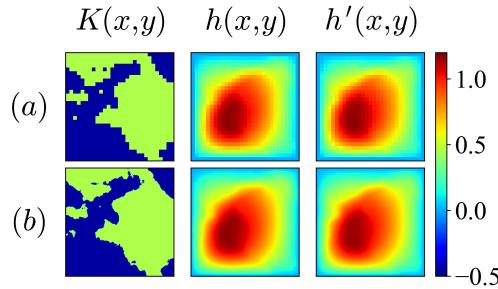


Figure 4: Illustration of zero-shot super-resolution. The KNO was trained on the Darcy (PWC) dataset using a 29×29 grid (row a) and evaluated at a resolution of 211×211 (row b). The permeability field input (left), actual pressure field (middle), and predicted pressure field (right) are shown.

The KNO, like the FNO, can achieve zero-shot super-resolution due to its function-space operations at every layer. This capability allows KNO to produce operator solutions at arbitrary resolutions without requiring retraining. Figure 4 demonstrates this property, where KNO was trained on a 29×29 grid and successfully evaluated on a much finer 211×211 grid.

A.2 Hyperparameter Tuning and Training

In this section, we outline the hyperparameter tuning and training protocols for competing models, including FNO, Geo-FNO, and GNOT, to ensure a fair and consistent comparison with KNO.

A.2.1 KNO

For the KNO, all trainable parameters associated with kernels were initialized by sampling from $\mathcal{N}(1, 0.01)$, followed by a softplus transform to ensure that all kernel shape parameters remained positive. The number of Gaussians in the mixture for all GSM/NS-GSM kernels was fixed at $Q = 2$. For nonstationary kernels, the shallow SELU networks used had a width of 8.

For hyperparameters that were tuned, we performed a grid search using a random seed different from the one used for collecting the final results. The hyperparameters included:

- **Number of integration layers:** searched over $\{2, 3, 4\}$.
- **Number of channels:** searched over $\{8, 16, 32, 64, 128, 256\}$.

- **Type of integration kernel:** details provided in Appendix A.7.1.
- **Type of interpolation kernel:** searched between an anisotropic Gaussian kernel and an isotropic Gaussian kernel, with better results observed using the anisotropic kernel.
- **Number of quadrature nodes:** tuned based on the specific problem, with details provided in Appendix A.1.3.

A.2.2 Alternative Operator Models

We performed a grid search to identify the best-performing hyperparameters for each alternate model, and the details are provided below.

FNO⁴: The hyperparameters included the number of modes, varied over $\{8, 10, 12, 16, 20\}$, the number of channels for channel lifting, varied over $\{8, 16, 32, 64, 128, 256\}$, and the number of Fourier layers, varied over $\{2, 3, 4\}$. We used GELU activation, which is the default choice in the official library.

Geo-FNO⁵: For this model, we searched over the one-dimensional resolution of the uniform tensor-product grid that is mapped to (denoted s in their codebase), with the maximum number of modes set for each case. We then searched for the optimal number of modes. For the Darcy Triangular problem, s was varied over $\{15, 20, 25, 30, 35\}$ and the modes over $\{8, 10, 12, 16\}$. For the Diffusion-Reaction problem, s was varied over $\{8, 10, 12, 14\}$ and the modes over $\{4, 6, 8\}$.

GNOT⁶: The hyperparameters included the number of attention layers, varied over $\{2, 3, 4, 5\}$, the dimensions of the embeddings, varied over $\{8, 16, 32, 64, 128, 256\}$, and the inclusion of mixture-of-expert-based gating, specified as either {yes, no}. We used GELU activation, which is the default choice in the official library.

Transolver⁷: The hyperparameters included the number of attention layers, varied over $\{4, 6, 8\}$, the dimensions of the embeddings, varied over $\{32, 64, 128\}$, the number of heads, varied over $\{4, 8\}$, and the number of slices, varied over $\{32, 64\}$. We used GELU activation, which is the default choice in the official library.

KM: We report the best result on a given dataset from the choice of Matern Kernels with degree of freedom $\nu = \{1/2, 3/2, 5/2, 13/2\}$ and a Gaussian kernel. In each case the scale parameter was manually tuned.

The hyperparameters included the number of attention layers, varied over $\{4, 6, 8\}$, the dimensions of the embeddings, varied over $\{32, 64, 128\}$, and the number of heads, varied over $\{4, 8\}$. We used GELU activation, which is the default choice in the official library.

For the NS-Pipe Flow dataset, we used the result from Wu et al. (2024) for GNOT, which was collected under the same hyperparameter search we employed and Transolver, which reports itself. For FNO, we cite the authors' result from Li et al. (2023). To ensure fairness, all models (including KNO) for this dataset were trained for 500 epochs. For all other datasets, FNO and GNOT were trained for 10,000 epochs with batch sizes of 100 to ensure convergence. Initial learning rates were selected from $\{10^{-5}, 5 \times 10^{-5}, 10^{-4}, 4 \times 10^{-3}, 10^{-3}\}$. All models were trained on the NCSA Delta GPU cluster⁸ using NVIDIA A100 and A40 GPUs.

A.3 Descriptions of Benchmark Problems Defined on Regular Domains

In this section, we describe problems on regular domains in greater detail (where not sufficiently described in the main article).

A.3.1 1D Burgers' Equation

We first considered Burgers' equation in one dimension with periodic boundary conditions:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (0, 1), \quad t \in (0, 1),$$

with the viscosity coefficient fixed to $\nu = 0.1$. Specifically, we learned the mapping from the initial condition $u(x, 0) = u_0(x)$ to the solution $u(x, t)$ at $t = 1$, *i.e.*, $\mathcal{G} : u_0 \mapsto u(\cdot, 1)$. The input functions u_0 were generated

⁴<https://github.com/neuraloperator/neuraloperator>

⁵<https://github.com/neuraloperator/Geo-FNO>

⁶<https://github.com/HaoZhongkai/GNOT>

⁷<https://github.com/thuml/Transolver>

⁸<https://www.ncsa.illinois.edu/research/project-highlights/delta/>

by sampling $u_0 \sim \mu$, where $\mu = \mathcal{N}(0, 625(-\Delta + 25I)^{-2})$ with periodic boundary conditions, and the Laplacian Δ was numerically approximated on X_T . The solution was generated as described in (Li et al., 2021, Appendix A.3.1). The full spatial resolution of this dataset was 8192, but the models were trained and evaluated on input-output function pairs both defined on the same downsampled 128 grid (as were the errors). 1000 examples were used for training and 200 for testing.

A.3.2 1D Beijing Air problem

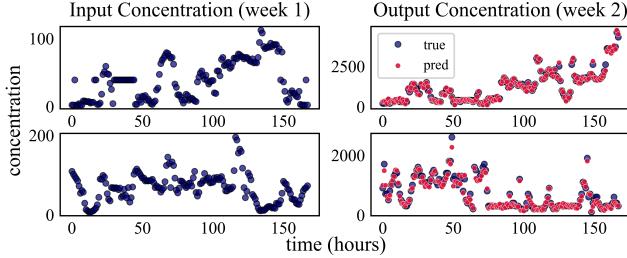


Figure 5: An input pollutant concentration (left) and the corresponding ground truth and KNO predictions of output pollutant concentration (right) for the Beijing-Air problem.

