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ABSTRACT
Multi-view clustering has garnered attention for its effectiveness
in addressing heterogeneous data by unsupervisedly revealing un-
derlying correlations between different views. As a mainstream
method, multi-view graph clustering has attracted increasing atten-
tion in recent years. Despite its success, it still has some limitations.
Notably, many methods construct the similarity graph without con-
sidering the local geometric structure and exploit coarse-grained
complementary and consensus information from different views
at the view level. To solve the shortcomings, we focus on local
structure consistency and fine-grained representations across mul-
tiple views. Specifically, each view’s local consistency similarity
graph is obtained through the adaptive neighbor. Subsequently, the
multi-view similarity tensor is rotated and sliced into fine-grained
instance-wise slices. Finally, these slices are fused into the final
similarity matrix. Consequently, cross-view consistency can be
captured by exploring the intersections of multiple views in an
instance-wise manner. We design a collaborative framework with
the augmented Lagrangianmethod to refine all subtasks towards op-
timal solutions iteratively. Extensive experiments on several multi-
view datasets confirm the significant enhancement in clustering
accuracy achieved by our method.

CCS CONCEPTS
• Computing methodologies→ Cluster analysis.

KEYWORDS
Machine Learning, Unsupervised Learning, Multi-view Clustering

1 INTRODUCTION
In recent years, with the rapid development of Information Technol-
ogy, accessing and collecting data has become significantly more
convenient through various means [26]. In the big data era, it is
common to encounter situations where the collected data covers
the information from multiple views [12]. For example, a patient’s
medical data may include physiological indicators, symptom de-
scriptions, and treatment history. Each of them represents an aspect
of the patient’s health status, and there is a supplementary relation-
ship between different views. These data are known as multi-view
data, and each view contains partially independent and complemen-
tary information. In Figure 1, We listed several common multi-view
data. Each view is sufficient for learning, and all views collectively
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(a)

Hello

Hola
Ciao

(b)

(c)

(d)

Figure 1: Examples of multi-view data: (a) Documents with
different languages, (b)Webpage with both textual and image
data, (c) Photos of booter from different perspectives, (d)
Multimedia with both video and audio signals.

form a consensus latent representation [15]. Thus, integrating in-
formation from multiple views brings remarkable benefits towards
unsupervised data clustering, and the underlying information em-
bedded in the data can be fully utilized, improving the clustering
quality. There have been a growing number of studies and applica-
tions dedicated tomulti-view clustering (MVC) in recent years [2, 3],
especially in real-world scenarios for anomaly detection in finance,
data analysis in environmental science, and device collaboration in
the Internet of Things.

Based on the technical mechanisms of the current MVCmethods,
they can be classified into two categories [3], namely heuristic-
based MVC (HMVC) and neural networks-based MVC (NNMVC).
Heuristic-based MVC extensively utilizes classical machine learn-
ing algorithms (Non-negative Matrix Factorisation, Graph Learning,
Latent Representation Learning, and Tensor Learning) [8, 14]. Us-
ing prior knowledge and domain expertise, it uses heuristics to
design clustering algorithms applicable to multi-view data. This ap-
proach emphasizes understanding data characteristics and problem
context to guide algorithm design and parameter tuning for better
adaptation to different application scenarios. Neural network-based
MVC (NNMVC) is built on Deep Neural Networks (DNNs) with
Deep Representation Learning or Deep Graph Learning [11, 31].
By creating complex neural network structures, the method can
automatically learn high-level features and abstract representations
in the data, effectively processing large-scale and high-dimensional
multi-view data. With their notable nonlinear modeling capabilities,
neural network-based MVC are well-equipped to identify complex
relationships in data, offering valuable insights alongside traditional
methodologies in complex scenarios.

Numerous multi-view clustering methods have demonstrated
notable success in empirical studies [30]. However, we find some
urgent shortcomings in the heuristic-based MVC graph learning
method. First, current graph-basedmulti-view clustering algorithms
highly rely on data similarity learning. Nevertheless, they generally
lean towards subspace learning and analogous strategies, thereby
overlooking the nuances of the data’s local geometric structure.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Second, traditional methods usually fuse information from multi-
ple views at the view level, which only considers coarse-grained
information and reduces clustering accuracy.

As shown in Figure 2, we address the above issues simultane-
ously within a unified framework. As for the lack of local structure
mining, we independently learn the similarity matrix of each view
on local distance by assigning the adaptive and optimal neighbors.
The local geometric structure directly implied by the data can be
explored through the similarity propagation between neighbors.
Regarding the fusion strategy, we obtain fine-grained information
fusion in a self-weighted manner by instance-wise slicing of the
multi-view similarity tensor. Finally, we introduce a unified model
that learns both the adaptive similaritymatrix and the instance-level
structure of multi-view data to obtain better clustering results. In
our collaborative model, we skillfully combine these two subtasks,
alternatively driving each subtask toward the optimal solution with
the augmented Lagrangian method. Experiments on several multi-
view datasets demonstrate that our proposed approach significantly
improves clustering accuracy.

2 RELATEDWORK
clustering is the task of grouping a set of objects in such a way
that objects in the same group (called a cluster) are more similar
to each other than to those in other groups. In the era of big data,
there are more and more multi-view data. Multi-view clustering has
attracted increasing attention in recent years by aiming to exploit
complementary and consensus information across multiple views.

