
Down-Scaling Language Models in the Era of Scale Is All You Need

Anonymous ACL submission

Abstract

Large language models are very resource inten-001
sive, both financially and environmentally, and002
require a huge amount of training data, which is003
only available to a small number of languages.004
In this work, we focus on low resource settings.005
We build language models in two languages006
trained with different configurations, which are007
then evaluated on several NLP tasks. Specif-008
ically, we analyze three lightweight BERT ar-009
chitectures (with 124M, 51M, and 16M pa-010
rameters) which are trained with small corpora011
(125M, 25M, 5M words) for both Basque and012
Spanish languages. The trained models are013
evaluated on several tasks, and compared with014
traditional, non-neural supervised systems. We015
also present an estimate of resources and CO2016
emissions needed in each approach, which asks017
for a compromise between raw performance018
and environmental costs.019

1 Introduction020

Neural language models (LM) have shown impres-021

sive results on many NLP downstream tasks. Nowa-022

days, there is a trend to scale up LMs and build023

larger and larger ones (Chowdhery et al., 2022),024

motivated by the fact that large models are known025

to show emergent abilities that dramatically boost026

their performance (Wei et al., 2022). However, the027

environmental cost due to the carbon footprint re-028

quired to fuel multiple modern GPU hardware is029

enormous (Strubell et al., 2019). Moreover, build-030

ing those models requires enormous computational031

resources, as well as corpora of virtually infinite032

size, to the extent that, with some notable excep-033

tions1, only big companies can afford to train such034

models.035

In low resource settings, or when the budget is036

fixed, one has often to find a compromise on how037

to spend these resources in an optimal way. Some038

1https://huggingface.co/bigscience/
bloom

works have analyzed the performance of LMs wrt. 039

their complexity (in number of parameters) and the 040

size of the corpus on which it is trained (Kaplan 041

et al., 2020; Hoffmann et al., 2022). Those works 042

reveal a positive correlation between these aspects 043

and model efficiency, therefore supporting the cur- 044

rent trend followed in LM development. However, 045

they focus on large LMs and training corpora, with 046

the aforementioned problems regarding computa- 047

tional resources and data availability. 048

It is therefore timely to pay attention to the best 049

strategies under low resource regimes. This pa- 050

per analyzes the minimum training corpus size and 051

number of parameters needed to build LMs that 052

perform better than non-neural systems. Previous 053

works have already researched on optimal LM pa- 054

rameters within limited resources scenarios, but in 055

most cases with a fixed dataset size (Turc et al., 056

2019; Raffel et al., 2020) or a fixed model size 057

(Zhang et al., 2021; Hu et al., 2020; Inoue et al., 058

2021; Martin et al., 2020; Raffel et al., 2020). We 059

complement those works by considering both as- 060

pects at the same time, as well as extending the 061

analysis in more than one language. 062

Our main contributions are the following: 063

• We address the problem of finding optimal 064

model parameters for a given pre-training cor- 065

pus in low resource settings. 066

• We compare the performance of BERT mod- 067

els of different sizes (124M, 51M, 16M), with 068

different corpus sizes (125M, 25M, 5M) for 069

two languages (Basque and Spanish) in MLM 070

and two downstream tasks, NERC and Topic 071

classification. 072

• Finally, we compare the results of the BERT 073

models with non-neural systems and report 074

the computational costs and CO2 emissions. 075
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2 Experimental Design076

