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Abstract

Causal knowledge about the relationships among the decision variables and a
reward variable in a bandit setting can accelerate the learning of an optimal decision,
as substantiated by studies on causal bandits. Current works often assume the
causal graph is known; nevertheless, such knowledge may not be available a priori.
Motivated by this challenge, we focus on the causal bandit problem in scenarios
where the underlying causal graph is unknown and further, it may include latent
confounders. While intervention on the parents of the reward node is optimal
in the absence of latent confounders, that is not necessarily the case in general.
Instead, one has to consider a set of possibly optimal arms/interventions, each
being a special subset of ancestors of the reward node— deeming causal discovery
beyond parents of the reward node imperative. However, for regret minimization,
we identify that discovering the full causal structure is not necessary; yet there is
no work that provides the necessary and sufficient components of the causal graph.
We formally characterize the set of necessary and sufficient latent confounders one
needs to detect/learn to ensure all the possibly optimal arms are learned correctly.
We also propose a randomized algorithm for learning the causal graph with a limited
number of samples. For the causal bandit setup, we propose a two-stage approach.
In the first stage, we learn the induced subgraph on ancestors of the reward along
with a necessary and sufficient subset of latent confounders to construct the set
of possibly optimal arms. The next phase involves the application of a standard
bandit algorithm, such as the UCB algorithm. We also establish regret bound
for our two-phase approach, which is sublinear in the number of rounds and has
polynomial scaling with respect to the number of nodes in the graph.

1 Introduction

Causal bandits have been a topic of interest since their inception and have been studied in various
contexts [1]. The authors assumed precise knowledge of the causal graph and the impact of in-
terventions or actions on the parents of the reward node. Subsequently, there has been a flurry of
research on causal bandits [2, 3, 4]. The primary limitation of the majority of existing works on causal
bandits is their assumption of full knowledge of the causal graph, which is often impractical for many
real-world applications [1, 5, 6]. Recently, efforts have been made to overcome this limitation. In [7],
the authors propose a sample efficient algorithm for cases where the causal graph can be represented

ICML 2024 Workshop on Foundations of Reinforcement Learning and Control.



as a directed tree or a causal forest and later extend the algorithm to encompass a broader class of
general chordal graphs. However, the proposed algorithm is only applicable to scenarios where the
Markov equivalence class (MEC) of the causal graph is known and does not have confounders. The
paper by Konobeev et al. [8] also deals with causal bandits with an unknown graph and proposes a
two-phase approach. The first phase uses a randomized parent search algorithm to learn the parents
of the reward node, and the second phase employs UCB to identify the optimal intervention over the
parents of the reward node. However, similar to [7], they assume causal sufficiency, i.e., no latent
confounders are present.In another related paper, [9], the authors initially emphasize the challenge of
dealing with exponentially many arms when addressing causal bandits with an unknown graph. To
tackle this issue, the authors assume that the reward is a noisy additive function of its parents. This
assumption enables them to reframe the problem as an additive combinatorial linear bandit problem.

We also focus on the causal bandit setup where the causal graph is unknown, but we allow the
presence of latent confounders and make no parametric assumptions. The optimal intervention in
this case is not limited to parents of the reward node; instead, we have a candidate set of optimal
interventions, called possibly optimal minimum intervention sets (POMISs), each being a special
subset of the ancestors of the reward node [5]. Thus, learning only the parents of the reward, similar
to [8], is insufficient. This implies that causal discovery beyond parents of the reward is imperative.
However, for regret minimization, discovering the full causal structure is not necessary. Instead, we
characterize the set of necessary and sufficient latent confounders one needs to detect/learn to ensure
all the possibly optimal arms are learned correctly.

Causal discovery is a well-studied problem and can be applied to our setup [10, 11, 12]. However,
the majority of the existing causal discovery algorithms rely on the availability of an infinite amount
of interventional data [13, 14, 15]. Some prior work shows that discovery is possible with limited
interventional data, with theoretical guarantees when the underlying causal graph is a tree and contains
no latent confounders [16]. Also, the paper [17] proposes a sample-efficient active learning algorithm
for causal graphs without latent confounders, given that the MEC for the underlying causal graph is
known. Sample-efficient learning of causal graphs with latent confounders, without any parametric
or graphical assumptions, with theoretical guarantees, remains an open problem.

We propose a randomized algorithm for sample-efficient learning of causal graphs with confounders.
We analyze the algorithm and bound the maximum number of interventional samples required to
learn the causal graph with all the confounders with a given confidence level. For the causal bandit
setup, we propose a two-stage approach where the first step learns a subgraph of the underlying causal
graph to construct a set of POMISs, and the second phase learns the optimal arm among the POMISs.
We show that the requirement of learning only a subgraph leads to significant savings in terms of
interventional samples and consequently, regret. The main contributions of our work are as follows:

• We characterize the necessary and sufficient set of latent confounders in the induced subgraph
on ancestors of the reward node that we need to learn/detect in order to identify all the
POMISs for a causal bandit setup when the underlying causal graph is unknown.

• We propose a two-phase algorithm for causal bandits with unknown causal graphs containing
confounders. The first phase involves learning the induced subgraph on reward’s ancestors
along with a subset of latent confounders to identify all the POMISs. The next phase involves
a standard bandit algorithm, e.g., upper confidence bound (UCB) algorithm. Our theoretical
analysis establishes an upper bound on the cumulative regret of the overall algorithm.

2 Preliminaries and Problem Setup

We start with an overview of the causal bandit problem and other relevant background needed on
causal models. Structural causal model (SCM) is a tuple M = ⟨V,U,F, P (U)⟩ where V =
{Vi}ni=1 ∪ {Y } is the set of observed variables, U is the set of independent exogenous variables, F is
the set of deterministic structural equations and P (U) is the distribution for exogenous variables [18].
The equations fi map the parents (Pa(Vi)) and a subset of exogenous variables Ui ⊆ U, to the value
of variable Vi, i.e., Vi = fi(Pa(Vi),Ui). We consider the causal bandit setup where all the observed
variables Vi ∈ V are discrete with the domain Ω(Vi) = [K] := {1, 2, 3, . . . ,K}, and the reward Y
is binary, i.e., Ω(Y ) = {0, 1}. We can associate a DAG G = (V,E) with every SCM, where the
vertices V correspond to the observed variables and edges E consist of directed edges Vi → Vj when
Vi ∈ Pa(Vj) and bi-directed edges between Vi and Vj (Vi ←→ Vj) when they share some common

2



unobserved variable, also called latent confounder. We restrict ourselves to semi-Markovian causal
models in which every unobserved variable has no parents and has exactly two children, both of
which are observed [9]. An intervention on a set of variables W ⊆ V, denoted by do(W), induces
a post-interventional DAG (GW) with incoming edges to vertices W removed . We can broadly
classify interventions into hard interventions, where variables are set to a fixed realization denoted by
do(W = w), and stochastic interventions, where instead of a fixed realization we have W ∼ P(.),
where P is a probability measure over the domain Ω(W). We denote the sub-model induced under
hard intervention byMW=w and the one induced under stochastic intervention byMW. In the
context of causal bandits, an arm or action corresponds to hard intervention on a subset of variables
other than the reward. The goal of the agent is to identify the intervention that maximizes the expected
reward. The performance of an agent is measured in terms of cumulative regret RT .

RT := T max
W⊆V

max
w∈[K]|W|

E[Y |do(W = w)]−
T∑

t=1

E[Y |do(Wt = wt)], (1)

where do(Wt = wt) represents the intervention selected by the agent in round t. We use the notation
∆do(w) to define the sub-optimality gap of the corresponding arm do(W = w). We denote the
descendants, ancestors and children of a vertex Vi by De(Vi), An(Vi) and Ch(Vi) respectively. We
use the notation Bi(Vi,G) to denote the set of vertices having bidirected edges to Vi except the reward
node Y . We refer to the induced graph between observable variables as the observable graph. The
transitive closure of a graph, denoted by Gtc, encodes the ancestral relationship in G. That is, the
directed edge Vi → Vj is included in Gtc only when Vi ∈ An(Vj). The transitive reduction, denoted
by Tr(G) = (V,Er), is a graph with the minimum number of edges such that the transitive closure
is the same as G. The connected component (c-component) of the DAG G, containing vertex Vi, is
denoted by CC(Vi), which is the maximal set of all vertices in G that have a path to Vi, consisting only
of bi-directed edges [19]. For a subset of vertices W ⊆ V, we define CC(W) :=

⋃
Wi∈W CC(Wi).

In a DAG, a subset of nodes W d-separates two nodes Vi and Vj when it effectively blocks all paths
between them, denoted as Vi ⊥⊥d Vj . Blocking is a graphical criterion associated with d-separation
[18]. A probability distribution is said to be faithful to a graph if and only if every conditional
independence (CI) statement can be inferred from d-separation statements in the graph. Faithfulness
is a commonly used assumption in the existing work on causal discovery [13, 20]. We assume that
the following form of the interventional faithfulness assumption holds in our setup.
Assumption 2.1. Consider two disjoint subsets of nodes W ⊆ V and VW = V \W. Consider a
hard intervention do(W = w) and the corresponding induced sub-modelMW=w. We assume that
for any stochastic intervention do(U) over any U ⊆ VW, the CI statement (X ⊥⊥ Y|Z)MW=w,U

holds if and only if there is a corresponding d-separation statement in the post-interventional causal
graph, i.e., (X ⊥⊥d Y|Z)GW,U

where X,Y, and Z are disjoint subsets of VW. The CI statements
are with respect to the post-interventional joint probability distribution.

The main consequence of faithfulness assumptions is that any independence relations observed in the
data are due to the underlying structure of the causal graph that generated the data, rather than arising
from random coincidence. This significantly narrows down the scope of possible causal graphs that
could have produced the observational or interventional data.