This problem was fully described in the main article. However, here we also present Figure 5, which shows the KNO predictions as compared to the ground truth on the Beijing-Air dataset. Despite the noise in the dataset, the KNO gives the best performing result of the neural operators tested.

A.3.3 2D Darcy Flow (PWC)

We used KNOs to learn an operator $\mathcal{G} : K \mapsto h$ associated with 2D Darcy flow

$$-\nabla \cdot (K(x, y) \nabla h(x, y)) = f(x, y), \quad (x, y) \in \Omega.$$

on the $\Omega = [0, 1]^2$. The permeability field was generated via $K = \psi(\mu)$, where $\mu \sim \mathcal{N}(0, (-\Delta + 9I)^{-2})$, and ψ is a function that pointwise converts all non-negative values to 12 and all negative values to 3. Accordingly we referred to this problem as “Darcy (PWC)”. Both problems used 1000 training functions and 200 test functions. The Darcy (PWC) training functions were computed on a 421^2 grid and subsampled to a 29^2 grid Lu et al. (2022).

A.3.4 3D Compressible Navier–Stokes (NS) Equations.

The KNO was also tested on a problem involving the 3D compressible NS equations:

$$\begin{aligned} \partial_t \rho + \nabla \cdot (\rho \mathbf{v}) &= 0, \\ \rho (\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v}) &= -\nabla p + \eta \Delta \mathbf{v} + (\zeta + \eta/3) \nabla (\nabla \cdot \mathbf{v}), \\ \partial_t \left[\epsilon + \frac{\rho v^2}{2} \right] + \nabla \cdot \left[\left(\epsilon + p + \frac{\rho v^2}{2} \right) \mathbf{v} - \mathbf{v} \cdot \sigma' \right] &= 0 \end{aligned} \quad (18)$$

with periodic boundary conditions on the unit hypercube $[0, 1]^3$. Here ρ is the mass density, \mathbf{v} is the velocity, p is the gas pressure, $\epsilon = p/(\Gamma - 1)$ is the internal energy, $\Gamma = 5/3$, σ' is the viscous stress tensor, and η, ζ are the shear and bulk viscosity, respectively. The behavior of the fluid is affected by the Mach number $M = |\mathbf{v}|/c_s$, where $c_s = \sqrt{\Gamma p/\rho}$. We considered the high Mach number case ($M = 1.0$), where the fluid behavior is complex and highly compressible. The input and output functions were discretized on a uniform grid of size $64 \times 64 \times 64$. This data was made available through PDEBench Takamoto et al. (2024), which offers many widely used benchmarks for scientific machine learning.

A.4 Descriptions of Benchmark Problems Defined on Irregular Domains

In this section, we describe problems on irregular domains in greater detail (where not sufficiently described in the main article).

A.4.1 Darcy (triangular)

We also examined a Darcy flow problem where the input and output functions were discretized on an irregular spatial domain. Specifically, as in Lu et al. (2022), we learned the mapping from the Dirichlet boundary condition to the

pressure field over the entire domain, *i.e.*, the operator $\mathcal{G} : h(x, y)|_{\partial\Omega} \mapsto h(x, y)$. Here $K(x, y) = 0.1$ and $f = -1$. The input functions $h(x, y)|_{\partial\Omega}$ were generated as follows. First, we generated $\tilde{h}(x) \sim \mathcal{GP}(0, \mathcal{K}(x, x'))$, $\mathcal{K}(x, x') = \exp[-\frac{(x-x')^2}{2l^2}]$, where $l = 0.2$ and $x, x' \in [0, 1]$. We then simply evaluated $\tilde{h}(x)$ at the x -coordinates of the boundary points of each unstructured mesh to obtain $h(x, y)|_{\partial\Omega}$. The Matlab PDE Toolbox was used both to generate unstructured meshes and numerical solutions Lu et al. (2022). This problem utilized an 861 vertex unstructured mesh with 120 points lying on the boundary; see Lu et al. (2022) with 1900 training examples and 100 test examples.

A.4.2 3D Reaction-Variable-Coefficient-Diffusion

Finally, we investigated a 3D problem reaction-diffusion problem in the unit ball, (*i.e.*, the interior of the unit sphere) where a chemical with concentration $c(y, t)$ is governed by:

$$\frac{\partial c}{\partial t} = k_{\text{on}} (R - c) c_{\text{amb}} - k_{\text{off}} c + \nabla \cdot (K(y) \nabla c), \quad y \in \Omega, \quad t \in [0, 0.5],$$

where $y = (y_1, y_2, y_3)$ and $K(y) \frac{\partial c}{\partial n} = 0$ on $\partial\Omega$. Here, $R = 2.0$ throttles the reaction, and the k_{on} and k_{off} are discontinuous reaction constants that introduce a sharp solution gradient at $y_1 = 1.0$:

$$k_{\text{on}} = \begin{cases} 2, & y_1 \leq 1.0, \\ 0, & \text{otherwise,} \end{cases} \quad k_{\text{off}} = \begin{cases} 0.2, & y_1 \leq 1.0, \\ 0, & \text{otherwise.} \end{cases}$$

The diffusion coefficient is also a spatially varying function with a steep gradient given by:

$$K(y) = B + \frac{C}{\tanh(A)} ((A - 3) \tanh(8x - 5) - (A - 15) \tanh(8x + 5) + A \tanh(A)),$$

where $A = 9$, $B = 0.0215$, and $C = 0.005$. $c_{\text{amb}} = (1 + \cos(2\pi y_1) \cos(2\pi y_2) \sin(2\pi y_3)) e^{(-\pi t)}$ is a background source of chemical accessible for reaction. We set the initial condition to be $c(y, 0) \sim \mathcal{U}(0, 1)$, and learned the solution operator $\mathcal{G} : c(y, 0) \rightarrow c(y, 0.5)$. The PDE was solved on 4325 collocation points using a 4th-order accurate RBF-FD solver Shankar & Fogelson (2018) to generate 1000/200 train and test input/output function pairs, respectively.

A.5 Results including standard errors

Table 8: Percent ℓ_2 Relative Errors and Standard Errors.

Problem	FNO	GNOT	Transolver	KM	KNO
Burgers $\nu = 0.1$	0.276 ± 0.004	0.89 ± 0.014	1.077 ± 0.101	2.831	0.574 ± 0.011
Beijing-Air	55.33 ± 0.18	40.3 ± 0.21	41.68 ± 0.332	50.982	24.941 ± 0.161
Darcy (PWC)	1.79 ± 0.025	2.58 ± 0.034	1.989 ± 0.0278	3.064	1.512 ± 0.012
Darcy (triangle)	0.043 ± 0.003	0.111 ± 0.013	—	0.033	0.045 ± 0.002
NS-Pipe	0.67	0.47 ± 0.02	0.33 ± 0.02	2.742	0.588 ± 0.009
NS Mach 1.0	58.05 ± 4.77	81.5 ± 2.18	48.127 ± 0.483	54.150	52.602 ± 0.142
React.-Diff.	6.68e-3 ± 2.77e-4	4.47e-3 ± 9.45e-5	8.10e-3 ± 1.89e-5	8.75e-05	9.20e-4 ± 1.02e-4

Table 8 replicates Table 2, but also shows standard errors for each result. As mentioned previously, the Darcy (triangle) result is notable in that the (Geo)FNO and KNO results match almost exactly.

