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ABSTRACT

Quadratic approximations form a fundamental building block of machine learning
methods. E.g., second-order optimizers try to find the Newton step into the min-
imum of a local quadratic proxy to the objective function; and the second-order
approximation of a network’s loss function can be used to quantify the uncertainty
of its outputs via the Laplace approximation. When computations on the entire
training set are intractable—typical for deep learning—the relevant quantities are
computed on mini-batches. This, however, distorts and biases the shape of the
associated stochastic quadratic approximations in an intricate way with detrimen-
tal effects on applications. In this paper, we (i) show that this bias introduces a
systematic error, (ii) provide a theoretical explanation for it, (iii) explain its rele-
vance for second-order optimization and uncertainty quantification via the Laplace
approximation in deep learning, and (iv) develop and evaluate debiasing strategies.

1 INTRODUCTION

Quadratic approximations of the loss landscape are increasingly used by algorithms in deep learning,
from pruning methods (Dong et al., 2017; Zeng & Urtasun, 2019) and influence functions (Koh &
Liang, 2017) to second-order optimizers (Amari, 1998; Martens, 2010; Martens & Grosse, 2015;
Grosse & Martens, 2016; Botev et al., 2017; Zhang et al., 2017; George et al., 2018; Martens et al.,
2018; Osawa et al., 2019) and uncertainty quantification via the Laplace approximation (Ritter et al.,
2018b;a; Kristiadi et al., 2020; Daxberger et al., 2021; Immer et al., 2021). When the computations
are intractable on the entire training set—typical for deep learning—the quantities of interest are
computed on mini-batches subsampled from the training data. The goal of this work is to highlight
that mini-batching systematically biases the shape of a quadratic approximation.

A systematic bias? Figure 1 illustrates the phenomenon. It shows five mini-batch quadratics in
their top-curvature 2D subspace for the fully trained ALL-CNN-C model on CIFAR-100 data. For
comparison, the full-batch quadratic, where all quantities are evaluated on the entire training set, is
projected into the same 2D subspace. Within that subspace, the two quadratics are quite different:
The mini-batch quadratic is much “narrower” (exhibits larger curvature) than the full-batch version.
Given that the full-batch quadratic is the “right” object to serve as the basis for, e.g., a Newton step or
a Laplace approximation,1 the mini-batch version is not a meaningful surrogate: Its Newton step is
overly small and a Laplace approximation yields an overconfident uncertainty estimate.

Contributions. To enable stable and efficient stochastic second-order optimizers, as well as reliable
techniques for uncertainty quantification, we analyze this phenomenon and develop strategies to
mitigate it. More specifically, our contributions are as follows: (i) We study mini-batch quadratics
empirically and show that their geometry is systematically biased; (ii) we provide an explanation for
this phenomenon, explaining the bias as an instance of the classic regression to the mean (directions
of extreme steepness/curvature for one particular mini-batch are less extreme for other mini-batches),
(iii) we explain the relevance of this bias for second-order optimization and uncertainty quantification
via the Laplace approximation, and (iv) develop and evaluate debiasing strategies.

1We are not concerned with the approximation error arising from the quadratic approximation of the non-
quadratic function Lregp ¨ ;Dq « qp ¨ ;Dq (see Equation (2)), but only with the consequences of replacing the
full-batch quantities by their mini-batch counterparts qp ¨ ;Dq « qp ¨ ;Bq.
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Figure 1: A systematic bias? We compute five mini-batch quadratics qp ¨ ;Bmq with batch size
|Bm| “ 512 for the loss landscape of the fully trained ALL-CNN-C model on CIFAR-100 data
around θ0 Ð θ‹ (shown as ). Each mini-batch quadratic defines a 2D subspace spanned by the top
two eigenvectors u1,u2 of HBm

, in which we evaluate (i) the quadratic qpθ‹ ` τ1u1 ` τ2u2;Bmq

itself (shown in ) and (ii) the full-batch quadratic qpθ‹ ` τ1u1 ` τ2u2;Dq (shown in ). In
that subspace, the mini-batch quadratic is much “narrower” than the full-batch version which leads to
overly small Newton steps and overconfident uncertainty estimates via the Laplace approximation.

2 NOTATION & BACKGROUND

The regularized loss. We consider a general supervised learning problem, where we try to find the
optimal parameters θ‹ “ argminθPRP Lregpθ,Dq for the parameterized function fθ : RD Ñ RC by
minimizing the regularized loss Lreg on N training examples D :“ tpxn,ynq P RD ˆ RCunPD,

Lregpθ;Dq :“ Lpθ;Dq ` rpθq with Lpθ;Dq :“
1

|D|

ÿ

nPD
ℓpfθpxnq,ynq, D “ t1, . . . , Nu.

(1)

The empirical risk L measures the dissimilarity between the model’s predictions fθpxnq and the true
outputs yn via a loss function ℓ : RC ˆ RC Ñ R. The regularizer r : RP Ñ R, rpθq :“ β{2 }θ}22
with β P Rě0, penalizes the “complexity” of the model.

2.1 LOCAL FULL-BATCH & MINI-BATCH QUADRATIC APPROXIMATIONS

Full-batch quadratic. A local quadratic approximation of the regularized loss around θ0 P RP is
given by the second-order Taylor expansion

Lregpθ;Dq « qpθ;Dq :“
1

2
pθ ´ θ0qJHDpθ ´ θ0q ` pθ ´ θ0qJgD ` cD, (2)

where cD :“ Lregpθ0;Dq, gD :“ ∇Lregpθ0;Dq and HD :“ ∇2Lregpθ0;Dq “ ∇2Lpθ0;Dq ` βI is
(some approximation of) the Hessian at θ0 (all derivatives are with respect to the parameters θ unless
stated otherwise). As all quantities are evaluated on the entire training set D, we refer to this as the
full-batch quadratic. It holds that ∇qpθ;Dq “ HDpθ ´ θ0q ` gD and ∇2qpθ;Dq ” HD.

Mini-batch quadratic. When the computations are intractable on the entire training set, the quantities
in Equation (2) are typically computed on a mini-batch—a small randomly drawn subset—of the
training data B Ă D, |B| ! N , resulting in a stochastic quadratic approximation qp ¨ ;Bq « qp ¨ ;Dq.
As cB, gB and HB are unbiased estimates of cD, gD and HD, this substitution may seem innocent,
but, as we will see in Section 3, it affects the geometry of the quadratic approximation substantially.

Directional slope and curvature. Consider a cut r through the quadratic qp ¨ ;Bq from θ‚ P RP

along the normalized direction d, }d} “ 1. It holds that (derivation in Appendix A.1) rpτq :“ qpθ‚ `

τd;Bq “ 1{2τ2dJ∇2qpθ‚;Bqd` τdJ∇qpθ‚;Bq ` const. So, as a function of τ , r : R Ñ R is a 1D
parabola with derivatives r1pτq “ τ dJ∇2qpθ‚;Bqd`dJ∇qpθ‚;Bq and r2pτq ” dJ∇2qpθ‚;Bqd.
We denote the directional slope and curvature of the quadratic qp ¨ ,Bq at θ‚ in direction d by

Bd qpθ‚;Bq :“ r1p0q “ dJ∇qpθ‚;Bq and B2
d qpθ‚;Bq :“ r2p0q “ dJ∇2qpθ‚;Bqd.

The directional slope and curvature at θ‚ are thus simply the projections of the quadratic’s gradient
and Hessian at that location onto the direction.

2
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Eigenvalues as directional curvatures. The directional curvature of the quadratic qp ¨ ;Bq along
one of HB’s normalized eigenvectors u coincides with the corresponding eigenvalue λ since
B2
u qpθ‚;Bq “ uJ∇2qpθ‚;Bqu “ uJHB u “ λ}u}2 “ λ. Thus, in the context of a quadratic, an

eigenvalue of the Hessian HB has a geometric interpretation as the directional curvature along the
respective eigenvector.

GGN & FIM. Next, we discuss second-order optimization methods and the Laplace approximation
(LA) for neural networks. Both techniques rely on local quadratic approximations of the regularized
loss function and require a positive definite curvature matrix HB. The empirical risk’s Hessian
∇2Lpθ0;Bq can be indefinite and is therefore typically replaced by (an approximation of) the positive
semi-definite Generalized Gauss-Newton matrix (GGN) GB or Fisher information matrix (FIM) FB.
In fact, GGN and FIM are often identical (Martens, 2020, Sec. 9.2). The resulting HB is positive
definite if β ą 0, or when a damping term δI , δ P Rą0 is added (e.g., in trust-region methods).

2.2 SECOND-ORDER METHODS & CONJUGATE GRADIENTS

The Newton step. Due to the simple polynomial form of the quadratic qp ¨ ;Bq, its minimum can
be derived in closed form and is given by the Newton step argminθ qpθ;Bq “ θ0 ´ H´1

B gB. This
serves as the basis for second-order optimizers like L-BFGS (Liu & Nocedal, 1989; Nocedal, 1980),
the Hessian-free approach (Martens, 2010) or K-FAC (Kronecker-factored approximate curvature)
(Martens & Grosse, 2015; Grosse & Martens, 2016; Martens et al., 2018).

Conjugate gradients. We focus on the method of conjugate gradients (CG) (Hestenes & Stiefel,
1952), as it is a powerful method specifically designed to minimize quadratics with positive definite
Hessians effectively (details in Appendix A.2). It is particularly useful in the context of large-scale
optimization because it only requires access to matrix-vector products with the curvature matrix
v ÞÑ HB v that can be computed in a matrix-free manner (Pearlmutter, 1994; Schraudolph, 2002), i.e.
without ever materializing the full matrix in memory—and it has been used successfully for training
neural networks (Martens, 2010). Starting at θ0, CG creates a sequence of iterates pθ0, . . . ,θP q. In
each iteration p, two main steps are performed: (i) Given the current position θp and a normalized
search direction dp, the algorithm finds the minimum of the quadratic along θp ` τdp, i.e.

θp`1 “ θp ` τpdp with τp :“ argmin
τPR

qpθp ` τdp;Bq “ ´
Bdp

qpθp;Bq

B2
dp
qpθp;Bq

. (3)

In the second step (ii), CG constructs the next search direction dp`1 such that it is conjugate to all
previous search directions, i.e. dJ

p`1HB di “ 0 for all i P t1, . . . , pu.

2.3 LAPLACE APPROXIMATION FOR NEURAL NETWORKS

Laplace approximation. The Laplace approximation (LA) turns a trained standard neural network
into a Bayesian neural network in a post-hoc manner (MacKay, 1991; Ritter et al., 2018b; Kristiadi
et al., 2020; Daxberger et al., 2021) (details in Appendix A.3). The idea is to reinterpret the regularized
loss Lreg as the negative unnormalized log posterior log ppθ | Dq of a specific Bayesian model. This
interpretation identifies the optimal parameters θ‹ “ argminθ Lregpθ;Dq “ argmaxθ ppθ | Dq

as the mode of the posterior, i.e. as the maximum a posteriori (MAP) estimate. A second-order
approximation of the regularized loss around θ0 Ð θ‹ then translates into a Gaussian approximation
of the posterior—the so-called Laplace approximation (MacKay, 1992), i.e.

Lregpθ;Dq « qpθ;Dq “
1

2
pθ´θ‹qJHDpθ´θ‹q ` const. ⇝ ppθ | Dq « N pθ;θ‹,ΣDq, (4)

with ΣD :“ N´1H´1
D (or an approximation thereof). We obtain the predictive uncertainty ppy˛ |

x˛,Dq for some test input x˛ P RD by propagating the parameter uncertainty N pθ‹,ΣDq to the
model’s outputs via the linearized network (Immer et al., 2021; Roy et al., 2024).

Full-batch vs. mini-batch LA. It is common practice to compute the LA on the entire training set.
Depending on the curvature approximation, this comes at considerable computational costs. For
example, a full-batch LA is prohibitive even for moderately sized models/datasets when a low-rank
approximation of the Hessian is computed via repeated Hessian-vector products (each of which
requires a full pass over the training data); and it is essentially infeasible for model classes like LLMs,
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which are trained on massive datasets. However, what adds most to the costs is that it is standard
to tune the prior precision (Daxberger et al., 2021). This adds another outer loop that requires the
same procedure to be performed multiple times. Being able to emulate the behavior of the full-batch
quadratic on a mini-batch would thus be useful. We therefore study the mini-batch setting, i.e. we
replace qp ¨ ;Dq by qp ¨ ;Bq in Equation (4). We will see in Section 6.2 that, when mitigating the
associated biases, a mini-batch LA can be a good proxy for the full-batch LA.

3 THE SHAPE OF A MINI-BATCH QUADRATIC

This section studies the “shape” of a mini-batch quadratic qp ¨ ;Bq and how it differs from qp ¨ ;Dq.

3.1 EMPIRICAL STUDY OF THE DIRECTIONAL SLOPES AND CURVATURES

The high-curvature subspace is relevant for all common use cases. In our empirical study, we
focus on the top-curvature subspace. This subspace is particularly relevant for several reasons:

1. By the Eckart-Young-Mirsky Theorem, a truncated SVD is Frobenius norm-optimal, i.e. a
low-rank approximation using the top eigenvectors is ideal from a theoretical perspective.
As the spectrum of the Hessian typically decays quickly (Ghorbani et al., 2019), the bulk of
the curvature information is contained in the top-curvature subspace.

2. In the context of optimization, it has been observed that the gradient mainly lives in the
high-curvature space (Gur-Ari et al., 2018; Dangel et al., 2022). Thus, it makes sense for
a second-order method to operate mainly in that space, as steps outside of it can not be
expected to reduce the objective function significantly.