In the past decade, multi-view graph clustering has been widely
used as a mainstream method. However, traditional graph-based
clustering methods have historically prioritized similarity construc-
tion, relying on a pre-determined data graph to segment data. These
methods, however, introduce a significant dependency on the input
affinity matrix, making clustering outcomes sensitive to the quality
of the initial data representation. Recognizing this limitation, an
innovative clustering method proposed by [19] introduces a trans-
formative perspective. This method aims to enhance the acquisition
of the data similarity matrix by dynamically assigning adaptive and
optimal neighbors for each data point, considering local distance. A
series of multi-view clustering methods have emerged in response
to this paradigm shift. These approaches strive to address the chal-
lenges posed by traditional methods to improve the construction
of the affinity matrix. Notable strategies include the automatic
allocation of proper weights for each view [17], leveraging the
graph smoothness assumption [6], devising a series of exponential
functions for diverse scenarios [16], efficiently integrating graph
learning with the fusion process [25], and concurrently harnessing
graph information and embedding matrices [23]. These significant
advancements depart from the conventional dependence on pre-
determined data graphs, ushering in a new era of more adaptive
and sophisticated approaches to multi-view clustering. Moving
away from rigid structures and embracing adaptability, these in-
novations empower clustering methods to respond dynamically to
the intricacies and nuances inherent in diverse datasets, thereby
enhancing multi-view clustering techniques’ overall effectiveness
and robustness.

It is crucial to highlight that the methods mentioned above aim
to achieve a representation matrix with a primary focus on a view-
oriented perspective. To delve into more specifics, it is evident that
these methods undertake a sequential computation of one view at
a time, subsequently consolidating their results at the view level.
This approach, in turn, yields a coarse-grained view-level repre-
sentation, wherein information integration occurs on a broader
scale [21]. While effective for obtaining an overarching perspec-
tive and the complementary information from diverse modalities
can easily be measured, this methodology may fail to capture the
subtleties and intricacies within individual views. As a result, the
representation matrix obtained may lack the granularity required
for a more nuanced and detailed analysis of the underlying data
structure. However, it’s important to emphasize that the adaptive
neighbor strategy scrutinizes the local connections inherent within
the data. This signifies a meticulous examination of the intricate
relationships existing in the local context of the dataset[27]. Conse-
quently, the advantage offered by the adaptive neighbors strategy is
susceptible to diminishing within a coarse-grained learning frame-
work, where the nuanced details of local connections may not be
adequately captured. Unlike the aforementioned MVC approaches,
our proposed approach can grasp the local correlations among
samples from various views and effectively eliminate redundant or
erroneous information between these views.

3 METHOD
In this section, we first provide the notations used throughout the
paper. Then, we derive the objective function of our method and
present its optimization algorithm.

Notation: X =

{
X(1) , . . . ,X(𝑚)

}
∈ R𝑑𝑣×𝑛 is a multi-view data,

𝑑𝑣, 𝑛,𝑚 is the feature dimension of X(𝑣) , number of samples, and
number of views, respectively. S =

{
S(1) , . . . , S(𝑚)

}
∈ R𝑛×𝑛 is

the similarity matrices generated from each view with adaptive
neighbors. S̃ ∈ R𝑛×𝑛×𝑚 is a tensor composed of similarity matrices
of all𝑚 views, S̃𝑖 ∈ R𝑛×𝑚 is the 𝑖-th frontal slice of rotated S̃. C ∈ R
is the optimal fused similarity matrix.

3.1 Similarity Measurement
Similarity learning is a critical factor that determines the clustering
result. Inspired by [19], the local connectivity of the data point
can be mined from its neighbor data points, which helps improve
the quality of the similarity matrix. Take the original data X =

{𝑥1, 𝑥2, . . . , 𝑥𝑛} as an example. For simplicity, we employ Euclidean
distance to learn the probabilistic 𝑘-nearest neighbors.

For a data point 𝑥𝑖 ∈ R𝑑𝑣 , all 𝑛 data points in X can be regarded
as connected neighbors with different probability 𝑠 . The proximity
of a data point to 𝑥𝑖 corresponds to a higher probability. Naturally,𝑥𝑖 − 𝑥 𝑗

 can be employed to gauge the Euclidean distance between
two data points, and the optimal neighbors of 𝑥𝑖 can be determined
by the following objective function:

min
(s𝑖 )𝑇 1=1,0≤s𝑖≤1

𝑛∑︁
𝑗=1

𝑥𝑖 − 𝑥 𝑗
2
2 𝑠𝑖 𝑗 . (1)

Eq. (1) has a straightforward solution, where only the nearest
point has a probability of 1while all others have 0. This leads to only
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෨S = S 1 , S 2 , S 3 ∈ ℝ𝑛×𝑛×3 

similarity matrix tensor 

S 1 ∈ ℝ𝑛×𝑛

S 2 ∈ ℝ𝑛×𝑛

S 3 ∈ ℝ𝑛×𝑛

instance-wise slice 

slicing

෨S𝑖 ∈ ℝ𝑛×3 * n

multi-view data

view 1

view 2

view 3

fused similarity matrix

fusecontact

𝐜𝑖
𝑇 − 𝐰𝑖

𝑇 ෨𝐒𝑖

C ∈ ℝ𝑛×𝑛

Figure 2: Framework of our method.

one nearest neighbor of 𝑥𝑖 can be found. An alternative extreme
solution is to disregard distance information completely:

min
(s𝑖 )𝑇 1=1,0≤s𝑖≤1

𝑛∑︁
𝑗=1

𝑠𝑖 𝑗
2, (2)

where all data points have same probability 1
𝑛 .

