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Abstract

Large Language Models (LLMs) are often characterized as samplers or generators
in the literature, yet maximizing their capabilities in these roles is a complex
challenge. Previous work has extensively explored the diverse applications of LLMs
across various domains, including enhancing chat abilities, solving mathematical
problems, adopting LLMs for evaluation, generating synthetic data, improving
Bayesian optimization, and designing reward functions for reinforcement learning.
Despite these advancements, key methods for improving LLLM performance —
such as prompt optimization, in-context learning, supervised fine-tuning, and
reinforcement learning from human feedback—are typically studied in isolation.

In this work, we propose a unified optimization framework that encapsulates these
diverse applications, providing a systematic approach to analyzing existing methods
and uncovering potential improvements. We highlight (1) while LLMs can perform
a wide range of tasks, truly mastering these tasks requires alignment, suggesting
that any use of LLMs can benefit from alignment beyond mere sampling; (2) reward
modeling is crucial for enhancing the effectiveness of LLMs, offering the only
viable path for inference-time optimization; and (3) the choice of reward model
depends on the specific task properties and dataset availability, necessitating
careful consideration in its design.

1 Introduction: Alignment Improves LLMs from Capable to Matering

Large Language Models (LLMs) demonstrate a remarkable capability to perform a diverse class of
tasks, underscoring their versatility and expanding utility across different domains. For instance,
LLMs can serve as chat assistants, solve mathematical problems, design reward functions for control
systems, enhance optimization techniques, and act as judges in evaluating various contexts. However,
direct application of LLMs in those tasks always results in poor or sub-optimal performance, and
eliciting their expertise requires non-trivial efforts.

Importantly, LLMs are recognized in the literature as potent samplers or generators within these areas.
Addressing the challenge of maximizing their potential — transitioning their proficiency from merely
Capable to Mastering various tasks — requires substantial effort. Despite extensive exploration of
numerous applications, the lack of interconnectedness between different domains poses a significant
challenge in translating successes from one task to another.

In this paper, we propose a unified optimization framework that brings together these diverse
applications under a single perspective. By encapsulating these problems within a cohesive framework,
we enable a systematic analysis of existing methods and identify opportunities for improvement. This
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Figure 1: A comparison of different optimized and non-optimized usages of LLMs in general tasks. (1) LLMs
are versatile samplers that can be directly applied to many tasks, yet their performances are rarely optimal on
the fly, this is because they are trained with the prior knowledge embedded in natural language corpus through
n-gram autoregression. (2-3) Prompting and Fine-tuning are two effective ways of shifting the generation
of LLMs to improve their performance on specific tasks. While the design of prompting is often based on
heuristic designes, light-weighted, and requires a relatively small validation dataset, fine-tuning requires more
demonstrative samples to effectively shift the generation distribution (4) Rejection-Sampling based on a learned
reward model is another way of shifting the effective generation distribution of LLMs. (5) On hard tasks such
as math reasoning, the insight of rejection sampling can be combined with LLM optimization techniques to
further enhance the sampling efficiency. Reward models play a essential role in inference-time optimization, that
can be used to enhance the inference performance. (6) Both the reward models and the LLM generators can be
iteratively optimized based on the data generated in rejection-sampling. Such iterative optimization can improve
the inference-time efficiency and reward modeling accuracy.

framework not only clarifies the relationships between different tasks but also facilitates the transfer
of methods and insights across domains, making the research in the optimization of LLMs more
transferable, cohesive, and impactful.

2 Optimizing the Usage of LLMs: Joint Alignment through Prompting,
Fine-Tuning, and Inference-Time-Optimization

In this section, we formally introduce the notations needed for our framework.

2.1 Notations

We use V to denote the vocabulary space, and V*° to denote the natural language space. We use
lor : V° = V= to denote LLMs parameterized by ¢ and generate tokens with parameter 7;
we use ¢ € R% to denote the thoughts of LLMs in embedding space — given current context
as inputs, where d. is the dimension of embeddings; we use z € V> to denote external queries
we would use LLMs to seek for an answer; We use L C V' to denote external knowledge,
e.g., a private dataset or other external references that could be useful for specific tasks; we use
Py : R% x V> s V> to denote a prompting policy, parameterized by 1. Depending on the specific
settings, we may have access to an external demonstrative dataset Dyemo = {4, ¥i } ilil, external
preference dataset Dprer = {z;, y:r Yi }fip or evaluator £ : V°° x V*° — R. We denote reward
function R : V*° x V> — R as a proxy of the evaluator £.