3 Possibly Optimal Arms in Causal Bandits with Unknown Causal Graph

The optimal intervention in a causal bandit setup is not restricted to the parent set of the reward
node when the reward node Y is confounded with any node in its ancestors An(Y ) [5]. For instance,
consider SCM X1 = U1 and X2 = X1 ⊕ U2 and reward Y = X2 ⊕ U2, where U1 ∼ Ber(0.5) and
U2 ∼ Ber(0.5). Note that X2 and reward Y are confounded in this SCM. The optimal intervention
in this case is do(X1 = 1) since E[Y |do(X1 = 1)] = 1. The intervention on the parent of the reward
(Pa(Y ) = X2) is suboptimal because E[Y |do(X2 = 0)] = E[Y |do(X2 = 1)] = 0.5. The example
shows that it is possible to construct SCMs where optimal intervention is on ancestors of the reward
node instead of parents when reward node is confounded with one of its ancestors. We revisit some
definitions and results from their work.
Definition 3.1. (Unobserved Confounder (UC)-Territory[5]) Consider a causal graph G(V,E)
with a reward node Y and letH be G[An(Y )]. A set of variables T ⊆ V (H) containing Y is called
an UC-territory on G with respect to Y if DeH(T) = T and CCH(T) = T.

3



Y

V1 V2

V3

(a) G

Y

V1 V2

V3

(b) G1

Y

V1 V2

V3

(c) G2

Y

V1 V2

V3

(d) G3

Figure 1: True Causal Graph G with four other graphs each with one missing bi-directed edge.

A UC-territory is minimal if none of its subsets are UC-territories. A minimal UC-territory denoted
by MUCT(G, Y ), can be constructed by extending a set of variables, starting from the reward {Y },
alternatively updating the set with the c-component and descendants of the set until there is no change.

Definition 3.2. (Interventional Border)[5] Let T be a minimal UC-territory on G with respect to Y .
Then, X = Pa(T ) \ T is called an interventional border for G w.r.t. Y denoted by IB(G, Y ).

Lemma 3.1. [5] For causal graph G with reward Y , IB(GW, Y )is a POMIS, for any W ⊆ V \ {Y }.

Although the graphical characterization in Lemma 3.1 provides a means to enumerate the complete
set of POMISs, it comes with exponential time complexity. The authors also propose an efficient
algorithm for enumerating all POMISs in [5]. However, this requires knowing the true causal
graph, and without it, one has to consider interventions on all possible subsets of nodes, which are
exponentially many. One naive approach to tackle the problem is to learn the full causal graph with all
confounders to list all POMISs. However, a question arises: Do we need to learn/detect all possible
confounders since the goal is to find POMISs and not the full graph?

Before answering the above question, we start with an example considering the causal graphs in Figure
1. Using Lemma 3.1, the set of POMISs for the true graph G is IG = {ϕ, {V1}, {V2}, {V3}, {V1, V2}}.
However, for G1 which has the bidirected edge V2 ↔ Y missing, the set of POMISs is IG1

=
{ϕ, {V2}, {V1, V2}}. Also for G2 which has the bidirected edge V1 ↔ V2 missing, the set of POMISs
is IG2 = {ϕ, {V1}, {V2}, {V1, V2}}. In both cases, we miss at least one POMIS, and since it is
possible to construct an SCM compatible with the true causal graph G where any arm in POMIS
is optimal, if this arm is not learned, we can suffer linear regret [5]. Although the graph G3 has
the bidirected edge V1 ↔ V3 missing, it still has the same set of POMISs as the true graph, i.e.,
IG3

= {ϕ, {V1}, {V2}, {V3}, {V1, V2}}. This example shows that only a subset of latent confounders
affect the POMISs learned from the graph. Theorem 3.1 characterizes all the latent variables that
need to be learned, ensuring that the POMISs learned from a sparser causal graph match all those in
the true causal graph.

Theorem 3.1. Consider a causal graph G(V,E) and another causal graph G′ such that they have
the same vertex set and directed edges but differ in bidirected edges, with the bidirected edges in G′
being a subset of the bidirected edges in G. The graphs will yield different collections of POMISs if
and only if there exists some Z ∈ An(Y ) such that either (a) or (b) is true:

(a) There is a bi-directed edge between Z and Y in G but not in G′ .

(b) Neither of the graphs G′ and G have a bidirected edge between Z and Y , and there exists a
bidirected edge in G between some X ∈ MUCT(G′

Pa(Z),Bi(Z,G′)
, Y ) and Z but not in G′.

Suppose we have access to the induced observable subgraph G′ on ancestors of the reward node. We
can start by testing for latent confounders between Y and any node in An(Y ). Then, we need to test
for latent confounders between any pair Z ∈ An(Y ) such that Z and Y don’t have a bi-directed edge
between them, and X ∈ MUCT(G′

Pa(Z),Bi(Z,G′)
, Y ) until there are no new pairs to test. Theorem

3.1 can be useful because depending on the underlying causal graph, it saves us the number of
latent confounders we need to test. For instance, consider a causal graph that has the reward Y with
n different parent nodes, i.e., Pa(Y ) = {V1, V2, . . . , Vn}, with no edges between the parents. In
cases where every parent of Y is confounded with Y , or when none of them is confounded with
Y , we only need to test for |An(Y )| latent variables, as implied by Theorem 3.1. However, in the
worst-case scenario, we would need to test

(|An(Y )|+1
2

)
latent variables when the true graph only

has the confounders V1 ←→ Y and Vi ←→ Vi+1 for all i = 1, .., n− 1. The exact number of latents
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we need to test can range from |An(Y )| to
(|An(Y )|+1

2

)
depending on the true graph. One issue still

remains: we need a sample-efficient algorithm to learn the induced observable graph over An(Y ) and
to test the presence of confounders, which is addressed in upcoming sections.

4 Finite Sample Causal Discovery Algorithm

In this section, we propose a sample-efficient algorithm to learn causal graphs with latent confounders.
We propose a two-phase approach. In the first phase, the algorithm learns the observable graph
structure, i.e., the induced graph between observed variables. In the second phase, it detects the
latent confounders. In the next section, we use the proposed discovery algorithm to construct the
algorithm for causal bandits with an unknown graph. We begin by proposing two Lemmas to learn
the ancestrality relations and latent confounders using interventions.

Lemma 4.1. Consider a causal graph G(V,E) and W ⊆ V. Furthermore, let X,T ∈ V \W be
any two variables. Under the faithfulness Assumption 2.1 (X ∈ An(T ))GW

if and only if for any
w ∈ [K]|W|, we have P (t|do(w)) ̸= P (t|do(w), do(x)) for some x, t ∈ [K].

Lemma 4.2. Consider two variables Xi and Xj such that Xj /∈ An(Xi) and a set of variables
(Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆ W and Xi, Xj /∈W. Under the faithfulness Assumption 2.1 there
is latent confounder between Xi and Xj if and only if for any w ∈ [K]|W|, we have P (xj |
do(xi), do(W = w)) ̸= P (xj | xi, do(W = w)) for some realization xi, xj ∈ [K].

These Lemmas are modified versions of Lemma 1 in [13] and Interventional Do-see test in [13],
respectively. The difference between Lemma 4.1 and Lemma 1 in [13] is that we have an inequality
test that can be used in the sample-efficient discovery instead of a statistical independence test. The
Interventional Do-see test in [13] is valid for adjacent nodes only; however, our Lemma 4.2 can be
used to test presence of latent confounder between any pair of nodes. This is because the condition in
Lemma 4.2, Xj /∈ An(Xi), can always be satisfied for any pair by flipping the order when one node
is an ancestor of the other. In order to provide theoretical guarantees on sampling complexity, the
inequality conditions are not enough; we need to assume certain gaps similar to [7, 8, 16].

Assumption 4.1. Consider a causal graph G(V,E) and W ⊆ V. Furthermore, let X,T ∈ V \W
be any two variables. Then, we have (X ∈ An(T ))GW

if and only if for any w ∈ [K]|W|, we have
|P (t|do(w))− P (t|do(w), do(x))| > ϵ for some x, t ∈ [K], where ϵ > 0 is some constant.

Assumption 4.2. Consider two variables Xi and Xj such that Xj /∈ An(Xi) and a set of variables
(Pa(Xi)∪Pa(Xj)\{Xi}) ⊆ W and Xi, Xj /∈W. There is a latent confounder or a bidirected edge
between Xi and Xj if and only if for any w ∈ [K]|W|, we have

∣∣P (xj | do(xi), do(W = w))−P (xj |
xi, do(W = w))

∣∣ > γ for some realization xi, xj ∈ [K] and some constant γ > 0.

4.1 Learning the Observable Graph

We propose Algorithm 1 to learn the transitive closure under any arbitrary intervention do(W),
denoted by Gtc

W
. We use the Assumption 4.1 to bound the number of samples for ancestrality tests.

We start with an empty graph and add edges by running ancestrality tests for all pairs of nodes in
V\W, resulting in the transitive closure Gtc

W
. We recall that the transitive reduction Tr(G) = (V,Er)

of a DAG G = (V,E) is unique, with Er ⊆ E, and it can be computed in polynomial time [21].
Also, note that Tr(G) = Tr(Gtc). We propose a randomized Algorithm 2 similar to the one proposed
in [13] that repeatedly uses Algorithm 1 to learn the observable graph structure. The motivation
behind the randomized Algorithm 2 is Lemma 5 from [13], which states that for any edge (Xi, Xj),
consider a set of variables W such that {Wi : π(Wi) > π(Xi) & Wi ∈ Pa(Xj)} ⊆W where π is
any total order that is consistent with the partial order implied by the DAG, i.e., π(X) < π(Y ) iff
X ∈ An(Y ). In this case, the edge (Xi, Xj) will be present in the graph Tr(GW).