Considering both of them, the optimal result should be balanced
between Eq. (1) and Eq. (2):

min
(s𝑖 )𝑇 1=1,0≤s𝑖≤1

𝑛∑︁
𝑗=1

(𝑥𝑖 − 𝑥 𝑗
2
2 𝑠𝑖 𝑗 + 𝜆𝑠𝑖 𝑗

2
)
, (3)

where the second term is a regularization constraint. It is clear that
Eq. (3) can be extended to multi-view domain:

min(
s(𝑣)
𝑖

)𝑇
1=1,0≤s(𝑣)

𝑖
≤1

𝑚∑︁
𝑣=1

𝑛∑︁
𝑗=1

(𝑥 (𝑣)𝑖
− 𝑥

(𝑣)
𝑗

2
2
𝑠
(𝑣)
𝑖 𝑗

+ 𝜆𝑠
(𝑣)
𝑖 𝑗

2
)
, (4)

The optimal neighbor assignment matrix S(𝑣) is precisely the
similarity matrix encompassing the local geometric structure re-
quired for the multi-view clustering task.

3.2 Instance-Wise Fusion
Existing multi-view methods usually fuse multi-view complemen-
tary information in view-wise, which neglects the local correlation
among samples from different views and disregards certain redun-
dant or erroneous information between views.

We performed multi-view fusion at the instance level to enhance
the fusion performance. This approach captures more local cross-
view consistency and minimizes the impact of extra or inaccurate
details. Refers to [4, 29], we perform a simple and effective transfor-
mation to achieve that. Firstly, the similarity matrices of multiple
views {S(𝑣) ∈ R𝑛×𝑛}𝑚

𝑣=1 are concatenated to a tensor S̃ ∈ R𝑛×𝑛×𝑚 .
Secondly, the tensor is rotated and sliced in the first dimension,
and the 𝑖-th frontal slice S̃𝑖 ∈ R𝑛×𝑚 is the cross-view fusion of
sample 𝑖 . After obtaining 𝑛 slices, we perform instance-wise fusion
to calculate the fused similarity matrix:

min
W,C

𝛼

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 S̃𝑖

2
2
+ 𝛽 ∥C∥2𝐹

s.t. C ≥ 0,w𝑖 ≥ 0,C1 = 1,w𝑇
𝑖 1 = 1.

(5)

w𝑖 is the weight of 𝑖-th slice and c𝑖 is the corresponding column in
𝐶 that integrates consistent information of sample 𝑖 from multiple
views.

Lastly, combine Eq. (4) and Eq. (5) we formulate the objective
function:

min
S(𝑣) ,W,C

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

𝑥 (𝑣)𝑖
− 𝑥

(𝑣)
𝑗

2
2
𝑠
(𝑣)
𝑖 𝑗

+ 𝜆

2
𝑠
(𝑣)
𝑖 𝑗

2

+𝛼
2

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 S̃𝑖

2
2
+ 𝛽

2
∥C∥2𝐹

s.t.
(
s(𝑣)
𝑖

)𝑇
1 = 1, 1 ≥ s(𝑣)

𝑖
≥ 0,

C ≥ 0,w𝑖 ≥ 0,C1 = 1,w𝑇
𝑖 1 = 1,

(6)

where C ∈ R𝑛×𝑛 is the fused simalirity matrix. A standard spectral
clustering is executed with optimal C to obtain the final results.

4 OPTIMIZATION
As S̃𝑖 is closely related to S(𝑣) and can not be decomposed into ele-
mental forms s̃𝑖 𝑗 . With augmented Lagrangian method (ALM) [20],
we introduce an intermediate variable J(𝑣) for each view:

min
S(𝑣) ,W,C

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

𝑥 (𝑣)𝑖
− 𝑥

(𝑣)
𝑗

2
2
𝑠
(𝑣)
𝑖 𝑗

+ 𝜆

2
𝑠
(𝑣)
𝑖 𝑗

2

+𝛼
2

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 J̃𝑖

2
2
+ 𝛽

2
∥C∥2𝐹

s.t.
(
s(𝑣)
𝑖

)𝑇
1 = 1, S(𝑣) = J(𝑣) , 1 ≥ 𝑠

(𝑣)
𝑖

≥ 0,

C ≥ 0,w𝑖 ≥ 0,C1 = 1,w𝑇
𝑖 1 = 1,

(7)
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Hence, we can apply ALM and get the augmented Lagrangian
function:

min
S(𝑣) ,W,C

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

𝑥 (𝑣)𝑖
− 𝑥

(𝑣)
𝑗

2
2
𝑠
(𝑣)
𝑖 𝑗

+ 𝜆

2
𝑠
(𝑣)
𝑖 𝑗

2

+𝜌
2

𝑚∑︁
𝑣=1

∥S(𝑣) − J(𝑣) + 1
𝜌
E(𝑣) ∥2𝐹

+𝛼
2

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 J̃𝑖

2
2
+ 𝛽

2
∥C∥2𝐹

s.t.
(
s(𝑣)
𝑖

)𝑇
1 = 1, 1 ≥ 𝑠

(𝑣)
𝑖

≥ 0,

C ≥ 0,w𝑖 ≥ 0,C1 = 1,w𝑇
𝑖 1 = 1,

(8)

where 𝜌 is penalty term and E(𝑣) is the Lagrangian multiplier.
[t] [1] Multi-view data X(𝑣) (𝑣 = 1,2,...,𝑚), parameter 𝛼 and 𝛽 .

Clustering result.
Update S(𝑣) according to Eq. (31). Update J(𝑣) by solving Eq. (17).
Update W according to Eq. (20). Update C according to Eq. (23).
Update Lagrangian multiplier E(𝑣) by:

E(𝑣)
𝑡+1 = E(𝑣)𝑡 + 𝜌

(
S(𝑣) − J(𝑣)

)
(9)

convergeConduct the standard spectral clustering on the optimal
graph C to obtain the final clustering result.

