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Abstract

This study revisits label smoothing via the information bottleneck. Under the assumption
of sufficient model flexibility and no conflicting labels for the same input, we theoretically
and experimentally demonstrate that the model output obtained through label smoothing
explores the optimal solution of the information bottleneck. Based on this, label smoothing
can be interpreted as a practical approach to the information bottleneck, enabling simple
implementation. As an information bottleneck method, we experimentally show that label
smoothing also exhibits the property of being insensitive to factors that do not contain
information about the target, or to factors that provide no additional information about it
when conditioned on another variable.
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Figure 1: Empirical IB curve and solutions for cross entropy and label smoothing loss under practically
reasonable assumptions. Here, X is the input, Y is the target, and T is the model output. Theoretical results
are shown in Section 4.2.

1 Introduction

Label smoothing (LS) (Szegedy et al., 2015) is an operation that softens a hard one-hot vector by taking
a weighted average with another distribution, such as a uniform one. Despite its simplicity, it has been
empirically shown to improve the performance of deep learning models and used to train SOTA models
in various tasks such as vision (Zoph et al., 2018; Huang et al., 2018; Real et al., 2019; Wortsman et al.,
2022; Liu et al., 2022), speech recognition (Chorowski & Jaitly, 2016), machine translation (Vaswani et al.,
2017; NLLB Team et al., 2022), and multi-modal models (Yu et al., 2022). The specific effects of label
smoothing have become an active area of research. It has been pointed out that it reduces robustness against
adversarial attacks (Zantedeschi et al., 2017), improves calibration (Müller et al., 2019), mitigates label
noise (Lukasik et al., 2020; Chen et al., 2020; Liu, 2021), does not allow for sparse output distributions
(Meister et al., 2020), accelerate the convergence of stochastic gradient descent (Xu et al., 2020), and learn
low-variance features (Chidambaram & Ge, 2024). In addition to these points, label smoothing has also
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been shown to be a regularization limiting model outputs or representations. It can be seen as penalizing
overconfident (i.e., low-entropy) predictions (Pereyra et al., 2017; Meister et al., 2020). Furthermore, it has
been experimentally demonstrated that it compresses the internal representations of the model, such as
the penultimate layer or the logits (Müller et al., 2019). These insights suggest a connection between label
smoothing and information-theoretic regularization techniques for representations.

Parallel to these developments, the machine learning community has also been exploring the Information
Bottleneck (IB) framework (Tishby et al., 2000), a method for supervised representation learning based on
information theory. The objective of IB is to compress the information about the inuput while preserving as
much information as possible about the target labels. From the perspective of statistical learning theory, the
compression is known to function as a form of regularization (Shamir et al., 2010; Vera et al., 2018; 2020;
Kawaguchi et al., 2023). Furthermore, by compressing the input, the model is encouraged to ignore factors
that do not contain information about the target (Achille & Soatto, 2017), or factors that do not provide any
additional information about the target when conditioned on another variable (Ahuja et al., 2021), which
do not directly cause the target, thereby enabling the construction of more reliable models. In addition
to these theoretical discussions, several practical benefits of applying IB methods to deep learning models
have been reported, including robustness against adversarial attacks (Alemi et al., 2016), out-of-distribution
detection (Alemi et al., 2018; Pan et al., 2020), domain generalization (Ahuja et al., 2021; Li et al., 2022),
and calibration (Alemi et al., 2018).

Considering these accumulated research findings on IB, studying the relationship between label smoothing
and IB can significantly advance our understanding of the behavior of label smoothing or SOTA models that
utilize it, and open up new directions for its application. Motivated by this insight, this work revisits label
smoothing through the lens of the Information Bottleneck principle. Our contributions are threefold:

• We clarify the correspondence, similarities, and differences between label smoothing and the Vari-
ational Information Bottleneck (Alemi et al., 2016) (Section 4.1). Based on this correspondence,
where the representation corresponds to the model output, we interpret label smoothing as a form of
IB. Under the practically reasonable assumptions of model flexibility and the absence of multiple
different labels for the same input, we theoretically show that label smoothing can explore the optimal
solutions of IB with arbitrary compression levels within the range of interest (see Figure 1) (Section
4.2). This suggests that label smoothing enables simple implementations and avoids the practical
issues associated with IB (Section 4.3) by limiting the scenarios where its strictness as an IB holds to
typical cases. Thus, we argue that “label smoothing is a pragmatic information bottleneck.”

• We experimentally validate the theoretical findings and show that, conversely, in situations where
different labels exist for the same input, label smoothing is not necessarily optimal from the perspective
of IB (Section 5.2). This demonstrates not only the effectiveness of label smoothing, but also its
limitations as an IB method in certain situations.

• We experimentally demonstrate the effectiveness of label smoothing as IB. In particular, we consider
nuisance factors, which do not contain information about the target, and redundant factors, which
do not provide additional information about the target when conditioned on another factor. We
show experimentally that label smoothing makes the model less sensitive to these factors (Section
5.3). These results show cases where label smoothing enhances independence from factors that do
not have a direct causal relationship with the target, which is an important property for building
reliable models.