Algorithm 2 randomly selects W, computes the transitive reduction of the post-interventional graph,
and finally accumulates all edges found in the transitive reduction across iterations. Algorithm 2
takes a parameter dmax, which must be greater than or equal to the highest degree for our theoretical
guarantees to hold. Algorithm 1 selects a realization w ∈ [K]|W|, takes B samples from intervention
do(W = w), and A samples from every do(Xi = xi,W = w) for all Xi ∈ V \W and xi ∈ [K]
interventions. We provide the sampling complexity guarantee for Algorithm 2 in Theorem 4.1.
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Algorithm 1: Learn the Transitive Closure of the Causal Graph under any intervention, i.e., GtcW

1 Function LearnTransitiveClosure(V,W, δ1, δ2):
2 E = ∅ , Fix some w ∈ [K]|W| and A = max( 8

ϵ2
, 8
γ2 ) log

2nK2

δ1
and B = 8

ϵ2
log 2nK2

δ2

3 Get B samples from do(W = w)
4 Get A samples from every do(Xi = xi,W = w) ∀Xi ∈ V \W and ∀xi ∈ [K]
5 for every pair Xi, Xj ∈ V \W do
6 Use the Interventional Data to Test if (Xi ∈ An(Xj))GW

7 if ∃ xi, xj ∈ [K] s.t. |P̂ (xj |do(w))− P̂ (xj |do(w), do(xi))| > ϵ
2

then
8 E←− E ∪ (Xi, Xj)

9 return The graph’s transitive closure (V,E) and All Interventional data

Algorithm 2: Learn the Observable Graph
1 Function LearnObservableGraph(V, α, dmax, δ1, δ2):
2 E = ∅ & IData = ∅
3 for i = 1 : 8α dmax log(n) do
4 S = ∅
5 for Vi ∈ V do
6 W←−W ∪ Vi with probability 1− 1

2dmax

7 GtcW ,DataW = LearnTransitiveClosure(V,W, δ1, δ2)

8 Compute the transitive reduction Tr(GtcW ) & add any missing edges from Tr(GtcW ) to E
9 IData = IData ∪ DataW (Keep Saving Interventional Data)

10 return The observable graph structure (V,E) and interventional data samples in IData

Theorem 4.1. Algorithm 2 learns the true observable graph with probability at least 1− 1

n
α

2dmax
−2 −

8αdmax log(n)(nδ1 + δ2) with 8αdmax log n(KAn + B) interventional samples. If we set α =
2dmax log ( 2

δ+2)

logn , δ1 = δ
32αdmaxn logn and δ2 = δ

32αdmax logn , then Algorithm 2 learns the observable

graph with probability at least 1− δ. (We have A = max( 8
ϵ2 ,

8
γ2 ) log

2nK2

δ1
and B = 8

ϵ2 log
2nK2

δ2
)

4.2 Learning the Latent Confounders

Assumption 4.2 can be used to test for latents between any pair of observed variables. For any
variables Xi and Xj such that Xj /∈ An(Xi), we need access to interventional samples do(W = w)
such that (Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆W and Xi & Xj /∈W. In addition to simple causal effects
we need to estimate the conditional causal effect of the form P (xj |xi, do(W = w)). To bound the
number of samples required to ensure accurate estimation of the conditional causal effects, we rely
on Assumption 4.3. Note that Assumption 4.3 does not restrict the applicability of our algorithm;
it simply assumes that under an intervention do(W = w), either the probability of observing a
realization Xi = xi is zero or is lower-bounded by some constant η > 0.

Assumption 4.3. For any variable Xi ∈ V and any intervention do(W = w) where W ⊆ V and
w ∈ [K]|W|, we assume that either P (xi|do(W = w)) = 0 or P (xi|do(W = w)) ≥ η > 0.

Lemma 4.3. Consider two nodes Xi and Xj s.t. Xj /∈ An(Xi) and suppose that Assumptions
2.1 4.2 hold and we have access to max( 8

ϵ2 ,
8
γ2 ) log

2K2

δ1
samples from do(Xi = xi,W = w)

∀xi ∈ [K] and 16
ηγ2 log(

2K2

δ3
) + 1

2η2 log(
2K2

δ4
) samples from do(W = w) for a fixed w ∈ [K]|W|

and W ⊆ V such that (Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆ W and Xi, Xj /∈ W. Then, with
probability at least 1 − δ1 − δ3 − δ4, we have a latent confounder between Xi and Xj iff
∃ xi, xj ∈ [K] s.t.

∣∣ P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))
∣∣ > γ

2 .

Our full discovery algorithm, which learns the observable graph structure and all latent variables
along with the sampling complexity guarantee, is provided in supplementary material A.9. Suppose
the constant gaps ϵ and γ in Assumptions 4.1 and 4.2 are close; then we have C > 1

ηA ≥
1
ηB. The
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constant 0 < η < 1 is usually small in practical scenarios, so the quantity C is much greater than both
B and A. This implies that the number of samples required to test the presence of latent variables is
greater than that required to learn ancestral relations.

Algorithm 3: Sketch of Algorithm for causal bandits with unknown graph structure
1 Calculate α, δ1, δ2, δ3, δ4 as in Theorem 5.1
2 Gtc = LearnTransitiveClosure(W = ϕ, δ

2n
, δ
n
)

3 G, IData = LearnObservableGraph(An(Y )Gtc , α, dmax, δ1, δ2)
4 # Learn the bi-directed edges between reward Y and all nodes Xi ∈ An(Y ) and update G.
5 for every Xi ∈ An(Y )Gtc do
6 G = DetectLatentConfounder(G, Xi, Xj , δ2, δ3, δ4, IData) (Algorithm 4)

7 while There is a new pair that is tested do
8 Find a new pair (Z,X) s.t. Z ∈ An(Y ) such that Z and Y don’t have a bi-directed edge between them

in G and X ∈ MUCT(GPa(Z),Bi(Z,G), Y ) and test for the latent and update G.
9 G = DetectLatentConfounder(G, Z,X, δ2, δ3, δ4, IData)

10 Learn the set of POMISs IG from the graph G (Using Algorithm 1 from [5]).
11 Run UCB algorithm over the arm set A = {Ω(I) | ∀I ∈ IG}.

5 Algorithm for Causal Bandits with Unknown Graph Structure

Algorithm 3 first learns the transitive closure of the graph Gtc to find ancestors of the reward node Y ,
since POMISs are subsets of An(Y ). The next step is to learn the observed graph structure among
the reward Y and nodes in An(Y ). Instead of detecting the presence of confounders between all pairs
of nodes in An(Y ), we focus on identifying the necessary and sufficient ones, as characterized by
Theorem 3.1. This approach is sample-efficient since it tests for fewer latent confounders. The last
step of Algorithm 3 is to run a simple bandit algorithm, e.g., UCB algorithm [22], to identify the
optimal arm from the POMISs. Given that Assumptions 4.1, 4.2, and 4.3 hold, and the reward is
binary (Y ∈ {0, 1}), we provide a worst-case regret bound for Algorithm 3 in Theorem 5.1.
Theorem 5.1. Algorithm 3 learns the true set of POMISs with probability at least 1− 2δ. Under the
event that it learns POMISs correctly, the cumulative regret is bounded as follows:

RT ≤ Knmax

(
8

ϵ2
,
8

γ2

)
log

4n2K2

δ
+

8

ϵ2
log

4nK2

δ
+

8αdmax

(
KA

∣∣An(Y )
∣∣ + max(B,C)

)
log

(∣∣An(Y )
∣∣) +

∑
s∈{Ω(I)|∀I∈IG}

∆do(s)

(
1 +

log T

∆2
do(s)

)
,

where A and B are given by line 2 of Algorithm 1, and C = 16
ηγ2 log(

2n2K2

δ3
) + 1

2η2 log(
2n2K2

δ4
) with

α =
2dmax log ( 4

δ+2)

log
∣∣An(Y )

∣∣ , δ1 = δ

64αdmax

∣∣An(Y )
∣∣ log ∣∣An(Y )

∣∣ and δ2 = δ3 = δ4 = δ

64αdmax log
∣∣An(Y )

∣∣ .

The first four terms in the regret bound correspond to the interventional samples required to learn the
ancestors of the reward node and the set of POMISs (IG). The fifth term corresponds to the regret
incurred during the UCB phase.

6 Experiments

Theorem 5.1 establishes the worst-case upper bound for cumulative regret when we need to test latent
confounders between all pairs of nodes within An(Y ). However, Algorithm 3 selectively examines
only a subset of latent confounders sufficient to infer the true POMIS set. Although the advantage is
hard to quantify in general, we demonstrate it using simulations on randomly generated graphs. We
sample a random ordering σ among the vertices. Then, for each nth node, we determine its in-degree
as Xn = max(1,Bin(n−1, ρ)), followed by selecting its parents through uniform sampling from the
preceding nodes in the ordering. Finally, we chordalize the graph using the elimination algorithm [23],
employing an elimination ordering that is the reverse of σ. Additionally, we introduce a confounder
between every pair of nodes with a probability of ρL. For all the simulations, we randomly sample 50
causal graphs with different values of densities ρ and ρL and assume that all variables are binary for
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simplicity, i.e., K = 2. We set the value of δ to 0.99, and the gaps γ = ϵ = 0.01 and η = 0.05. We
plot interventional samples used to learn the induced observable graph on An(Y ) with and without
latent confounders, as well as the samples required to learn the POMIS set by Algorithm 3. The
width of confidence interval is set to 2 standard deviations.