4.1 Update S(𝑣) :
According to Eq. (8), S(𝑣) is associated with the following function:

min
S(𝑣)

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

𝑥 (𝑣)𝑖
− 𝑥

(𝑣)
𝑗

2
2
𝑠
(𝑣)
𝑖 𝑗

+ 𝜆

2
𝑠
(𝑣)
𝑖 𝑗

2

+𝜌
2

𝑚∑︁
𝑣=1

∥S(𝑣) − J(𝑣) + 1
𝜌
E(𝑣) ∥2𝐹

s.t.
(
s(𝑣)
𝑖

)𝑇
1 = 1, 1 ≥ 𝑠

(𝑣)
𝑖

≥ 0.

(10)

It is independent of different 𝑖 so that we can solve the following

problem individually for each 𝑖 , denote
𝑥 (𝑣)𝑖

− 𝑥
(𝑣)
𝑗

2
2
as 𝑑 (𝑣)

𝑖 𝑗
, we

have:

min
S(𝑣)

𝑚∑︁
𝑣=1

𝑛∑︁
𝑗=1

𝑑
(𝑣)
𝑖 𝑗

𝑠
(𝑣)
𝑖 𝑗

+ 𝜆

2
𝑠
(𝑣)
𝑖 𝑗

2

+𝜌
2

𝑚∑︁
𝑣=1

𝑛∑︁
𝑖, 𝑗=1

(
𝑠
(𝑣)
𝑖 𝑗

+ 1
𝜌
𝑒
(𝑣)
𝑖 𝑗

− 𝑗
(𝑣)
𝑖 𝑗

)2
s.t.

(
s(𝑣)
𝑖

)𝑇
1 = 1, 1 ≥ 𝑠

(𝑣)
𝑖

≥ 0.

(11)

denote 1
𝜌 𝑒

(𝑣)
𝑖 𝑗

− 𝑗
(𝑣)
𝑖 𝑗

as 𝑏 (𝑣)
𝑖 𝑗

, the formula is equivalent to:

min
S(𝑣)

𝑚∑︁
𝑣=1

𝑛∑︁
𝑗=1

(
𝜆 + 𝜌

2

)
𝑠
(𝑣)
𝑖 𝑗

2
+
(
𝑑
(𝑣)
𝑖 𝑗

+ 𝜌𝑏
(𝑣)
𝑖 𝑗

)
𝑠
(𝑣)
𝑖 𝑗

s.t.
(
s(𝑣)
𝑖

)𝑇
1 = 1, 1 ≥ 𝑠

(𝑣)
𝑖

≥ 0.

(12)

denote 𝑑 (𝑣)
𝑖 𝑗

+ 𝜌𝑏
(𝑣)
𝑖 𝑗

as 𝑓 (𝑣)
𝑖 𝑗

, the problem can be written in vector
form as:

min
s𝑇
𝑖
1=1,0≤s𝑖≤1

𝑚∑︁
𝑣=1

s(𝑣)𝑖
+ 1
𝜆 + 𝜌

f (𝑣)
𝑖

2
2
. (13)

Note that S(𝑣) for each view is independent. Hence we can update
S(𝑣) one by one,

min
s𝑇
𝑖
1=1,0≤s𝑖≤1

s(𝑣)𝑖
+ 1
𝜆 + 𝜌

f (𝑣)
𝑖

2
2
. (14)

The solution to Eq. (14) will be detailed later.

4.2 Update J(𝑣) :
When the other variables are fixed, Eq. (8) become:

min
J(𝑣)

𝜌

2

𝑚∑︁
𝑣=1

∥S(𝑣) − J(𝑣) + 1
𝜌
E(𝑣) ∥2𝐹+

𝛼

2

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 J̃𝑖

2
2
,

(15)

then transform it into instance-wise form:

min
J(𝑣)

𝜌

2

𝑛∑︁
𝑖=1

∥S̃𝑖 − J̃𝑖 +
1
𝜌
Ẽ𝑖 ∥2𝐹 + 𝛼

2

c𝑇𝑖 −w𝑇
𝑖 J̃𝑖

2
2
. (16)

By solving the first derivative of J̃𝑖 , we have:

J̃𝑖 =
(
𝛼w𝑖w𝑇 + 𝜌I

)−1 (
𝛼w𝑖c𝑇𝑖 + 𝜌 S̃𝑖 + Ẽ𝑖

)
(17)

4.3 Update W:
The part of Eq. (8) with respect toW is:

min
W

𝛼

2

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 J̃𝑖

2
2

s.t. w𝑖 ≥ 0,w𝑇
𝑖 1 = 1.

(18)

Denote 1c𝑇
𝑖
− J̃𝑖 ∈ R𝑚×𝑛 as A𝑖 , and simplify the above function

min
W

w𝑇
𝑖 A𝑖

2
2

s.t. w𝑖 ≥ 0,w𝑇
𝑖 1 = 1,

(19)

Similarly, extreme values can be calculated using the derivation:

w𝑖 =

(
A𝑖A𝑇

𝑖

)−1
1

1𝑇
(
A𝑖A𝑇

𝑖

)−1
1
. (20)

4.4 Update C:
For C we need to optimize:

min
C

𝛼

2

𝑛∑︁
𝑖=1

c𝑇𝑖 −w𝑇
𝑖 J̃𝑖

2
2
+ 𝛽

2
∥C∥2𝐹

s.t. C ≥ 0,C1 = 1.