2.2 Optimizing the Usage of LLMs with Alignment

With the notations above, we now introduce the underlying optimization problem in LLMs’ usages:



We define the LLM ¢y  as the generator; and the Py, as the prompter. In all LLM applications, the
interactions start from an initial query x. Taking this initial query, the prompter P,, may take external
knowledge as additional context in forming the input of LLMs. Formally, we use t = 0,1,2,...,T to
denote the round of interactions. Moreover, we use [ = {1,2, ..., L} to denote the fact that LLMs can
generate multiple samples given a single prompt
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The underlying objective of using LLMs for different tasks is always to maximize the evaluation
performance of the final LLM outputs (e.g., inference-time performance). Since we do not have
access to the inference-time evaluator, reward models are utilized as an optimization proxy (e.g.,
training-set performance). Therefore, the objective is to find
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The overall objective is to improve the task performance using the evaluator. The reward function is
used as a proxy to guide the generation process to maximize the evaluator. Therefore, we need (1)
maximize R, and (2) align £ and R such that we are optimizing toward the correct objective.

3 The Forward Problem: The Critical Role of Reward in Optimization

With a known reward function, the shared insight behind LLMs’ applications in different tasks is
rejection sampling [1]. In such a process, the two players [2] act as generators of diverse responses,
and an evaluation metric is given to guide the selection of responses. Overall, there are three
orthogonal classes of optimizing the objective function in Eqn.(2):

1. Optimizing 8: Corresponds to fine-tuning language models

2. Optimizing 1: Corresponds to prompt optimization in generation

3. Increasing the number of L: Corresponds to increasing the probability of hitting high-
rewarded regions in the response space.

3.1 LLMs for Reasoning Tasks

The evaluator £ in those tasks are indicator functions, judging whether the answers are correct.

3.1.1 Methods without Reward Models

Supervised Fine-Tuning for Reasoning: Optimization over § For any task with an expert
demonstration dataset, the most straightforward way of improving LLMs’ performance on the task is
to conduct supervised fine-tuning — such that we may expect the LLMs’ problem-solving ability in
the test time to improve. In the reasoning task, 7' =1, L = 1, K = (), and P,¢(x) =x.

Chain of Thought Prompting: A (Non-optimised) Heuristic ¢/ In zero-shot chain-of-thought
prompting [3], T’ = 1,L = 1, K = 0, Py(z) = = @ Let’s think step by step, where &
denotes concatenation.

In Context Learning: An Optimized Heuristic ¢/ In few-shot chain-of-thought prompting [4]],
T=1,L=1,K = Dgemo, Py(z,K) = EBM K, (z) ®x, where we use € to denote aggregation

m=1
of multiple demonstrative examples, and K, (z) € K are the selected demonstrative examples related

to x.



3.1.2 Methods with Reward Models

Thought Processes: Optimization over and L with (Non-optimised) Heuristic ¢/ In thought
processes, e.g., the Tree-of-Thought[S]], Graph-of-Thought[6]], and RATP [7], 7" > 1, L > 1, K is an
optional private database, P, is a pre-defined template that stimulates the LLM to generate diverse
thoughts. The reward models R in those methods are always implemented by LLM Self-Critics.

Prompt Optimization for Reasoning: Optimization over iy There is literature working on
improving the prompting policy such that the reasoning performance can be improved [8]. In Prompt-
OIRL,T =1,L > 1,K = (), and the P, selected the highest rewarded prompt. The reward model
‘R is selected to be tree-based classifiers.

3.2 LLMs for Evaluation

Building Reward Models in RLHF: Optimization over § In RLHF, reward models are crucial
in supervising the policy learning process for specific tasks. Those reward models are usually
instantiated by using a language model with a value head or generative language models. In both
cases, T =1,L =1,K = 0, Py(x) = x, and the reward models are optimized to predict the correct
labels through supervised learning.

LLMs as Critics: A (Non-optimised) Heuristic 1/ LLM:s are introduced to act as critics or reward
models that evaluate natural language contents (often generated by other LLMs). In those use cases,
T =1L =1,K = (, Py are pre-defined prompts that compare multiple contents or provide
evaluation scores.