(a) ρ = 0.4, ρL = 0.2 (b) ρ = 0.4, ρL = 0.4 (c) ρ = 0.4, ρL = 0.6

Figure 2: Simulations to demonstrate advantage of Algorithm 3 over learning all possible latents.

(a) ρ = 0.4, ρL = 0.2 (b) ρ = 0.4, ρL = 0.4 (c) ρ = 0.4, ρL = 0.6

Figure 3: Simulations to demonstrate advantage of discovery for causal bandits.

(a) Nodes n = 10 (b) Nodes n = 15 (c) Nodes n = 20

Figure 4: Cumulative regret for Algorithm 3 versus learning all possible latents (ρ = ρL = 0.3).

Algorithm 3 requires fewer samples than learning the induced graph on An(Y ) with all confounders.
However, the advantage is reduced as ρL increases. The plots in Figure 3 compare the exponentially
growing arms in causal bandits with interventions samples used by our algorithm to learn the reduced
action set in the form of POMISs. We also run the UCB algorithm on the learned POMIS set and
plot the cumulative regret in Figure 4. Since the number of time steps T is on the order of 108, it is
not feasible to store and plot cumulative regret for every time step over multiple randomly sampled
graphs; therefore, we downsample the cumulative regret to show the overall trend. The downsampling,
along with the large scale of the y-axis, makes the regret in the discovery phase appear linear with
a fixed slope, although it is piece-wise linear if we zoom in. Also, the UCB phase converges very
fast compared to the discovery phase because the number of POMISs for randomly sampled graphs
is small. We plot the results for graphs with 10, 15, and 20 nodes, and in all cases, we can see the
advantage of partial discovery compared to full discovery, resulting in lower regret.

7 Conclusion

We show that partial discovery is sufficient to achieve sublinear regret for causal bandits with an
unknown causal graph containing latent confounders. Without relying on causal discovery, one has
to consider interventions on all possible subsets of nodes, which is infeasible. Thus, we propose a
two-phase approach where the first phase learns the induced subgraph on the ancestors of the reward
node, along with a subset of confounders, to construct the set of possibly optimal arms, and the
second phase involves the application of the UCB algorithm.
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A Supplemental Material

A.1 Review of d-separation:

Consider three disjoint sets of nodes X, Y, and Z in the causal graph G = (V,E). The sets of nodes
X and Y are d-separated given Z, denoted by (X ⊥⊥d Y|Z)G , if and only if there exists no path,
directed or undirected, between any node in set X and any node in set Y such that for every collider
on the path, either the collider itself or one of its descendants is included in the set Z, and no other
non-collider nodes on the path are included in the set Z. (A collider on a path is a node with both
arrows converging, e.g., B is a collider on the path ABC in A→ B ← C).

A.2 Pearl’s Rules of do-Calculus ([18]):

Let G represent the causal DAG, and let P denote the probability distribution induced by the
corresponding causal model. For any disjoint subsets of variables X,Y,Z, and W, the following rules
apply:

Rule 1: (Insertion/deletion of observations):

P (y|do(x), z,w) = P (y|do(x),w) if (Y ⊥⊥d Z|X,W)GX
. (2)

Rule 2: (Action/observation exchange):

P (y|do(x), do(z),w) = P (y|do(x), z,w) if (Y ⊥⊥d Z|X,W)GXZ
. (3)

Rule 3: (Insertion/deletion of actions):

P (y|do(x), do(z),w) = P (y|do(x),w) if (Y ⊥⊥d Z|X,W)GX,Z(W)
, (4)

where Z(W) is the set of nodes in Z that are not ancestors of any of the nodes in W in the graph GX.

A.3 Function to detect presence of Latent Confounder

Algorithm 4: Function to detect presence of Latent Confounder
1 Function DetectLatentConfounder(G, Xi, Xj , δ2, δ3, δ4, IData):
2 C = 16

ηγ2 log( 2n
2K2

δ3
) + 1

2η2 log( 2n
2K2

δ4
), B = 8

ϵ2
log 2nK2

δ2

3 if Xj ∈ An(Xi) swap them.
4 Find interventional data sets do(W = w) and do(Xi = xi,W = w) from IData s.t.

(Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆W and Xi & Xj /∈W
5 Get max(0, B − C) new samples for do(W = w)

6 if ∃ xi, xj ∈ [K] s.t. |P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))| > γ
2

then
7 Add bi-dirceted edge Xi ←→ Xj to graph G
8 return Updated Causal Graph G

A.4 Proof of Theorem 3.1:

Before proving Theorem 3.1, we state and prove two Lemmas.
Lemma A.1. It is necessary to learn/detect the latent confounders between reward node Y and any
node X ∈ An(Y ) in causal graph G to learn all the POMISs correctly and hence avoid linear regret.

Before proceeding to the proof, we recall an important result from [5]: For a causal graph G with
reward variable Y , IB(GW, Y ) is a POMIS for any W ⊆ V \ Y .

Proof: Consider a causal graph G(V,E) with a node X ∈ An(Y ) such that there exists a latent
confounder between X and the reward Y . Suppose we do not detect the presence of the confounder
and have access to another causal graph G′ with everything the same as G except that there is no
confounder between X and Y . We show that there exists one such POMIS that we cannot learn
from G′, which actually exists in the true causal graph G. To prove this, consider a set of nodes

11



W = Pa(X) ∪ Ch(Pa(X)) ∪ CC(X) \ {X,Y }. For the graph G′, note that X /∈ MUCT(G′W, Y ),
and also there ∄Z ∈ Ch(Pa(X)) \ {X} s.t. Z ∈ MUCT(G′W, Y ). This implies that ∄Z ∈ Pa(X)
s.t. Z ∈ IB(G′W, Y ). However, for the true graph G, we have a different IB(GW, Y ) for the same
definition of W because it contains the bi-directed edge between X and Y , which implies that
X ∈ MUCT(GW, Y ), and as a result, Pa(X) ⊆ IB(GW, Y ). Also, in the case Pa(X) = ∅, we have
a different POMIS. On this side, note that X /∈ MUCT(G′W, Y ), which implies that along the causal
path from X to Y , there must be one node Z such that Z ∈ MUCT(G′W, Y ), which implies either
X or one of its descendants on the path from X to Y is in IB(G′W, Y ), which is not the case for G
since X ∈ MUCT(GW, Y ). Thus, we have different interventional boundary or POMIS for the two
causal graphs G and G′ given the above choice of W, even if X has no parents.

The next step is to show that the particular POMIS IB(GW, Y ) cannot be learned from the DAG G′,
i.e., IB(GW, Y ) ̸= IB(G′W′ , Y ) for any W′ ⊆ V. We need to show this because of the graphical
characterization of POMISs in Lemma 3.1. Using the definition of W, note that Pa(X) ⊆ IB(GW, Y )
and for all Z ∈ Ch(Pa(X))\{X}, there exists either Z ∈ IB(GW, Y ) or De(Z)\{Y } ∈ IB(GW, Y ).
Also, if there are such nodes in CC(X) \ {X,Y } which do not have a path to X comprised of
directed edges only, call such set of nodes T . If T ̸= ϕ, then for all t ∈ T , we have either
t ∈ IB(GW, Y ) or De(t) \ {Y } ∈ IB(GW, Y ). Also, note that ∄Z ∈ De(X) ∪ {X} such that
Z ∈ IB(GW, Y ). Now consider DAG G′ with the bi-directed edge between X and Y missing.
Assume by contradiction ∃W′ ⊆ V such that IB(GW, Y ) = IB(G′W′ , Y ). This, however, using
the aforementioned characterization of IB(GW, Y ) implies that ∄Z ∈ Ch(Pa(X)) \ {X} such that
Z ∈ MUCT(G′W′ , Y ) and also ∄t ∈ T such that t ∈ MUCT(G′W′ , Y ) using the aforementioned
definition of T . However, note that we need Pa(X) ⊆ IB(G′W′ , Y ), which under the given choice
of W is only possible when X ∈ MUCT(G′W′ , Y ), which would require is a bi-directed edge
between X and Y in the DAG G′, which is a contradiction. Also, for the case when Pa(X) = ϕ,
we have a contradiction because we require the following to be true: ∄Z ∈ De(X) ∪ {X} such that
Z ∈ IB(G′W′ , Y ). For the given choice of W, it implies that there is a bi-directed edge between X
and Y in the DAG G′, which is a contradiction. Thus, by contradiction, we show that ∄W′ ⊆ V
such that G′, i.e., IB(GW, Y ) ̸= IB(G′W′ , Y ). Thus, we will miss at least one POMIS given that we
do not consider latent confounders between the reward node Y and any node X ∈ An(Y ), and may
incur linear regret. This completes the proof of Lemma A.1.

Lemma A.2. Consider a causal graph G(V,E) and another graph G′ such that they have the same
vertex set and directed edges but differ in bidirected edges, with the bidirected edges in G′ being a
subset of the bidirected edges in G. The graphs will yield different collections of POMISs if there
exists some Z ∈ An(Y ) such that either (a) or (b) is true:

(a) There is a bi-directed edge between Z and Y in G but not in G′ .

(b) Neither of the graphs G′ and G have a bidirected edge between Z and Y , and there exists a
bidirected edge in G between some X ∈ MUCT(G′

Pa(Z),Bi(Z,G′)
, Y ) and Z but not in G′.