2 Related work

2.1 Similarities between Label Smoothing and the Information Bottleneck

Several studies have presented fragmentary findings suggesting a potential connection between label smoothing
and the information bottleneck. Müller et al. (2019) experimentally demonstrated that applying label
smoothing reduces the mutual information between the input data and output logits, and mentioned its
potential relationship to the information bottleneck. Furthermore, their visualization of penultimate layer
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representations showed that label smoothing causes data points to cluster around the centers of their respective
classes. This behavior is consistent with the fact that the deterministic IB (Strouse & Schwab, 2016) favors
hard clustering (Kolchinsky et al., 2018). Theoretically, connections between label smoothing and confidence
penalty have also been pointed out (Pereyra et al., 2017; Meister et al., 2020). These regularization constrain
the expressive capacity of the model’s output, implicitly suggesting a relationship with the information
bottleneck. Based on this connection, the Variational Information Bottleneck paper (Alemi et al., 2016)
introduces the confidence penalty as a related work, although it does not offer a detailed discussion on the
correspondence, similarities, or differences between them. While these results suggest a potential connection,
as far as we know, there has been no research that investigates the optimality of label smoothing as an
information bottleneck method or attempts to understand its characteristics from the perspective of the
information bottleneck.

2.2 Variants of Label Smoothing

Uniform label smoothing (Szegedy et al., 2015) is used in SOTA models due to its simplicity and ease of
handling, and it remains an important technique in practical applications. Based on this, in this study, as
a first step in investigating the relationship between label smoothing and IB, uniform label smoothing is
selected as the subject of analysis. In particular, in the theoretical analysis, the smoothing distribution
and smoothing strength are considered fixed across classes, data samples, and the training phase. In the
experiments, the smoothing distribution is set as a uniform distribution. Meanwhile, in recent years, label
smoothing methods that allow for more flexibility in these fixed settings have been proposed. For example,
Online Label Smoothing (Zhang et al., 2021) modifies the smoothing distribution during training based on
the model’s predictions. Structural Label Smoothing (Li et al., 2020) applies adaptive smoothing strengths
depending on regions in the feature space. Low-rank Adaptive Label Smoothing (Ghoshal et al., 2020) jointly
learns the smoothing distribution and the model parameters. In natural language tasks, Adaptive Label
Smoothing (Wang et al., 2021a) dynamically sets the smoothing distribution at each time step depending on
the context. Furthermore, Yuan et al. (2019) show that Knowledge Distillation (Hinton et al., 2015) can be
interpreted as a type of label smoothing, where the smoothing distribution is defined per data sample based
on the teacher model’s output. The extension of this study to include such methods is left for future work.

3 Preliminaries

3.1 Notations

Let X ∈ X and Y ∈ Y be random variables with joint distribution p(X, Y ). Here, X and Y correspond to an
input variable and a target variable, respectively. In this study, we consider classification settings; thus, we
set Y = {1, 2, . . . , K}, where K is the number of classes. For simplicity, X is also restricted to be a finite set.
This assumption is sometimes adopted and justified when using digital computers (Kawaguchi et al., 2023).
We denote an i.i.d. sample of N instances as {(x1, y1), (x2, y2), . . . , (xN , yN )}, and its empirical distribution
as p̂(X, Y ). We use the hat symbol to indicate quantities calculated using p̂(X, Y ) instead of p(X, Y ), e.g.,
empirical mutual information Î and empirical entropy Ĥ.

3.2 Label Smoothing

We consider the parameter θ ∈ Θ to be optimized for modeling p(Y |X) using pθ(T |X), where T ∈ T = Y
represents the prediction. This notation is intended to seamlessly connect to the information bottleneck later.
With cross-entropy defined as H(p(T ), q(T )) := −

∑
t∈T p(t) log q(t), the Cross Entropy loss (CE), which

performs maximum likelihood estimation, can be written as

LCE(θ) := 1
N

N∑
i=1

H(1T =yi , pθ(T |xi)), (1)

where 1T =yi is an indicator function, meaning that T equals yi with probability 1.
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Label smoothing modifies this by softening the hard target 1T =yi
. More formally, label smoothing replaces it

with a weighted average of the hard target and a smoothing distribution r(T ).

qα,i(T ) := (1 − α)1T =yi
+ αr(T ), (2)

where α ∈ [0, 1]. Generally, a uniform distribution is used as the smoothing distribution, and r(T ) = 1
K . The

loss function of label smoothing is

LLS(θ; α) := 1
N

N∑
i=1

H(qα,i(T ), pθ(T |xi)) (3)

In particular, LLS(θ; 0) = LCE(θ).