3.3 LLMs for External System Optimization

In those tasks, the reward function R is instantiated as an external system that can provide feedback.
e.g., a robotics control environment. And the reward values are generated through those external
systems.

LLMs for Reward Design in Robotics: Optimization over L with a Heuristic y In EUREKA [9],
LLMs are used to generate reward functions for control systems. 7' > 1,L = 1,K = (), P, is a
heuristically designed prompting template that motivates the LLM to generate potential reward
function candidates. The R is given by external systems, i.e., whether the control task is successfully
completed.

LLMs for Bayesian Optimization: Optimization over L with a Heuristic ¢/ In LLaMBO [10],
LLMs are used to enhance Bayesian Optimization (BO). In such a process, the performance of BO
methods are leveraged as external reward signal, and 7 > 1,L > 1,K = (), Py is a heuristically
designed prompting template that motivates the LLM to generate diverse BO hyperparameters.

Table 1: Comparison of different optimization strategies in LLM usage. 1TO: Inference-Time Optimization;
@ denotes test time optimization through interaction with external environment they are tested on.

Task | LLM Usage | 0 | Py | T | L | K | R | 11O
General Supervised Fine-Tuning Optimized Fixed 1 1 0 NA X
(incl. Chat) InverseRLignment Optimized Fixed 1 >1 1] IRL-RM v
RLHF Optimized Fixed 1 >1 1] BT-RM v
Zero-Shot Prompting Fixed Heuristic 1 1 [} NA X
Reasonin Few-Shot Prompting (ICL) Fixed Heuristic 1 1 #0 NA —
) i Thought Processes Fixed Heuristic >1 | >1| #0 | LLM-Critic v
Prompt Optimization Fixed Optimized 1 >1 0 Binary-RM v
Evaluation Reward Models in RLHF Optimized Fixed 1 1 1] NA X
valuati
LLM:s for Evaluation Fixed Heuristic 1 1 0 NA X
External Sys. LLM:s for Robotics Fixed Heuristic >1 1 >1 1] External ®
Optimization LLMs for BO Fixed Heuristic >11>1 0 External )




Insights: Based on the comparison table and the comparisons above, we find:

1. Reward Models play a vital role in optimizing the usage of LLMs, without a reward model,
it is impossible to perform inference-time optimization. While LLM self-critic can serve as a
heuristic proxy for such a reward model, their performance is not guaranteed as they are not
optimized toward the specific judging task. Building reward models from data is necessary.

2. The usage of LLMs is largely sub-optimal. For the pursuit of the optimal usage of LLMs, all
three components: the Language Model 6, the prompter Py, and inference-time optimization
should be jointly optimized.

3. As an important special case, we note that while LLMs are widely used for evaluation tasks,
their usages are not yet optimized. Conceptually, there is no difference between using LLMs
for evaluation and using LLMs for reasoning with zero-shot prompting. Any usage of LLMs
— versatile samplers — could be improved by considering the alternative optimization
procedures such as prompt optimization, model fine-tuning, and rejection sampling with a
reward model, or a combination of them.

4 The Inverse Problem: Building Reward Models from Data

As discussed in the previous section, providing LLMs with feedback is crucial for enhancing their
performance across general tasks — either through a learned reward model that is a proxy for an
inaccessible task evaluator or an external reward signal when the task evaluator is available. However,
in practice, an external reward signal is not always accessible, necessitating the construction of reward
models from datasets. In this section, we focus on the Inverse Problem of alignment, exploring
existing techniques and approaches for generating reward models from datasets.

4.1 Building Reward Models from Preference Annotations (e.g., RLHF)

One of the most widely recognized approaches for building reward models in LLM alignment is
through reinforcement learning from human feedback (RLHF). In this learning paradigm, obtaining
direct scalar feedback from humans is often infeasible, leading to the adoption of preference-based
learning. Formally, the dataset in RLHF — or in general preference-based learning — takes the form
of Dpret = {xi,y;, y; }I¥.,, where x; is the prompt, y; is the preferred language model response
and y, the dispreferred model response. This structure allows the model to learn from pairwise
comparisons, effectively capturing human preferences and aligning the model’s outputs with desired
outcomes.