3. In the context of the LA, directions of large curvature correspond to directions in the weight
space with low variance, i.e. these directions capture what we know about the model’s
parameters. Consequently, Daxberger et al. (2021, p. 19) describe a low-rank approximation
of the Hessian based on its top eigenvectors.

Experimental procedure. We use the same setting as in Figure 1: The fully trained ALL-CNN-C
model on the CIFAR-100 dataset. To isolate the effect of data subsampling, we eliminate all other
sources of noise. Thus, we remove the dropout layers from the model. We use the cross-entropy loss,
an ℓ2-regularizer, and train the model with SGD for 350 epochs, see Appendix B.1 for details.

We then pick a mini-batch Bm of size 512 and compute the 100 eigenvectors u1, . . . ,u100 to the 100
largest eigenvalues of HBm Ð GBm ` βI . That is the Hessian of the ℓ2-regularized mini-batch loss,
where we replaced ∇2Lpθ‹;Bmq with the GGN approximation. Next, we compute the directional
slopes and curvatures for all mini-batch quadratics qp ¨ ;Bm1 q, m1 P t1, . . . ,Mu along those 100
eigenvectors. For a fixed eigenvector up, the average of those directional slopes/curvatures over all
mini-batches coincides with the directional slope/curvature of the full-batch quadratic, i.e.

1

M

M
ÿ

m1“1

Bup
qpθ‹;Bm1 q

one and many

“ Bup
qpθ‹;Dq

✚

and
1

M

M
ÿ

m1“1

B2
up

qpθ‹;Bm1 q

one and many

“ B2
up

qpθ‹;Dq

✚

, (5)

derivation in in Appendix A.1. The colored markers in Equation (5) refer to Figure 2. We repeat this
procedure for three mini-batches Bm, m P t0, 1, 2u.

Directional slopes and curvatures are biased. Figure 2 reveals a systematic bias in the directional
slopes and, more pronounced, in the directional curvatures: When eigenvectors and directional
derivatives are computed on the same mini-batch, curvature is overestimated by roughly one order
of magnitude compared to the curvature of the full-batch quadratic qp ¨ ;Dq. Within the space that
actually carries curvature information—the top-eigenspace of the quadratic’s Hessian—the curvature
magnitude is thus not at all representative of the true underlying loss landscape. For other mini-
batches, the directional slopes and curvatures are similar to the full-batch quadratic. This is because
the averages in Equation (5) are dominated by these unbiased samples.

We present additional results for batch size 2048 (instead of 512), the Hessian ∇2Lpθ‹;Bmq (instead
of its GGN approximation) and CG search directions (instead of eigenvectors) in Appendix B.4. The
bias is present in all settings, but less pronounced for larger batch sizes. For the CG search directions,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Eigenvectors computed on mini-batch

Permuted eigenvector index

0.0

0.5

1.0
D

ir
ec

tio
na

ls
lo

pe

B0

Permuted eigenvector index

B1

Permuted eigenvector index

B2

0 25 50 75 100

Eigenvector index

100

101

D
ir

ec
tio

na
lc

ur
va

tu
re

0 25 50 75 100

Eigenvector index
0 25 50 75 100

Eigenvector index

Figure 2: Directional slopes and curvatures are biased. We use the CIFAR-100 dataset with the
fully trained ALL-CNN-C model and draw three mini-batches Bm of size |Bm| “ 512 to compute
the top 100 eigenvectors u1, . . . ,u100. For each mini-batch/column, we show the directional slopes
(Top) and curvatures (Bottom) evaluated on (i) qpθ‹;Bmq (i.e. on the same mini-batch of data) as ,
(ii) qpθ‹;Bm1 q for m1 ‰ m (i.e. for all other mini-batches) as and (iii) the full-batch quadratic (the
average of the orange and all blue dots, see Equation (5)) as ✚. For the top panel, we switch the order
and sign of the eigenvectors such that the orange dots are all above zero and in descending order.
There is a strong, systematic bias, particularly in the curvature: Computing the eigenvectors and
directional curvatures on the same data results in over-estimation by roughly one order of magnitude.

the bias in directional slope is much more distinct than for the eigenvectors: The biased slope is
always negative, while the full-batch quadratic’s slope is in fact positive for most CG directions!

3.2 WHERE DO THE BIASES COME FROM?

In the following, we provide an explanation for the biases in the directional slopes and curvatures (i.e.
the gap between the orange and a blue dot in Figure 2) from a theoretical perspective.

3.2.1 BIAS IN THE DIRECTIONAL SLOPE

Here, we focus on the CG search directions since the bias in the directional slope is even more
pronounced for those directions than for the eigenvectors. This is not accidental! The CG directions
are constructed from gradients—and gradients are directions that maximize the steepness for one
particular mini-batch quadratic. For other mini-batch quadratics, the steepness along those directions
(i.e. the directional slope ) is therefore less extreme. We formalize this intuition in Appendix A.4.

3.2.2 BIAS IN THE DIRECTIONAL CURVATURE

Next, we consider the bias in the directional curvature along the eigenvectors of the curvature matrix.

Directional curvature along HB’s eigenvectors. Let u1, . . . ,uP and ũ1, . . . , ũP denote the
eigenvectors of two mini-batch Hessians HB and HB̃, respectively. Assume that the corresponding
eigenvalues are in descending order, i.e. λ1 ě . . . ě λP and λ̃1 ě . . . ě λ̃P . We can write the
directional curvatures on B and B̃ along an eigenvector ui as (details in Appendix A.5)

B2
ui
qpθ‚; B̃q “ uJ

i HB̃ui “

P
ÿ

p“1

λ̃p Ωi,p, and B2
ui
qpθ‚;Bq “ uJ

i HBui “ λi. (6)

5
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The weights tΩi,p :“ puJ
i ũpq2uPp“1 are non-negative and sum to one, i.e.

řP
p“1 Ωi,p “ 1. The bias

in the directional curvature thus originates from misalignment of the eigenspaces of the two curvature
matrices—captured by the weights Ωi,p—and/or a systematic difference in their spectra.

Curvature bias is not due to differing spectra. . . Assume that the eigenspaces are perfectly aligned,
i.e. Ωi,i “ 1 and Ωi,p “ 0 @p ‰ i. In this case, we obtain B2

ui
qpθ‚; B̃q “ λ̃i from Equation (6), so

the bias originates exclusively from the differences in the spectra. Figure 2 shows the eigenvalues (as
directional curvatures) for three different CIFAR-100 mini-batches. As they are very similar, this
cannot serve as the main explanation for the curvature bias.

. . . but due to misaligned eigenspaces. Now, assume that the spectra of HB and HB̃ are identical, i.e.
λp “ λ̃p @p P t1, . . . , P u which simplifies the unbiased estimate in Equation (6) to B2

ui
qpθ‚; B̃q “

řP
p“1 λp Ωi,p. Consider the curvature along u1 as an example. If u1 “ ũ1, there is only one non-

zero weight Ω1,1 “ 1 and the two directional curvatures are identical. However, if there is significant
overlap with any other eigenvectors (i.e. some weight is distributed also on the lower-curvature
directions), the resulting curvature B2

u1
qpθ‚; B̃q is smaller than B2

u1
qpθ‚;Bq. Analogously, for uP ,

the directional curvature on B̃ is larger than on B if there is significant overlap between uP and
some of HB̃’s higher-curvature eigenvectors. This can be formalized by the following inequalities
(derivation in Appendix A.5):

B2
u1
qpθ‚; B̃q ď B2

u1
qpθ‚;Bq and B2

uP
qpθ‚; B̃q ě B2

uP
qpθ‚;Bq. (7)

In general, if the eigenspaces are not perfectly aligned such that weight is distributed on several
eigenvectors, this leads to less extreme directional curvatures on mini-batch B̃ on both ends of the
spectrum. Figure 3 shows the weights Ωi,p as pixels. The overlap between the eigenspaces is far
from perfect, i.e. one eigenvector from B overlaps with several eigenvectors from B̃ to some extent.
This explains the curvature overestimation in the top curvature subspace we observe in Figure 2 and
identifies the misalignment of the eigenspaces as the dominating factor for the curvature bias.

3.2.3 SUMMARY OF THE THEORETICAL FINDINGS

The CG search directions and the eigenvectors of the curvature matrix are both designed to be
“extreme” in some sense: The CG directions are based on gradients that maximize steepness of the
quadratic qp ¨ ;Bq, while the top/bottom eigenvectors subsume directions of largest/smallest curvature.
However, these directions are extreme only for one particular mini-batch B. Another mini-batch B̃
has its own extreme directions that typically differ from those of B. Thus, the extreme directions
for B are less extreme for B̃. Projecting both quadratics onto B’s directions consequently leads to
extreme steepness and curvatures for B, but less extreme values for B̃. This result is an instance of
the classic regression to the mean (Galton, 1886): Using an algorithm to find the directions of most
extreme steepness/curvature in one particular mini-batch, we must expect the steepness/curvature
to be less extreme on most other batches (and thus also on the entire dataset). We can expect this
phenomenon to occur for other datasets, models, and curvature proxies as well, since the underlying
mechanism is the stochasticity of the geometric information.

4 DEBIASING MINI-BATCH QUADRATICS FOR APPLICATIONS

We here argue that the biases affect second-order applications, and develop debiasing strategies.

4.1 IMPLICATIONS FOR SECOND-ORDER OPTIMIZATION AND THE LAPLACE APPROXIMATION

Detrimental updates in second-order optimizers. In the context of second-order optimization,
both the biases in the directional slopes and curvatures are relevant. From Equation (3), the CG
update magnitude τp to reach the minimum of qpθp ` τdp;Bmq is given by the negative ratio of the
directional slope and curvature at the current iterate θp in the direction dp—that is the 1D Newton
step along that cut.2 As both these quantities are biased, so is τp as shown in Figure 4: While the

2The exact same argument can also be made for the eigenvector directions as the Newton step can be
decomposed into 1D Newton steps along the eigenvectors.
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B1 B2
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Figure 3: In practice, eigenspaces are mis-
aligned. We reuse the setting of Figure 2 and
compute the top 100 eigenvectors Um P RPˆ100

for tBmumPt0,1,2u. The weights Ωi,j are shown
as a 100ˆ100 greyscale image (color ranges from
black for Ωi,j ď 10´8 to white for Ωi,j “ 1)
for m P t0, 1u, m1 P t0, 1, 2u. Clearly, the
eigenspaces for different mini-batches are not
perfectly aligned as eigenvectors from Bm over-
lap with several eigenvectors from Bm1 .
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Figure 4: CG update magnitudes are biased.
Same setting as Figure 9 (Bottom). We run CG
on tBmumPt0,1,2u and show the directional up-
date magnitudes τ1, . . . , τ10 for the first 10 CG
steps using (i) the same mini-batch Bm (as ), (ii)
all other mini-batches (as ) and (iii) the entire
training set (as ✚). The magnitudes are given
by the negative ratio of the directional slope and
curvature (see Equation (3)) and thus inherit the
attached biases. Note that most of the update
magnitudes that are based on a single mini-batch
of data ( ) have the wrong sign resulting in detri-
mental updates in the wrong direction.

update magnitudes for Bm are always positive (a property of CG), minimizing the other—equally
valid—quadratics would require negative update magnitudes for most of the CG directions. In this
sense, naive CG on a single mini-batch of data makes updates in the wrong direction. This can be
attributed to the bias in the directional slope since the slope determines the sign of τp. Overestimation
of the directional curvature is “accidentally beneficial” in this case as it leads to smaller steps.

Unreliable uncertainty quantification with the Laplace approximation. For the LA, only the
bias in the directional curvature is relevant. After Section 2.3, the approximate posterior covariance
over the network’s parameters is given by ΣB “ N´1H´1

B . Via the eigendecomposition HB “
řP

p“1 λpupu
J
p , we obtain ΣB “ N´1

řP
p“1 λ

´1
p upu

J
p . Due to the biases we describe in Section 3,

the directional curvatures λp are not representative of the true underlying curvature, resulting in
a deformed posterior covariance ΣB. Specifically, the overestimation of the curvature in the top-
curvature subspace translates into an underestimation of the uncertainty in the posterior covariance
(due to the inversion) with potentially severe consequences in safety-critical applications.

4.2 DEBIASING STRATEGIES

We now turn to strategies that mitigate the biases in second-order optimization and the LA. An
empirical evaluation of these methods follows in Sections 6.1 and 6.2.

Decoupling directions from magnitudes with a two-batch strategy. The approaches we propose
are simple yet effective. The idea is to commit to the imperfect directions from one mini-batch
(as before) but use an additional mini-batch to estimate the directional derivatives. With this, we
decouple the mechanism that determines the parameter subspace in which the method operates from
the slope and curvature measurements within the space. Effectively, we use the blue dots from
Figures 2 and 4 instead of the orange dots and thus obtain much more realistic estimates of the actual
loss function’s geometry (within the subspace defined by the first mini-batch). Next, we describe in
more detail how this strategy can be applied to debias CG and the LA.