3.3 Information Bottleneck

The Information Bottleneck (Tishby et al., 2000) aims to transform X into a representation T ∈ T that
retains as much information about Y as possible while compressing the information about X. Formally, under
the assumption that p(X, Y ) is known and using mutual information I(X; T ) =

∑
x∈X ,t∈T p(x, t) log p(x,t)

p(x)p(t) ,
this can be written as

maximize
T :Y ↔X↔T

I(T ; Y ) s.t. I(X; T ) ≤ r, (4)

where r ≥ 0. Here, the constraint Y ↔ X ↔ T restricts T to be generated from X. We refer to Equation 4
as the IB objective. It is known that the solutions of the IB objective form a generalization of the minimal
sufficient statistic, where I(T ; Y ) controls sufficiency and I(X; T ) controls minimality (Shamir et al., 2010).
In the information bottleneck literature, the information plane, defined by the two axes I(X; T ) and I(T ; Y ),
is often considered. On the information plane, we can plot (I(X; T ), I(T ; Y )) = (r, I(Tr; Y )) for each r, where
Tr is a solution of the IB objective for r. This plot forms a curve called the IB curve, which separates the
feasible and infeasible regions.

In practice, we usually do not know p(X, Y ), so it is replaced with the empirical distribution p̂(X, Y ). We can
then draw the empirical IB curve on the information plane defined by the empirical mutual information. In
this case, the constraint on Î(X; T ) can be seen as a form of regularization. The generalization gap between
the true I(T ; Y ) and the empirical Î(T ; Y ) is bounded by a term related to I(X; T ) (Shamir et al., 2010).
The generalization gap for cross-entropy is also bounded by I(X; T ) (Vera et al., 2018; 2020). IB-based
statistical learning theory for deep learning has also been investigated (Kawaguchi et al., 2023).

Here, we introduce two specific effects of the information bottleneck. These effects of label smoothing will
be addressed in the experimental section. One of the benefits of compression is the removal of nuisance. A
nuisance is a random variable that affects the input X but is independent of the target Y . The representation
should be invariant to, or at least less informative about, the nuisance. Achille & Soatto (2017), Proposition
3.1, shows that when the representation is sufficient, the mutual information between the representation and
the nuisance is upper bounded by the mutual information between the representation and the input X.

Additionally, redundancy of a representation can also arise from factors that become independent of the target
when conditioned on another factor. We refer to these as redundant factors and informative factors, respectively.
For example, if a representation includes both an informative factor and a redundant factor, removing the
redundant factor allows for a more compressed representation without reducing the information about the
target. Formally, I(R, I; Y ) = I(I; Y ) + I(R; Y |I) = I(I; Y ) and I(R, I; X) = I(I; X) + I(R; X|I) ≥ I(I; X),
where R and I are the redundant and informative factor respectively. This relates to the benefit of IB in
the fully informative invariant features (FIIF) scenario discussed by Ahuja et al. (2021), Theorem 4, in the
field of domain generalization. The following is an example of a case where the removal of redundant factors
is effective. Beery et al. (2018) trained a convolutional neural network to classify camels and cows, but it
was found that the model relied on background colors (e.g., green for cows, brown for camels) rather than
essential features such as the shape of the animals. As discussed in Ahuja et al. (2021), labels are assigned
based on the shape of the animal rather than the background, so while the background correlates with the
labels, it becomes independent of the labels when conditioned on the shape of the animal. As in this example,
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it is possible to focus only on factors that are causally directly related through compression, which is an
important property for building reliable models (e.g., models for unbiased diagnosis).

One of the representative implementations of IB in deep learning is Variational Information Bottleneck
(Variational IB) (Alemi et al., 2016), which will be introduced in the next section. This paper deals with
VIB, but note that there are also other methods for IB or IB-related objectives (Strouse & Schwab, 2016;
Kolchinsky et al., 2019; Pan et al., 2020; Piran et al., 2020; Fischer, 2020; Yu et al., 2021; Wang et al., 2021b;
Kudo et al., 2024a;b).

3.3.1 Variational IB

Here we introduce Variational IB, which will later be connected to label smoothing. Instead of directly
optimizing the constrained IB objective, the following loss function is minimized.

−I(T ; Y ) + βI(X; T ), (5)

where β ≥ 0. This is a Lagrangian relaxation (Lemaréchal, 2001) of the IB objective, known as the IB
Lagrangian. The IB Lagrangian is easier to optimize; however, there still exists a problem in that mutual
information contains integrals that are intractable or difficult to compute. VIB enables the learning of the IB
Lagrangian in general settings by providing its upper bound through variational approximation. Here, the
representation T is obtained via the feature extractor pθ(T |X). First, let us consider sufficiency, i.e., I(T ; Y ).
By using another model qϕ(Y |T ), which we call a classifier, as a variational approximation of pθ(Y |T ), the
following variational lower bound is obtained.

I(T ; Y ) ≥
∑
x,y

p(x, y)Epθ(T |x)[log qϕ(y|T )] + H(Y ) (6)

Here, H(Y ) represents the entropy of Y . Since this value remains constant throughout the learning process,
it can be ignored during training (Poole et al., 2019). Next, for the minimality term I(X; T ), an upper bound
can be obtained by using r(T ) as a variational approximation of pθ(T ).