A.6 Dataset Summary

Table 9 summarizes important features of the datasets used in this work. “#Mesh” indicates the number of sample locations. For the Darcy (triangle) problem, we map from 120 boundary vertices to 861 interior and boundary vertices in total. The “#Dataset” column indicates the number of training and test functions.

A.7 Ablation Studies

In this section, we present experiments that analyze the sensitivity of the KNO to various hyperparameter choices. All results are reported as the percent ℓ_2 relative error on generalization, averaged over four random model initializations.

Table 9: Training Dataset Summary.

Geometry	Benchmarks	#Dim	#Mesh	Input	Output	#Dataset
Regular Grid	Beijing-Air	1D	168	SO2, CO, PM2.5, PM10	CO conc.	(1000, 200)
	Burgers	1D	168	Init. velocity	Final velocity	(5000, 1000)
	Darcy	2D	841	Permeability	Pressure	(1000, 200)
	Navier-Stokes Mach 1.0	3D	262,144	Init. velocity	Final velocity	(90,10)
Structured Mesh	Pipe	2D	16,641	Structure	Final velocity	(1000, 200)
	Darcy (triangle)	2D	120/861	Boundary Condition	Pressure	(1900, 100)
Point Cloud	Reaction-Diffusion	3D	4,325	Init. conc.	Final conc.	(1000, 200)

Table 10: Percent ℓ_2 relative errors (averaged over four random seeds) for different kernels, with the best results highlighted in bold.

Problem	Gaussian	Gibbs	GSM	NS-GSM
Burgers	1.061	1.169	0.783	0.574
Beijing-Air	27.748	31.477	24.941	26.540
Darcy (PWC)	2.085	2.385	1.792	1.549
Darcy (triangle)	0.264	0.271	0.102	0.045
NS-Pipe	0.749	0.697	0.719	0.588

A.7.1 Impact of Kernel Properties on Performance

In this section, we describe an ablation study over integration kernels with the goal of isolating the effect of non-stationarity and evaluating the importance of the number of trainable parameters. We compare the one-parameter Gaussian kernel, the Gibbs kernel (i.e., nonstationary Gaussian kernels), Gaussian Spectral Mixture (GSM) kernel, and the Nonstationary-Gaussian Spectral Mixture (NS-GSM) kernel, as shown in Table 10. The trainable parameter counts for the Gaussian, Gibbs, GSM, and NS-GSM kernels used in this 1D example were 1, 25, 6, and 70, respectively, showcasing a spectrum of increasing expressivity (at least in theory).

Surprisingly, the KNO with just the one-parameter Gaussian kernel delivers strong performance, outperforming both GNOT and FNO on the challenging Beijing-Air problem ($\sim 28\%$ relative error compared to $\sim 40\%$ for GNOT and $\sim 55\%$ for FNO). It also surpassed GNOT and Transolver on the Darcy (PWC) problem (1.79% relative error compared to 2.58%) and matched the FNO’s result with the GSM kernel. Additionally, the KNO with the GSM kernel demonstrated superior performance over the GNOT and Transolver on the Burgers problem (0.783 vs. 0.89) and 1.077) respectively, and the GNOT on the Darcy (triangle) problem (0.10 vs. 0.11), while also matching FNO’s result on the Darcy problem. Clearly, Table 10 shows that increasing kernel expressivity leads to improved results, but primarily as the problem itself becomes more challenging.

Table 11: Percent ℓ_2 relative errors (averaged over four random seeds) for different kernels, with the best results highlighted in bold.

Problem	Gaussian	Matern C_2	Matern C_6	Wendland C_2	Wendland C_6
Burgers	1.061	1.427	1.489	1.197	1.168
Beijing-Air	27.748	35.726	37.0170	24.167	24.170
Darcy (PWC)	2.085	3.560	3.666	2.138	2.143

In addition to testing kernels with global support and infinite smoothness, we also explored the use of compactly-supported kernels and kernels of finite smoothness. The Wendland Kernel Wendland (1995) possesses both these features, while the Matern kernel only has the latter. The results are presented in table 11. In all cases, the compactly-supported Wendland Kernels outperformed the Matern kernels and performs on-par with Gaussian kernels. In the Beijing-Air problem, the Wendland kernel outperforms the Gaussian kernel; in fact it outperforms all other models, suggesting sparsity is a desirable trait, which can be leveraged to achieve speedups via sparse-matrix operations (when these are supported by the underlying libraries). Otherwise, the Gaussian kernel tends to perform better overall as reflected by its performance on the Burgers and Darcy (PWC) problem.

A.7.2 Impact of Matrix-valued Kernel Structure on Performance

In this section, we experiment with a symmetric banded matrix-valued kernel on the Darcy (PWC) problem and the Burgers' problem, incorporating a hyperparameter k that reflects an additional number of non-zero off diagonal entries incorporated into the MVK (mirrored across the matrix), each with a unique set of kernel parameters. Thus if k is equal to the channel dimension p , the MVK is fully dense. These KNOs tended to be slightly more expressive with potential for further improvement given more careful tuning of the optimization procedure. From Table 12, we can glean that a denser MVK is more helpful with respect to errors when the channel dimension is small than it is when the channel dimension is large.

We also trained models with the The Linear Model of Coregionalization (equation 20, section 4.2.1) Alvarez et al. (2012) and the Multi-output Spectral-Mixture kernel Parra & Tobar (2017), but the results were not competitive and so we omit them here.

Table 12: Relative errors for different kernels across channel dimensions and k values.

Problem	Channels	$k=0$	$k=1$	$k=2$	$k=4$	$k=8$	$k=C$
Burgers'	16	1.247	1.101	1.068	0.939	0.816	0.823
	32	0.718	0.654	0.595	0.550	0.504	0.509
	64	0.574	0.546	0.555	0.563	0.527	2.161
Darcy (PWC)	16	1.595	1.573	1.496	1.466	1.462	1.611
	32	1.483	1.445	1.455	1.464	1.625	4.572
	64	1.689	1.616	1.614	1.632	1.649	1.724

A.7.3 Impact of Model Size on Performance

Table 13: Ablation study of the KNO on the number of integration layers (depth) and channel dimension for the Darcy (PWC) problem. The base model uses 4 integration layers, 64 channels, and the NS-GSM kernel. The best results are highlighted in bold.

(a) Depth L : the number of layers.

Depth	2	3	4	5	6
% rel ℓ_2	2.380	1.825	1.549	1.534	1.569

(b) The number of latent channels C .

Channels	8	16	32	64	128	256
% rel ℓ_2	3.072	2.230	1.643	1.549	1.868	2.282

This section examines the effect of channel dimension and the number of integration layers on KNO's performance, as shown in Tables 13 and 14. The goal of this ablation study was to understand how increasing model size influenced scalability and accuracy, and to identify optimal configurations for different datasets. Experiments were conducted on the Darcy (PWC) dataset and the Beijing-Air dataset to analyze these effects. In general, we observed diminishing returns in performance improvements beyond a certain model size. For the Darcy (PWC) dataset, increasing the channel dimension beyond 64 and the number of integration layers beyond 5 did not improve accuracy. In contrast, for the Beijing-Air dataset, scaling the model size consistently improved performance, with the best results achieved at a channel dimension of 512 and 6 integration layers. This difference likely reflects the higher complexity and variability of the Beijing-Air dataset compared to Darcy (PWC).