4.2.1 DEBIASED CONJUGATE GRADIENTS

Debiased approach. For the debiased CG method, we need to implement two processes: (i) The
first process applies K ď P CG iterations to the mini-batch quadratic qp ¨ ;Bq and collects the
search directions pd1, . . . ,dKq. As before, this defines the subspace in which CG operates. (ii) The
second process recomputes the trajectory pθ̃1, . . . , θ̃Kq within that subspace using debiased update

7
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magnitudes that are computed on a different mini-batch B̃, i.e. we use θ̃0 :“ θ0 and

θ̃p`1 :“ θ̃p ` τ̃pdp with τ̃p :“ ´
Bdpqpθ̃p; B̃q

B2
dp
qpθ̃p; B̃q

instead of τp “ ´
Bdpqpθ̃p;Bq

B2
dp
qpθ̃p;Bq

. (8)

For B̃ “ B, pθ̃1, . . . , θ̃Kq is congruent with the original trajectory pθ1, . . . ,θKq from the single-batch
CG approach. If the two mini-batches are different, the debiased trajectory will use updates into the
directional minima of qp ¨ ; B̃q instead of qp ¨ ;Bq. Processes (i) and (ii) can either be run side by side
in an alternating fashion (offering more flexibility regarding e.g. the termination criterion at the cost
of a small memory overhead, details in Appendix A.2) or one after the other.

4.2.2 DEBIASED LAPLACE APPROXIMATION

Laplace approximation with K-FAC. We briefly explore another popular curvature proxy:
Kronecker-Factored Approximate Curvature (K-FAC), which is commonly used both in opti-
mization (Martens & Grosse, 2015; Martens et al., 2018; Eschenhagen et al., 2023) and un-
certainty quantification (Ritter et al., 2018b). It is a block-diagonal approximation to the FIM
FB « KB :“ blockdiagl“1,...,LpK

plq
B q, where each block K

plq
B :“ Aplq b Bplq is approximated by

the Kronecker product of two smaller matrices Aplq and Bplq. Sampling from the respective LA with
covariance ΣB “ N´1pKB ` βIq´1 can be performed efficiently due to the specific structure of the
K-FAC approximation. For details, see Appendix A.3.2.

Debiased approach. For the debiased LA, we use two K-FAC approximations KB and KB̃ com-
puted on different mini-batches. Via the eigendecomposition KB “ UΛUJ with U “ pu1, . . . ,uP q

and Λ “ diagpλ1, . . . , λP q, we can re-write the covariance matrix as ΣB “ N´1pKB ` βIq´1 “

N´1UpΛ ` βIq´1U . For the debiased approach, we keep the eigenspace defined by KB but
recompute the directional curvatures based on KB̃, i.e. we use

Σ̃B “
1

N
U

`

diagpλ̃1, . . . , λ̃P q ` βI
˘´1

UJ with λ̃p “uJ
p KB̃up instead of λp “uJ

p KBup.

(9)

4.2.3 COMPUTATIONAL COST OF DEBIASING

Both debiasing techniques roughly double runtime compared to their single-batch counterparts:
Debiased CG performs one extra matrix-vector product with HB̃ per CG iteration to compute the
debiased update magnitude (details in Appendix A.2). Debiased LA requires an additional K-FAC
approximation KB̃; all subsequent operations to compute the debiased K-FAC can be carried out
efficiently at Kronecker factor level (details in Appendix A.3.3). In Section 6, we thus use the
debiased versions at half the batch size, for a fair comparison. We will see that, at the resulting
similar computational cost, the debiased versions clearly outperform the single-batch alternatives.

5 RELATED WORK

We here briefly list other, related forms of bias correction that have been suggested elsewhere.

A different two-batch approach. Other works have proposed to use different (not necessarily
disjoint) mini-batches for the gradient and the Hessian (Martens, 2010; Byrd et al., 2011). Benzing
(2022, Sec. I.5) mentions the idea of using independent mini-batches for the gradient and the Hessian
to obtain an, in some sense, unbiased estimate ´H´1

B gB̃ of the exact Newton step. This does,
however, not resolve the biases described in this paper. Via the eigendecomposition of the Hessian
HB “

řP
p“1 λpupu

J
p , we obtain ´H´1

B gB̃ “´
řP

p“1 Bup
qpθ‹; B̃qpB2

up
qpθ‹;Bqq´1 up. While the

numerator yields an unbiased estimate of the directional slope (similar to a blue dot in the upper
panel of Figure 2), the bias in the denominator remains since eigenvectors and directional curvatures
are based on the same mini-batch (as for the orange dots in the bottom panel of Figure 2).

Another debiasing approach. EKFAC (Eigenvalue-corrected Kronecker Factorization) (George
et al., 2018) corrects the eigenvalues of the K-FAC approximation (similar to Equation (9)) which,
provably, yields a more accurate approximation of the FIM than K-FAC (in Frobenius norm). This

8
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correction, however, is designed to resolve a different kind of bias that is specific to the K-FAC
approximation and does not address the biases described in this work.

Running averages. Other popular deep learning optimizers aggregate curvature information over
multiple steps via exponential moving averages (see e.g. (Martens & Grosse, 2015)). This emulates
larger mini-batch sizes and thus reduces the curvature biases. However, when curvature evolves
rapidly, obsolete curvature estimates from past steps might slow down training. Aggregating more
robust debiased curvature estimates instead might allow for shorter moving average windows and
accelerate the optimization progress. We leave it to future work to explore these interactions.

6 EXPERIMENTS

In this section, we evaluate the effectiveness of the debiasing strategies from Section 4.2. In
Appendix B, we provide the experimental details as well as additional empirical analyses. For instance,
we show how the curvature biases with K-FAC depend on the mini-batch size (see Appendix B.8),
how the biases evolve over the course of training (see Appendix B.9), and that the curvature biases
become more pronounced for deeper/wider models (see Appendix B.10).

6.1 DEBIASED CONJUGATE GRADIENTS

We compare the standard single-batch CG method to the debiased version (see Section 4.2.1) on the
fully trained ALL-CNN-C model without curvature damping. For a fair comparison, the single-batch
approach uses one mini-batch of size 1024 while the debiased approach uses two mini-batches of
size 512, such that a similar amount of data and runtime budget is used. Details in Appendix B.5.

1 10 30

CG iteration

0.90

0.95

1.00

L
os

s

Reg. training loss ↓

1 10 30

CG iteration

3.0

3.2

3.4

Reg. test loss ↓

1 10 30

CG iteration

92

94

A
cc

ur
ac

y
in

%

Training accuracy ↑

1 10 30

CG iteration

58

59

60

Test accuracy ↑

|B| = 1024 |B| = 512 (debiased)

Figure 5: Debiased CG is much more stable than the single-batch approach. We compare CG
runs without curvature damping (δ “ 0) with K “ 30 iterations for the fully trained ALL-CNN-C
model on the CIFAR-100 dataset in terms of training/test loss/accuracy at similar computational
cost: The single-batch approach (shown as ) uses one mini-batch of size 1024 while the debiased
approach (shown as ) uses two mini-batches of size 512 each. Both approaches use the GGN
curvature proxy and are run 5 times on different mini-batches. The markers ◆ and ◆ are placed at
peak performance. While the single-batch runs diverge quickly, the debiased CG runs are stable.

Results & discussion. All CG runs in Figure 5 achieve a significant improvement in all four
performance metrics. The most striking difference between the two approaches is their stability: The
single-batch runs quickly reach peak performance and then diverge. In contrast, although the steps
tend to be larger (see Figure 4), the debiased CG runs are much more stable (without using any
curvature damping). This suggests that the reason for the divergence in the single-batch approach is
not the missing damping but the misinformed update magnitudes. The peak performance is slightly
better for the single-batch runs which can be attributed to its more informative search directions (they
were computed using double the data). The peak performance of the debiased runs could likely be
improved (at the same computational cost) by using a larger batch size for the directions and a smaller
one for the update magnitudes (as the former seem harder to estimate, see Section 3.2).
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6.2 DEBIASED LAPLACE APPROXIMATION

Here, we use a fully trained ALL-CNN-C model on CIFAR-10 data and compare (i) the vanilla model
without LA, (ii) the single-batch K-FAC LA approach, (iii) the debiased version (see Section 4.2.2),
and (iv) the full-batch approach (where we compute K-FAC on the entire training set) in terms of
accuracy, NLL and ECE. Again, we apply the debiased approach at half the batch size of the single-
batch approach for a fair comparison. We use prior precisions between 10´4 and 10. Appendix B.6
contains the experimental details and additional results on the training and OOD data.

10−4 10−2 100 101

Prior precision β

89

90

Accuracy in % ↑

10−4 10−2 100 101

Prior precision β

3× 10−1

4× 10−1

5× 10−1

6× 10−1
NLL loss ↓

10−4 10−2 100 101

Prior precision β

10−2

10−1

ECE ↓
Vanilla model fθ∗
|B| = 64

|B| = 256

|B| = 1024

|B| = 32 (debiased)
|B| = 128 (debiased)
|B| = 512 (debiased)
Full-batch

Figure 6: Debiased LA mimics the full-batch LA very well. We compare LAs for the fully trained
ALL-CNN-C model on CIFAR-10 in terms of accuracy, negative log likelihood loss (NLL) and
expected calibration error (ECE) on the CIFAR-10 test set. For each mini-batch size (lighter color
indicating smaller batch size), we draw 5 mini-batches and report the mean performance as dot and
min/max as vertical line. We also report the performance of the vanilla model without LA (shown as

) and the full-batch approach based on KD (shown as ✚). In contrast to the single-batch approach,
the debiased version mimics the behavior of the full-batch approach very well over the entire range
of prior precisions.

Results & discussion. Figure 6 shows the results. If the prior precision is low (i.e. the LA relies
mainly on the curvature information without the regularizing diagonal term), the single-batch version
acts erratically due to the deformed curvature model—its performance drops drastically. The single-
batch approach is also more sensitive to the choice of prior precision (in fact, it suggests a much
larger prior precision than the full-batch approach). In contrast, the debiased approach achieves good
performance over a wider range of prior precisions and mimics the full-batch approach (N “40,000)
very well despite using only a tiny fraction of the data.

In order to showcase our debiasing strategy’s scalability, we provide additional results on RESNET-50
and VIT LITTLE on the IMAGENET dataset in Appendix B.6.

Summary of the experimental results. The use of mini-batch quadratics is a simple way to keep
the costs of second-order optimization and uncertainty quantification manageable. The resulting
biases, however, severely degrade their value, requiring large mini-batches or algorithmic add-ons.
Our experiments suggest that even simple debiasing strategies can largely mitigate this issue.

7 CONCLUSION

Our main takeaway is a general principle: Quadratic approximations to the training loss computed
on mini-batches of the training data provide a distorted representation of the true underlying
loss landscape. In particular, along the directions of large curvature, the mini-batch quadratics tend
to strongly overestimate the curvature of the true loss. Our theoretical analysis shows that these
biases can be traced back to the misalignment of the curvature matrices’ eigenspaces. These insights
are highly relevant for applications: As we demonstrated empirically, the biases in the directional
slope and curvature lead to severely misinformed updates in stochastic second-order optimizers,
and cause unreliable uncertainty estimates with Laplace approximations. We also proposed simple
two-batch strategies to mitigate these biases. Our experiments demonstrate their superiority over the
single-batch approaches in terms of stability and quality at similar computational costs. Our findings
reveal a design prerequisite for building better stochastic curvature-based methods, which should be
generally considered, and further developed, for all methods using such curvature evaluations.
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SUPPLEMENTAL MATERIAL

Below, we provide additional details on the mathematical derivations, describe the experimental setup
and present additional results.
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A MATHEMATICAL DETAILS

A.1 DIRECTIONAL DERIVATIVES OF A QUADRATIC

We claim in Section 2.1 that a cut r through the quadratic qp ¨ ;Bq from θ‚ P RP along the normalized
direction d can be written as

rpτq :“ qpθ‚ ` τd;Bq “
1

2
τ2dJ∇2qpθ‚;Bqd ` τdJ∇qpθ‚;Bq ` const. (10)

Proof for Equation (10). Here, we provide the derivation for Equation (10). Let θ‚ P RP be a point
in parameter space and d P RP a normalized direction, i.e. }d} “ 1. We consider the quadratic
approximation qpθ;Bq around θ0 and evaluate it along the cut θ‚ ` τd for τ P R. We assume that
the Hessian (or its approximation) HB is symmetric and obtain

rpτq :“ qpθ‚ ` τd;Bq

“
1

2
pθ‚ ` τd ´ θ0qJHBpθ‚ ` τd ´ θ0q ` pθ‚ ` τd ´ θ0qJgB ` cB

“
1

2
τ2dJHBd ` τdJHBpθ‚ ´ θ0q `

1

2
pθ‚ ´ θ0qJHBpθ‚ ´ θ0q

` τdJgB ` pθ‚ ´ θ0qJgB ` cB

“
1

2
τ2dJHBd ` τdJpHBpθ‚ ´ θ0q ` gBq ` const.

Since ∇qpθ‚;Bq “ HBpθ‚ ´ θ0q ` gB and ∇2qpθ‚;Bq ” HB, we arrive at Equation (10).

Proof for Equation (5). Next, we show that the average directional slope/curvature over all mini-
batches in the training set coincides with the directional slope/curvature of the full-batch quadratic.
Let’s assume that all M mini-batches tBm1 uMm1“1 are disjoint, have the same size |B1| and that their
union is the training set, i.e.

|Bm1 | “ |B1| @m1 P t1, . . . ,Mu and
M
ď

m1“1

Bm1 “ D. (11)

This implies M |B1| “ |D|. It holds

1

M

M
ÿ

m1“1

Bupqpθ‹;Bm1 q

one and many

“
1

M

M
ÿ

m1“1

uJ
p ∇qpθ‹;Bm1 q with ∇qpθ‹;Bm1 q “ gBm1 since θ0 Ð θ‹

“ uJ
p

1

M

M
ÿ

m1“1

∇Lregpθ‹;Bm1 q

“ uJ
p

˜

1

M
M ∇rpθ‹q `

1

M

M
ÿ

m1“1

∇Lpθ‹;Bm1 q

¸

“ uJ
p

¨

˝∇rpθ‹q `
1

M

M
ÿ

m1“1

1

|Bm1 |

ÿ

nPBm1

∇ℓpfθ‹
pxnq,ynq

˛

‚

(11)
“ uJ

p

¨

˝∇rpθ‹q `
1

M |B1|

M
ÿ

m1“1

ÿ

nPBm1

∇ℓpfθ‹
pxnq,ynq

˛

‚

“ uJ
p ∇Lregpθ‹;Dq

“ Bup
qpθ‹;Dq

✚

.