In practice, RLHF is particularly valuable in scenarios where generating expert demonstrations is
challenging, and no gold-standard reward model or evaluation metric exists to accurately assess the
quality of different responses. This is often the case in tasks such as summarization, reducing chatbot
harmfulness, and enhancing chatbot helpfulness, where subjective judgments are required.

Technically, a common approach for reward modeling using pairwise preference annotations is to
employ the Bradley-Terry model. This model is used to optimize the following objective:

o oo exp(ro (v |2))
()= = 3 o8 o) & exp(ra ) @

where 7, (y|z) is the reward model — parameterized by w — that evaluates response y given prompt
z. The objective function maximizes the likelihood that the model assigns a higher score to the
preferred response yf over the dispreferred response y; . This approach effectively trains the model
to align its outputs with human preferences in the absence of explicit reward signals or definitive
evaluation metrics.

In RLHF literature, the reward models are trained to be aligned with the binary human prefer-
ences [[L1], therefore it is naturally a sparse reward in the sence that it allocates a reward value for the
entire response generation. Recent work on dense reward models [12} [13]] highlighted the superiority
of a token-level reward model, as complementary of the empirical justification [14]].

While the majority of advancements in RLHF [[15420] rely on preference-based datasets annotated by
humans or general-purpose LLMs [21-H23]], several significant challenges such as labeling noise [24,



19], privacy issue [25} [7]], and high cost [1} 23] 26, 27]] impede their performance and limit their
applications. To address those challenges, recent advances in LLM alignment [28| [29] introduced the
demonstration-based alignment techniques [30].

In literature, there are two broad classes of tasks that reward models can be built based on demonstra-
tion datasets, namely (1) the tasks without an accurate quality measure — such as the chat task when
the objective is to reduce the toxicity and improve helpfulness, and (2) the tasks with an accurate
quality metric — such as mathematical reasoning and coding. In the following, we elaborate on how
to build reward models for those different classes of tasks.

4.2 Building Reward Models from Expert Demonstrations without a Golden Metric

In [28]], the authors introduce an adversarial imitation learning-based method to build reward models
from demonstration datasets for chat alignment tasks. A similar idea has been implicitly explored in
the self-play based methods [31] where the direct preference optimization method [32] is applied to
the synthetic pairwise dataset, which is augmented from the expert demonstrations with the current
model’s generation as its negative samples.

The shared insight behind those methods is the adversarial distributional matching [33H335]], where a
discriminative model is used to optimize the generation process such that it is non-distinguishable
from the expert demonstrations. In [28], the discriminative model is introduced as a reward model
through extrapolation. Formally, with the dataset under the format of Dgemo = {4,y }, where x;
denotes the prompt and y;" the expert response, a practical policy learning objective is given as

max Ey ) [l08 Do (y]) — log(1 — Doyl2))]. 5)
The discriminative mode D, can be optimized through:

MaX By j2) Do 108 Do (y[2)] + Eyjay~r[log(l = Do (y[2))]- ©)
Using the reward notion

Tw(ylz) = log Dy (y|x) — log(1 — Dy, (yl|z)), @)

when D, (y|x) is instantiated by neural networks with sigmoid activation function over logits
D, (y|z) = o(logits(y|z,w)), we have r,, (y|z) = logits(y|z,w).

4.3 Building Reward Models from Expert Demonstrations with a Golden Metric

Besides the tasks where golden metric is hard to define, there are lots of tasks ther golden metric is
known and easily accessible, such as boolean question answering [36]], mathematical reasoning [37-
39], and code generation [40]. In those tasks, the LLM-generated answers are easily verifiable — we
can easily compare the derived answer (or by comparing outputs of programs) to the golden answers
and quantitatively evaluate the performance of the LLMs on each individual questions.