Proof: The first half of Lemma A.2, i.e., "The graphs will yield different collections of POMISs
if there exists some Z ∈ An(Y ) such that there is a bi-directed edge between Z and Y in G but
not in G′," is the same as Lemma A.1, and the same proof applies here. The reason is that in graph
G′, we miss a latent variable between reward and one of its ancestors, which was actually present
in the true graph G. We only need to proof the second half of Lemma A.2 i.e. graphs will yield
different collections of POMISs if there exists some Z ∈ An(Y ) such that (b) is true. Consider
a causal graph G(V,E) and another DAG G′ such that they have the same vertex set and directed
edges, but differ in bi-directed edges. Consider a causal graph G(V,E) and another DAG G′ such
that they have the same vertex set and directed edges, but differ in bi-directed edges. We show
that if neither of the graphs G′ and G have a bidirected edge between Z and Y , and there exists a
bidirected edge in G between some X ∈ MUCT(G′, Y ) \ Pa(Z) and Z, then there exists one such
POMIS that we cannot learn from G′, which actually exists in the true causal graph G. To prove
this, consider a set of nodes W = Pa(Z) ∪ Ch(Pa(Z) \ An(X)) ∪ Bi(Z,G′) \ {X,Z, Y }. For
the graph G′, note that Z /∈ MUCT(G′W, Y ), and also there ∄N ∈ Ch(Pa(Z) \ An(X)) \ {Z} s.t.
N ∈ MUCT(G′W, Y ). This implies that ∄N ∈ Pa(Z) \ An(X) s.t. N ∈ IB(G′W, Y ). However,
for the true graph G, we have a different IB(GW, Y ) for the same definition of W because it contains
the bi-directed edge between X and Z, which implies that Z ∈ MUCT(GW, Y ), and as a result,
Pa(Z) \ An(X) ⊆ IB(GW, Y ). Also, in the case Pa(Z) \ An(X) = ∅, we have different a POMIS.
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On this side, note that Z /∈ MUCT(G′W, Y ), which implies that along the causal path from Z
to Y , there must be one node N such that N ∈ MUCT(G′W, Y ), which implies either Z or one
of its descendants on the path from Z to Y is in IB(G′W, Y ), which is not the case for G since
Z ∈ MUCT(GW, Y ). Thus, we have different interventional boundary or POMIS for the two causal
graphs G and G′ given the above choice of W.

The next step is to show that the particular POMIS IB(GW, Y ) cannot be learned from the DAG G′,
i.e., IB(GW, Y ) ̸= IB(G′W′ , Y ) for any W′ ⊆ V. We need to show this because of the graphical
characterization of POMISs in Lemma 3.1. Using the definition of W, note that Pa(Z) \ An(X) ⊆
IB(GW, Y ) and for all N ∈ Ch(Pa(Z) \ An(X)) \ {Z}, there exists either N ∈ IB(GW, Y ) or
De(N)\{Y } ∈ IB(GW, Y ). Also, if there are such nodes in Bi(Z,G′)\{X,Z, Y }which do not have
a path to Z comprising of directed edges only, call such set of nodes T . If T ̸= ϕ, then for all t ∈ T ,
we have either t ∈ IB(GW, Y ) or De(t)\{Y } ∈ IB(GW, Y ). Also, note that ∄N ∈ De(Z)∪{Z} such
that N ∈ IB(GW′ , Y ). Now consider the DAG G′ with the bi-directed edge between Z and Y missing.
Assume by contradiction ∃W′ ⊆ V such that IB(GW, Y ) = IB(G′W′ , Y ). This, however, using the
aforementioned characterization of IB(GW, Y ) implies that ∄N ∈ Ch(Pa(Z) \ An(X)) \ {Z} such
that N ∈ MUCT(G′W′ , Y ) and also ∄t ∈ T such that t ∈ MUCT(G′W′ , Y ) for the aforementioned
definition of T . However, note that we need Pa(Z) \ An(X) ⊆ IB(G′W′ , Y ), which under the given
choice of W is only possible when Z ∈ MUCT(G′W′ , Y ), which would require a bi-directed edge
between Z and X in the DAG G′, which is a contradiction. Also, for the case when Pa(Z) = ϕ, we
have a contradiction because we require the following to be true: ∄N ∈ De(Z) ∪ {Z} such that
N ∈ IB(G′W′ , Y ). For the given choice of W, it implies that there is a bi-directed edge between
Z and X in the DAG G′, which is a contradiction. Thus, by contradiction, we show that ∄W′ ⊆ V
such that G′, i.e., IB(GW, Y ) ̸= IB(G′W′ , Y ). This implies that we miss atleast one POMIS when
either of statements (a) and (b) hold. This proves the second half of Lemma A.2.

We now proceed to the formal proof for Theorem 3.1:

Theorem. 3.1: Consider a causal graph G(V,E) and another DAG G′ such that they have the same
vertex set and directed edges but differ in bidirected edges, with the bidirected edges in G′ being a
subset of the bidirected edges in G. The graphs will yield different collections of POMISs if and only
if there exists some Z ∈ An(Y ) such that either (a) or (b) is true:

(a) There is a bi-directed edge between Z and Y in G but not in G′ .

(b) Neither of the graphs G′ and G have a bidirected edge between Z and Y , and there exists a
bidirected edge in G between some X ∈ MUCT(G′

Pa(Z),Bi(Z,G′)
, Y ) and Z but not in G′.

Proof: One direction for Theorem 3.1 is proved already in Lemma A.2. We only to need to prove the
other direction which is that two causal graphs G and G′ such that they have the same vertex set and
directed edges, but differ in bi-directed edges will yield same collections POMISs when neither of
statements (a) and (b) is true. Note when neither of (a) or (b) is true the graphs G and G′ might still
have a different set of bi-directed edges. We will have two possible scenarios here. Suppose G has a
bi-directed edge between some Z ∈ An(Y ) and some X ∈ An(Y ), such that there is a bi-directed
edge between pair of vertices (Z, Y ) and (X,Y ) in both the graphs and the bi-directed edge between
X and Z is absent in G′. Further, assume neither of statements (a) and (b) hold. In this case, despite
the absence of a bi-directed edge between X and Z in G′, the graphs will yield the same set of
POMISs. This is because Z /∈MUCT (GW, Y ) for some set of nodes W only when Z ∈W, and the
same is the case for G because they share a bi-directed edge between Z and Y . By symmetry, we have
the argument hold for X as well. So, the presence or absence of bi-directed edges between X and Z
does not change the set of POMISs learned from the graph when both X and Z are confounded with
reward Y already. Thus, we can delete all such bi-directed edges one by one from G while the set of
POMISs learned from each of the intermediate causal graphs stays the same. Consider the second
scenario, where G has bi-directed edges between a node Z ∈ An(Y ), such that there is no bi-directed
edge between Z and Y in both graphs (G and G′) and a node X that has the following characteristics:
X ∈ MUCT(G′, Y ) but X /∈ MUCT(G′

Pa(Z),Bi(Z,G′)
, Y ). However, the bi-directed edge between

X and Z is absent in G′. Further, assume neither of statements (a) and (b) hold. The condition
X ∈ MUCT(G′, Y ) but X /∈ MUCT(G′

Pa(Z),Bi(Z,G′)
, Y ) implies that either ∃N ∈ Pa(Z) such that

N ∈ MUCT(G′, Y ) or ∃N ∈ Bi(Z,G′) such that N ∈ MUCT(G′, Y ) Since bi-directed edges in G′
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are a subset of bi-directed edges in G, we have: Either ∃N ∈ Pa(Z) such that N ∈ MUCT(G, Y )
or ∃N ∈ Bi(Z,G) such that N ∈ MUCT(G, Y ). Since any MUCT is closed under the De(.) and
CC(.) operations, i.e., for any MUCT say T we have De(T) = T and CC(T) = T if ∃N ∈ Pa(Z)
such that N ∈ MUCT(GW, Y ) or ∃N ∈ Bi(Z,G) such that N ∈ MUCT(GW, Y ), we already have
Z ∈ MUCT(GW, Y ) using the definition of MUCT. The bi-directed edge between X and Z will
play a role only when ∄N ∈ Pa(Z) such that N ∈ MUCT(GW, Y ) and ∄N ∈ Bi(Z,G) such that
N ∈ MUCT(GW, Y ) for some set of W. Also note that X /∈ MUCT(GW, Y ) when ∄N ∈ Pa(Z)
such that N ∈ MUCT(GW, Y ) and ∄N ∈ Bi(Z,G) such that N ∈ MUCT(GW, Y ). Thus absence
or presence of bi-directed edge between X and Z will have no effect on POMISs learned from graph
G in this scenario as well. Combining both of the scenarios when neither of the conditions of (a) and
(b) hold, all other bi-directed edges from G, which are absent in G′, can be removed one by one from
G while keeping the POMISs learned from both the intermediate graphs the same. Since G and G only
differ in bi-directed edges, with bi-directed edges in G′ being a subset of those in G, eventually both
graphs will become identical, which proves the statement: Two graphs G and G′ will have the same
POMISs if neither of the statements (a) or (b) hold true. This completes the proof of the Theorem 3.1.

A.5 Proof of Lemma 4.1:

Consider a causal graph G(V,E) and W ⊆ V. Furthermore, let X,T ∈ V \W be any two variables.
Fix some realization w ∈ [K]|W|. Under post interventional faithfulness Assumption 2.1 we want to
prove: (X ∈ An(T ))GW

⇐⇒ P (t|do(w)) ̸= P (t|do(w), do(x)) for some x, t ∈ [K].