This section describes our experimental setting,077

which includes 2 languages, 3 corpus sizes, and078

3 model sizes, giving a total of 18 different models.079

2.1 Language Selection and Corpora080

We conduct the experiments in Basque and Spanish,081

two languages from different language families082

(although geographically close) that share the Latin083

alphabet, and fulfil the criteria of having enough084

monolingual data to train LMs, as well as available085

evaluation datasets for NLU tasks.086

For each language, we created three corpora087

comprising 125M, 25M and 5M words, respec-088

tively. We decided to limit the number of corpora089

sizes to three in order to control on the number of090

experiments, and thus the computational resources091

needed for running them. Preliminary experiments092

showed a big fall in the results when reducing pre-093

training data to just 1M words. Since obtaining cor-094

pora of 5M words is achievable by most languages095

that have annotated datasets (Joshi et al., 2020),096

we set the lower bound at 5M words. The other097

two corpora sizes are 25 and 125 million, keeping098

a constant increase rate among them. Corpora in099

both languages are a mix of 75% news and 25% of100

text from Wikipedia. We selected the newspaper101

Berria2 for Basque, and El Pais3 for Spanish).102

2.2 Models103

In a similar fashion to (Turc et al., 2019), we use104

BERT model in three sizes, dubbed BERT124M
4,105

BERT51M and BERT16M , with 12, 8 and 4 lay-106

ers (L) respectively, also shrinking other hyper-107

parameters such as hidden dimensions (HH), in-108

termediate layer’s dimension (INT) and attention109

head (H) with the same proportion. Table 1 shows110

a detailed view of the parameters in each model.111

We also increase the vocabulary to 50K sub-word112

tokens, slightly increasing the total number of pa-113

rameters.114

2.3 Pre-Training Details115

We use a cased sub-word vocabulary containing116

50K tokens trained with the unigram language117

model based sub-word segmentation algorithm pro-118

posed by Kudo (2018). As mentioned before, we119

increased the vocabulary sizes of all the models120

2https://www.berria.eus
3https://elpais.com
4This corresponds to BERTbase in (Devlin et al., 2019)

L HH INT H Param
BERT124M 12 768 3072 12 124M
BERT51M 8 512 2048 8 51M
BERT16M 4 256 1024 4 16M

Table 1: BERT model sizes used in our experiments. L:
num. of layers. HH: hidden dimensions. INT: interme-
diate layer dimension. H: num. of attention heads.

from the original 30K to 50K subword tokens since 121

it seems to be beneficial for agglutinative languages 122

like Basque (Agerri et al., 2020). The vocabularies 123

are learned from each training corpus with a char- 124

acter coverage of 99.95%, to ignore rare characters. 125

Thus, we obtain 3 vocabularies for each language, 126

one for each size of the corpora for pre-training 127

(125M, 25M, 5M), which are shared among LMs 128

of different sizes throughout our experiments. 129

Input data was duplicated ten times with differ- 130

ent masking; we used whole-word masking, where 131

whole words are masked instead of the sub-word 132

units. All models were trained on TPUv3-8 ma- 133

chines using the same set of hyper-parameters in 134

all model sizes: a learning rate 1e−4, β1 = 0.9, 135

β2 = 0.999, L2 weight decay of 0.01, a learning 136

rate warmup of 10K steps, and training the models 137

for a total of 500K steps with a batch size of 256 138

and a sequence length of 512. See Table 6 for a 139

detailed description of the time spent pre-training 140

each model. 141

3 Evaluation Settings 142

3.1 Tasks 143

We evaluate our models in intrinsic and extrinsic 144

tasks. For the intrinsic evaluation, we tested the 145

models on masked language modeling; for the ex- 146

trinsic evaluation, we choose two NLU downstream 147

tasks with available datasets in both Spanish and 148

Basque: NERC and topic classification. Table 2 149

shows the details of each dataset. 150

Masked Language Modeling (MLM) The first 151

task we selected is masked language modeling, one 152

of default pre-training objectives of BERT, and 153

which is related to the traditional perplexity metric 154

used in language modeling. We report the accu- 155

racy of MLM, that is, the number of times that the 156

model correctly guessed the masked token. For this 157

purpose, we created two test datasets from the news 158

domains, from sources not used for the pre-training 159
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Task Train Test Metric
MLMeu 1M acc.
MLMes 1M acc.
NERCeu 51,538 35,854 F1
NERCes 264,715 51,533 F1
Topiceu 8,585 1,854 F1
Topices 9,458 4,000 F1

Table 2: Datasets used to evaluate our models. The
size for MLM and NERC is reported in tokens, whereas
the size of topic classification datasets is reported in
sequences.