(21)

Reformulate it in a vector form, we have:

min
c𝑖

(𝛼 + 𝛽) c𝑖c𝑇𝑖 − 2𝛼w𝑇
𝑖 J̃𝑖c𝑖

s.t. c𝑖 ≥ 0, c𝑖1 = 1.
(22)
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Based on Eq. (22), we get the following compact formulation

min
c𝑖1=1,c𝑖≥0

c𝑖 − 𝛼

𝛼 + 𝛽
w𝑇
𝑖 J̃𝑖

2
2
, (23)

We can follow the same process in solving Eq. (14) to solve
Eq. (23).

4.5 Solution to Eq. (14)
The Lagrangian function of Eq. (14) is

L
(
s(𝑣)
𝑖

,𝜓, 𝜉

)
=

1
2

s(𝑣)𝑖
+ 1
𝜆 + 𝜌

f (𝑣)
𝑖

2
2

−𝜓
((
s(𝑣)
𝑖

)𝑇
1 − 1

)
− 𝜉𝑇 s(𝑣)

𝑖
,

(24)

where𝜓 and 𝜉 denote the Lagrange multipliers for the correspond-
ing constraints.

Setting 𝜕L
𝜕s(𝑣)

𝑖

= 0 and according to the KKT condition [1] 𝑠𝑖 𝑗 𝜉 𝑗 =

0, we have the following solution (denoted as �̂� (𝑣)
𝑖 𝑗

) for 𝑠𝑖 𝑗

�̂�
(𝑣)
𝑖 𝑗

=

(
− 1
𝜆 + 𝜌

𝑓
(𝑣)
𝑖 𝑗

+𝜓
)
+
. (25)

Without loss of generality, we order 𝑓 (𝑣)
𝑖1 , . . . , 𝑓

(𝑣)
𝑖𝑛

from small to
large. If we constrain 𝑠𝑖 𝑗 having 𝑘 nonzero entries, we have:

− 1
𝜆 + 𝜌

𝑓
(𝑣)
𝑖𝑘

+𝜓 > 0, 𝑎𝑛𝑑 − 1
𝜆 + 𝜌

𝑓
(𝑣)
𝑖,𝑘+1 +𝜓 ≤ 0. (26)

Combining Eq. (25) and the constraint
(
s(𝑣)
𝑖

)𝑇
1 = 1 we have

𝜓 =
1
𝑘

©«1 + 1
𝜆 + 𝜌

𝑘∑︁
𝑗

𝑓
(𝑣)
𝑖𝑘

ª®¬ , (27)

, substituting Eq. (27) into Eq. (26),

𝑘 𝑓
(𝑣)
𝑖𝑘

−
𝑘∑︁
𝑗

𝑓
(𝑣)
𝑖𝑘

− 𝜌 < 𝜆 ≤ 𝑘 𝑓
(𝑣)
𝑖,𝑘+1 −

𝑘∑︁
𝑗

𝑓
(𝑣)
𝑖𝑘

− 𝜌. (28)

In order to constrain s(𝑣)
𝑖

to have exact 𝑘 nonzero elements, 𝜆
can be set to

𝜆 = 𝑘 𝑓
(𝑣)
𝑖,𝑘+1 −

𝑘∑︁
𝑗

𝑓
(𝑣)
𝑖𝑘

− 𝜌. (29)

Thus the overall optimal 𝜆 (denoted as 𝜆∗) of a given dataset is

𝜆∗ =
1
𝑛

𝑛∑︁
𝑖=1

©«𝑘 𝑓 (𝑣)𝑖,𝑘+1 −
𝑘∑︁
𝑗

𝑓
(𝑣)
𝑖𝑘

− 𝜌
ª®¬ . (30)

According to Eq. (26), Eq. (27), and Eq. (29), the final solution for
𝑠
(𝑣)
𝑖 𝑗

is

𝑠𝑣𝑖 𝑗 =


𝑓
(𝑣)
𝑖,𝑘+1−𝑓

(𝑣)
𝑖 𝑗

𝑘 𝑓
(𝑣)
𝑖,𝑘+1−

∑𝑘
ℎ=1 𝑓

(𝑣)
𝑖ℎ

𝑗 ≤ 𝑘,

0 𝑗 > 𝑘.

(31)

5 EXPERIMENT
In this section, we compare our methodology with several state-of-
the-art multi-view clustering on benchmark datasets. The empirical
results show that our model achieves competitive results.

Table 1: The clustering results on BBC dataset (%)

Method ACC NMI Purity F-score
Co-reg 61.85 ± 1.11 55.29 ± 1.26 76.69 ± 0.96 60.10 ± 1.30
Co-train 64.82 ± 0.21 60.88 ± 0.02 78.88 ± 0.07 63.84 ± 0.05
MLAN 83.50 ± 0.00 66.03 ± 0.00 83.50 ± 0.00 73.75 ± 0.00
AWP 62.92 ± 0.00 42.34 ± 0.00 63.50 ± 0.00 49.99 ± 0.00
MCGC 33.43 ± 0.00 0.98 ± 0.00 33.87 ± 0.00 37.83 ± 0.00
mPAC 68.18 ± 0.00 47.42 ± 0.00 68.18 ± 0.00 63.45 ± 0.00
CGD 88.32 ± 0.21 71.49 ± 0.33 88.32 ± 0.21 82.07 ± 0.41
FPMVS 32.26 ± 0.00 2.91 ± 0.00 37.37 ± 0.00 27.59 ± 0.00
LMVSC 54.45 ± 2.60 37.58 ± 2.77 63.60 ± 0.07 44.37 ± 1.21
CoMSC 89.78 ± 0.00 74.29 ± 0.00 89.78 ± 0.00 84.16 ± 0.00
COMVSC 54.89 ± 0.00 28.31 ± 0.00 55.47 ± 0.00 49.40 ± 0.00
MMGC 50.51 ± 0.00 38.65 ± 0.00 60.00 ± 0.00 45.44 ± 0.00
SLMVGC 51.97 ± 0.00 32.41 ± 0.00 54.89 ± 0.00 39.64 ± 0.00
Ours 91.53 ± 0.00 77.33 ± 0.05 91.53 ± 0.00 85.82 ± 0.00