These findings suggest that while larger models may be beneficial for complex datasets, careful tuning of model size is necessary to avoid over-parameterization and diminishing returns, particularly for simpler datasets.

A.7.4 Impact of Integration Layers and Pointwise Convolution

This section examines the role of integration layers and pointwise convolution in the KNO's performance, as shown in Table 15. The goal of this ablation study is to evaluate the individual contributions of these components to KNO's accuracy and identify their relative importance for different datasets. Experiments were conducted on the Darcy (PWC) and NS-Pipe datasets to analyze how removing these components affects accuracy.

Table 14: Ablation study of KNO on the number of integration layers (depth) and channel dimension for the Beijing-Air problem. The base model uses 4 integration layers, 256 channels, and the GSM kernel. The best results are highlighted in bold.

(a) Depth L : the number of layers.					
Depth	2	3	4	5	6
% rel ℓ_2	28.93	24.94	22.15	18.37	15.52

(b) The number of latent channels C .						
Channels	8	16	32	64	128	256
% rel ℓ_2	58.23	54.93	49.59	41.89	32.16	22.15

Table 15: KNO ablation study on removing the pointwise convolution or integration layer, with a fixed architecture otherwise. Each number reported represents the percent ℓ_2 relative error.

Problem	No Pointwise Conv	No integral	Full Model
Darcy (PWC)	1.915	17.058	1.512
NS-Pipe	0.792	14.870	0.588

The results clearly demonstrate the necessity of integration kernels, as removing the integration layer reduces model accuracy by an order of magnitude. For example, on the Darcy (PWC) dataset, removing the integration layer increased the relative error from 1.512% to 17.058%, while removing the pointwise convolution resulted in a *much* smaller increase to 1.915%. Similar trends were observed for the NS-Pipe dataset, where removing the integration layer again caused over a tenfold increase in error. These findings suggest that integration layers are critical for capturing complex operator mappings, while pointwise convolution provides only marginal additional benefits.

A.7.5 Impact of Quadrature Type and Resolution

Table 16: Experiments analyzing the impact of the number of quadrature nodes (N_Q) on accuracy. The best results are highlighted in bold.

(a) Effect of increasing resolution of the Gauss-Legendre quadrature rule on the 1D Burgers' problem. The base model uses a NS-GSM kernel with 4 integration layers and a channel dimension of 64.

N_Q	8	16	32	64	96	128	196	256
% rel ℓ_2	26.20	25.00	6.88	1.25	0.651	0.540	0.671	0.635

(b) Effect of increasing quadrature resolution on the 2D Darcy (triangle) problem. The base model uses a GSM kernel with 4 integration layers and a channel dimension of 64.

N_Q	3	12	27	48	75	108	149	192
% rel ℓ_2	34.82	7.596	1.528	0.551	0.239	0.131	0.102	0.111

This section examines the relationship between quadrature type, resolution, and accuracy, as shown in Table 16. The goal of this ablation study is to evaluate how different quadrature rules and resolutions affect the KNO's accuracy and computational efficiency, and to identify optimal configurations for specific datasets. Experiments were conducted on the Darcy (triangle) and Burgers' datasets to analyze these effects. For the Darcy (triangle) problem, we used a quadrature rule from Freno et al. (2020) (described in the main article), while for the Burgers' problem, we employed a Gauss-Legendre rule. For the latter, it is worth noting that our main results in Table 2 used a trapezoidal quadrature rule, which allowed us to omit interpolation and perform integration directly on the grid where the data lay. In this study, however, we used a GSM interpolant to project the functions onto the Gauss-Legendre nodes. For the same number of quadrature nodes, the Gauss-Legendre rule slightly outperformed the trapezoidal rule, achieving 0.540% relative error compared to 0.588%. The Darcy (triangle) problem also shows improvements when increasing the accuracy of the quadrature rule. However, interestingly, both sets of results show that while increasing the number of

quadrature points initially improves accuracy, using too many points eventually leads to a degradation in performance. These findings suggest that both the quadrature type and the number of quadrature points should be carefully tailored to the specific requirements of each problem such as smoothness, dimension, and geometry. As mentioned in the main article, using lower-order quadrature rules can introduce numerical damping, which can be beneficial or harmful depending on the smoothness of the integrands.

A.7.6 Impact of Dimension-wise Factorizations

Table 17: Comparison of training time (using mini-batches of size 10) and performance between dimension-wise factorized kernels and non-factorized kernels.

Problem	Dimension-wise		Full	
	Time	% rel ℓ_2	Time	% rel ℓ_2
Darcy (PWC)	4.56e-3	1.549	4.88e-2	1.535

This section examines the effect of dimension-wise factorization on the KNO’s accuracy and training speed, as shown in Table 17. The goal of this ablation study is to evaluate the trade-offs between computational efficiency and accuracy when using dimension-wise factorization compared to full n -dimensional quadrature. Dimension-wise factorization allows the use of univariate quadrature rules, whereas models without factorization require n -dimensional quadrature rules. Experiments were conducted on the 2D Darcy (PWC) problem to analyze these differences.

The results indicate that while the model with dimension-wise factorization experiences only a slight degradation in accuracy, it is an order of magnitude faster to train compared to the non-factorized model. For example, the factorized model achieved a relative error of 1.549%, compared to 1.535% for the non-factorized (full) model, while reducing training time from 4.88×10^{-2} seconds per epoch to 4.56×10^{-3} seconds per epoch. These findings highlight the trade-off between computational efficiency and accuracy, suggesting that dimension-wise factorization is particularly advantageous for problems where training speed is a priority.

Interestingly, while the 2D Darcy (PWC) problem showed only a slight accuracy degradation with dimension-wise factorization, similar experiments on higher-dimensional problems may reveal stronger dependencies on factorization. Future work could explore hybrid approaches that balance factorization with accuracy preservation for more complex problems.

B Universal Approximation

B.1 Infinite-Dimensional Case

The following is a restatement and proof of Theorem 3.1.

Theorem 3.1. *Let $\Omega \subset \mathbb{R}^d$ be compact, and let $A \subset (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2(\Omega)})$ be compact. Let $\mathcal{G} : A \rightarrow (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2(\Omega)})$ be a continuous operator. For any $\epsilon > 0$, there exists a KNO $\mathcal{H} : A \rightarrow L^2(\Omega; \mathbb{R})$ of the form (2) with continuous positive-definite kernels $K_{i_\ell, j_\ell}^{(\ell)}$ such that*

$$\sup_{f \in A} \|\mathcal{H}[f] - \mathcal{G}[f]\|_{L^2(\Omega)} < \epsilon. \quad (19)$$

Proof. The structure of this proof is based on the approach of Kovachki et al. (2021a). However, we exclusively use diagonal kernels and do not assume that b_l depends on x . We use the L^2 inner product, and all L^p norms are over Ω unless otherwise noted.