In those tasks, training the Outcome-supervised Reward Models (ORMs) [39, 41]] is the most
straightforward approach, and it does not require extra annotations in addition to the desired outcomes
in the training dataset. Formally, when giving a demonstration dataset Dyemo = {2, y; }, where x;
denotes the prompt and y; the corresponding golden answer, for any natural language response y;
generated by LLMs, the learning objective of the ORMs is to optimize the w-parameterized reward
model R,

L(w) = —Eije(y; yr)=1 108 Ru (i, ¥i)] + Eije(y; yr)=0 [log(1 — Re(4,9i))] (8)
Here, £(y;, y;) is a binary function such that:

1, if y; is the correct answer
0, otherwise

E(yiry?) = { ©)

Dense Reward and Search-based Generation To effectively solve complex tasks, researchers
have introduced various thought process models including chain-of-thought [4], tree-of-thought [5]],
graph-of-thought [[6], and more general thought processes [7]. These approaches enable LLMs to
engage in think-aloud processes [42} 43]], mirroring human problem-solving strategies. However,



in Equation () of Section[2.2] if the reward function is as described, we encounter a sparse reward
problem: the model receives a binary feedback (1 for correct, O for incorrect) only at the end of the
process. This leads to the well-known credit assignment challenge in temporal-based learning [44}45].
To address this limitation, Process-supervised Reward Models (PRMs) [46] propose using additional
annotations at each step of the thought process, creating a more fine-grained reward model. Building
on this concept, [47] introduces a tree-based searching method to generate process rewards without
relying on external annotators. The overarching principle of utilizing dense rewards [12, [13]] across
various tasks is to provide detailed feedback throughout the LLM generation process, enabling better
control through search-based decoding [48}49]. Generally, dense rewards — which don’t necessarily
need to be as granular as token-level feedback — can guide search processes and have the potential
to be combined with advanced techniques like Monte Carlo Tree Search with value estimators [S0],
further enhancing the capabilities of LLMs in complex problem-solving scenarios.

Iterative Optimization with Search-Based Data Augmentation To construct more precise reward
models, particularly for tasks involving multi-step responses, search-based augmentation can be
employed to expand the original dataset and enhance the reward models’ generalization capabilities.
For instance, in mathematical reasoning and Boolean question answering with external databases
[47, [7], diverse reasoning steps are generated via search algorithms. The validity of these steps
can then be assessed based on the final outcomes they produce, often utilizing techniques such as
Monte Carlo estimation. This augmentation process transforms the original dataset, which typically
comprises questions and their corresponding golden answers, into a richer reasoning path dataset. This
enhanced dataset encompasses questions, various reasoning steps, and indicators of the correctness of
answers derived from these steps. Such a comprehensive dataset facilitates credit assignment learning
and enables a more nuanced evaluation of each reasoning step’s value. Moreover, the correctly
identified reasoning paths can serve as a valuable supervised fine-tuning dataset, directly enhancing
the model’s reasoning capabilities. This iterative approach not only improves the reward model’s
accuracy but also bolsters the LLM’s ability to generate coherent and logically sound multi-step
responses across a broader range of tasks.

Insights: From the reviewed approaches, we observe:

1. Building reward models from data is essential for aligning LLM outputs with human prefer-
ences, especially when explicit reward signals are unavailable. Pairwise preference annota-
tions, like in RLHF, are widely used, but dense, token-level rewards provide finer control in
complex tasks.

2. Demonstration-based methods, especially for tasks without clear metrics (e.g., chatbots),
leverage adversarial learning to align models with expert responses, while outcome-
supervised models suit tasks with verifiable metrics (e.g., coding).

3. Search-based augmentation and dense rewards help solve multi-step tasks by offering
fine-grained feedback, improving reasoning capabilities and optimizing the generation
process. Data augmentation further enriches datasets with reasoning steps, enhancing model
generalization and credit assignment learning.

5 Conclusive Remark

This research presents a unified optimization framework for Large Language Models (LLMs),
integrating various enhancement methods previously studied in isolation. The framework emphasizes
three key insights: the need for alignment beyond basic sampling capabilities for true task mastery,
the crucial role of reward modeling in inference-time optimization, and the importance of choosing
appropriate reward models based on task properties and dataset availability. This holistic approach
provides a systematic method for analyzing existing LLM optimization techniques and identifies
strategies to maximize LLLM potential across diverse applications. The framework underscores the
importance of joint optimization of the language model, prompting strategies, and inference-time
techniques to achieve optimal performance. It also highlights the potential of iterative optimization
with search-based data augmentation for complex multi-step tasks, which can enhance reward model
accuracy and improve LLM generalization capabilities. By bridging the gap between different
optimization strategies and emphasizing the critical role of reward modeling, this research provides a
foundation for future advancements in LLM alignment and optimization, potentially leading to more
capable, reliable, and task-specific language models.
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