I(X; T ) ≤
∑

x

p(x) DKL[pθ(T |x)||r(T )], (7)

where DKL is KL divergence. In practice, a fixed distribution is used for r(T ). By combining these elements,
an upper bound on the IB Lagrangian can be obtained. Using the empirical distribution for p(X, Y ), the loss
function of the VIB is derived.

LV IB(θ, ϕ; β) := 1
N

N∑
i=1

−Epθ(T |xi)[log qϕ(yi|T )] + βDKL[pθ(T |xi)||r(T )] (8)

In particular, when the task is reconstruction, the objective function above becomes that of the Variational
Autoencoder (Kingma & Welling, 2013).

4 Label Smoothing through the IB lens

In this section, we theoretically revisit label smoothing from the perspective of the IB. In Section 4.1, we
clarify the correspondence, similarities, and differences between label smoothing and Variational IB. Based
on this correspondence, we interpret label smoothing as an IB method. In particular, the model output
corresponds to the IB representation. Next, in Section 4.2, we discuss the IB optimality of label smoothing.
We consider the assumptions that the model is sufficiently flexible and that there are no conflicting labels for
the same input. The former is a reasonable assumption for deep learning models, and the latter is generally
satisfied in benchmark datasets. Under these pragmatic settings, we show that label smoothing can fully
explore the interesting range of the IB curve. Finally, in Section 4.3, we discuss the properties of label
smoothing as an instance of the IB.
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4.1 Label Smoothing and Variational IB

Here, we present the correspondence between label smoothing and the Variational IB, clearly illustrating
their similarities and differences. In terms of related work, the relationship between label smoothing and the
confidence penalty has already been clarified (Pereyra et al., 2017; Meister et al., 2020). As far as we know,
although an implicit relationship between the confidence penalty and Variational IB has been suggested
(Alemi et al., 2016), it has not been demonstrated that they are interchangeable through a single, simple
modification. In this section, we aim to elucidate this relationship, thereby clarify the connection between
label smoothing and Variational IB. As a result, it becomes possible to recognize label smoothing as an IB
method.

Label
Smoothing

Confidence
Penalty

Variational
IB

Reversing Swapping
 and 

Figure 2: Relationship between label smoothing and Variational IB

For the label smoothing model, let qϕ(Y |T ) = 1Y =T be a fixed distribution, which is connected to Variational
IB later1. Using this, we can rewrite the label smoothing loss as

LLS(θ; α) = 1
N

N∑
i=1

(1 − α)(− log pθ(T = yi|xi)) + αDKL[r(T )||pθ(T |xi)] + αH(r(T ))

= 1
N

N∑
i=1

(1 − α)
(
− logEpθ(T |xi)[qϕ(yi|T )]

)
+ αDKL[r(T )||pθ(T |xi)] + const.

(9)

We use Ep(Z)[1{Z=z}] = p(z) for the second equality. Note that H(r(T )) is constant and can be ignored.

Here, we introduce another well-known regularization method, the confidence penalty (Pereyra et al., 2017),
which penalizes the entropy of the output. With the same model setting as in label smoothing (Section 3.2),
the loss function for the confidence penalty is represented as

LCP (θ; β) := 1
N

N∑
i=1

H(1T =yi
, pθ(T |xi)) − βH(pθ(T |xi)), (10)

where β ≥ 0. As in label smoothing, by setting the distributions qϕ(Y |T ) = 1Y =T and r(T ) = 1
K as the

uniform distribution, it is represented as

LCP (θ; β) = 1
N

N∑
i=1

− logEpθ(T |xi)[qϕ(yi|T )] + βDKL[pθ(T |xi)||r(T )] + const. (11)

Compared to Equation 9, it is evident that reversing the direction of the KL divergence transforms the
objective from label smoothing to the confidence penalty (Pereyra et al., 2017). Similarly, in comparison
with the Variational IB objective (Equation 8), swapping the order of the logarithm and expectation in the
first term changes the objective from confidence penalty to Variational IB. These relations are summarized
in Figure 2. These three methods can be interpreted qualitatively in the same way, despite their subtle
differences. In other words, each method balances a term that increases qϕ(yi | T ) for T following pθ(T | xi),
and a term that brings pθ(T | xi) closer to r(T ).

1Note that from the Variational IB perspective, qϕ(Y |T ) = 1Y =T implies using T as the model’s prediction, which is
consistent with the practical usage of label smoothing.
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Up to this point, we have seen that label smoothing is similar to the Variational IB when the IB representation
is the model output and the classifier is fixed as an indicator function. Based on this similarity, we recognize
label smoothing as an IB method through this correspondence.

4.2 On IB-optimality of Label Smoothing

In the following, we demonstrate that, regardless of the differences in objective functions and simplified model
settings (i.e., 1-dimensional representation and fixed classifier), label smoothing can explore the optimal
solution of the information bottleneck in practical settings. The results of this section are summarized in
Figure 1, which should be referred to as appropriate. Please refer to the Appendix for the proofs of the
following propositions.

We consider the case where there are no different labels for the same input. Formally, we state this assumption
below.
Assumption 4.1 (No contradicting labels). For any pair of indices i, j ∈ {1, 2..., N}, if xi = xj , then yi = yj .