Forward Direction ( =⇒ ): (X ∈ An(T ))GW
=⇒ P (t|do(w)) ̸= P (t|do(w), do(x)) for some

x, t ∈ [K]. By contradiction, assume P (t|do(w)) = P (t|do(w), do(x)), ∀x, t ∈ [K]. This implies
that P (t|do(w), do(x)) = P (t|do(w)) = some function of only t and w. This implies that for the
sub-modelMW=w,X the following CI statements holds: (T ⊥⊥ X)MW=w,X

. However, note that if
(X ∈ An(T ))GW

, then we still have (X ∈ An(T ))GW,X
. This implies there is a directed path from X

to T in the post-interventional graph GW,X . Therefore, we have: (T ̸⊥⊥d X)GW,X
. Note that under

the post interventional faithfulness Assumption 2.1, the CI statement (T ⊥⊥ X)MW=w,X
can hold

only if the d-separation statement holds (T ⊥⊥d X)GW,X
, which is clearly a contradiction. This

completes the proof for the forward direction.

Reverse Direction ( ⇐= ): (X ∈ An(T ))GW
⇐= P (t|do(w)) ̸= P (t|do(w), do(x)) for

some x, t ∈ [K]. We prove the contrapositive statement instead, i.e., (X /∈ An(T ))GW
=⇒

P (t|do(w)) = P (t|do(w), do(x)), ∀x, t ∈ [K]. Note that (X /∈ An(T ))GW
clearly implies that

(X /∈ An(T ))GW,X
which implies that (T ⊥⊥d X)GW,X

. Thus, using Rule 3 of Pearl’s do calculus,
we have: P (t|do(w), do(x)) = P (t|do(w)), ∀x, t ∈ [K]. This completes the proof of the reverse
direction.

A.6 Proof of Lemma 4.2:

Consider two variables Xi and Xj such that Xj /∈ An(Xi) and a set of variables (Pa(Xi)∪Pa(Xj)\
{Xi}) ⊆W and Xi & Xj /∈W. Fix some realization w ∈ [K]|W|. Under the post-interventional
faithfulness Assumption 2.1 we want to show that: There is latent confounder between Xi and Xj

⇐⇒ P (xj | do(xi), do(W = w)) ̸= P (xj | xi, do(W = w)) for some realization xi, xj ∈ [K].

Forward Direction ( =⇒ ): There is latent confounder between Xi and Xj such that Xj /∈ An(Xi)
=⇒ P (xj | do(xi), do(W = w)) ̸= P (xj | xi, do(W = w)) for some realization xi, xj ∈ [K]. By
contradiction assume P (xj | do(xi), do(W = w)) = P (xj | xi, do(W = w)) ∀xi, xj ∈ [K]. Recall
that: Xj = fj(Pa(Xj),Uj). Since there is latent confounder between Xi and Xj call it Lij . Also
note that Lij ∈ Uj. Define U′

j := Uj \ {Li,j}

P (xj | do(xi), do(W)) = P (xj | do(xi), do(pa(Xi)), do(pa(Xj) \ {xi}))) (5)

where the interventions do(Pa(Xi)) and do(Pa(Xj))) are consistent with do(xi) and do(W = w).
Note that there is also an application of Pearl’s do-calculus Rule 3 because by definition of set W we
have (Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆W and Xi & Xj /∈W. All the extra intervention targets can
simply be deleted, and we are left with intervention on Xi, Pa(Xi), and Pa(Xj).
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P (xj | do(xi), do(W)) =
∑

u′
j, li,j

P (xj | do(xi), do(pa(Xi)), do(pa(Xj) \ {xi}),U′
j = u′

j , Lij = lij)

× P (U′
j = u′

j , Lij = lij)
(6)

We have another application of Pearl’s do-calculus Rule 3 because interventions on observed variables
don’t affect unobserved variables, as there are no causal/directed paths from observed to unobserved
variables. Also we have:

P (xj | xi, do(W)) = P (xj | xi, do(pa(Xi)), do(pa(Xj) \ {xi}))) (7)

Note that there is also an application of Pearl’s do-calculus Rule 3 because by definition of set W we
have (Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆ W and Xi & Xj /∈W. All the extra intervention targets can
simply be deleted, and we are left with conditioning on Xi = xi and interventions on Pa(Xi) and
Pa(Xj).

P (xj | xi, do(W)) =
∑

u′
j, li,j

P (xj | xi, do(pa(Xi)), do(pa(Xj) \ {xi}),U′
j = u′

j , Lij = lij)

× P (U′
j = u′

j , Lij = lij |xi, do(pa(Xi)), do(pa(Xj) \ {xi}))
(8)

Using Pearl’s do-calculus Rule 2, we can replace the conditioning Xi = xi with the intervention
do(xi) in P (xj | xi, do(pa(Xi)), do(pa(Xj) \ {xi}),U′

j = u′
j , Lij = lij) because Xj /∈ An(Xi)

and Pa(Xi) are already intervened on. Also, the latent confounder Lij is conditioned on, so there is
no open backdoor path from Xi to Xj . Thus, we have:

P (xj | xi, do(W)) =
∑

u′
j, li,j

P (xj | do(xi), do(pa(Xi)), do(pa(Xj) \ {xi}),U′
j = u′

j , Lij = lij)

× P (U′
j = u′

j , Lij = lij |xi, do(pa(Xi)), do(pa(Xj) \ {xi}))
(9)

From the Equations 6 and 9 and assumption P (xj | do(xi), do(W = w)) = P (xj | xi, do(W = w))
∀xi, xj ∈ [K] we have: ∑

u′
j, li,j

P (xj | do(xi), do(pa(Xi)), do(pa(Xj) \ {xi}),U′
j = u′

j , Lij = lij)

× (P (U′
j = u′

j , Lij = lij |xi, do(pa(Xi)), do(pa(Xj) \ {xi}))− (P (U′
j = u′

j , Lij = lij)) = 0
(10)

Since probabilities are positive, whenever P (xj | do(xi), do(pa(Xi)), do(pa(Xj) \ {xi}),U′
j =

u′
j , Lij = lij) ≥ 0, we must have:

P (U′
j = u′

j , Lij = lij |xi, do(pa(Xi)), do(pa(Xj) \ {xi})) = P (U′
j = u′

j , Lij = lij). (11)

However, since we know that Lij is a confounder between Xi and Xj , we have an edge Lij → Xi

in the causal graph, which implies that under any intervention do(Z) such that Xi /∈ Z, we must
have (Lij ̸⊥⊥ Xi)MZ=z

by interventional faithfulness Assumption 2.1. This implies that there exists
a realization x∗

i and l∗ij such that:

P (U′
j = u′

j , Lij = l∗ij |x∗
i , do(pa(Xi)), do(pa(Xj) \ {xi})) ̸= P (U′

j = u′
j , Lij = l∗ij) (12)

15



Now, using the combination do(W = w) and a special choice of realizations x∗
i and l∗ij , we must have

at least one special realization x∗
j such that: P (x∗

j | do(x∗
i ), do(Pa(Xi)), do(Pa(Xj) \ {xi}),U′

j =
u′

j , Lij = l∗ij) > 0. Combining this with Equations 12 and 10, we conclude for some x∗
i , x

∗
j ∈ [K],

we have P (x∗
j | do(x∗

i ), do(W = w)) ̸= P (x∗
j | x∗

i , do(W = w)). Thus this leads to contradiction.
Thus if there is a latent confounder between Xi and Xj =⇒ P (xj | do(xi), do(W = w)) ̸= P (xj |
xi, do(W = w)) for some realization xi, xj ∈ [K]. This completes the proof of the forward direction.

Reverse Direction ( ⇐= ): For a pair of variables Xi and Xj such that Xj /∈ An(Xi), if P (xj |
do(xi), do(W = w)) ̸= P (xj | xi, do(W = w)) for some realizations xi, xj ∈ [K], then there is a
latent confounder between Xi and Xj . We prove the contrapositive statement instead, i.e., if there is no
latent confounder between Xi and Xj , then P (xj | do(xi), do(W = w)) = P (xj | xi, do(W = w)),
∀xi, xj ∈ [K]. Note that by construction, we have: (Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆ W. For such
choice of set W and the fact that Xj /∈ An(Xi) and there is no latent confounder between Xi and Xj ,
we have (Xj ⊥⊥ Xi)GXiW

. Thus, from Pearl’s do-calculus Rule 2, we have P (xj | do(xi), do(W =

w)) = P (xj | xi, do(W = w)), ∀xi, xj ∈ [K]. This completes the proof of the reverse direction.

A.7 Proof of Theorem 4.1:

We state and prove two lemmas regarding the sampling complexity for running ancestrality tests
and sampling complexity for Algorithm 1 to learn the transitive closure of the causal graph under an
arbitrary intervention, and then proceed to the proof of Theorem 4.1.

Lemma A.3. Suppose that the Assumption 4.1 holds and we have access to max( 8
ϵ2 ,

8
γ2 ) log

2K2

δ1

samples from do(Xi = xi,W = w) ∀xi ∈ [K] and 8
ϵ2 log

2K2

δ2
samples from do(W = w) for a fixed

w ∈ [K]|W| and W ⊆ V. Then, with probability at least 1− δ1 − δ2, we have (Xi ∈ An(Xj))GW
if and only if ∃ xi, xj ∈ [K] s.t.

∣∣P̂ (xj | do(w))− P̂ (xj | do(w), do(xi))
∣∣ > ϵ

2 .

Proof: Suppose that Assumption 4.1 holds and we have access to max( 8
ϵ2 ,

8
γ2 ) log

2K2

δ1
samples

from do(Xi = xi,W = w) ∀xi ∈ [K] and 8
ϵ2 log

2K2

δ2
samples from do(W = w) for a fixed

w ∈ [K]|W| and W ⊆ V, we want to show that with probability at least 1− δ1 − δ2, we have the
following:

(Xi ∈ An(Xj))GW
⇐⇒ ∃ xi, xj ∈ [K] s.t.