As the mini-batch curvature ∇2Lpθ‹;Bm1 q is also an average over the samples in the mini-batch
(this applies to both the actual Hessian and its GGN approximation), the same argument holds for the
associated directional curvatures. For K-FAC, the derivation above does not hold as p1{2qpKB `

KB̃q ‰ KBYB̃.
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A.2 THE METHOD OF CONJUGATE GRADIENTS (CG)

Using CG for minimizing a quadratic. The argmin of a quadratic qp ¨ ;Bq is given by θ0 ´H´1
B gB

(assuming that HB is symmetric and positive definite), see Section 2.2. We can use the method of
conjugate gradients (see Algorithm 1) for computing the Newton step (or an approximation thereof)
by setting A Ð HB and b Ð ´gB.

Algorithm 1: Method of conjugate gradients (CG), based on (Nocedal & Wright, 2006, Alg. 5.2)

Input. Access to matrix-vector products v ÞÑ Av, where A P RPˆP is symmetric and positive
definite, right-hand side b P RP , convergence tolerance ϵ P Rą0, maximum number of iterations
Pmax P N, Pmax ď P

Output. Approximate solution xp to the linear system Ax “ b

1 Initialize x0 “ 0, r0 Ð ´b and s0 Ð ´r0
2 for p “ 0, 1, . . . , P do
3 if p “ Pmax or }rp}2 ď ϵ then Termination criteria
4 return (approximate) solution xp

5 tp Ð Asp Compute the matrix-vector product only once

6 αp Ð
rJ
p rp

sJ
p tp

Update magnitude αp “
rJ
p rp

sJ
p Asp

7 xp`1 Ð xp ` αpsp Update along search direction sp

8 rp`1 Ð rp ` αptp Residual rp “ Axp ´ b computed via recursion

9 βp`1 Ð
rJ
p`1rp`1

rJ
p rp

10 sp`1 Ð ´rp`1 ` βp`1sp Construction of new (conjugate) search direction

Properties of CG & geometric interpretations. In the following, we provide some important
properties and a geometric interpretation of the quantities involved in the CG method.

• Residual rp. Let xp :“ θp ´ θ0. The residual rp can be written as rp “ Axp ´ b “

HBpθp ´ θ0q ` gB “ ∇qpθp;Bq, i.e. it coincides with the gradient of the quadratic at θp.
• Update magnitude αp. Consider a cut through the quadratic from θp into the direction
sp, i.e. rpτq “ qpθp ` τsp;Bq. Minimizing this 1D quadratic requires its first derivative to
vanish. It holds (see Equation (10))

r1pτq “ 0 ô τsJ
p ∇2qpθp;Bq sp ` sJ

p ∇qpθp;Bq “ 0

ô τ “ ´
sJ
p ∇qpθp;Bq

sJ
p ∇2qpθp;Bqdp

“ ´
sJ
p rp

sJ
p Asp

“
rJ
p rp

sJ
p Asp

“ αp,

where the equality ´sJ
p rp “ rJ

p rp is due to Equation (5.14a) and Theorem 5.2 in (Nocedal
& Wright, 2006). So, the update magnitude αp is chosen such that it minimizes the quadratic
along the direction sp. Note that the update magnitude can also be written as a ratio of the
negative directional slope and directional curvature at θp, i.e. a 1D directional Newton step.
Let dp :“ sp{}sp} denote the normalized search direction. It holds

xp`1 “ xp ` αpsp “ xp ´
sJ
p rp

sJ
p Asp

sp “ xp ´
dJ
p rp

dJ
p Adp

dp “ xp ´
Bdpqpθd;Bq

B2
dp
qpθd;Bq

“: τp

dp

i.e. τp “ αp}sp}. Via the shift θp “ θ0 ` xp, we arrive at Equation (3).

• Search direction sp. CG constructs the search directions to be conjugate, i.e. sJ
p`1Asi “ 0

for all i ď p. Note that this property also applies to the normalized search directions.
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Efficient implementation of the debiased CG approach. For the debiased CG version, we need to
re-evaluate the update magnitudes τ̃p for a given set of search directions td1, . . .dP u on a second
mini-batch B̃ (see Equation (8)), i.e.

τ̃p “ ´
Bdp

qpθ̃p; B̃q

B2
dp
qpθ̃p; B̃q

“ ´
dJ
p ∇qpθ̃p; B̃q

dJ
p ∇2qpθ̃p; B̃qdp

“ ´
dJ
p pHB̃pθ̃p ´ θ0q ` gB̃q

dJ
p HB̃ dp

Implemented naively, this requires two matrix-vector products—one for the numerator and one for
the denominator. However, we can use a recursive formula for the numerator:

∇qpθ̃p; B̃q “ HB̃pθ̃p ´ θ0q ` gB̃
“ HB̃pθ̃p´1 ` τ̃p´1dp´1 ´ θ0q ` gB̃
“ HB̃pθ̃p´1 ´ θ0q ` gB̃ ` τ̃p´1HB̃ dp´1

“ ∇qpθ̃p´1; B̃q ` τ̃p´1HB̃ dp´1. (12)

So, if we store the gradient from the previous iteration ∇qpθ̃p´1; B̃q and the Hessian vector product
with the previous direction HB̃ dp´1, the current gradient can be computed without an additional
matrix-vector product. At iteration p, we thus (i) compute the gradient ∇qpθ̃p; B̃q recursively from the
cached vectors ∇qpθ̃p´1; B̃q and HB̃ dp´1 via Equation (12) (for p “ 0, we have ∇qpθ̃0; B̃q “ gB̃),
(ii) compute the Hessian-vector product with the current direction HB̃ dp, (iii) store both these
vectors and (iv) compute the update magnitude τ̃p (both the numerator and the denominator only
require a simple dot product of two pre-computed vectors).

A.3 LAPLACE APPROXIMATION FOR NEURAL NETWORKS

A.3.1 DERIVATION OF THE LAPLACE APPROXIMATION FOR NEURAL NETWORKS

Preliminaries. The softmax function softmax : RC Ñ RC is defined as

softmaxpzq :“

˜

exppz1q
řC

c1“1 exppzc1 q
, . . . ,

exppzCq
řC

c1“1 exppzc1 q

¸

.

It maps an arbitrary vector z P RC to a vector whose entries are non-negative and sum up to one.
So, the output of the softmax function can be interpreted as a probability distribution over C classes.
With this, the cross-entropy loss for a single datum px,yq is given by

ℓpfθpxq,yq :“ ´

C
ÿ

c“1

yc ¨ logpsoftmaxpfθpxqqcq. (13)

Here, we assume that y P t0, 1uC is a one-hot encoded vector representing the true class label. So, if
c‹ P t1, . . . , Cu is the correct class (i.e. yc‹

“ 1), the cross-entropy loss is given by the negative log-
arithm of the probability the network assigns to this class ℓpfθpxq,yq “ ´ logpsoftmaxpfθpxqqc‹

q.
Finally, let

Catpy;pq :“
C

ź

c“1

pyc
c (14)

denote the probability mass function of the categorical distribution, where p P RC is a vector of
probabilities (i.e. pc ě 0 and

ř

c pc “ 1), and y P t0, 1uC is a one-hot encoded vector representing
a class label.

Probabilistic interpretation of the regularized loss. Recall from Equation (1) that the regularized
loss function is given by

Lregpθ;Dq “ Lpθ;Dq ` rpθq with Lpθ;Dq “
1

N

ÿ

nPD
ℓpfθpxnq,ynq.

We assume a classification problem that uses the cross-entropy loss (see Equation (13)) and an ℓ2

regularizer rpθq “ β{2 }θ}22 with parameter β P Rą0. We use one-hot encoded labels yn P t0, 1uC

(with ync, we denote the c-th entry of yn) and obtain

N ¨ Lregpθ;Dq “
ÿ

nPD
ℓpfθpxnq,ynq `

Nβ

2
}θ}22
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(13)
“ ´

ÿ

nPD

C
ÿ

c“1

ync ¨ logpsoftmaxpfθpxnqqcq `
Nβ

2
}θ}22

(14)
“ ´

ÿ

nPD
log

`

Catpyn; softmaxpfθpxnqqq
˘

´

ˆ

´
1

2
θJpNβ ¨ Iqθ

˙

“ ´ log

˜

ź

nPD
Catpyn; softmaxpfθpxnqqq

loooooooooooooooooomoooooooooooooooooon

likelihood ppD | θq

¸

´ log

˜

N
ˆ

θ;0,
1

Nβ
I

˙

loooooooomoooooooon

prior ppθq

¸

´ Z,

where Z :“ P{2 logp2π{Nβq absorbs the normalization constant of the Gaussian prior. The cross
entropy loss L for the training set is thus connected to the negative log categorical likelihood and
the regularizer can be seen as a negative log Gaussian prior over the parameters. Note that a similar
derivation is possible for other loss functions as well, e.g. the MSE loss (which is equivalent to a
negative log Gaussian likelihood).

The derivation above shows that the (rescaled) regularized loss function can be interpreted as the
negative unnormalized log posterior of a Bayesian model

N ¨ Lregpθ;Dq
c
“ ´ log ppD | θq ´ log ppθq

c
“ ´ log ppθ | Dq (15)

with Gaussian prior and categorical likelihood. With c
“, we denote equality up to an additive constant.

Training as MAP estimation. Equation (15) allows re-interpreting the training procedure of a neural
network as a maximum a posteriori (MAP) estimation problem since minimizing the regularized loss

argmin
θPRP

Lregpθ,Dq

loooooooooomoooooooooon

“ θ‹

“ argmin
θPRP

N ¨ Lregpθ,Dq
(15)
“ argmax

θPRP

log ppθ | Dq “ argmax
θPRP

ppθ | Dq

looooooooomooooooooon

“: θ‹

is equivalent to maximizing the posterior ppθ | Dq.

Laplace approximation. The idea of the Laplace approximation is to approximate the posterior
distribution ppθ | Dq « N pθ;θ‹,ΣDq with a Gaussian at the mode θ‹ of the posterior, i.e. after
training the network. For this, we approximate the log posterior by a second-order Taylor expansion
around the mode θ0 Ð θ‹, i.e.

log ppθ | Dq
c
“ ´N ¨ Lregpθ;Dq

p2q
« ´N ¨ qpθ;Dq

c
“ ´

1

2
pθ ´ θ‹qJpN ¨ HDqpθ ´ θ‹q, (16)

where we assumed that θ‹ is a (local) minimum of the regularized loss function (i.e. gD “

∇Lregpθ‹;Dq “ 0) such that the linear term pθ ´ θ0qJgD in the quadratic approximation van-
ishes. The additive constants we did not state explicitly in Equation (16) turn into some multiplicative
factor (denoted by Z´1) when taking the exponential

ppθ | Dq «
1

Z
exp

ˆ

´
1

2
pθ ´ θ‹qJpN ¨ HDqpθ ´ θ‹q

˙

.

This immediately identifies Z as the normalization constant of the Gaussian and we obtain the Laplace
approximation

ppθ | Dq « N pθ;θ‹,ΣDq with ΣD :“ pN ¨ HDq´1 “
1

N
H´1

D . (17)

Mini-batch version of the Laplace approximation. In order to reduce the computational cost of
the Laplace approximation, we can replace the full-batch quadratic qpθ;Dq in Equation (16) by a
mini-batch quadratic qpθ;Bq, i.e. we obtain ΣB “ N´1H´1

B .

Predictive uncertainty via the Laplace approximation. Ultimately, we want to use the Laplace
approximation to equip the prediction for an unknown test input x˛ with uncertainty. Ideally, we
would compute the expectation of the model likelihood under the approximate posterior, i.e.

ppy˛ | x˛,Dq “

ż

ppy˛ | x˛,θq ppθ | Dq dθ

18
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(17)
«

ż

Catpy˛; softmaxpfθpx˛qqqN pθ;θ‹,ΣBq dθ.

One way to approximate this integral is via Monte Carlo sampling, i.e.

ppy˛ | x˛,Dq «
1

S

S
ÿ

s“1

Cat
`

y˛; softmaxpf lin
θpsq px˛qq

˘

where θpsq „ N pθ‹,ΣBq. (18)

As suggested by Immer et al. (2021); Roy et al. (2024), we use the linearized network f lin
θ pxq :“

fθ‹
pxq ` ∇fθ‹

pxqpθ ´ θ‹q, where ∇fθ‹
pxq P RCˆP is the network’s Jacobian at θ‹.

A.3.2 SAMPLING FROM THE K-FAC LAPLACE APPROXIMATION

The Monte Carlo (MC) approach from Equation (18) requires samples from the Gaussian N pθ‹,ΣBq

(the following derivations work exactly the same when the full-batch LA based on the entire training
set is used). However, ΣB P RPˆP is often too large to be built explicitly in memory and it
requires inverting the P ˆ P Hessian HB of the regularized loss function. One approach for that
issue is to use the K-FAC curvature approximation HB “ ∇2Lpθ;Bq ` βI « KB ` βI , i.e.
ΣB « N´1pKB ` βIq´1. As we will see in the following, the K-FAC approximation enables us to
sample efficiently from the corresponding LA.