If there is no overlap in the data samples of X, this assumption is always satisfied. This is typically the
case in standard applications where |X | is sufficiently large. For example, general benchmark datasets such
as the CIFAR datasets (Krizhevsky et al., 2009) or ImageNet (Deng et al., 2009) satisfy this assumption.
On the other hand, note that some specific applications do not meet this assumption, e.g., cases where
multiple doctors provide diagnoses for the same subjects. Under this assumption, we can draw the IB curve
as discussed in Kolchinsky et al. (2018).
Proposition 4.2 (Empirical IB curve (Kolchinsky et al., 2018)). Under Assumption 4.1, the empirical IB
curve is given by Î(T ; Y ) = Î(X; T ) for Î(X; T ) ∈ [0, Ĥ(Y )], and Î(T ; Y ) = Ĥ(Y ) for Î(X; T ) > Ĥ(Y ).

We are usually not interested in the region where Î(X; T ) > Ĥ(Y ). For example, from the perspective of
generalization, if Î(T ; Y ) is the same, a smaller Î(X; T ) is preferable.

Below, we plot the optimal solutions for cross-entropy loss or label smoothing loss in the information plane and
compare them with the IB curve. Here, we assume the model is flexible enough to represent any probability
mass function for all unique data points. When the model consists of deep neural networks, this assumption
is accepted either empirically or theoretically (Hornik et al., 1989). Formally, this is stated as follows.
Assumption 4.3 (On model flexibility). Let I = {xi|i = 1, 2..., N} be a set of unique input data points. We
assume that the model is flexible enough to represent

{(pθ(T |x))x∈I | θ ∈ Θ} = ∆|I|
T , (12)

where ∆T =
{

p : T → [0, 1]
∣∣∣ ∑

t∈T p(t) = 1
}

denotes the probability simplex over T 2.

Note that T = Y = {1, 2, . . . , K} for the cross entropy or label smoothing model, as we set in Section 3.2.
With this assumption, the optimal solution for the cross entropy loss shows empirical minimal sufficiency, i.e.,
it retains minimal information about the input while containing maximal information about the target in the
empirical distribution.
Proposition 4.4 (Cross entropy results in empirical minimal sufficiency.). Under Assumption 4.1 and
Assumption 4.3, all representations T obtained by optimizing the cross entropy loss LCE(θ) satisfy Î(T ; Y ) =
Î(X; T ) = Ĥ(Y ).

Note that empirical minimal sufficiency does not necessarily lead to the best outcome. As shown in Shamir
et al. (2010), compressing Î(X; T ) can reduce the generalization gap on I(T ; Y ); thus, it is often possible to
achieve a higher I(T ; Y ) with a smaller I(X; T ). This explains the necessity of sweeping the IB curve. Next,
we demonstrate that the optimal solution of label smoothing can explore the IB curve.
Proposition 4.5 (Label smoothing sweeps empirical IB curve.). Under Assumptions 4.1 and 4.3, the
representation Tα obtained by optimizing the label smoothing loss LLS(θ; α) for 0 ≤ α ≤ 1 sweeps the line
defined by Î(T ; Y ) = Î(X; T ), where Î(X; T ) ∈ [0, Ĥ(Y )].

2(·)x∈I denotes a tuple of length |I|, where each component is defined by the corresponding x ∈ I. To define it, we implicitly
assume a fixed ordering of I.
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4.3 Properties of Label Smoothing as an IB

It has been demonstrated that label smoothing can explore the optimal solution of IB in practical settings.
Below, we discuss the following three properties of label smoothing as an IB method.

• Label smoothing can be implemented with a simple operation that only transforms the labels, without
requiring any changes to the model or the loss function. Due to its simplicity and compatibility with
other methods, it is a practical and easy-to-use Information Bottleneck method.

• Label smoothing adopts a one-dimensional discrete variable for the representation. While this may
seem like an excessive simplification at first glance, it still enables the optimization of IB in practical
scenarios. Thanks to this simplification, it avoids the challenging problem of estimating mutual
information in high dimensions (Poole et al., 2019). On the other hand, unlike other IB methods, it
does not have the flexibility to compress arbitrary layers.

• Under conditions such as Assumption 4.1, it is known that trivial solutions exist for the IB objective
with any level of compression (Kolchinsky et al., 2018) 3. On the other hand, label smoothing
explicitly specifies how to perform the compression4, thereby avoiding trivial solutions.

In summary, label smoothing can be considered a pragmatic approach to IB, as it achieves IB optimality
under practical settings while offering a simple implementation and avoiding the practical issues associated
with IB. While demonstrating implementation advantages and addressing potential concerns, this study does
not claim that label smoothing outperforms other IB methods in terms of performance. For instance, there
are cases where VIB has been shown to outperform label smoothing in terms of generalization performance
(Alemi et al., 2016).

5 Experiments

In this section, we first describe the experimental setup, then discuss the IB optimality of label smoothing,
and finally show that the concrete effects of compression can also be observed in label smoothing.