∣∣ P̂ (xj |do(w))− P̂ (xj |do(w), do(xi))
∣∣ > ϵ

2
. (13)

Using Hoeffding’s inequality with A samples from intervention do(xi,w),

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≥
√

1

2A
log

2K2

δ1
w.p. at most

δ1
K2

. (14)

If we choose A = max( 8
ϵ2 ,

8
γ2 ) log

2K2

δ1
, we have:∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≥ ϵ

4
w.p. at most

δ1
K2

. (15)

Similarly, using Hoeffding’s inequality with B samples from intervention do(w),

∣∣∣∣P̂ (xj |do(w))− P (xj |do(w))

∣∣∣∣ ≥
√

1

2A
log

2K2

δ1
w.p. at most

δ2
K2

. (16)

If we choose B = 8
ϵ2 log

2K2

δ2
, we have:∣∣∣∣P̂ (xj |do(w))− P (xj |do(w))

∣∣∣∣ ≥ ϵ

4
w.p. at most

δ2
K2

. (17)
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Since the realization w ∈ [K]|W| is fixed, but xi, xj ∈ [K], we have a total of K2 possible bad
events when estimates are not good. With the given choice of number of samples A and B, we have:

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ ϵ

4
∀xi, xj ∈ [K] w.p. at least 1− δ1, (18)

∣∣∣∣P̂ (xj |do(w))− P (xj |do(w))

∣∣∣∣ ≤ ϵ

4
∀xj ∈ [K] w.p. at least 1− δ2. (19)

Now when both the estimates are accurate which has a probability of at least 1− δ1− δ2, we consider
two possible scenarios. Suppose that Xi /∈ An(Xj) in GW. In this case by Pearl’s do-calculus Rule

3 we have
∣∣∣∣P (xj |do(xi), do(w))− P (xj |do(w))

∣∣∣∣ = 0 ,∀xi, xj ∈ [K]. By triangular inequality we

have the following:

∣∣∣∣P̂ (xj |do(xi), do(w))− P̂ (xj |do(w))

∣∣∣∣ ≤ ∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣+∣∣∣∣P̂ (xj |do(w))− P (xj |do(w))

∣∣∣∣ ≤ ϵ

2
∀xi, xj ∈ [K]. (20)

However, when Xi ∈ An(Xj) in GW under Assumption 4.1 we must have some configuration say

xi, xj ∈ [K] for any w ∈ [K]|W| such that
∣∣∣∣P (xj |do(xi), do(w))−P (xj |do(w))

∣∣∣∣ > ϵ. By triangular

inequality when Xi ∈ An(Xj) in GW, ∃ xi, xj ∈ [K] such that

∣∣∣∣P̂ (xj |do(xi), do(w))− P̂ (xj |do(w))

∣∣∣∣ ≥ ∣∣∣∣P (xj |do(xi), do(w))− P (xj |do(w))

∣∣∣∣
−
∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣− ∣∣∣∣P̂ (xj |do(w))− P (xj |do(w))

∣∣∣∣ > ϵ

2
. (21)

Thus, using Assumption 4.1 with the given choice of number of samples with probability at least
1− δ1 − δ2, we have the following result:

(Xi ∈ An(Xj))GW
⇐⇒ ∃ xi, xj ∈ [K] s.t.

∣∣ P̂ (xj |do(w))− P̂ (xj |do(w), do(xi))
∣∣ > ϵ

2
. (22)

This completes the proof for Lemma A.3.

Lemma A.4. Algorithm 1 learns the true transitive closure under any intervention, i.e., GtcW , with
probability at least 1 − nδ1 − δ2 with a maximum KAn + B interventional samples. If we set
δ1 = δ

2n and δ2 = δ
2 , then Algorithm 1 learns true transitive closure with probability at least 1− δ.

Proof: In order to prove that Algorithm 1 learns the true transitive closure under any intervention,
i.e., GtcW, we recall from the proof of Lemma A.3 that the test for ancestrality works perfectly under
the event that the causal effects of the form P (xj |do(xi), do(w)) and P (xj |do(w)) are estimated
accurately with an error of at most ϵ

4 for all xi, xj ∈ [K] and any fixed w ∈ [K]W. Now, since

Algorithm 1 takes A = max
(

8
ϵ2 ,

8
γ2

)
log 2nK2

δ1
samples from do(W = w) and B = 8

ϵ2 log
2nK2

δ2

samples from every do(Xi = xi,W = w) for all Xi ∈ V\W and for all xi ∈ [K]. The total number
of intervention samples collected is clearly at most KAn + B. In order to show that Algorithm 1
learns the true transitive closure under any intervention, i.e., GtcW, with high probability, we have to
demonstrate that Algorithm 1 is able to estimate all causal effects with a maximum error of ϵ

4 with
high probability so that all the ancestrality tests work perfectly, as implied by the Proof of LemmaA.3.
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Using Hoeffding’s inequality with B = 8
ϵ2 log

2nK2

δ2
samples from intervention do(w). For a fixed

Xj ∈ V \W we have:∣∣∣∣P̂ (xj |do(w))− P (xj |do(w))

∣∣∣∣ ≤ ϵ

4
∀xj ∈ [K] w.p. at least 1− δ2

n
. (23)

Using the union bound we have the following:

∣∣∣∣P̂ (Xj = xj |do(w))−P (Xj = xj |do(w))

∣∣∣∣ ≤ ϵ

4
∀xj ∈ [K] , ∀Xj ∈ V\W w.p. at least 1−δ2.

(24)

Now, consider a fixed Xi, Xj ∈ V \W, and using A = max
(

8
ϵ2 ,

8
γ2

)
log 2nK2

δ1
samples for every

xi ∈ [K], we have the following using the Hoeffding’s inequality:

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ min(
ϵ

4
,
γ

4
) ∀xi, xj ∈ [K] w.p. at least 1− δ1

n
(25)

Using the union bound we have the following:

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ min(
ϵ

4
,
γ

4
)

∀xi, xj ∈ [K] , ∀Xj ∈ V \ (W ∪ {Xi}) w.p. at least 1− δ1
(26)

Again using the union bound over all intervention targets Xi ∈ V we have the following:

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ min(
ϵ

4
,
γ

4
)

∀xi, xj ∈ [K] , ∀Xi ∈ V \W , ∀Xj ∈ V \ (W ∪ {Xi}) w.p. at least 1− nδ1
(27)

From Equations 24 and 27, using the union bound with probability at least 1 − nδ1 − δ2, all the
causal effects are estimated within an error of ϵ

4 from the true values, ensuring that all ancestrality
tests work perfectly under this good event. Thus, Algorithm 1 learns the true transitive closure
under any intervention, i.e., GtcW, with KAn + B intervention samples with probability of at least
1 − nδ1 − δ2. Also, if we set δ1 = δ

2n and δ2 = δ
2 , then Algorithm 1 learns the true transitive

closure under any intervention, i.e., GtcW with a probability of 1− δ, with KAn+B samples, where

A = max
(

8
ϵ2 ,

8
γ2

)
log 4n2K2

δ and B = 8
ϵ2 log

4nK2

δ . This completes the proof of Lemma A.4.

In order to prove Theorem 4.1, we revisit the statement of Lemma A.3: Algorithm 1 learns the
true transitive closure under any intervention, i.e., GtcW, with KAn + B intervention samples with
a probability of at least 1 − nδ1 − δ2. Algorithm 2 randomly samples a target set W and calls
Algorithm 1 to learn the active true transitive closure of the post-interventional graph, i.e., GtcW. For
every iteration, Algorithm 2 computes transitive reduction Tr(GtcW) and updates all the edges to
construct the observable graph. To prove the results in Theorem 4.1, we rely on Lemma 5 from [13],
which is stated below:
Lemma A.5. [13] Consider a graph G with observed variables V and an intervention set W ⊆ V.
Consider post-interventional observable graph GW and a variable Xj ∈ V \W. Let Xi ∈ Pa(Xj)
be such that all the parents of Xj above Xi in partial order are included in the intervention set
W. This implies that {Wi : π(Wi) > π(Xi) & Wi ∈ Pa(Xj)} ⊆ W . Then, the directed
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edge (Xi, Xj) ∈ E(Tr(GW)). The properties of transitive reduction yields Tr(GW) = Tr(Gtc
W
).

Consequently, the transitive reduction of Gtc
W

, i.e., Tr(Gtc
W
) = Tr(GW) may be used to learn the

directed edge (Xi, Xj).
(Note: E(G) denotes the edges of the graph G and π is any total order that is consistent with the
partial order implied by the DAG, i.e., π(X) < π(Y ) iff X is an ancestor of Y).

Assume that the number of the direct parents of Xj above Xi is dij where dij ≤ dmax. Let Ei(Xj)
be the following event: Xi, Xj /∈ W & {Wi : π(Wi) > π(Xi) & Wi ∈ Pa(Xj)} ⊆ W. The
probability of this event for one run of the outer loop in Algorithm 2 with the assumption that
2dmax >= 2 is given by:

P [Ei(Xj)] =
1

4d2max

(1− 1

2dmax
)dij ≥ 1

4d2max

(1− 1

2dmax
)2dmax≥ 1

d2max

1

16
. (28)

The last inequality holds for 2dmax >= 2 because (1 − 1
x )

x ≥ 0.25, ∀x ≥ 2. Based on Lemma
A.5, the event Ei(Xj) implies that the directed edge (Xj , Xj) will be present in Tr(Gtc

W
) and

will be learned. The outer loop runs for 8αdmax log(n) iterations and elements of the set W are
independently sampled. The probability of failure, i.e., the event under consideration does not happen
for all runs of the outer loop in Algorithm 2, is bounded as follows:

P [(Ei(V ))c] ≤ (1− 1

16 d2max

)8αdmax log(n) ≤ e−
α

2dmax
log(n) =

1

n
α

2dmax

. (29)

For a graph with a total number of variables n, the total number of such bad events will be
(
n
2

)
since

a graph can have at most
(
n
2

)
edges. Using union bounding, the probability of bad events for every

pair of variables is given by:

P [Failure] ≤
(
n

2

)
× 1

n
α

2dmax

≤ 1

n
α

2dmax
−2

. (30)

Under the event the Algorithm 1 learns the correct transitive closure Gtc
W

for all the 8αdmax log n
randomly sampled intervention sets W ⊆ V, above derivations show that we will be able to learn all
the edges in the true observable with a probability of at least 1− 1

n
α

2dmax
−2 .