Table 2: The clustering results on BBCSport dataset (%)

Method ACC NMI Purity F-score
Co-reg 77.45 ± 1.46 54.87 ± 0.90 77.45 ± 1.46 67.77 ± 0.52
Co-train 75.43 ± 6.80 60.26 ± 1.85 78.37 ± 2.64 67.57 ± 3.29
MLAN 87.50 ± 0.00 76.52 ± 0.00 87.50 ± 0.00 84.27 ± 0.00
AWP 59.74 ± 0.00 43.06 ± 0.00 66.54 ± 0.00 47.42 ± 0.00
MCGC 37.13 ± 0.00 2.00 ± 0.00 37.13 ± 0.00 38.70 ± 0.00
mPAC 64.34 ± 0.00 42.42 ± 0.00 64.34 ± 0.00 57.31 ± 0.00
CGD 61.03 ± 0.00 49.47 ± 0.00 64.89 ± 0.00 59.07 ± 0.00
FPMVS 42.10 ± 0.00 14.78 ± 0.00 51.84 ± 0.00 32.74 ± 0.00
LMVSC 62.81 ± 6.46 43.15 ± 2.80 74.33 ± 6.42 48.83 ± 5.11
CoMSC 86.58 ± 0.00 74.98 ± 0.00 89.89 ± 0.00 83.69 ± 0.00
COMVSC 59.93 ± 0.00 30.00 ± 0.00 62.68 ± 0.00 49.50 ± 0.00
MMGC 71.32 ± 0.00 51.36 ± 0.00 73.90 ± 0.00 56.10 ± 0.00
SLMVGC 77.57 ± 0.00 60.73 ± 0.18 77.57 ± 0.00 63.72 ± 0.03
Ours 90.44 ± 0.00 77.84 ± 0.00 90.44 ± 0.00 81.44 ± 0.00

Table 3: The clustering results on BBC12 dataset (%)

Method ACC NMI Purity F-score
Co-reg 73.22 ± 5.03 53.57 ± 1.84 73.84 ± 4.17 64.25 ± 5.16
Co-train 74.51 ± 7.33 60.16 ± 0.65 79.35 ± 0.61 66.77 ± 3.73
MLAN 87.50 ± 0.00 76.52 ± 0.00 87.50 ± 0.00 84.27 ± 0.00
AWP 59.01 ± 0.00 42.56 ± 0.00 65.99 ± 0.00 46.46 ± 0.00
MCGC 37.13 ± 0.00 2.00 ± 0.00 37.13 ± 0.00 38.70 ± 0.00
mPAC 64.52 ± 0.00 43.82 ± 0.00 64.52 ± 0.00 57.70 ± 0.00
CGD 61.03 ± 0.00 49.47 ± 0.00 64.89 ± 0.00 59.07 ± 0.00
FPMVS 42.10 ± 0.00 14.78 ± 0.00 51.84 ± 0.00 32.74 ± 0.00
LMVSC 62.62 ± 6.81 45.23 ± 2.49 72.73 ± 7.18 48.91 ± 5.91
CoMSC 86.58 ± 0.00 74.98 ± 0.00 89.89 ± 0.00 83.69 ± 0.00
COMVSC 59.93 ± 0.00 30.00 ± 0.00 62.68 ± 0.00 49.50 ± 0.00
MMGC 71.32 ± 0.00 51.36 ± 0.00 73.90 ± 0.00 56.10 ± 0.00
SLMVGC 77.57 ± 0.00 60.52 ± 0.00 77.57 ± 0.00 63.69 ± 0.00
Ours 94.85 ± 0.00 84.53 ± 0.00 94.85 ± 0.00 90.10 ± 0.00

5.1 Experiment Setup
Five multi-view datasets are used in our experiment: BBC, BBC-
Sport, BBC12, HW2, ORL, and cora.
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Table 4: The clustering results on HW2 dataset (%)

Method ACC NMI Purity F-score
Co-reg 55.28 ± 1.84 46.89 ± 1.04 58.13 ± 2.15 42.34 ± 0.60
Co-train 82.28 ± 4.87 72.12 ± 3.36 82.68 ± 4.30 71.30 ± 4.48
MLAN 81.07 ± 0.02 83.89 ± 0.04 85.52 ± 0.02 79.68 ± 0.04
AWP 66.05 ± 0.00 59.56 ± 0.00 69.05 ± 0.00 57.51 ± 0.00
MCGC 53.95 ± 0.00 61.78 ± 0.00 54.10 ± 0.00 57.25 ± 0.00
mPAC 56.80 ± 0.00 50.09 ± 0.00 60.10 ± 0.00 46.87 ± 0.00
CGD 98.60 ± 0.00 96.78 ± 0.00 98.60 ± 0.00 97.23 ± 0.00
FPMVS 78.45 ± 0.00 70.25 ± 0.00 78.45 ± 0.00 69.00 ± 0.00
LMVSC 83.70 ± 3.39 83.78 ± 1.20 91.93 ± 1.52 78.69 ± 2.84
CoMSC 98.50 ± 0.00 96.72 ± 0.00 98.50 ± 0.00 97.06 ± 0.00
COMVSC 61.15 ± 0.00 55.47 ± 0.00 61.35 ± 0.00 52.42 ± 0.00
MMGC 79.93 ± 0.03 65.24 ± 0.11 79.93 ± 0.03 65.90 ± 0.05
SLMVGC 99.25 ± 0.00 98.15 ± 0.00 99.25 ± 0.00 98.50 ± 0.00
Ours 99.55 ± 0.00 98.92 ± 0.00 99.55 ± 0.00 99.10 ± 0.00