Note that this study does not claim that label smoothing outperforms other IB methods in terms of
performance. In fact, there is a result showing that VIB achieves better generalization than label smoothing
(Alemi et al., 2016). Therefore, instead of comparing performance with other IB methods, we focus here on
investigating the qualitative behavior observed in label smoothing as an IB method.

5.1 Experimental setup

We conduct experiments with four datasets: CIFAR-10 (Krizhevsky et al., 2009), Flowers-102 (Nilsback
& Zisserman, 2008), Occluded CIFAR (Achille & Soatto, 2018), and a variant of Cluttered MNIST (Mnih
et al., 2014). Our learning setup is based on established standard settings. However, to investigate the effects
of label smoothing, we have not employed certain other regularization techniques that could potentially
interfere with this objective. For the CIFAR-10 and Occluded CIFAR datasets, we adopt a standard training
setup with ResNet (He et al., 2015), while weight decay is removed. The training lasts for 160 epochs, with
an initial learning rate of 0.1, which is multiplied by 0.1 at epochs 80 and 120. The model architecture is
ResNet-56, and the optimizer is SGD with momentum 0.9. The setup for Cluttered MNIST is the same as
above, but the architecture used is ResNet-20. For the Flowers-102 dataset, we adopt the training settings
used in Hassani et al. (2021), while removing auto-augmentation, mixup, and cutmix. The model used is
the Compact Convolutional Transformer (CCT-7/7x2) (Hassani et al., 2021), which is a hybrid of CNN and
Transformer. Also, note that throughout all experiments in this study, the smoothing distribution is set to

3Its example is the same as Tα in the proof of Proposition 4.2, a variable representing either Y or 0, which becomes more
likely to output 0 due to compression. Whether the solution is trivial can be determined, for example, by whether it is effective
for generalization. Since this example completely loses information with a certain probability, it is expected to negatively affect
generalization. On the other hand, the effectiveness of label smoothing has been empirically validated.

4The representation T is explicitly defined by the designed qα,i(T ).
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the most basic uniform distribution. In addition, note that since a one-dimensional discrete variable is used
as T , the empirical mutual information value is calculated as an exact value rather than an estimate.

5.2 On IB-optimality of Label Smoothing

Here, we experimentally examine whether label smoothing results in IB-optimal solution in two situation; the
case with or without contradicting labels.

5.2.1 The case without contradicting labels

First, we consider the case without contradicting labels. In this case, we have theoretically prooven the
solution sweep the IB curve. While considering the assumption on model flexibility is obviously satisfied
with deep learning, the theoretical result will be obviously obtained by experiments, however, experimental
confirmation with practical setup is still important. For this objective, we train models with CIFAR-10 and
high resolution, more practical Flowers-102 dataset, changing α ∈ {0.0, 0.1..., 0.9} in label smoothing. The
model is CNN-based ResNet-56 for CIFAR-10 and CNN-Transformer-hybrid CCT-7/7x2 for Flowers-102.
Figure 3 shows the empirical information plane of training set for each dataset. we confirm the theoretical
results, where all solutions are in line with the IB curve and cross entropy results in the minimal sufficiency.

0.0 2.3
I(X; T)

0.0

2.3

I(T
;Y

)

CIFAR-10

IB curve
LS
CE

0.0 4.6
I(X; T)

0.0

4.6
Flowers-102

Figure 3: Empirical IB curve and models trained with cross entropy or label smoothing loss. The training set
is used for the plot.

5.2.2 The case with contradicting labels

In the case without contradicting labels, we have theoretically and experimentally shown that label smoothing
sweeps the IB curve. Here, we consider the case with contradicting labels, where multiple different labels exist
for the same input. In this scenario, we show that there are solutions that are better in terms of IB than the
optimal solution of label smoothing. We use the CIFAR-10H dataset (Peterson et al., 2019), which provides
multiple labels for each of the 10,000 images in the CIFAR-10 test set. We train a 10000 × 10 dimensional
matrix followed by softmax function to optimize the IB Lagrangian with β ∈ {0.0, 0.1, . . . , 1.0}. Here, the
(i, j) component of this matrix corresponds to p(T = j | X = xi), where xi represents the index of a unique
image. This optimization seeks the IB-optimal solution of the empirical distribution under the assumption of
model flexibility (Assumption 4.3). The training is conducted using the Adam optimizer. Figure 4 compares
the obtained solutions with the theoretical optimal solutions of label smoothing. Note that the empirical
mutual information values represented in the figure are exact values, not estimated values. The results show
that there exist feasible solutions better than label smoothing, indicating that label smoothing with a uniform
smoothing distribution is not necessarily IB-optimal in this scenario. Intuitively, this is likely due to the fact
that the uniform smoothing distribution does not take inter-class similarity into account. The analysis of
other smoothing distributions and the design of a smoothing distribution that is IB-optimal in this setting
are left for future research.
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Figure 4: Theoretical solutions of label smoothing and solutions obtained by optimizing the IB Lagrangian.
Each axis is calculated using the entire CIFAR-10H dataset, which is interpreted as the training set. The
DPI bound is given by the data processing inequality, and it is impossible to exceed this bound under any
data distribution.