Let $\epsilon > 0$ be arbitrary. Let $K(x, y)$ be an arbitrary continuous positive-definite kernel on Ω , i.e.

$$\int_{\Omega} \int_{\Omega} f(x) K(x, y) g(y) \, dx \, dy \geq 0 \quad \text{for any } f, g \in L^2(\Omega). \quad (20)$$

By Mercer’s theorem, there exist $\{\lambda_k\}_{k \in \mathbb{N}} \subset \mathbb{R}_+$ and $\{\psi_k\}_{k \in \mathbb{N}} \subset L^2(\Omega)$ such that

$$\int_{\Omega} K(x, y) \psi_k(y) \, dy = \lambda_k \psi_k(x), \quad K(x, y) = \sum_{k \in \mathbb{N}} \lambda_k \psi_k(x) \psi_k(y),$$

and $\{\psi_k\}_{k \in \mathbb{N}}$ forms an orthonormal basis of $L^2(\Omega)$ with respect to $\|\cdot\|_{L^2}$. Now let

$$\mathcal{G}_N = \mathcal{T}_N \circ \mathcal{G} \circ \mathcal{T}_N$$

where for any $f \in A$,

$$\mathcal{T}_N[f] = \sum_{n \in [N]} \langle f, \psi_n \rangle \psi_n \quad (21)$$

i.e. \mathcal{T}_N is the projection onto the first N Mercer eigenfunctions. Note that for any $N \in \mathbb{N}$, $f \in A$, and $\mathcal{H} : A \rightarrow L^2(\Omega; \mathbb{R})$ we have

$$\|\mathcal{H}[f] - \mathcal{G}[f]\|_{L^2} \leq \|\mathcal{H}[f] - \mathcal{G}_N[f]\|_{L^2} + \|\mathcal{G}_N[f] - \mathcal{G}[f]\|_{L^2}.$$

Since \mathcal{G} is continuous, \mathcal{T}_N is a projector, and A is compact, then there exists $N \in \mathbb{N}$ such that

$$\sup_{f \in A} \|\mathcal{G}_N[f] - \mathcal{G}[f]\|_{L^2} < \epsilon/2,$$

and all that remains is to construct \mathcal{H} such that

$$\sup_{f \in A} \|\mathcal{H}[f] - \mathcal{G}_N[f]\|_{L^2} < \epsilon/2. \quad (22)$$

We define

$$\mathcal{B}_N : \text{span}\{\psi_n\}_{n \in [N]} \rightarrow \mathbb{R}^N, \quad (\mathcal{B}_N[f])_n \equiv \langle f, \psi_n \rangle, \quad \mathcal{B}_N^{-1}[\mathbf{c}](x) = \sum_{n \in [N]} c_n \psi_n(x) \quad (23)$$

along with $\widehat{\mathcal{G}}_N : \mathbb{R}^N \rightarrow \mathbb{R}^N$ as

$$\widehat{\mathcal{G}}_N = \mathcal{B}_N \circ \mathcal{G}_N \circ \mathcal{B}_N^{-1},$$

which gives

$$(\mathcal{B}_N^{-1} \circ \widehat{\mathcal{G}}_N \circ \mathcal{B}_N)[f] = \mathcal{G}_N[f] \quad (24)$$

for each $f \in A$. All that remains is to approximate \mathcal{B}_N and \mathcal{B}_N^{-1} with nonlinear operators and to approximate $\widehat{\mathcal{G}}_N$ as a sequence of integral operators

$$(\mathcal{I}_q^p)_L \circ \sigma \circ \dots \circ \sigma \circ (\mathcal{I}_q^p)_0. \quad (25)$$

as in (2)-(3). We will address $\widehat{\mathcal{G}}_N$ here and consider \mathcal{B}_N and \mathcal{B}_N^{-1} in the following two lemmas.

Approximation of $\widehat{\mathcal{G}}_N$: $\widehat{\mathcal{G}}_N$ is a continuous finite-dimensional map, and since A is compact, then the domain $\mathcal{B}_N(\mathcal{T}_N A) = D \subset \mathbb{R}^N$ of \mathcal{G}_N is also compact, where the operators apply elementwise on sets. Therefore, by universal approximation theorem for multilayer perceptrons (MLPs), for any $\tilde{\epsilon} > 0$ there exists an MLP $\bar{\mathcal{G}}$ such that

$$\sup_{x \in D} \|\bar{\mathcal{G}}(x) - \widehat{\mathcal{G}}_N(x)\|_{\ell^\infty(\mathbb{R}^N)} < \tilde{\epsilon}. \quad (26)$$

We can write

$$\bar{\mathcal{G}}_N(\mathbf{x}) = \mathbf{W}^{(1)} \sigma(\mathbf{W}^{(0)} \mathbf{x} + \mathbf{b}^{(0)}) \quad (27)$$

for some $p \in \mathbb{N}$, $\mathbf{W}^{(0)} \in \mathbb{R}^{p \times N}$, $\mathbf{W}^{(1)} \in \mathbb{R}^{N \times p}$, and $\mathbf{b}^{(0)} \in \mathbb{R}^p$. Since $K(x, y) \equiv 0$ satisfies (20), then (27) defines a sequence of integral operators (25) with $L = 1$, $p = N$, and $\mathbf{K}^{(0)} = \mathbf{K}^{(1)} = \mathbf{0}_{N \times N}$ where we interpret the inputs and outputs of $(\mathcal{I}_q^p)_0$ and $(\mathcal{I}_q^p)_1$ as constant functions $g^{(0)} : \Omega \rightarrow D$, $g^{(1)} : \Omega \rightarrow D'$. This interpretation is justified in light of Lemmas B.1 and B.2.

Construction of \mathcal{H} : Select \mathcal{P} , $\widehat{\mathcal{G}}_N$, and \mathcal{L} as follows.

1. Choose \mathcal{P} from Lemma B.2 corresponding to an approximation accuracy of $\epsilon/4$. Since \mathcal{P} is continuous, then there exists $\delta_\epsilon^{(1)}$ such that $\|\mathcal{P}[\mathbf{x}] - \mathcal{P}[\mathbf{y}]\|_{L^2} \leq \epsilon/8$ whenever $\|\mathbf{x} - \mathbf{y}\|_{\ell^\infty} \leq \delta_\epsilon^{(1)}$.
2. Choose $\bar{\mathcal{G}}_N$ corresponding to an approximation accuracy of $\tilde{\epsilon} = \delta_\epsilon^{(1)}$. Since $\bar{\mathcal{G}}_N$ is continuous, there exists $\delta_\epsilon^{(2)}$ such that $\|\bar{\mathcal{G}}_N[\mathbf{x}] - \bar{\mathcal{G}}_N[\mathbf{y}]\|_{\ell^\infty} \leq \delta_\epsilon^{(1)}$ whenever $\|\mathbf{x} - \mathbf{y}\|_{\ell^\infty} \leq \delta_\epsilon^{(2)}$.