Table 5: The clustering results on ORL dataset (%)

Method ACC NMI Purity F-score
Co-reg 62.50 ± 0.94 80.17 ± 0.24 66.67 ± 0.62 52.37 ± 1.05
Co-train 57.42 ± 2.38 77.01 ± 1.32 60.92 ± 1.90 46.28 ± 2.14
AWP 77.25 ± 0.00 88.60 ± 0.00 80.00 ± 0.00 71.73 ± 0.00
MCGC 77.00 ± 0.00 87.22 ± 0.00 82.75 ± 0.00 56.25 ± 0.00
mPAC 63.75 ± 0.00 82.66 ± 0.00 66.75 ± 0.00 58.29 ± 0.00
CGD 54.25 ± 1.22 71.49 ± 0.90 61.17 ± 0.96 27.82 ± 2.30
FPMVS 55.50 ± 0.00 73.59 ± 0.00 59.00 ± 0.00 41.03 ± 0.00
LMVSC 64.67 ± 2.08 81.71 ± 1.16 73.67 ± 1.65 54.33 ± 1.82
CoMSC 72.75 ± 0.00 84.23 ± 0.00 77.25 ± 0.00 61.43 ± 0.00
COMVSC 76.50 ± 0.00 88.04 ± 0.00 81.50 ± 0.00 69.75 ± 0.00
MMGC 83.75 ± 1.80 90.82 ± 0.83 84.92 ± 1.77 77.06 ± 2.10
Ours 86.50 ± 0.00 93.32 ± 0.00 88.75 ± 0.00 82.02 ± 0.00

Table 6: The clustering results on cora dataset (%)

Method ACC NMI Purity F-score
Co-reg 34.95 ± 2.01 19.68 ± 0.18 43.13 ± 0.39 26.94 ± 1.24
Co-train 53.31 ± 0.15 33.14 ± 0.72 58.30 ± 1.41 38.12 ± 0.19
MLAN 45.77 ± 0.02 24.45 ± 0.03 49.40 ± 0.02 34.34 ± 0.01
AWP 30.76 ± 0.00 14.27 ± 0.00 38.96 ± 0.00 28.17 ± 0.00
MCGC 32.05 ± 0.00 3.91 ± 0.00 32.20 ± 0.00 29.64 ± 0.00
mPAC 38.85 ± 0.00 20.08 ± 0.00 44.65 ± 0.00 29.11 ± 0.00
CGD 31.31 ± 0.00 2.75 ± 0.00 32.16 ± 0.00 30.71 ± 0.00
FPMVS 64.84 ± 0.00 40.23 ± 0.00 64.84 ± 0.00 45.09 ± 0.00
LMVSC 45.46 ± 3.84 27.47 ± 1.36 51.78 ± 1.92 32.51 ± 1.33
CoMSC 64.11 ± 0.00 46.47 ± 0.00 68.61 ± 0.00 49.36 ± 0.00
COMVSC 34.19 ± 0.00 11.04 ± 0.00 37.33 ± 0.00 30.33 ± 0.00
MMGC 56.68 ± 0.00 43.92 ± 0.00 65.84 ± 0.00 45.39 ± 0.00
Ours 69.04 ± 0.15 51.92 ± 0.10 70.24 ± 0.01 56.53 ± 0.14

BBC1 dataset is composed of news stories in five different la-
bels: politics, entertainment, business, tech and sport. BBCSport2
contains 544 archives collected from the BBCSport website, where
each document is divided into 2 kinds of features. HW23 is from
1http://mlg.ucd.ie/datasets/segment.html
2http://mlg.ucd.ie/datasets/segment.html
3https://archive.ics.uci.edu/dataset/72/multiple+features

the UCI repository.The dataset consists of 2000 samples with two
views. Each sample is one of the handwritten digits (0–9). ORL4
face dataset consists of 400 face images in 40 different themes in
total. For each subject, the images are described in three features: fa-
cial expressions, facial details, and lighting. Cora5 dataset consists
of 2708 scientific publications classified into one of seven classes.

We selected 12 multi-view clustering methods for comparison:
Multi-view Spectral clustering with Co-reg strategy (Co-reg) [10],
Multi-view Spectral Clustering with Co-train strategy (Co-train) [9],
Multi-view clustering and semi-supervised classification with adap-
tive neighbors (MLAN) [17], Multi-view Clustering via Adaptively
Weighted Procrustes (AWP) [18], Multi-view Consensus Graph
Clustering (MCGC) [32], Multiple Partitions Aligned Clustering
(mPAC) [5], Multi-view Clustering via Cross-view Graph Diffu-
sion (CGD) [24], Fast parameter-free multi-view subspace cluster-
ing (FPMVS) [28], Multi-view Subspace Clustering via Co-training
(CoMSC) [13], Consensus One-step Multi-view Subspace Cluster-
ing (COMVSC) [33], Large-scale Multi-view Subspace Clustering
(LMVSC) [7], Metric Multi-view Graph Clustering(MMGC) [22],
Sample-Level Multi-View Graph Clustering(SLMVGC) [21]. Note
that the above methods, except for the last one, perform graph
fusion in a view-wise way. As for the last method, although it is
instance-wise, it computes similarity graphs derived from topologi-
cal manifold correlations, adept at capturing the entire topological
manifold structure from the data space. In contrast, our approach
using adaptive neighbor focuses more on the local geometric struc-
ture of data.