5.3 On effects of compression in label smoothing

So far, we have shown that label smoothing serves as an information bottleneck method for the model’s
output. Additionally, Müller et al. (2019) visually and quantitatively demonstrated through experiments that
label smoothing causes compression in the model’s penultimate layer and logits. Summarizing these findings,
label smoothing applies IB-optimal compression to the model’s output while also compressing the internal
representations to some extent. Here, we investigate the information bottleneck effect of label smoothing
by examining the internal representations, which better capture the model’s functionality. Specifically, we
investigate two major effects of compression: the removal of nuisance or redundant factors, which is introduced
in Section 3.3.

5.3.1 Insensitivity to nuisance factors

Achille & Soatto (2018) uses the Occluded CIFAR dataset to demonstrate the nuisance removal effect of their
model, which is equivalent to VIB. We show that label smoothing has a similar effect in the same manner.
As shown in Figure 5, Occluded CIFAR contains CIFAR-10 images occluded by randomly selected MNIST
images. In this case, the MNIST image is obviously the nuisance factor. We train models with or without
label smoothing to classify the CIFAR-10 labels. We investigate how much information about the MNIST
image is contained in the activations of the penultimate layer5 of these models. Figure 6 shows the accuracy
on CIFAR-10 in the original model and on MNIST when new models are trained to classify MNIST labels
from the activations of the penultimate layers. By applying label smoothing, the information about MNIST
images is significantly removed, and particularly with a certain α, such as α = 0.2, the model achieves higher
accuracy on CIFAR-10 while demonstrating insensitivity to MNIST.

5.3.2 Insensitivity to redundant factors

Since the redundant factor correlates with the target, it is difficult to quantitatively evaluate it through the
same type of experiment as above. Instead, we demonstrate this effect by visualizing the attention regions of
the trained model. We create a variant of Cluttered MNIST. In this dataset, an original MNIST image and
its randomly cropped versions are composed into a new image. We refer to the overlapping cropped images
as a “cluttered image.” Note that in this study, the cluttered image is created from the original image used,
whereas the original dataset creates it from other MNIST images rather than the one used as the original
image. Consequently, our cluttered image contains information about the target. Given that the cluttered
image is generated only from the original image in our Cluttered MNIST, Y ↔ O → C is satisfied, where O
and C are the original image and the cluttered image, respectively. Thus, the cluttered image (redundant

5This corresponds to the input of the final fully connected layer.
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Figure 5: Occluded CIFAR Dataset
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Figure 6: The test accuracy for CIFAR-10 labels, and that for
MNIST labels when another model is trained to classify MNIST
labels from the penultimate layer of the models. The standard
deviation over 5 trials is also shown.

factor) is independent of the target Y when conditioned on the original image (informative factor). The new
images are of size 60 × 60 and contain one original image and 12 of its cropped versions. Figure 7 shows three
randomly selected input images in test set and their saliency maps produced by Grad-CAM (Selvaraju et al.,
2017) for models trained with cross entropy or label smoothing (α = 0.1). While the cross entropy model
shows attention on the cluttered image, the label smoothing model is sensitive only to the original image.
This indicates label smoothing’s ability to remove redundant factors. Saliency maps for 20 randomly selected
images are shown in Figure 8, which is discussed in the Appendix A.4, and lead to the same conclusion. The
accuracy of the cross entropy model is 97.99%, and that of the label smoothing model is 98.05%.

6 Conclusion and future work

In this study, we theoretically demonstrated that label smoothing explores IB optimal solution in practical
settings. Furthermore, we discussed that it is a method that offers a simple implementation while avoiding
the practical challenges of IB. As a result, label smoothing can be regarded as a practical approach to IB.
Additionally, our experiments showed that label smoothing exhibits specific effects of IB, such as removing
nuisance factors and redundant factors.

Finally, we present several interesting topics for future research:

• Insensitivity to redundant factors may enable applications toward unbiased models and domain
generalization. Further research on these applications of label smoothing is an intriguing direction.

• In this study, we theoretically demonstrated that label smoothing leads to IB-optimal compression of
the model’s output. The experimental results so far indicate that the model compresses its internal
representations. Here, in principle, it seems possible for the model to retain redundancy in internal
layers while compressing the output. This suggests a theoretical gap between output compression
and internal representation compression. Further discussion considering the behavior of optimization
is needed to address this point.
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Input Cross Entropy Label Smoothing

Figure 7: Images of the variant of the Cluttered MNIST dataset and the corresponding saliency maps by
Grad-CAM for the cross entropy or label smoothing model.

• We show that when labels are not unique for some inputs, uniform label smoothing is not necessarily
optimal for the IB objective. This situation arises when multiple annotators label the same (especially
ambiguous) input, and it also exists in certain practical scenarios. Analysis of other smoothing
distributions and the design of label smoothing methods that achieve IB-optimality in such cases are
left for future work.