3. Choose \mathcal{L} from Lemma B.1 corresponding to an approximation accuracy of $\delta_\epsilon^{(2)}$.

Now set

$$\mathcal{H} = \mathcal{P} \circ \bar{\mathcal{G}}_N \circ \mathcal{L}. \quad (28)$$

Let $f \in A$ be arbitrary. Then the triangle inequality gives

$$\begin{aligned} \|\mathcal{H}[f] - \mathcal{G}_N[f]\|_{L^2} &\leq \|\mathcal{P}\bar{\mathcal{G}}_N\mathcal{L}[f] - \mathcal{P}\bar{\mathcal{G}}_N\mathcal{B}_N[f]\|_{L^2} & \text{(I)} \\ &+ \|\mathcal{P}\bar{\mathcal{G}}_N(\mathcal{B}_N[f]) - \mathcal{P}\hat{\mathcal{G}}_N(\mathcal{B}_N[f])\|_{L^2} & \text{(II)} \\ &+ \|\mathcal{P}(\hat{\mathcal{G}}_N\mathcal{B}_N[f]) - \mathcal{B}_N^{-1}(\hat{\mathcal{G}}_N\mathcal{B}_N[f])\|_{L^2}. & \text{(III)} \end{aligned}$$

We bound (I) by noting that the uniform approximation in Lemma B.1 gives, for any $x \in \Omega$,

$$\|\mathcal{L}[f](x) - \mathcal{B}_N[f](x)\|_{\ell^\infty(\mathbb{R}^N)} < \delta_\epsilon^{(2)},$$

so by continuity, (I) $\leq \epsilon/8$. In (II), for any $c \in \mathcal{B}_N\mathcal{T}_N(A)$,

$$\|\bar{\mathcal{G}}_N(c) - \hat{\mathcal{G}}_N(c)\|_{\ell^\infty(\mathbb{R}^N)} < \delta_\epsilon^{(1)},$$

so (II) $\leq \epsilon/8$. Lastly, we have (III) $< \epsilon/4$ by construction. The result (19) immediately follows. \square

Lemma B.1. *Let $N \in \mathbb{N}$ be arbitrary. Let $A \subset (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2(\Omega)})$ be compact. For any $\epsilon > 0$, there exists a continuous operator $\mathcal{L} : A \rightarrow L^2(\Omega; \mathbb{R}^N)$ such that*

$$\sup_{f \in A, x \in \Omega} \|\mathcal{L}[f](x) - \mathcal{B}_N[f](x)\|_{\ell^\infty(\mathbb{R}^N)} < \epsilon.$$

Proof. Let $A \subset (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2(\Omega)})$ be compact. Let $N \in \mathbb{N}$ and $\epsilon > 0$ be arbitrary. Let $K(x, y)$ be a continuous positive-definite kernel on Ω with eigenfunctions $\psi_n(x)$. Observe that for any $f \in A$,

$$\int_{\Omega} \psi_n(x) \psi_n(y) f(y) dy = \langle f, \psi_n \rangle \psi_n(x), \quad n \in \mathbb{N}.$$

Note that the kernel $\tilde{K}_n(x, y) = \psi_n(x) \psi_n(y)$ is positive-definite. By defining $\tilde{\mathbf{K}}(x, y) = (\tilde{K}_n(x, y))_{n \in [N]}$, we have

$$\tilde{\mathcal{I}}^{(0)}[f] = \int_{\Omega} \tilde{\mathbf{K}}(x, y) f(y) dy = (\langle f, \psi_n \rangle \psi_n)_{n \in [N]}$$

where $\tilde{\mathcal{I}}^{(0)} : A \rightarrow A^N$. Now define the affine operator $\tilde{\mathcal{I}}^{(1)} : A^N \rightarrow A$ by $\tilde{\mathcal{I}}^{(1)}[f](x) = \mathbf{1}_N(f(x))$, which gives

$$(\tilde{\mathcal{I}}^{(1)} \circ \tilde{\mathcal{I}}^{(0)})[f](x) = \sum_{n \in [N]} \langle f, \psi_n \rangle \psi_n(x) = \mathcal{T}_N[f](x)$$

for all $f \in A$.

Next, consider the mapping $\tilde{h} : \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{N+1}$ defined as $\tilde{h}(a, x) = (a, \psi_1(x), \dots, \psi_N(x))$. We wish to restrict \tilde{h} to a compact domain and apply the universal approximation theorem for MLPs. To do that, we need to bound

$$\sup_{f \in A} \|\mathcal{T}_N[f]\|_{L^\infty}.$$

Since $K(x, y)$ is continuous, then ψ_n is continuous for all $n \in \mathbb{N}$, and since Ω is compact, then each ψ_n attains some finite maximum $M_n < \infty$ on Ω . As a result, for each $n \in [N]$, we have $\|\psi_n\|_{L^\infty} \leq Q := \max_{n \in [N]} M_n$. Furthermore, for any $f \in A$, Hölder's inequality gives

$$\sum_{n \in [N]} |\langle f, \psi_n \rangle| \leq \left(\sum_{n \in [N]} |\langle f, \psi_n \rangle|^2 \right)^{1/2} \sqrt{N} = \sqrt{N} \|\mathcal{T}_N[f]\|_{L^2}$$

since $\langle \psi_n, \psi_m \rangle = \delta_{nm}$. Since A is compact, then there exists $C > 0$ such that for any $f \in A$, $\|f\|_{L^2} \leq C$. But $\|\mathcal{T}_N[f]\|_{L^2} \leq \|f\|_{L^2}$, so

$$\|\mathcal{T}_N[f]\|_{L^\infty} \leq \sum_{n \in [N]} |\langle f, \psi_n \rangle| \|\psi_n\|_{L^\infty} \leq QC\sqrt{N} := \tilde{C}.$$

So now take $h : [-\tilde{C}, \tilde{C}] \times \Omega \rightarrow \mathbb{R}^N$ defined by $\tilde{h}(a, x) = (a\psi_1(x), \dots, a\psi_N(x))$. Since each ψ_n is continuous, then h is a continuous function on a compact set, so there exists an MLP $\mathcal{N}^{\text{lift}} : [-\tilde{C}, \tilde{C}] \times \Omega \rightarrow \mathbb{R}^N$ such that

$$\sup_{\substack{a \in [-\tilde{C}, \tilde{C}] \\ x \in \Omega}} \|\mathcal{N}^{\text{lift}}(a, x) - (a\psi_1(x), \dots, a\psi_N(x))\|_{\ell^\infty(\mathbb{R}^N)} < \epsilon/\mu(\Omega),$$

where μ is the standard Lebesgue measure. Set

$$\mathcal{L}[f](x) = \int_{\Omega} \mathcal{N}^{\text{lift}}((\widehat{\mathcal{I}}^{(1)} \circ \widehat{\mathcal{I}}^{(0)})(f)(y), y) \, dy.$$

Since \mathcal{N} is uniformly continuous, then $\tilde{\mathcal{N}}$ is continuous, and since integration is continuous, then \mathcal{L} is continuous. For any $f \in A$, $x \in \Omega$, and $n \in [N]$, we have

$$\begin{aligned} |(\mathcal{L}[f](x))_n - \langle f, \psi_n \rangle| &= \left| \int_{\Omega} \mathcal{N}^{\text{lift}}(\mathcal{T}_N[f](y), y)_n \, dy - \int_{\Omega} f(y) \psi_n(y) \, dy \right| \\ &\leq \int_{\Omega} |\mathcal{N}^{\text{lift}}(\mathcal{T}_N[f](y), y)_n - \mathcal{T}_N[f](y) \psi_n(y)| \, dy \\ &< \epsilon, \end{aligned}$$

which completes the proof. \square

Lemma B.2. *Let $N \in \mathbb{N}$ be arbitrary. Let $\{\psi_n\}_{n \in \mathbb{N}}$ be a continuous and orthonormal basis for $L^2(\Omega; \mathbb{R})$, and let $A \subset (L^2(\Omega; \mathbb{R}), \|\cdot\|_{L^2})$ be compact. Define $S = \text{span}\{\psi_n\}_{n \in [N]} \cap A$. For any $\epsilon > 0$, there exists a continuous operator $\mathcal{P} : \mathbb{R}^N \rightarrow L^2(\Omega; \mathbb{R})$ such that, for all $f \in S$,*

$$\|\mathcal{P}(\langle f, \psi_1 \rangle, \dots, \langle f, \psi_N \rangle) - f\|_{L^2(\Omega)} < \epsilon.$$