5.2 Results Analysis
Four criteria of clustering performance (Normalized Mutual Infor-
mation (NMI), Accuracy (ACC), Purity, and F-Score) are shown in
Table 1–6, and the best results are bolded. The comparison algo-
rithms were repeatedly tested 10 times using the parameter settings
recommended by corresponding papers. In most cases, our method
consistently outperforms others, showing its effectiveness. In Ta-
ble 1, on BBC dataset, our method outperforms other methods by
at least 1.75%, 3.04%, 1.75%, 1.21% in terms of ACC, NMI, Purity,
and F-score. For BBCSport dataset, our method achieves improve-
ments around 3.86%, 2.86% and 0.55% respectively, while 2.25% is
lower in F-score. Our method demonstrates the most significant
advancement on BBC12 dataset in Table 3, and the correspond-
ing improvements are 8.27%, 9.55%, 4.96%, 6.41%. Our method also
yields competitive results for datasets where the majority of meth-
ods perform well, such as HW2 dataset. We can substantiate the
effectiveness of mining the local geometric structure of similar-
ity and integrating fine-grained information at the instance level
by comparing empirical results. It should be pointed out that all
the baselines, excluding the last one, suffer from a coarse-grained
representation, resulting in suboptimal experimental outcomes.
Regarding the last one, SLMVGC, our method demonstrates a dis-
cernible advantage in performance, which can be attributed to our
empirical validation that local geometric structure captured by an
adaptive neighbor is more tailored for fusion across views.

4https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-
testing
5https://relational.fit.cvut.cz/dataset/CORA

http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/segment.html
https://archive.ics.uci.edu/dataset/72/multiple+features
https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing
https://www.kaggle.com/datasets/tavarez/the-orl-database-for-training-and-testing
https://relational.fit.cvut.cz/dataset/CORA
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Figure 3: Parameter analysis

5.3 Parameter Analysis
There are four hyperparameters in our method: 𝛼, 𝛽, 𝜌, 𝑎𝑛𝑑𝜆. Note
that 𝜌 is a common penalty parameter in ALM (𝜌 = 1.2), and 𝜆 is
fine-tuned according to Eq. (30). Therefore, we only need to focus
on the remaining two parameters. To assess the impact of different
parameter settings on clustering results, we vary parameter 𝛼 and 𝛽
in

[
3𝑒2, 4𝑒2, 5𝑒2, 6𝑒2, 7𝑒2

]
and

[
1𝑒−2, 5𝑒−2, 1𝑒−1, 5𝑒−1, 1𝑒0, 5𝑒0, 1𝑒1

]
,

respectively. Figure 3 shows the visual results in five benchmarks.
According to the experiment result, we conclude that our method
demonstrates stability across a large range of 𝛽 settings and is
robust in the case of a small value for 𝛼 .

5.4 Convergence Analysis
In this subsection, we experimentally verify the convergence of the
proposed algorithm by reporting the corresponding loss value with
the varying iterations on BBCSport and HW2. As shown in Figure 4,
one may observe that the flexibility exists to seek the optimal solu-
tion for each variable, leading to the eventual convergence of the
algorithm to a local minimum within 25 iterations. The proposed
optimization algorithm is very efficient and converges fast. Hence
it is sufficient for all datasets to reach the best performance with
the maximum iteration numbers of 25, as set in our experiment.

5.5 Ablation Experiment
To validate that fusing instance-wise slices can better capture the
local consistency, we directly apply spectral clustering to the simi-
larity matrix of the individual views of neighboring instances, i.e.,
spectral clustering is performed on each{S(𝑣) }𝑚

𝑣=1 learned by Eq. 1,
where𝑚 is the number of views. As shown in Table 5, similarity
matrices learned on independent views with adaptive neighbor
strategy are unreliable inputs for spectral clustering. MLAN, char-
acterized as a view-wise fusion method that utilizes an adaptive
neighbor strategy, demonstrates enhanced performance relative to
methods employing a single-view approach. Furthermore, instance-
wise fusion contributes to the most significant improvement of
multi-view clustering outcomes by offering fine-grained represen-
tations, thereby augmenting local consistency.

6 CONCLUSION
In this paper, we propose exploiting local structure consistency
across multiple views and focusing on mining fine-grained rep-
resentations. The cross-view consistency in our model can also
be captured by exploring the intersections of multiple views in
an instance-wise manner. By utilizing the augmented Lagrangian
method, our collaborative model can iteratively refine all subtasks
towards optimal solutions. The empirical evaluation on various
multi-view datasets shows that our method consistently outper-
forms other SOTAs in the majority of cases. Our method further
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Figure 5: Ablation study

demonstrates stability across a large range of parameter settings.
Note that the proposed optimization algorithm is very efficient and
converges fast. Our work not only contributes to the ongoing explo-
ration of multi-view clustering but also highlights the importance
of considering local structure and the significance of fine-grained
information fusion. In the future, we intend to extend the proposed
model to other multi-view clustering frameworks such as subspace
clustering and multi-kernel learning.
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