Leveraging K-FAC’s block-diagonal structure. K-FAC is a block-diagonal curvature approxi-
mation, i.e. KB “ blockdiagl“1,...,LpK

plq
B q and KB ` βI inherits this structure. The inverse of a

block-diagonal matrix is also block-diagonal with the block inverses on the diagonal, i.e.

ΣB «
1

N
pKB ` βIq´1

“
1

N

`

blockdiagl“1,...,LpK
plq
B ` βIq

˘´1

“ blockdiagl“1,...,L

` 1

N
pK

plq
B ` βIq´1

“: Σplq

˘

“ blockdiagl“1,...,LpΣplqq.

To draw a sample v P RP from N pθ‹,ΣBq, we can thus simply sample from the block covariances
vplq „ N

`

0,Σplq
˘

, stack these samples and add the mean, i.e. v “ θ‹ ` pvp1q, . . . ,vpLqq.

Leveraging the blocks’ Kronecker structure. To sample from N
`

0,Σplq
˘

, we can exploit the
Kronecker structure of the blocks K

plq
B “ A b B (we omit the layer index l for A and B for

brevity). First, we compute the eigendecompositions of the Kronecker factors, i.e. A “ UASAUJ
A

and B “ UBSBUJ
B . It follows

K
plq
B ` βI “ A b B ` βI

“ UASAUJ
A b UBSBUJ

B ` βI

“ pUA b UBq

“: U

pSA b SBq

“: S

pUA b UBqJ ` βI

“ USUJ ` βI

“ UpS ` βIqUJ.

U “ UA b UB forms an orthogonal eigenbasis of the block and the diagonal matrix S ` βI “

SA b SB ` βI contains the corresponding eigenvalues (see e.g. (George et al., 2018)). It follows

Σplq “
1

N
pK

plq
B ` βIq´1

“
1

N
UpS ` βIq´1UJ

“
1

?
N

UpS ` βIq´1{2

“: V

1
?
N

pS ` βIq´1{2UJ
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“ V V J.

So, in order to draw a sample vplq „ N
`

0,Σplq
˘

, we first draw from a standard Gaussian w „

N p0, Iq and then transform the sample via vplq “ V w. The resulting vector vplq has mean 0 and
covariance V IV J “ Σplq. As Gaussians are closed under affine linear transformations, vplq is
indeed distributed according to N

`

0,Σplq
˘

.

The matrix-vector product w ÞÑ V w can be computed efficiently without actually forming V in
memory. The first step is to multiply with pS ` βIq´1{2. Since this is a diagonal matrix, we can
simply multiply the vector w element-wise with the inverse square root of the diagonal entries of
S ` βI . The second step is to multiply with U “ UA b UB , which can be implemented efficiently
by using the property pUA b UBq vecpW q “ vecpUBWUJ

Aq. Finally, we scale by N´1{2.

Summary. Drawing a sample from the K-FAC LA N
`

θ‹, N
´1pKB ` βIq´1

˘

can be done without
ever forming the blocks of the covariance matrix explicitly. Using properties of the Kronecker product,
we can efficiently transform a sample from the standard Gaussian to a sample vplq „ N

`

0,Σplq
˘

.
Stacking the samples from all blocks and adding the mean θ‹ yields a sample from the LA due to the
block-diagonal structure of the covariance matrix.

A.3.3 DEBIASED K-FAC LAPLACE APPROXIMATION

The idea of the debiased K-FAC Laplace approximation is to construct one Kronecker-factored
curvature matrix from two mini-batches B and B̃.

Eigenbasis of a K-FAC block. First, recall that the eigendecomposition of a block K
plq
B from a

K-FAC matrix can be constructed from the eigendecompositions of the Kronecker factors (see e.g.
(George et al., 2018)). Consider the l-th block from both K-FAC approximations Kplq

B “A b B and
K

plq

B̃ “CbD (we omit the layer index l for A, B, C, and D for brevity). Again, let A“UASAUJ
A

and B“UBSBUJ
B denote the eigendecompositions of the Kronecker factors. It holds

K
plq
B “ A b B

“ UASAUJ
A b UBSBUJ

B

“ pUA b UBq

“: U

pSA b SBq

“: S

pUA b UBqJ

“ USUJ

U “ UA bUB forms an orthogonal eigenbasis of the block and the diagonal matrix S “ SA bSB

contains the eigenvalues.

Re-evaluation of the directional curvatures. For the debiased approach, we keep the block’s
eigenbasis U , but instead of using the directional curvatures S, we re-evaluate these measurements
on the second mini-batch B̃. First, consider the projection of the block K

plq

B̃ onto the eigenvectors U ,
i.e.

UJK
plq

B̃ U “ pUA b UBqJpC b DqpUA b UBq “ UJ
ACUA b UJ

BDUB.

The debiased directional curvatures are on the diagonal of UJK
plq

B̃ U . For a square matrix X P Rnˆn,
let DiagpXq denote the operator that maps the matrix onto its diagonal, i.e. Diag : Rnˆn Ñ Rn

with DiagpXqi :“ Xii for i P t1, . . . , nu. It holds:

DiagpUJK
plq

B̃ Uq “ DiagpUJ
ACUA b UJ

BDUBq

“ DiagpUJ
ACUAq

“: s̃A

bDiagpUJ
BDUBq

“: s̃B

“ s̃A b s̃B

“: s̃.
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Construction of a debiased block. Now that we have the eigenbasis U and the debiased directional
curvatures s̃, we construct the debiased block. Let S̃A :“ diagps̃Aq, S̃B :“ diagps̃Bq and

S̃ :“ diagps̃q “ diagps̃A b s̃Bq “ diagps̃Aq b diagps̃Bq “ S̃A b S̃B.

The debiased block is given by US̃UJ. It can be written as the Kronecker product of two matrices
Ã and B̃ since

US̃UJ “ pUA b UBqpS̃A b S̃BqpUA b UBqJ “ pUAS̃AUJ
Aq

“: Ã

b pUBS̃BUJ
Bq

“: B̃

.

This is important as it allows for efficient sampling as described in Appendix A.3.2.

Computational cost. Since we need the eigendecompositions of the Kronecker factors A “

UASA UJ
A and B “ UBSB UJ

B for sampling in any case (see Appendix A.3.2), the com-
putational overhead for the debiased K-FAC approximation Ã b B̃ consists of computing a
K-FAC approximation C b D on another mini-batch, re-evaluating the directional curvatures
s̃A “ DiagpUJ

ACUAq and s̃B “ DiagpUJ
BDUBq and finally computing Ã “ UA diagps̃AqUJ

A

and B̃ “ UB diagps̃BqUJ
B .

From block-level to full matrix. So far, we have only considered the debiasing of a single block.
However, correcting the blocks’s eigenvalues is sufficient because they coincide with the eigenvalues
of the full matrix (due to the block-diagonal structure). Let uplq denote an eigenvector of the l-th
block Xplq of some block-diagonal matrix X “ blockdiagl“1,...,LpXplqq corresponding to the

eigenvalue λ. Then, uJ :“ p0J, . . . ,uplqJ
, . . . ,0Jq is an eigenvector of X corresponding to the

same eigenvalue λ, because

X ¨ u “ blockdiagl“1,...,LpXplqq ¨ u “

¨

˚

˚

˚

˚

˚

˚

˝

Xp1q ¨ 0
...

Xplq ¨ uplq

...
XpLq ¨ 0

˛

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

0
...

λuplq

...
0

˛

‹

‹

‹

‹

‹

‚

“ λu.

The eigenvalues of X thus coincide with the eigenvalues of its blocks; and X’s eigenvectors can be
constructed from the the eigenvectors of the blocks by filling them up with zeros.

Connection to Equation (9): The equivalence between Equation (9) and the approach we describe
above may not be obvious. We thus show here that the directional curvature of the debiased matrix
K̂ along an eigenvector u of KB indeed coincides with the directional curvature uJKB̃ u on B̃.

More concretely, let K̂ “ blockdiagl“1,...,LpK̂plqq denote the debiased K-FAC approximation

constructed from KB and KB̃ as described above. Also, let uJ :“ p0J, . . . ,uplqJ
, . . . ,0Jq denote

an eigenvector of KB, where uplq is the i-th eigenvector of Kplq
B (i.e. the i-th column of U ). It holds

uJK̂u “ uplqJ
K̂plq uplq “ uplqJ

US̃ UJ uplq “ eJ
i S̃ ei “ s̃i “ uplqJ

K
plq

B̃ uplq “ uJKB̃ u,

where ei denotes the i-th eigenvector.

A.4 BIAS IN THE DIRECTIONAL SLOPE

Biased directional slopes along negative gradient directions. Assume that we are given a quadratic
qp ¨ ;Bq around the current parameters θ0. We consider the negative normalized gradient direction
d “ ´∇qpθ‚;Bq ¨ }∇qpθ‚;Bq}´1 at some location θ‚ evaluated on mini-batch B. We have

Bd qpθ‚; B̃q “ Bd qpθ‚;Bq ` }∇qpθ‚;Bq}p1 ´ cospαqq ě Bd qpθ‚;Bq, (19)

where α :“ =p∇qpθ‚;Bq,∇qpθ‚; B̃qq and we assumed }∇qpθ‚; B̃q} “ }∇qpθ‚;Bq} which is true
at least in expectation. Projecting a gradient onto its negative direction—the right-hand side of the
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inequality—will always result in a directional slope that is ď 0 since

Bd qpθ‚;Bq “ dJ∇qpθ‚;Bq “ ´
∇qpθ‚;BqJ

}∇qpθ‚;Bq}
∇qpθ‚;Bq “ ´}∇qpθ‚;Bq} ď 0

and “ 0 only if ∇qpθ‚;Bq “ 0. Projecting a different gradient (of equal length) onto that direction—
that is the left-hand side of the inequality—will result in a larger (possibly even positive) directional
slope.

Proof of Equation (19). Equation (19) quantifies the bias in the directional slope along d as a
function of the alignment of the two mini-batch gradients. It holds

Bd qpθ‚;Bq ´ Bd qpθ‚; B̃q “ dJ∇qpθ‚;Bq ´ dJ∇qpθ‚; B̃q

“ }d}

“1

}∇qpθ‚;Bq} cospπq

“´1

´ }d}

“1

}∇qpθ‚; B̃q} cospγq

“ }∇qpθ‚;Bq}p´1 ´ cospγqq,

where γ “ =pd,∇qpθ‚; B̃qq and we assumed that }∇qpθ‚;Bq} “ }∇qpθ‚; B̃q} in the last step
(which is true, at least, in expectation). Next, we re-write γ as

γ “ =pd,∇qpθ‚; B̃qq “ =p´∇qpθ‚;Bq,∇qpθ‚; B̃qq “ π ´ =p∇qpθ‚;Bq,∇qpθ‚; B̃qq

“:α

.

It follows ´1 ´ cospγq “ ´1 ´ cospπ ´ αq “ cospαq ´ 1. Substituting this into the expression for
the bias, we arrive at

Bd qpθ‚;Bq ´ Bd qpθ‚; B̃q “ }∇qpθ‚;Bq}p´1 ´ cospγqq “ }∇qpθ‚;Bq}pcospαq ´ 1q,

from which Equation (19) follows.

The first CG search direction. Assume that the current parameters are θ0 and we apply CG to the
local quadratic approximation qp ¨ ;Bq. The very first search direction is the quadratic’s normalized
negative gradient d0 “ ´∇qpθ0;Bq ¨ }∇qpθ0;Bq}´1 at θ0. This is exactly the situation we describe
above, where θ‚ is set to θ0. Equation (19) thus explains the bias for the first CG direction.

The subsequent CG search directions. For the subsequent CG search directions (dp with p ě 1),
the situation is more complex: Each direction dp is a linear combination of the current normalized
negative residual ´rp (note that rp coincides with the gradient ∇qpθp;Bq, see Appendix A.2) and
the previous search direction dp´1 (see Appendix A.2) and the previous search direction dp´1 (see
Algorithm 1), i.e.

dp “
sp

}sp}
“

1

}sp}
p´rpq `

βp

}sp}
sp´1 “

}rp}

}sp}

“:η1ě0

´rp
}rp}

`
βp}sp´1}

}sp}

“:η2ě0

dp´1 “ η1
´rp
}rp}

` η2 dp´1.

The additional correction term ensures conjugacy. The directional slope along dp thus also splits into
two corresponding terms: The slope along the negative gradient direction and the slope along the
previous search direction. It holds

Bdpqpθp;Bq “ dJ
p ∇qpθp;Bq

“ η1
´rp
}rp}

J

∇qpθp;Bq ` η2 d
J
p´1∇qpθp;Bq

“ η1B´rp{}rp}qpθp;Bq ` η2 Bdp´1
qpθp;Bq.

The bias in the first term—as explained by Equation (19)—also introduces a bias along the search
direction dp.

A.5 BIAS IN THE DIRECTIONAL CURVATURE

Derivation for Equation (6). Let HB “ UΛUJ and HB̃ “ ŨΛ̃ŨJ denote the eigendecomposi-
tions of the mini-batch Hessians, where U “ pu1, . . . ,uP q, Ũ “ pũ1, . . . , ũP q P RPˆP contain
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the orthonormal eigenvectors and Λ “ diagpλ1, . . . , λP q, Λ̃ “ diagpλ̃1, . . . , λ̃P q the respective
eigenvalues in descending order, i.e. λ1 ě . . . ě λP and λ̃1 ě . . . ě λ̃P . The directional curvature
along one of HB’s eigenvectors ui on mini-batch B is given by the corresponding eigenvalue since

B2
ui
qpθ‚;Bq “ uJ

i HBui “ uJ
i λiui “ λi}ui}

2
2 “ λi.