Proof. Let $N \in \mathbb{N}$ and $\epsilon > 0$ be arbitrary. For any $f \in S$, we have

$$\sum_{n \in [N]} |\langle f, \psi_n \rangle| \leq \left(\sum_{n \in [N]} |\langle f, \psi_n \rangle|^2 \right)^{1/2} \sqrt{N} = \sqrt{N} \|f\|_{L^2}$$

by Hölder's inequality. Since A is compact, then there exists $C > 0$ such that for any $f \in S$, $\|f\|_{L^2} < C$. Thus, for any $f \in S$ and $n \in [N]$,

$$|\langle f, \psi_n \rangle| \leq C\sqrt{N}$$

Consider the mapping $h : [-C\sqrt{N}, C\sqrt{N}]^N \times \Omega \rightarrow \mathbb{R}^N$ defined by

$$h(a_1, \dots, a_N, x) = (a_1\psi_1(x), \dots, a_N\psi_N(x)).$$

Since each ψ_n is continuous, then h is continuous and defined on a compact set. So by the universal approximation theorem for MLPs, there exists an MLP $\mathcal{N}^{\text{proj}}$ such that

$$\sup_{a \in [C\sqrt{N}, C\sqrt{N}]^N, x \in \Omega} \|\mathcal{N}^{\text{proj}}(a_1, \dots, a_N, x) - h(a_1, \dots, a_N, x)\|_{\ell^\infty(\mathbb{R}^N)} < \epsilon / \left(N\sqrt{\mu(\Omega)} \right),$$

where μ is the standard Lebesgue measure. Define the pointwise operator $\mathcal{I} : L^2(\Omega; \mathbb{R}^N) \rightarrow L^2(\Omega; \mathbb{R})$ as $\mathcal{I}[f](x) = \mathbf{1}_N^\top(f(x))$. Set $\mathcal{P}[a_1, \dots, a_N](x) = \mathcal{I} \circ \mathcal{N}^{\text{proj}}(a_1, \dots, a_N, x)$. For any $f \in S$,

$$\begin{aligned} \|\mathcal{P}(\mathcal{B}[f]) - f\|_{L^2}^2 &= \int_{\Omega} \left(\sum_{n \in [N]} \mathcal{N}^{\text{proj}}(\mathcal{B}[f], y)_n - \langle f, \psi_n \rangle \psi_n(y) \right)^2 dx \\ &< \int_{\Omega} \left(\sum_{n \in [N]} \frac{\epsilon}{N \sqrt{\mu(\Omega)}} \right)^2 dy \\ &= \epsilon^2, \end{aligned}$$

from which the result immediately follows. \square

B.2 Finite-Dimensional Case

The following is a restatement and proof of Theorem 3.2.

Theorem 3.2. *Adopt the same assumptions as Theorem 3.1, but with $A' \subset C^1(\Omega; \mathbb{R})$, compact with respect to the $\|\cdot\|_{L^\infty}$ norm and with uniformly bounded first derivatives. Additionally, let $\{\mathbf{w}^{(M)}\}_{M \in \mathbb{N}}$ and $X_M = \{\mathbf{x}^{(M)}\}_{M \in \mathbb{N}}$ define a sequence of M -point quadrature rules on Ω . Suppose that there exists $C > 0$ such that, for any $f \in C^1(\Omega; \mathbb{R})$,*

$$\left| \sum_{m \in [M]} w_m^{(M)} f(x_m^{(M)}) - \int_{\Omega} f(x) dx \right| \leq \frac{C \|\nabla f\|_{L^\infty}}{M}.$$

For any $\epsilon > 0$, there exists $M \in \mathbb{N}$, $\nu > 0$, and $\tilde{\mathcal{H}}_M : \mathbb{R}^{N_T} \rightarrow \mathbb{R}^{N_T}$ of the form (14) such that

$$\sup_{f \in A'} \left\| \tilde{\mathcal{H}}_M(\mathbf{f}_T) - (\mathcal{G}[f])|_{X_T} \right\|_{\ell^\infty(\mathbb{R}^M)} < \epsilon + \nu h_{\Omega, X_T}, \quad (29)$$

where $\mathbf{f}_T = \{f(x)\}_{x \in X_T}$,

$$h_{\Omega, X_T} = \sup_{x \in \Omega} \min_{x_i \in X_T} \|x - x_i\|$$

is the fill distance, and $\tilde{\mathcal{H}}_M$ depends parametrically on the quadrature nodes $X_M = \{x_m^{(M)}\}_{m \in [M]}$.

Proof. Let $\tilde{K}(x, y)$ be a positive-definite kernel used to interpolate values from X_T to X_M . For any $M \in \mathbb{N}$, $\tilde{\mathcal{H}}_M : \mathbb{R}^M \rightarrow \mathbb{R}$, $\mathcal{H} : A' \rightarrow C^1(\Omega; \mathbb{R})$, and $f \in A'$, we have

$$\|\tilde{\mathcal{H}}_M(\mathbf{f}_{X_T}) - \mathcal{G}[f](X_T)\|_{\ell^\infty} \leq \|\tilde{\mathcal{H}}_M(\mathbf{f}_{X_T}) - \mathcal{H}[f](X_T)\|_{\ell^\infty} + \|\mathcal{H}[f](X_T) - \mathcal{G}[f](X_T)\|_{\ell^\infty}$$

Note that $A' \subset L^2(\Omega; \mathbb{R})$ and is compact with respect to $\|\cdot\|_{L^2(\Omega)}$, so Theorem 3.1 applies. There exists $N \in \mathbb{N}$ and

$$\mathcal{H} = \mathcal{P} \circ \bar{\mathcal{G}}_N \circ \mathcal{L}$$

as defined by (28) such that

$$\sup_{f \in A'} \|\mathcal{H}[f] - \mathcal{G}[f]\|_{L^2(\Omega)} < \epsilon/2.$$

Since A' is compact and \mathcal{H} and \mathcal{G} are continuous (by construction and by assumption, respectively), then the image $(\mathcal{H} - \mathcal{G})(A')$ is compact, so there exists a constant $\hat{\nu}$ such that, for all $f \in A'$,

$$\|\mathcal{H}[f](X_T) - \mathcal{G}[f](X_T)\|_{\ell^\infty(\mathbb{R}^{N_T})} \leq \hat{\nu} h_{\Omega, X_T} + \epsilon/2. \quad (30)$$

Consider \mathcal{H} . The projector \mathcal{P} is already an MLP, and $\bar{\mathcal{G}}_N$ can be expressed as (17) with $\mathbf{K}^{(\ell)} \equiv 0$. It remains to construct an MLP lifting operator $\bar{\mathcal{L}}$.