of the models5.160

NERC The second task is Named Entity Recog-161

nition and Classification (NERC), a sequence la-162

belling task. For Basque, we selected the in-domain163

NERC dataset which is part of the benchmark164

BasqueGLUE (Urbizu et al., 2022). For Spanish,165

we opted for the Conll2002 dataset (Sang, 2002).166

We use the F1 score as the performance metric.167

Topic Classification The third and last task we168

selected for evaluation is topic classification, a se-169

quence classification multi-class task. For Basque,170

we chose the BHTCv2 dataset with 12 classes that171

was included in BasqueGLUE (Urbizu et al., 2022).172

And the Spanish counterpart is DVtopic, a dataset6173

we built from news from 8 topics from El Diario174

Vasco7. We use the F1 as the performance metric.175

3.2 Systems and Baselines176

For the extrinsic evaluation, we fine-tuned each of177

the 18 models making use of Transformers library178

(Wolf et al., 2020), training for 10 epochs, with a179

learning rate of 3e−5 and an effective batch size180

of 32. For each task and language, we report the181

results as the average of 5 runs.182

We compare LMs with traditional, non-neural183

supervised systems in NERC and topic classifi-184

cation. Regarding NERC, the non-neural system185

is provided by ixa-pipe-nerc8 (Agerri and Rigau,186

2016), which was trained with the same corpora187

mentioned in Section 3.1. The system consists of188

language independent local and semi-supervised189

features based on three types of clustering meth-190

ods: Brown (Brown et al., 1992), Clark (Clark,191

5For Basque we extracted the text from Argia news maga-
zine www.argia.eus; for Spanish, we opted for the news-
paper El Mundo www.elmundo.es

6Available at: anonymized link
7https://www.diariovasco.com
8https://github.com/ixa-ehu/ixa-pipe-nerc/

MLMeu 5M 25M 125M
BERT16M 32.08 38.68 41.56
BERT51M 32.42 44.29 50.07
BERT124M 34.50 43.46 53.19
MLMes 5M 25M 125M
BERT16M 39.09 49.06 48.31
BERT51M 39.24 53.49 59.04
BERT124M 42.45 52.58 62.00

Table 3: Accuracies on MLM for Basque and Spanish.
Columns correspond to different corpus sizes.

2003) and Word2vec (Mikolov et al., 2013) clus- 192

tered via K-means. Clusters were trained using the 193

data sources and method described in Agerri and 194

Rigau (2016). 195

Regarding topic classification, the non-neural 196

system is an SVM classifier trained with docu- 197

ments represented according to a TFIDF model 198

and trained on the corpora mentioned in Section 199

3.1. Previously, the documents have been lemma- 200

tised using Hunspell9 to reduce the sparseness of 201

the TFIDF vectors. 202

4 Results 203

Table 3 shows the results obtained in the MLM 204

task for both Basque and Spanish. As expected, 205

larger models trained with the biggest corpora 206

yield best results, and a correlation exists between 207

model/corpora size and accuracy in both languages. 208

Results also show that overall it is preferable to 209

train a smaller model with more data than a large 210

model using smaller corpora. However, the gain 211

obtained with the smallest BERT16M models as 212

we keep adding training data diminishes, which 213

suggests that performance is reaching a plateau in 214

these models. 215

The results for the NERC task are shown in Ta- 216

ble 4. There is still a clear positive correlation be- 217

tween the evaluation metric and the model and cor- 218

pora size, but, unlike in the MLM task, BERT51M 219

obtains similar results compared to the largest 220

BERT124M model. Besides, increasing the corpora 221

size is not so helpful, particularly in Spanish, where 222

the training data is large. In any case, even the 223

modest configuration comprising BERT51M and 224

a corpus size of 25M outperforms the non-neural 225

baseline by more than 5 points in Basque and 1.5 226

points in Spanish. The results for topic classifica- 227

tion at Table 5 follow the same trends and present 228

9http://hunspell.github.io/
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NERCeu 5M 25M 125M NERCes 5M 25M 125M
BERT16M 63.98±0.4 74.61±0.5 74.40±0.2 BERT16M 76.65±0.4 81.96±0.2 81.63±0.6

BERT51M 74.61±0.2 78.95±0.2 83.02±0.3 BERT51M 80.83±0.2 86.11±0.5 86.73±0.2

BERT124M 72.92±0.1 79.50±0.6 84.91±0.2 BERT124M 82.21±0.2 85.80±0.3 87.51±0.2

ixa-pipes 73.95 ixa-pipes 84.16

Table 4: Results for the 9 models on NERC (F1) for Basque and Spanish. Columns correspond to different corpus
sizes. In bold models that outperform the ixa-pipes baseline.