For B̃, we obtain

B2
ui
qpθ‚; B̃q “ uJ

i HB̃ui “ uJ
i

˜

P
ÿ

p“1

λ̃pũpũ
J
p

¸

ui “

P
ÿ

p“1

λ̃p pũJ
p uiq

2

“:Ωi,p

“

P
ÿ

p“1

λ̃p Ωi,p.

Weights sum up to one. The weights Ωi,p are non-negative and sum up to one, i.e.
řP

p“1 Ωi,p “ 1.
This is because

P
ÿ

p“1

Ωi,p “

P
ÿ

p“1

pũJ
p uiq

2 “ }ŨJui}
2
2 “ uJ

i ŨŨJ

“I

ui “ }ui}
2
2 “ 1 (20)

where we used that Ũ is an orthogonal matrix and that ui is normalized.

Proof of Equation (7). Here, we assume the simplified case where the spectra of HB and HB̃ are
identical, i.e. λp “ λ̃p @p P t1, . . . , P u.

First, consider u1 and assume that u1 and ũ1 are not perfectly aligned, i.e. Ω1,1 “ puJ
1 ũ1q2 ă 1. It

holds

B2
u1
qpθ0, B̃q

(6)
“

P
ÿ

p“1

λpΩ1,p “ λ1Ω1,1 `

P
ÿ

p“2

λpΩ1,p.

The sum can be bounded from above by putting all remaining weight 1 ´ Ω1,1 (see Equation (20))
on the second-largest eigenvalue λ2, i.e.

B2
u1
qpθ0, B̃q ď λ1Ω1,1 ` λ2p1 ´ Ω1,1q

p˚q

ď λ1Ω1,1 ` λ1p1 ´ Ω1,1q “ λ1 “ B2
u1
qpθ0,Bq.

The inequality p˚q turns into ă if the top two eigenvalues are separated, i.e. λ1 ą λ2. The proof for
uP is similar. We assume that uP and ũP are not perfectly aligned, i.e. ΩP,P “ puJ

P ũP q2 ă 1. It
follows

B2
uP

qpθ0, B̃q
(6)
“

P
ÿ

p“1

λpΩP,p “

P´1
ÿ

p“1

λpΩP,p ` λPΩP,P .

This time, we bound the sum from below by putting all remaining weight 1´ΩP,P (see Equation (20))
on the second-smallest eigenvalue λP´1, i.e.

B2
uP

qpθ0, B̃q ě λP´1p1 ´ ΩP,P q ` λPΩP,P

p˚q

ě λP p1 ´ ΩP,P q ` λPΩP,P “ λP “ B2
uP

qpθ0,Bq.

Again, the inequality p˚q turns into ą if the bottom two eigenvalues are separated, i.e. λP´1 ą λP .
This concludes the proof of Equation (7).

B EXPERIMENTAL DETAILS

In the following, we provide information on the experimental setup and give detailed instructions on
how to replicate all empirical results.
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B.1 TEST PROBLEMS AND TRAINING PROCEDURES

Throughout the paper, we use a series of test problems with different models, datasets, and training
procedures which we describe in more detail in the following. We use DEEPOBS (Schneider et al.,
2019) on top of PYTORCH (Paszke et al., 2019) as our general benchmarking framework as it provides
easy access to a variety of datasets and model architectures.

Data. We use the datasets CIFAR-10 (with C “ 10 classes) and CIFAR-100 (with C “ 100
classes) (Krizhevsky, 2009). Each dataset contains 60,000 data points that are split into 40,000
training samples, 10,000 validation samples and 10,000 test samples. For the experiments on out-of-
distribution (OOD) data, we create the datasets CIFAR-10-C and CIFAR-100-C, each containing
10,000 images, as described in (Hendrycks & Dietterich, 2019). In these datasets, each image is
corrupted using one out of 15 different corruptions (chosen uniformly at random) at a specific severity
level (a number between 1 and 5). We also use the IMAGENET dataset (Deng et al., 2009) which
contains images from C “ 1000 different classes.

Test problems. All of the following test problems use the cross-entropy loss function.

(A) ALL-CNN-C on CIFAR-100. This test problem uses the ALL-CNN-C model architecture
(Springenberg et al., 2015) (where we removed the dropout layers as explained in Section 3.1)
and CIFAR-100 data. The training hyperparameters are taken from an existing benchmark
(Schmidt et al., 2021): We train the model with SGD (learning rate 0.171234) with batch
size 256 for 350 epochs. Weight decay β “ 0.0005 is used on the weights but not the biases
of the model.

(B) ALL-CNN-C on CIFAR-10. This test problem is similar to (A) but uses the CIFAR-10
dataset. The model is trained with SGD (learning rate 0.025, momentum 0.9) with batch
size 256 for 350 epochs. The learning rate is reduced by a factor of 10 at epochs 200, 250
and 300, as suggested in (Springenberg et al., 2015). Weight decay β “ 0.001 is used on
the weights but not the biases of the model.

(C) WIDERESNET 40-4 on CIFAR-100. This is a test problem from DEEPOBS. For details
on the architecture, see (Zagoruyko & Komodakis, 2017). We train this model with SGD
(learning rate 0.1, momentum 0.9) with batch size 128 for 160 epochs. The learning rate is
reduced by a factor of 5 after 60 and 120 epochs. Weight decay β “ 0.0005 is used on the
non-bias weights of the model.

(D) CONVNET on CIFAR-10. This test problem uses a simple convolutional neural network
with variable depth d and width w (denoted by “model d-w” in Figures 7 and 22). The
first block of the model consists of a convolutional layer (kernel size 5, padding 2) with 3
input and w output channels, a ReLU activation function, and a max-pooling layer (kernel
size 2). The last block consists of a max-pooling layer (kernel size 2), a flatten layer, and a
dense linear layer. In between those blocks, there are d hidden blocks each consisting of a
convolutional layer (kernel size 5, padding 2) with w input and w output channels followed
by a ReLU activation function. So, the depth d determines the number of hidden blocks,
whereas w controls the number of parameters in the layers and is thus referred to as the width.
We use d P t1, 4, 7u and w P t32, 64, 128u (resulting in 9 models) and train each model for
100 epochs on the CIFAR-10 dataset using ADAM with standard hyperparameters (learning
rate 0.001, β1 “ 0.9, β2 “ 0.999, ϵ “ 10´8) with batch size 256. No weight decay is used
for this test problem.

(E) RESNET-50 on IMAGENET. This test problem uses the RESNET-50 model architecture
(He et al., 2016) and the IMAGENET dataset. We use the IMAGENET1K_V1 weights pre-
trained on IMAGENET-1K using SGD (initial learning rate 0.1, momentum 0.9) with batch
size 256 for 90 epochs. For the pre-training, the learning rate was set by a multistep scheduler
which multiplied the learning rate by a factor of 0.1 after every 30 epochs. Additionally,
a weight decay of β “ 0.0001 was used on all weights apart from biases and the learned
batch normalization weights.

(F) VIT LITTLE on IMAGENET. This test problem uses the VIT LITTLE architecture of the
VISION TRANSFORMER model family (Dosovitskiy et al., 2021) on the IMAGENET dataset.
We use the VIT_LITTLE_PATCH16_REG4_GAP_256.SBB_IN1K weights pre-trained on
IMAGENET-1K using NADAMW. For the exact hyperparameters used for the weights, refer
to the HuggingFace Model Card.
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During training, we store the model’s parameters at 10 checkpoints spaced log-equidistantly between
the first and last epoch. The training metrics for all test problems are shown in Figure 7.

B.2 MATRIX-VECTOR PRODUCTS WITH THE CURVATURE MATRIX

Access to curvature matrices via BACKPACK. In order to compute an eigendecomposition of the
curvature matrix or apply the CG method to a quadratic, we need access to matrix-vector products
with the curvature matrix v ÞÑ HB ¨ v. When products with the full-batch curvature matrix are
required, we accumulate the mini-batch quantities over manageable chunks of the training set. Our
implementation uses BACKPACK (Dangel et al., 2020) that provides access to products with the
Hessian v ÞÑ ∇2Lpθ;Bq ¨ v and GGN v ÞÑ GB ¨ v of the empirical risk L as well as the K-FAC
curvature approximation KB.

Eigenvectors of the curvature matrix. Given access to matrix-vector products with the curvature
matrix, we can construct an instance of a scipy.sparse.linalg.LinearOperator that can
be used in scipy.sparse.linalg.eigsh.

B.3 SECTION 1 (INTRODUCTION): FIGURE 1

For the visual abstract in Figure 1, we use the fully trained ALL-CNN-C model from test problem
(A) (see Appendix B.1). The experimental procedure below is repeated for 5 different mini-batches
Bm, m P t0, 1, 2, 3, 4u of size |Bm| “ 512 (we omit the index m in the following).

Experimental procedure. We use the GGN curvature proxy HB Ð GB ` βI and compute its top
two eigenvectors u1 and u2 (see Appendix B.2). In order to evaluate the quadratic qpθ‹;Bq in the
2D space spanned by those eigenvectors efficiently, we use the following equation:

qpθ‹ ` τ1u1 ` τ2u2;Bq “
1

2
τ21 ruJ

1 HB u1s ` τ1τ2ruJ
1 HB u2s `

1

2
τ22 ruJ

2 HB u2s

` τ1ruJ
1 gBs ` τ2ruJ

2 gBs ` rcBs.

We can compute all the terms on the right-hand side in brackets once, store them, and then evaluate
the quadratic for arbitrary values of τ1 and τ2 at basically no cost. The derivation for the full-batch
quadratic qpθ‹ ` τ1u1 ` τ2u2;Dq is analogous.

B.4 SECTION 3 (THE SHAPE OF A MINI-BATCH QUADRATIC): FIGURES 2 TO 4

For the evaluation of the directional derivatives, we use the fully trained ALL-CNN-C model from
test problem (A) (see Appendix B.1).

Three settings. Throughout this section, we consider three different settings: (i) Quadratics that
use the Hessian of the empirical risk, i.e. HB Ð ∇2Lpθ‹;Bq ` βI at batch size 512, (ii) quadratics
that use the Hessian’s GGN approximation, i.e. HB Ð GB ` βI at batch size 512 and (iii) at
batch size 2048. For each setting, the experimental procedure below is repeated for 3 mini-batches
Bm, m P t0, 1, 2u. The prior precision β is set to 0.0005 (the same β was used for training, see
Appendix B.1) and only acts on the weights of the model but not its biases.

Experimental procedure (biases). The experimental procedure consists of two steps: The compu-
tations of the directions on mini-batch Bm and the evaluation of the directional derivatives on all
mini-batches (of the same size) in the training dataset.

1. Directions based on Bm. First, we use the quadratic qpθ‹;Bmq with the given curvature
proxy and batch size to compute a set of 100 directions. This is either the top 100 eigen-
vectors of HB computed via scipy.sparse.linalg.eigsh (see Appendix B.2) or
the first 100 CG search directions (see Appendix B.5). In the case of CG, we also store the
trajectory of the iterates θ‹ “ θ0,θ1, . . . ,θ100.

2. Directional derivatives on all mini-batches. Finally, we evaluate the directional slope and
curvature for all directions from step 1 on all mini-batches Bm1 , m1 P t0, . . . ,M ´ 1u in
the training dataset (where M denotes the number of mini-batches in the training data).

• Directional derivatives along eigenvectors. For an eigenvector u the directional slope
and curvature are given by Bu qpθ‹;Bm1 q and B2

u qpθ‹;Bm1 q, respectively.
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Figure 7: Training metrics for all test problems. The panels show the training/test loss/accuracy
during training for all test problems (A) (ALL-CNN-C on CIFAR-100), (B) (ALL-CNN-C on
CIFAR-10), (C) (WIDERESNET 40-4 on CIFAR-100) and (D) (CONVNET on CIFAR-10). Test
problem (E) (RESNET-50 on IMAGENET) is not shown since a pre-trained model is used here.
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• Directional derivatives along CG search directions. For CG, we evaluate the direc-
tional slope and curvature along each search direction dp at the respective iterate θp
of the trajectory, i.e. Bdp qpθp;Bm1 q for the slope and B2

dp
qpθp;Bm1 q for the curvature.

As the curvature ∇2qpθ;Bm1 q ” HBm1 is independent of θ, this small distinction is
irrelevant for the directional curvature. For the directional slope, however, it does make
a difference.

Results (biases). The results for setting (i) are shown in Figure 8, for setting (ii) in Figures 2 and 9
and for (iii) in Figure 10. The biases in the directional slopes and curvatures can be observed across
all scenarios. The biases in the slopes are even more pronounced along the CG search directions
than along the eigenvectors of the curvature matrix. The opposite holds for the curvature biases that
tend to be larger along the eigenvectors. This is consistent with our explanations from Section 3.2.
Both the biases in the slope and curvature decrease with increasing mini-batch size. For setting (i),
CG encounters a search direction with negative curvature (indicating that, as expected, the curvature
matrix HB is indefinite) and thus terminates already after 4 iterations.

Experimental procedure (overlaps). Next, we compute the overlaps between the eigenspaces of
the curvature matrices on different mini-batches B and B̃. More specifically, we compute Ωi,p “

puJ
i ũpq2, where i, p P t1, . . . , 100u, ui is an eigenvector of HB and ũp is an eigenvector of HB̃.

The values Ωi,p are bounded between 0 (ui and ũp are orthogonal) and 1 (ui and ũp are identical,
up to their sign). We apply a log-transform to Ωi,p. In Figure 3 and Appendix B.4, values below ´8
(i.e. Ωi,p ď 10´8) are shown in black, values equal to 0 (i.e. Ωi,p “ 100 “ 1) are shown in white.