• Techniques that modify labels to improve accuracy, such as various label smoothing methods and
knowledge distillation, have become indispensable in modern deep learning. While this study focused
on basic label smoothing, it would be interesting to examine more sophisticated methods from the
viewpoint of information theory and IB.

• While label smoothing leads to IB optimality and demonstrates similar effects in several aspects,
including our experimental results, it shows different outcomes from other IB methods regarding
robustness to adversarial attacks. This aspect also leaves room for further discussion.
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A Appendix

A.1 Proof of Proposition 4.2

Proof. The following discussion is entirely based on the empirical distribution p̂(X, Y ), not the true distribution.
From the data processing inequality (DPI) (Thomas M. Cover & Thomas, 2006), for the Markov chain
Y ↔ X ↔ T , we have Î(T ; Y ) ≤ Î(X; T ). Under Assumption 4.1, the empirical distribution corresponds to
a deterministic scenario (Kolchinsky et al., 2018), where there exists a deterministic function f such that
Y = f(X). Below, the DPI is shown to be saturated through an example. Consider the representation
Tα = Bα · f(X), where Bα is a Bernoulli random variable that takes the value 1 with probability α. This can
be written as Tα = Bα ·Y , thus the Markov chain X ↔ Y ↔ Tα holds. This is the condition for the equality in
the DPI, thus Î(Tα; Y ) = Î(X; Tα) for any α. When α = 1, we have T = Y and Î(T ; Y ) = Î(X; T ) = Ĥ(Y ),
while when α = 0, T = 0 and Î(T ; Y ) = Î(X; T ) = 0. From the continuity of mutual information, by
varying α from 0 to 1, we can sweep Î(X; T ) ∈ [0, Ĥ(Y )] while satisfying Î(T ; Y ) = Î(X; T ). The IB curve is
monotonically increasing by definition. Additionally, Î(T ; Y ) ≤ Ĥ(Y ) follows from the properties of mutual
information. Thus, Î(T ; Y ) = Ĥ(Y ) for Î(X; T ) > Ĥ(Y ).

A.2 Proof of Proposition 4.4

Proof. The following discussion is entirely based on the empirical distribution p̂(X, Y ), not the true distribution.
Cross-entropy can be written as H(p, q) = H(p) + DKL[p∥q]. Thus, H(p, q) is minimized with respect to q if
and only if q = p. Under Assumptions 4.1 and 4.3, LCE(θ) is minimized if and only if pθ(T | xi) = 1T =yi

for all i. This means T = Y , which implies Î(T ; Y ) = Ĥ(Y ). Furthermore, under Assumption 4.1,
Î(X; T ) = Ĥ(Y ) − Ĥ(Y | X) = Ĥ(Y ).

A.3 Proof of Proposition 4.5

Proof. The following discussion is entirely based on the empirical distribution p̂(X, Y ), not the true distribution.
T is generated from X; thus, the Markov chain Y ↔ X ↔ T holds. By the data processing inequality,
Î(T ; Y ) ≤ Î(X; T ). Given that the cross entropy H(p, q) is minimized with respect to q if and only if q = p,
under Assumptions 4.1 and 4.3, LLS(θ; α) is minimized if and only if pθ(T | xi) = qα,i(T ) for all i. We denote
the optimal representation by Tα. Since qα,i(T ) is determined only by Y , we have the Markov chain X ↔
Y ↔ Tα. This is the condition for equality in the data processing inequality, and thus Î(Tα; Y ) = Î(X; Tα).
When α = 0, we have LLS(θ; α) = LCE(θ), and from Proposition 4.4, Î(Tα; Y ) = Î(X; Tα) = Ĥ(Y ). When
α = 1, Tα is independent of both X and Y , and thus Î(Tα; Y ) = Î(X; Tα) = 0. By the continuity of mutual
information, as α moves from 0 to 1, we can sweep Î(X; T ) ∈ [0, Ĥ(Y )] while satisfying Î(T ; Y ) = Î(X; T ).

A.4 Insensitivity to redundant factors

Figure 8 shows the results of cluttered MNIST for 20 randomly selected images. Consistent with Figure 7,
label smoothing makes models insensitive to cluttered images for classes other than digit 1. On the other
hand, for the digit 1 class, the saliency maps for cross entropy tend to focus on the entire image, including
areas without characters. This tendency becomes even more pronounced when label smoothing is applied.
We will discuss this point in detail below. The idea that the model focuses only on the original image due to
compression is based on the assumption that it is identifiable whether a line belongs to the original image
or the cluttered image based on its shape. However, for the digit 1 class, it is fundamentally difficult to
determine whether a straight line in the image belongs to the original image of digit 1 or to a cluttered image
of digits 1 or 7. Therefore, the model cannot focus solely on the original image; instead, it appears to use the
absence of curves across the entire image as a decision criterion. As a result, the class representing the digit 1
requires information from the entire image, and this is reflected in the saliency map.
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Input Cross Entropy Label Smoothing

Figure 8: Randomly selected 20 images from the variant of the Cluttered MNIST dataset and the corresponding
saliency maps.
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