Topiceu 5M 25M 125M Topices 5M 25M 125M
BERT16M 68.26±0.3 72.20±0.5 72.42±0.5 BERT16M 84.12±0.2 86.48±0.2 86.91±0.2

BERT51M 69.73±0.6 72.98±0.4 74.61±0.2 BERT51M 85.20±0.2 87.27±0.2 88.13±0.3

BERT124M 71.60±0.6 75.19±0.3 76.44±0.3 BERT124M 85.76±0.4 87.78±0.4 88.88±0.1

SVM 65.00 SVM 83.00

Table 5: Results for the 9 models on topic classification (F1) for Basque and Spanish. Columns correspond to
different corpus sizes. In bold models that outperform the SVM baseline.

Model Pre-training (TPUv3-8) Fine-tuning (RTX3090) Inference (CPU)
BERT124M ∼76h | 98 kgCO2eq ∼91m|17GB |229 gCO2eq ∼651ms
BERT51M ∼32h | 41 kgCO2eq ∼39m | 9GB |109 gCO2eq ∼290ms
BERT16M ∼10h | 13 kgCO2eq ∼16m | 4GB | 30 gCO2eq ∼166ms
non-neural ∼ 7s (in CPU) |0.09gCO2eq ∼60 ms

Table 6: Computational costs in time and memory for pre-training, fine-tuning and inference and their estimated CO2

emissions. CO2 estimations calculated with Machine-Learning Impact calculator (Lacoste et al., 2019). Reported
times for fine-tuning correspond to a single run at topic classification in Spanish (the biggest dataset).

even higher gains of the neural systems wrt. the229

non-neural baseline.230

The boost in performance when increasing the231

model size is larger in downstream tasks than in232

the MLM intrinsic task, particularly when shifting233

from the smallest BERT16M to the intermediate234

BERT51M . This indicates that a larger model is235

better suited for fine-tuning, as the number of train-236

able parameters is also higher.237

Table 6 shows the computational resources and238

estimated CO2 emissions for each system. Clearly,239

the non-neural system incurs in the lowest costs,240

as there is no pre-training needed. Even after pre-241

training, the CO2 emissions of neural models are or-242

der of magnitudes higher, compared to non-neural243

ones. However, these differences are much smaller244

at inference time, once the models have been pre-245

trained and fine-tuned. In any case, the results ask246

for a compromise between raw performance and247

computational and environmental costs. It is up248

to each use case to make the proper decision that249

balances performance and resource requirements250

to choose the correct approach.251

5 Conclusions 252

In this paper, we present a study of the performance 253

of small and medium language models using rela- 254

tively small corpora. We have built up to 18 differ- 255

ent combinations of model and corpora size, which 256

have been evaluated on intrinsic and downstream 257

tasks, and have been compared with non-neural su- 258

pervised systems trained on the same datasets. The 259

experiments show that, overall, the more parame- 260

ters and training corpus, the better the performance, 261

with significant differences on some tasks. Most 262

LMs outperform non-neural supervised systems, 263

even those based on modest models or pre-trained 264

with reduced corpus. We observe that a BERT51M 265

model and 25M of pre-training data is enough to 266

outperform significantly non-neural systems. 267

LMs require significant resources, mostly com- 268

putational but also environmental in the form of 269

CO2 emissions, particularly in the pre-training and 270

fine-tuning phases. All in all, our study shows 271

that in low-resource scenarios certain lightweight 272

configurations of language models are a good alter- 273

native to non-neural systems, albeit with a higher 274

computational and environmental cost. 275
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Limitations276

Our study is limited to 3 language model sizes and277

3 pre-training corpora sizes. Including other model278

sizes like a BERT-Large or a model between 51M279

and 16M (where there is a big gap in results), and280

adding more pre-training corpora sizes (Let’s say281

625M and 1M words) were out of the scope of this282

work.283

Moreover, we selected two languages for the ex-284

perimentation. Although they are languages from285

different language families, including more lan-286

guages from varied typologies, scripts and charac-287

teristics would produce more robust results. The288

same could be said about including more varied289

NLU tasks for evaluation.290

In addition, we use the default hyper-291

parameters that are commonly used for BERT-base292

(BERT124M ) for the pre-training and fine-tuning of293

the BERT51M and BERT16M models without any294

hyper-parameter tuning.295
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