Results (overlaps). The results are shown in Appendix B.4. They show that the eigenspaces of the
curvature matrices are not perfectly aligned: Eigenvectors from Bm typically overlap with several
eigenvectors from B̃. The eigenspaces are more aligned at the larger batch size 2048 than at batch size
512. This seems reasonable since random vectors in high-dimensional spaces tend to be orthogonal
to each other —less stochasticity (due to a larger batch size) thus leads to better alignment.

B.5 SECTION 6.1 (DEBIASED CONJUGATE GRADIENTS): FIGURE 5

Here, we describe the experimental details for Figure 5 from Section 6.1. For the derivation and
the mathematical details of the standard single-batch CG method and the debiased approach, see
Appendix A.2. The experiment uses the fully trained ALL-CNN-C model from test problem (A) (see
Appendix B.1) and the GGN curvature proxy HB Ð GB ` βI with β “ 0.0005.

Experimental procedure. The experimental procedure consists of two steps: The computation of
the CG trajectories and the evaluation of the four performance metrics.

1. Computation of the CG trajectories. For the single-batch CG approach, we use one
mini-batch of size 1024, apply K “ 30 CG iterations and store the trajectory θ‹ “

θ0,θ1, . . . ,θ30. For the debiased approach (details in Appendix A.2), we use two mini-
batches of size 512 to construct the trajectory. As the debiased approach uses a total of 60
GGN-vector products (30 for the search directions and 30 for the update magnitudes) at half
the computational cost (since the cost for the GGN-vector product scales linearly with the
mini-batch size), the total cost of both approaches are comparable.
For both approaches, the above procedure is repeated for 5 different mini-batches/mini-batch
pairs, such that 10 trajectories are computed in total.
We compute two additional trajectories: The standard CG trajectory for the full-batch
quadratic qp ¨ ;Dq and the trajectory for a debiased full-batch approach, where we use half
the training data for the directions and the other half for the update magnitudes.

2. Evaluation of performance metrics. For each of the 12 trajectories, we evaluate four
performance metrics: (i) the regularized loss Lreg (see Equation (1)) on the training set D
and (ii) on the test set Dtest as well as the accuracy (i.e. the relative number of correctly
classified samples) on the (iii) training and (iv) test dataset.

Results. The mini-batch results are shown in Figure 5 and discussed in Section 6.1. The results for
the two full-batch CG variants are shown in Figure 12. Surprisingly, the full-batch CG approach
diverges after roughly 10 iterations. If we consider the training data as a (large) sample from the data
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Biases: Additional results for HB Ð ∇2Lpθ‹;Bq ` βI (batch size 512)
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Figure 8: Directional slopes and curvatures are biased. The experimental setting is similar to
Figure 2 but uses the Hessian of the empirical risk, i.e. HB Ð ∇2Lpθ‹;Bq ` βI at batch size 512.
The upper plot (Top) shows the directional derivatives along the top 100 eigenvectors of HB, the
lower plot (Bottom) shows the directional derivatives along the first 100 CG search directions. For
the top panel of the upper plot, we switch the order and sign of the eigenvectors such that the orange
dots are all above zero and in descending order. There are strong systematic biases in the directional
slopes and curvatures. The curvature biases are more pronounced along the eigenvectors, whereas the
biases in the slope are larger along the CG directions.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Biases: Additional results for HB Ð GB ` βI (batch size 512)
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Figure 9: Directional slopes and curvatures are biased. The experimental setting is the same
as in Figure 2: We use the GGN curvature proxy HB Ð GB ` βI at batch size 512. The upper
plot (Top) shows the directional derivatives along the top 100 eigenvectors of HB, the lower plot
(Bottom) shows the directional derivatives along the first 100 CG search directions. For the top panel
of the upper plot, we switch the order and sign of the eigenvectors such that the orange dots are all
above zero and in descending order. There are strong systematic biases in the directional slopes and
curvatures. The curvature biases are more pronounced along the eigenvectors, whereas the biases in
the slope are larger along the CG directions.
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Biases: Additional results for HB Ð GB ` βI (batch size 2048)

Eigenvectors computed on mini-batch

Permuted eigenvector index

0.0

0.5

1.0

D
ir

ec
tio

na
ls

lo
pe

B0

Permuted eigenvector index

B1

Permuted eigenvector index

B2

0 25 50 75 100

Eigenvector index

100

101

D
ir

ec
tio

na
lc

ur
va

tu
re

0 25 50 75 100

Eigenvector index
0 25 50 75 100

Eigenvector index

CG trajectory and search directions computed on mini-batch

0 25 50 75 100

CG search direction index

−2

0

2

4

D
ir

ec
tio

na
ls

lo
pe

B0

0 25 50 75 100

CG search direction index

B1

0 25 50 75 100

CG search direction index

B2

0 25 50 75 100

CG search direction index

10−1

100

101

D
ir

ec
tio

na
lc

ur
va

tu
re

0 25 50 75 100

CG search direction index
0 25 50 75 100

CG search direction index

Figure 10: Directional slopes and curvatures are biased. The experimental setting is similar
to Figure 2: We use the GGN curvature proxy HB Ð GB ` βI but batch size 2048. The upper
plot (Top) shows the directional derivatives along the top 100 eigenvectors of HB, the lower plot
(Bottom) shows the directional derivatives along the first 100 CG search directions. For the top panel
of the upper plot, we switch the order and sign of the eigenvectors such that the orange dots are all
above zero and in descending order. There are strong systematic biases in the directional slopes and
curvatures. The curvature biases are more pronounced along the eigenvectors, whereas the biases in
the slope are larger along the CG directions.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Eigenspace overlaps: Additional result for HB Ð ∇2Lpθ‹;Bq ` βI
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Eigenspace overlaps: Additional results for HB Ð GB ` βI
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Figure 11: In practice, eigenspaces are misaligned. The experimental setting is similar to Figure 3.
The top plot shows overlaps between three curvature matrices that use the Hessian of the empirical
risk, i.e. HB Ð ∇2Lpθ‹;Bq ` βI at batch size 512. The bottom plots use the GGN curvature
proxy HB Ð GB ` βI at batch size 512 (Left) and 2048 (Right). The weights Ωi,j are shown as
a 100 ˆ 100 greyscale image (color ranges from black for Ωi,j ď 10´8 to white for Ωi,j “ 1) for
m,m1 P t0, 1, 2u. Clearly, the eigenspaces for different mini-batches are not perfectly aligned as
eigenvectors from Bm overlap with several eigenvectors from Bm1 . At the larger batch size, the
eigenspaces are more aligned.
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distribution, the full-batch CG approach can be seen as an instance of the mini-batch approach with a
very large mini-batch size. Thus, it might also exhibit the associated biases we describe in Section 3.2.
Another explanation would be the approximation error in Equation (2): Lregp ¨ ;Dq « qp ¨ ;Dq. If
the trajectory moves far away from θ‹, it leaves the region where the approximation is valid (whereas
the debiased full-batch version might take smaller steps and thus remains stable). We leave it to
future work to investigate this further.

Additional results. We also provide the results for two other mini-batch sizes |B| P t512, 2048u (the
debiased approach uses two mini-batches of size 256 and 1024, respectively). The results are shown
in Figure 13.

Runtime and memory consumption. Our current implementation uses the naive approach that
requires two matrix-vector products with the GGN for computing one debiased update magnitude (see
Appendix A.2 for details). As this would skew the runtime comparison, we refrain from providing
concrete numbers here. However, as we describe in detail in Appendix A.2, it is possible to implement
the debiased approach in a more efficient way that only requires one additional matrix-vector product
for each CG direction to compute the debiased update magnitude. Using the debiased approach
at half the mini-batch size, this brings the computational costs down to roughly the same level as
the standard approach (assuming that the runtime of a GGN-vector product scales linearly with the
mini-batch size).

As explained in detail in Appendix A.2, the memory overhead for the efficiently implemented
debiased CG approach is two additional vectors of size P . For the experimental setting used for
Figure 5, the number of parameters is P “ 1,387,108, which corresponds to 5.55 MB in single
precision. The computational overhead incurred by the debiased approach is thus about 11.1 MB.

B.6 SECTION 6.2 (DEBIASED LAPLACE APPROXIMATION): FIGURE 6

Figure 6 shows a comparison of the vanilla model, the mini-batch K-FAC LA, the debiased version,
and the full-batch LA. Here, we describe the experiment in more detail and present additional results,
in particular on OOD data. For the derivation and the mathematical details of these approaches, see
Appendix A.3. The experiment uses the fully trained ALL-CNN-C model on CIFAR-10 data from
test problem (B) (see Appendix B.1).

Experimental procedure. The experimental procedure consists of three steps: The computation of
the K-FAC curvature approximations, the evaluation of the corresponding predictive class probabili-
ties, and the computation of the performance metrics.

1. K-FAC curvature approximations. We consider a log-equidistant grid of 13 prior preci-
sions β between 10´4 and 100 and add β “ 10.
For each of those 14 values, we compute the K-FAC curvature approximation via BACK-
PACK (Dangel et al., 2020) (see Appendix B.2) using (i) a single batch of size 64, 256, and
1024, (ii) the two-batch debiased LA version (details in Appendix A.3.3) at batch sizes 32,
128, and 512, and (iii) the full-batch LA. For the latter, we accumulate mini-batch K-FAC
approximations over the entire training set. As an additional baseline, we consider (iv) the
vanilla model (without LA), which is independent of the prior precision β. For approaches
(i) and (ii), we repeat the experiment for 5 different mini-batches/mini-batch pairs.

2. Evaluation of predictive class probabilities. The first step in the evaluation of the perfor-
mance metrics is the computation of the predictive uncertainty. For a given test dataset of
size N˛, these can be represented as a matrix P P RN˛ˆC , where Pn,c is the probability
that the n-th sample belongs to class c, i.e. rows of P sum to 1. In all experiments, we
draw S “ 40 MC samples tθpsquSs“1 from the weight posterior following the procedure in
Appendix A.3.2. The predictive class probabilities are then obtained via Equation (18). In
the case of the vanilla model without LA, the sum in Equation (18) collapses to a single
term corresponding to the MAP model.
The evaluation procedure above can be applied to arbitrary test datasets. We consider the
training data, test data and CIFAR-10-C (i.e. OOD datasets at severity 1 to 5).

3. Performance metrics. We consider the following performance metrics:
• Accuracy. The predictive classes are obtained from P by extracting the class with the

highest probability. The accuracy is the relative number of correctly classified samples.
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Figure 12: Comparison of full-batch CG approaches. We use the setting from Figure 5. The
full-batch approach (shown as ) applies standard CG to qp ¨ ;Dq while the debiased approach
(shown as ) uses one half of the training data for the directions and the other half for the update
magnitudes. The markers ◆ and ◆ are placed at peak performance. Surprisingly, the full-batch run
diverges. The debiased CG run is stable.
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Figure 13: Comparison of CG approaches at different batch sizes. We use the same experimental
setting as in Figure 5 but consider different mini-batch sizes |B| P t512, 1024, 2048u (from (Top) to
(Bottom)). The debiased approach uses two mini-batches of size 256, 512, and 1024, respectively.
Across all mini-batch sizes, the single-batch CG runs diverge quickly while our debiased approach
maintains stability.
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• Negative log-likelihood (NLL). For each datum in the test set, we compute the negative
log-probability of the true class. We then average over all samples in the test dataset.
This coincides with the empirical risk from Equation (1), evaluated on the test dataset.

• Expected calibration error (ECE). The ECE is a measure of the calibration of the
model’s predictive probabilities. It groups the classification confidences (i.e. the maxi-
mum entry in each of P ’s rows) into bins, and within these bins, compares the average
confidence with the actual accuracy. We use MulticlassCalibrationError
from torchmetrics (Detlefsen et al., 2022).

• AUROC. For the OOD datasets, we provide the Area Under the Receiver Operating
Characteristic curve (AUROC). Our goal is to distinguish in-distribution (ID) and
out-of-distribution (OOD) samples using the model’s uncertainty. We use the entropy
of the predictive distribution ppy˛ | x˛,Dq as our uncertainty estimate upx˛q P R for
input x˛. The ground-truth binary labels are the ID/OOD indicators of the test inputs.
Several thresholds ξ could be established to turn the scalar uncertainty estimates into
binary predictions by using 1tupx˛qąξu. Instead of choosing a particular threshold and
evaluating its accuracy, the AUROC metric directly evaluates up ¨ q by measuring the
area under the plot of the true positive rate (TPR) against the false positive rate (FPR)
for all possible thresholds.

Additional experimental details.

• Uncertainty over weights but not biases. As the prior acts only on the weights of the
network but not its biases (see Appendix B.1), we only consider the uncertainty over the
weights in the LA. This slightly reduces the size of the covariance matrix as it excludes the
bias parameters.

• Single vs. double precision. Although the K-FAC factors are positive semi-definite by
construction, their numerical eigenvalues can be negative due to numerical inaccuracies. To
balance precision and computational cost, we use double precision for all computations until
drawing the MC samples and single precision afterwards.

Results. The results are presented in Figures 6, 14 and 15. For the single-batch and debiased approach
(where we use 5 mini-batches/mini-batch pairs each), we report the average performance as a dot and
the min/max as a vertical line. The performance of the vanilla model is shown as a horizontal line as
its performance does not depend on β, as explained above.

Across all datasets and performance metrics, the debiased LA mimics the behavior of the full-batch
approach much better than the single-batch LA (although both approaches use a comparable amount
of computational resources). In particular, for small prior precisions, where the covariance matrix
relies almost exclusively on the K-FAC curvature information, the debiased LA maintains a good
performance in contrast to the single-batch approach.