Since A' is compact, there exists $\beta > 0$ such that, for all $f \in A'$, $\|\nabla f\|_{L^\infty} < \beta$. Therefore, for all $f \in A'$,

$$\left| \sum_{m \in [M]} w_m^{(M)} f(x_m^{(M)}) - \int_{\Omega} f(x) dx \right| \leq \frac{C\beta}{M},$$

where the constants are independent of f . Moreover, any continuous map \mathcal{F} of A' has a similar bound, which depends on \mathcal{F} .

Consider $\mathcal{N}^{\text{lift}}$, $\widehat{\mathcal{L}}^{(1)}$ and $\widehat{\mathcal{L}}^{(0)}$ as defined in the proof of Lemma B.1. We may assume, without loss of generality, that $\sigma(x)$ is Lipschitz continuous, which makes $\mathcal{N}^{\text{lift}}$ Lipschitz continuous. Let $\tilde{\epsilon} > 0$ be arbitrary and μ denote the standard Lebesgue measure. Since $\mathcal{N}^{\text{lift}}$ is Lipschitz, there exists $\gamma_L > 0$ such that $\|\mathcal{N}(a, x) - \mathcal{N}(b, x)\|_{\ell^\infty} < \gamma_L |a - b|$. We can also write $\mathcal{N}^{\text{lift}}$ as

$$\mathcal{N}^{\text{lift}}(a, x) = \mathbf{W}^{(1)} \sigma \left(\mathbf{W}^{(0)} \begin{bmatrix} a \\ x \end{bmatrix} + \mathbf{b}^{(0)} \right)$$

for some $\mathbf{W}^{(0)} \in \mathbb{R}^{\tilde{p} \times 2}$, $\mathbf{W}^{(1)} \in \mathbb{R}^{N \times \tilde{p}}$, and $\mathbf{b} \in \mathbb{R}^{\tilde{p}}$. Furthermore, note that $\max_{n \in [N]} \|\psi_n\| := Q < \infty$, where ψ_n are the Mercer eigenfunctions of $\tilde{K}(x, y)$ and N is the truncation level (i.e., the channel dimension). Next, define the kernel interpolant of f , denoted \tilde{f} , as

$$\tilde{f}(x) = \sum_{j \in [N_T]} \alpha_j \tilde{K}(x, x_j), \quad x_j \in X_T,$$

provided that the matrix

$$\mathbf{A}_{ij} = \tilde{K}(x_i, x_j), \quad x_i, x_j \in X_T$$

is invertible. From (Wendland, 2005, Thm. 11.13), and the compactness of A' , there exists $\tilde{\nu} > 0$ such that for all $f \in A'$

$$\|\tilde{f} - f\| < \tilde{\nu} h_{\Omega, X_T}.$$

since A' is compact. There also exists M_1 (which is independent of \tilde{f} but can depend on $\{\psi_n\}_{n \in [N]}$) such that, for all $M \geq M_1$ and $f \in A'$,

$$\max_{n \in [N]} \left| \sum_{m \in [M]} w_m f(x_m) \psi_n(x_m) - \int_{\Omega} f(x) \psi_n(x) dx \right| < \frac{\tilde{\epsilon}}{NQ\gamma_L \mu(\Omega)}.$$

Defining

$$\tilde{c}_n := \int_{\Omega} \tilde{f}(x) \psi_n(x) dx, \quad \tilde{d}_n := \sum_{m \in [M]} w_m \tilde{f}(x_m) \psi_n(x_m)$$

gives, for any $x \in \Omega$,

$$\left| \sum_{n \in [N]} \tilde{c}_n \psi_n(x) - \sum_{n \in [N]} \tilde{d}_n \psi_n(x) \right| \leq \sum_{n \in [N]} (|\tilde{c}_n - \tilde{d}_n|) \|\psi_n\|_{\infty} < \frac{\tilde{\epsilon}}{\gamma_L \mu(\Omega)}.$$

Now, define the matrices

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}^{(1)} \\ \vdots \\ \mathbf{K}^{(N)} \end{bmatrix}, \quad \mathbf{K}_{ij}^{(n)} = w_j^{(M)} \psi_n(x_i^{(M)}) \psi_n(x_j^{(M)}), \quad i, j \in [M],$$

and set

$$\bar{\mathcal{L}}_M(\mathbf{f}_T) = \mathbf{W}^{(1)} \sigma \left(\mathbf{W}^{(0)} \begin{bmatrix} \mathbf{1}_N^\top \text{reshape}(\mathbf{K} \widetilde{\mathbf{K}}_{M,T} \widetilde{\mathbf{K}}_{T,T}^{-1} \mathbf{f}_T, (N, M)) \\ X_M^\top \end{bmatrix} + \mathbf{b}^{(0)} \right) \mathbf{w}^{(M)} \quad (31)$$

where $\sigma(x)$ is Lipschitz continuous and non-polynomial, all vectors are understood as column vectors, and

$$(\widetilde{\mathbf{K}}_{*,\dagger})_{ij} = \widetilde{K}(x_i^{(*)}, x_j^{(\dagger)}), \quad \mathbf{w}^{(M)} = (w_1^{(M)}, \dots, w_M^{(M)}).$$

Unpacking (31), the matvec $\widetilde{\mathbf{K}}_{M,T} \widetilde{\mathbf{K}}_{T,T}^{-1} \mathbf{f}_T$ maps the function values on X_T to the kernel interpolant evaluated on X_M . The matrix \mathbf{K} approximates the integral

$$\int_{\Omega} \psi_n(x) \psi_n(y) \tilde{f}(y) \, dy,$$

and the reshape and multiplication by $\mathbf{1}_N^\top$ sums over the N basis functions to yield

$$\sum_{n \in [N]} \tilde{d}_n \psi_n(x_m^{(M)}).$$

The final multiplication by $\mathbf{w}^{(M)}$ approximates the integral

$$\int_{\Omega} \sum_{n \in [N]} \tilde{d}_n \psi_n(x) \psi_m(x) \, dx \approx \tilde{d}_m.$$

Lastly, by assumption, the quadrature rule exactly integrates constant functions, so by taking $M \geq M_1$, we obtain

$$\begin{aligned} \|\overline{\mathcal{L}}_M(\mathbf{f}_T) - (\mathcal{L}[f])\|_{X_T} &\leq \|\overline{\mathcal{L}}_M(\mathbf{f}_T) - \overline{\mathcal{L}}_M(\mathbf{f}_M)\|_{\ell^\infty(\mathbb{R}^N)} \\ &\quad + \|\overline{\mathcal{L}}_M(\mathbf{f}_M) - (\mathcal{L}[f])\|_{X_M} \\ &\leq \gamma_L \tilde{\nu} h_{\Omega, X_T} + \tilde{\epsilon}, \end{aligned}$$

where \mathbf{f}_M uses $X_T = X_M$.

To build $\widetilde{\mathcal{H}}_M$, we set

$$\widetilde{\mathcal{H}}_M = \mathcal{P}_{X_T} \circ \overline{\mathcal{G}} \circ \overline{\mathcal{L}}_M$$

where \mathcal{P}_{X_T} is the projection from channel space onto X_T . We then note that, without loss of generality, \mathcal{P}_{X_T} and $\overline{\mathcal{G}}$ are Lipschitz continuous, with constants γ_P and γ_G . Taking $\tilde{\epsilon} = \epsilon / (2\gamma_P \gamma_G)$ and setting $\nu = \gamma_P \gamma_G \gamma_L \tilde{\nu} + \hat{\nu}$ [cf. (30)] completes the proof. \square