Additional results.

• RESNET-50 on IMAGENET. To showcase the scalability of our debiased LA approach,
we repeat the experiment for a RESNET-50 model on the IMAGENET dataset (test problem
(E) in Appendix B.1). The results are shown in Figure 16. Again, the debiased approach
behaves similarly to the full-batch LA and maintains stability over the entire spectrum of
prior precisions.

• VIT LITTLE on IMAGENET. Similar to the previous experiment, we also apply our LA
debiasing approach to a VIT LITTLE model on the IMAGENET dataset (test problem (F) in
Appendix B.1) to ensure that it is beneficial for other architectures as well. The results are
shown in Figure 17. The debiased approach mimics the calibration behavior of the full-batch
LA remarkably well and remains stable for lower prior precision values as well where the
single-batch approach behaves erratically.

Runtime analysis (computational overhead of debiasing). We claim in Section 6.2 that, by using
the debiased approach at half the mini-batch size that is used by the single-batch approach, we obtain
a fair comparison (more details in Section 4.2.3). Here, we substantiate this claim by providing a
detailed runtime comparison of the biased, debiased, and full-batch LA approaches on CIFAR-10.
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Figure 14: Debiased LA mimics the full-batch LA very well. The experimental setting is the same
as in Figure 6, but we report results on additional datasets (training set and OOD datasets at severity
level 1 and 2). For the OOD datasets, we report the AUROC metric in addition to the accuracy, NLL
and ECE. In contrast to the single-batch approach, the debiased version mimics the behavior of the
full-batch approach very well over the entire range of prior precisions and across datasets.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Performance on CIFAR-10-C (severity level 3)

10−4 10−2 100 101

Prior precision β

77

78

Accuracy in % ↑

10−4 10−2 100 101

Prior precision β

100

NLL loss ↓

10−4 10−2 100 101

Prior precision β

10−2

10−1

ECE ↓

10−4 10−2 100 101

Prior precision β

0.55

0.60

0.65

AUROC ↑

Vanilla model fθ∗
Full-batch

|B| = 64

|B| = 32 (debiased)
|B| = 256

|B| = 128 (debiased)
|B| = 1024

|B| = 512 (debiased)

Performance on CIFAR-10-C (severity level 4)

10−4 10−2 100101

Prior precision β

71

72

Accuracy in % ↑

10−4 10−2 100101

Prior precision β

100

1.2× 100

1.4× 100

1.6× 100

1.8× 100

NLL loss ↓

10−4 10−2 100101

Prior precision β

10−1

ECE ↓

10−4 10−2 100101

Prior precision β

0.55

0.60

0.65

0.70

AUROC ↑

Vanilla model fθ∗
Full-batch

|B| = 64

|B| = 32 (debiased)
|B| = 256

|B| = 128 (debiased)
|B| = 1024

|B| = 512 (debiased)

Performance on CIFAR-10-C (severity level 5)

10−4 10−2 100 101

Prior precision β

63

64

Accuracy in % ↑

10−4 10−2 100 101

Prior precision β

1.2× 100

1.3× 100
1.4× 100
1.5× 100
1.6× 100
1.7× 100
1.8× 100
1.9× 100

2× 100

NLL loss ↓

10−4 10−2 100 101

Prior precision β

10−1

ECE ↓

10−4 10−2 100 101

Prior precision β

0.5

0.6

0.7

AUROC ↑

Vanilla model fθ∗
Full-batch

|B| = 64

|B| = 32 (debiased)
|B| = 256

|B| = 128 (debiased)
|B| = 1024

|B| = 512 (debiased)

Figure 15: Debiased LA mimics the full-batch LA very well. The experimental setting is the
same as in Figure 6, but we report results on additional datasets (OOD datasets at severity level 3, 4,
and 5). We report the AUROC metric in addition to the accuracy, NLL, and ECE. In contrast to the
single-batch approach, the debiased version mimics the behavior of the full-batch approach very well
over the entire range of prior precisions and across datasets.
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Figure 16: Our approach scales to RESNET-50 on IMAGENET. The experimental setting is the
same as in Figure 6, but we use test problem (E) (see Appendix B.1) (RESNET-50 on IMAGENET).
The results are consistent with the findings on CIFAR-100: The debiased approach behaves similarly
to the full-batch LA and maintains stability even for small prior precisions.
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Figure 17: Curvature biases are also present for the VIT LITTLE architecture on IMAGENET.
The experimental setting is the same as in Figure 6 and Figure 16, but we use test problem (F) (see
Appendix B.1) (VIT LITTLE on IMAGENET). Again, the debiased approach behaves similarly to the
full-batch LA and maintains stability even for small prior precisions (where the covariance is almost
exclusively based on the K-FAC curvature information).

Results (runtimes). We report the runtimes of the biased ( ), debiased ( ), and full-batch ( )
K-FAC Laplace approximation schemes in Figure 18. We find that (i) both biased and debiased
approaches are orders of magnitude cheaper than the full-batch LA, and (ii) the debiased approach
introduces only negligible overhead and can, sometimes, even improve upon the runtime of the biased
approach.

Memory consumption. The ALL-CNN-C model we use for the LA experiment in Section 6.2 has
P “ 1,368,480 trainable parameters (this amounts to 10.95 MB of memory in double precision). The
K-FAC approximation requires storing 11,483,965 (91.87 MB) numbers to represent all Kronecker
factors. The memory of a K-FAC approximation is thus roughly equivalent to that of 8.4 models. As
the debiased approach is based on two such approximations in the case of a naive implementation,
the overhead of debiasing is another 91.87 MB of memory. However, this can be significantly
improved by building up the K-FAC approximations block by block: Having two corresponding
blocks available (based on two different mini-batches) already suffices to compute the respective
debiased block (see Appendix A.3.3). This way, we only have two blocks (represented by their
Kronecker factors) in memory at the same time (instead of two entire K-FAC approximations) which
greatly reduces the memory overhead of debiasing, down to the largest block. For the ALL-CNN-C
model, this is two Kronecker factors of sizes 192 ˆ 192 and 1728 ˆ 1728 amounting to 3,022,848
numbers in total, i.e. the equivalent of 2.20 models or 24.18 MB in double precision. The statement
that the debiased approach roughly doubles the memory consumption is thus a worst-case scenario.
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Figure 18: The computational overhead of debiasing is negligible for Laplace approximations.
We follow the experimental setup of Section 6.2 and provide a detailed runtime comparison of the
biased ( ), debiased ( ), and full-batch ( ) K-FAC Laplace approximation schemes on CIFAR-
10. The total runtime includes the construction of K-FAC’s Kronecker factors (on one or two
mini-batches for the biased and debiased approach, respectively), the debiasing computations (see
Appendix A.3.3), and the Monte Carlo sampling of S “ 40 weights. All reported runtimes are
averages over 5 runs. The error bars for the total runtime cover one standard deviation. The results
show that the debiased approach introduces a negligible overhead. Compared to the full-batch
variant, both mini-batch approaches are orders of magnitude faster. Note that the evaluation (i.e., the
computation of the predictive uncertainty) is not included in the comparison, as the time requirements
are the same for all approaches; however, this step requires the most computational resources.

B.7 ADDITIONAL EXPERIMENT: BIASES FOR A WIDERESNET 40-4 MODEL ARCHITECTURE

Experimental setting and results. Here, we extend our analysis from Section 3.1 (details in
Appendix B.4) to test problem (C) (see Appendix B.1): A WIDE RESNET model on CIFAR-100.
We use the GGN curvature proxy HB Ð GB ` βI at batch size 256 and compute the directional
slopes and curvatures along the top 100 eigenvectors of HB. The results are shown in Figure 19.
Along the first few top-curvature directions, the curvature biases are even larger for this test problem
than for the ALL-CNN-C model on CIFAR-100, but then they decay more quickly.

B.8 ADDITIONAL EXPERIMENT: K-FAC AND THE DEPENDENCE OF THE BIASES ON
MINI-BATCH SIZE

Experimental setting. Here, we extend our analysis of test problem (A) (see Appendix B.1) from
Section 3.1 to K-FAC and investigate the impact of the mini-batch size on the curvature biases.

Results & discussion. Figure 20 shows the directional curvatures of the K-FAC approximation for
four different mini-batch sizes. When we compute the eigenvectors and directional curvatures on the
same mini-batch, we observe a systematic curvature bias that decreases with increasing mini-batch
size. There are two phenomena at play: With increasing mini-batch size, (i) the green crosses
move upwards and (ii) the orange dots move downwards. Our intuition for this is as follows: With
increasing mini-batch size, the eigenvectors become more meaningful such that, on other data, they
also exhibit large curvature—this explains (i). Similarly, with increasing mini-batch size, it gets
harder to find directions of extreme curvature as these directions have to exhibit large curvature on all
data points within the mini-batch—this explains (ii).

B.9 ADDITIONAL EXPERIMENT: DEVELOPMENT OF THE BIASES OVER THE COURSE OF
TRAINING

Experimental setting and results. Here, we investigate how the biases in the slope and curvature
develop over the course of training for test problem (A) (see Appendix B.1). We use the same
procedure as in Appendix B.4 but evaluate the biases at 10 different checkpoints during training
(spread log-equidistantly between the first and last epoch). At each checkpoint, we draw 5 mini-
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Figure 19: Directional slopes and curvatures are biased. The experimental setting is similar to
Figure 2, but we use test problem (C) (WIDE RESNET on CIFAR-100) with the GGN curvature
proxy HB Ð GB ` βI at batch size 256. For the top panel, we switch the order and sign of the
eigenvectors such that the orange dots are all above zero and in descending order. There is a strong,
systematic bias, particularly in the curvature: Computing the eigenvectors and directional curvatures
on the same data results in over-estimation that is very pronounced along the first few eigenvectors
but then decays more quickly than in test problem (A).

Eigenvectors computed on mini-batch B0 with batch size

Figure 20: Directional curvatures with K-FAC. We use the CIFAR-100 dataset with the fully
trained ALL-CNN-C model. For each mini-batch size P t8, 32, 128, 512u, we draw one mini-batch
and compute the top 100 eigenvectors u1, . . . ,u100 of the K-FAC matrix KB0 . We show the
directional curvatures uJ

p KBmup, p P t1, . . . , 100u on the same mini-batch (m “ 0) as , all other
mini-batches in the training set (m P t1, 2, . . .u) as and their average as ✚. Similar to Figure 2, we
observe a systematic bias in the curvature. The bias decreases with increasing mini-batch size.

batches, compute the top 100 eigenvectors of the corresponding GGN-based quadratics, and finally
evaluate the relative errors in the directional slopes and curvatures (where the ground truth is the
full-batch quadratic’s slope/curvature). For each mini-batch, this distribution of 100 relative curvature
and slope biases is represented as a dot (at the mean relative bias) and a vertical line ranging from the
25% to the 75% percentile in Figure 21. While the biases in the slope remain relatively stable over
the course of training, the biases in the curvature increase over more than 3 orders of magnitude up
to a relative error of order 10 in epoch 349 (which is consistent with the results in Figure 2). This
suggests that the eigenspaces of different curvature matrices become more and more misaligned as
training progresses steadily increasing the need for effective debiasing strategies.
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Figure 21: Curvature biases increase over the course of training. We evaluate the relative
slope and curvature biases at different checkpoints during training for the ALL-CNN-C model on
CIFAR-100. 5 mini-batches are drawn per checkpoint. For each mini-batch, the relative biases are
represented as a dot (at the mean relative bias) and a vertical line ranging from the 25% to the
75% percentile. While the biases in the slope remain relatively stable over the course of training, the
biases in the curvature increase (over more than 3 orders of magnitude).

B.10 ADDITIONAL EXPERIMENT: THE CURVATURE BIAS INCREASES WITH P

In high-dimensional spaces, it becomes increasingly unlikely that random vectors are aligned. While
the eigenspaces of the curvature matrices are not completely random, they are subject to noise. It
is thus conceivable that their overlap decreases as the number of parameters P increases. If this
hypothesis is true, the curvature biases should become more pronounced in large models.

Experimental procedure & results. To test this hypothesis, we use test problem (D) that implements
a simple convolutional neural network with variable width and depth (for details, see Appendix B.1).
For each fully trained model, we evaluate the relative error between B2

up
qpθ‹;Bq and B2

up
qpθ‹;Dq

for the GB’s top 100 eigenvectors at batch size 128. This procedure is repeated for 5 different
mini-batches for each of the 9 models, resulting in a total of 45 error distributions (see Figure 22).
The results confirm our hypothesis: The relative errors tend to increase with the number of parameters
P . In the massively overparameterized regime, the biases might thus become even more relevant and
effective debiasing strategies are needed.
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Figure 22: Increasing curvature biases with P .
We train 9 convolutional neural networks with dif-
ferent widths and depths for 100 epochs on the
CIFAR-10 dataset using ADAM with standard hy-
perparameters. For the fully trained model, we eval-
uate the relative error |B2

up
qpθ‹;Bq ´ B2

up
qpθ‹;Dq| ¨

|B2
up

qpθ‹;Dq|´1 for GB’s top 100 eigenvectors at
batch size |B| “ 128. 5 different mini-batches are
used per model resulting in a total of 45 error dis-
tributions (each consisting of 100 numbers). These
distributions are represented by their median (as a
dot ) and the 25% and 75% percentiles (as a line
segment ) P . The 5 distributions for each model
are slightly spread along the x-axis for better visibil-
ity. The experiment confirms our hypothesis: The
relative errors tend to increase with the number of
parameters P .
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