Now recall the results in Lemma A.3: Algorithm 1 learns the true transitive closure under any
intervention, i.e., GtcW, with KAn+B intervention samples with a probability of at least 1−nδ1− δ2.
Combining the two results above using the union bound, we have the following series result:

Algorithm 2 learns the true observable graph with a probability of at least 1 − 1

n
α

2dmax
−2 −

8αdmax log(n)(nδ1 + δ2) with a maximum 8αdmax log n(KAn+B) interventional samples. Also,
if we set α =

2dmax log ( 2
δ+2)

logn , δ1 = δ
32αdmaxn logn , and δ2 = δ

32αdmax logn , then Algorithm 2 learns the

true observable graph with a probability of at least 1− δ. Where A = max
(

8
ϵ2 ,

8
γ2

)
log 2nK2

δ1
and

B = 8
ϵ2 log

2nK2

δ2
. This completes the proof of Theorem 4.1.

A.8 Proof of Lemma 4.3:

Consider two nodes Xi and Xj s.t. Xj /∈ An(Xi) and suppose that Assumptions 4.2 4.3 holds
and we have access to max( 8

ϵ2 ,
8
γ2 ) log

2K2

δ1
samples from do(Xi = xi,W = w) ∀xi ∈ [K] and

16
ηγ2 log(

2K2

δ3
) + 1

2η2 log(
2K2

δ4
) from do(W = w) for a fixed w ∈ [K]|W| and W ⊆ V such that

(Pa(Xi)∪Pa(Xj)\{Xi}) ⊆W and Xi & Xj /∈W. Then with probability at least 1− δ1− δ3− δ4,
we want to show that:

There exists a latent confounder between Xi and Xj ⇐⇒

∃ xi, xj ∈ [K] s.t.
∣∣ P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))

∣∣ > γ

2
.

(31)
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Using Hoeffding’s inequality with A samples from intervention do(xi,w).

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≥
√

1

2A
log

2K2

δ1
w.p. at most

δ1
K2

. (32)

If we choose A = max( 8
ϵ2 ,

8
γ2 ) log

2K2

δ1
, we have:∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≥ γ

4
w.p. at most

δ1
K2

. (33)

Using Hoeffding’s inequality with C samples from intervention do(xi).

∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ ≥
√

1

2Cxi

log
2K2

δ3
w.p. at most

δ3
K2

. (34)

Where Cxi
is the number of samples where Xi = xi among the C samples for the intervention do(w).

Note the we can’t directly control Cxi
and it’s value depends on the true interventions distribution

P (xi, do(w)) along-with the number of samples C. Suppose if we can set Cxi ≥ 8
γ2 log

2K2

δ3
, we

have: ∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ ≥ γ

4
w.p. at most

δ3
K2

. (35)

We need to find the number of samples C such that Cxi
≥ 8

γ2 log
2K2

δ3
. Using the Hoeffding’s bound

we have:

P (Cxi
≥ CP (xi|do(w))− η) ≥ 1− 2e−2η2/C . (36)

Let δ4
K2 = 2e−2η2/C , which implies η =

√
C
2 log 2K2

δ4
. Thus we have:

P

(
Cxi
≥ CP (xi|do(w))−

√
C

2
log

2K2

δ4

)
≥ 1− δ4

K2
(37)

Cxi
≥ CP (xi|do(w))−

√
C

2
log

2K2

δ4
w.p. at least 1− δ4

K2
. (38)

Using Assumption 4.3, we have P (xi|do(w)) = 0 or P (xi|do(w)) ≥ η. Note that if P (xi|do(w)) =

0, the event will never happen, and we don’t care about the accuracy of the estimate P̂ (xj |xi, do(w))
because it is already initialized to zero. Now the equation above can be rewritten as:

Cxi ≥ Cη −

√
C

2
log

2K2

δ4
w.p. at least 1− δ4

K2
. (39)

Since we want Cxi
≥ 8

γ2 log
2K2

δ3
with high probability, we have the following relationship:

Cη −

√
C

2
log

2K2

δ4
≥ 8

γ2
log

2K2

δ3
(40)

Solving the equation for number of samples C we get:
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C ≥
4η

8 log
(

2K2

δ3

)
γ2 + ln

(
2K2

δ4

)
+

√
8η

8 log
(

2K2

δ3

)
γ2 ln

(
2K2

δ4

)
+ ln2

(
2K2

δ4

)
4η2

(41)

In order to make the expression simpler we choose the number of samples C as follows:

C =
4η

8 log
(

2K2

δ3

)
γ2 + ln

(
2K2

δ4

)
+

√
8η

8 log
(

2K2

δ3

)
γ2 ln

(
2K2

δ4

)
+ ln2

(
2K2

δ4

)
+
(
4η

8 log
(

2K2

δ3

)
γ2

)2
4η2

(42)

C =

4η
8 log

(
2K2

δ3

)
γ2 + ln

(
2K2

δ4

)
+

√(
4η

8 log
(

2K2

δ3

)
γ2 + ln

(
2K2

δ4

))2

4η2
(43)

C =
4η

8 log
(

2K2

δ3

)
γ2 + ln

(
2K2

δ4

)
2η2

(44)

C =
16

ηγ2
log(

2K2

δ3
) +

1

2η2
log(

2K2

δ4
) (45)

Suppose we take C samples for intervention do(w) as given above. Now, from Equations 35, 39, and
40, using the union bound, we have the following:∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ ≥ γ

4
w.p. at most

δ3 + δ4
K2

. (46)

Since the realization w ∈ [K]|W| is fixed, but xi, xj ∈ [K], we have a total of K2 possible bad
events when estimates are not good. With the given choice of number of samples A and C, we have:

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ γ

4
∀xj ∈ [K] w.p. at least 1− δ1. (47)

∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ ≤ γ

4
∀xi, xj ∈ [K] w.p. at least 1− δ3 − δ4. (48)

Now under the good event when both the estimates are accurate which has a probability of at least
1 − δ1 − δ3 − δ4, we consider two possible scenarios. Suppose that there is no latent confounder

between Xi and Xj . In this case by Lemma 4.2 we have
∣∣∣∣P (xj |do(xi), do(w))−P (xj |xi, do(w))

∣∣∣∣ =
0 ,∀xixj ∈ [K]. By triangular inequality we have the following:

∣∣∣∣P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))

∣∣∣∣ ≤ ∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣+∣∣∣∣P̂ (xj |x,do(w))− P (xj |xi, do(w))

∣∣∣∣ ≤ γ

2
∀xi, xj ∈ [K]. (49)

However, when there is a latent confounder between Xi and Xj , in this case, under Assump-
tion 4.2, we must have some configuration, say xi, xj ∈ [K], for any w ∈ [K]|W|, such that
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∣∣∣∣P (xj |do(xi), do(w)) − P (xj |xi, do(w))

∣∣∣∣ > γ. By triangular inequality when there is a latent

confounder between Xi and Xj , ∃ xi, xj ∈ [K] such that:

∣∣∣∣P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))

∣∣∣∣ ≥ ∣∣∣∣P (xj |do(xi), do(w))− P (xj |xi, do(w))

∣∣∣∣
−
∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣− ∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ > γ

2
(50)

Thus, using Assumption 4.2 with the given choice of number of samples with probability at least
1− δ1 − δ3 − δ4, we have the following result:

There exists a latent confounder between Xi and Xj ⇐⇒

∃ xi, xj ∈ [K] s.t.
∣∣ P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))

∣∣ > γ

2
.

(51)

This completes the proof for Lemma 4.3.

A.9 Algorithm to learn the causal graph will all the latent confounders

Algorithm 5: Learn the Causal Graph along-with the Latent Confounders
1 Function LearnCausalGraph(α, dmax, δ1, δ2, δ3, δ4):
2 G, IData = LearnObservableGraph(α, dmax, δ1, δ2)

3 C = 16
ηγ2 log( 2n

2K2

δ3
) + 1

2η2 log( 2n
2K2

δ4
), B = 8

ϵ2
log 2nK2

δ2

4 for every pair Xi, Xj ∈ V \W do
5 If Xj ∈ An(Xi), swap them.
6 Find interventional data sets do(W = w) and do(Xi = xi,W = w) from IData s.t.

(Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆W and Xi & Xj /∈W
7 Get max(0, C −B) new samples for do(W = w)

8 if ∃ xi, xj ∈ [K] s.t. |P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))| > γ
2

then
9 Add bi-directed edge Xi ←→ Xj to graph G

10 return The Causal Graph with Latent Confounders G
11 End Function

Theorem A.1. Algorithm 5 learns the true causal graph with latents with probability at least
1− 2

n
α

2dmax
−2 − 8αdmax log(n)(nδ1 + (δ2 + δ3 + δ4)) with a maximum of 8αdmax log n(KAn+

max(B,C)) interventional samples. If we set α =
2dmax log ( 4

δ+2)

logn , δ1 = δ
64αdmaxn logn and δ2 =

δ3 = δ4 = δ
64αdmax logn , then Algorithm 5 learns the true causal graph with probability at least

1− δ. (A and B are given by line 2 of Algorithm 1 and C is given by line 3 of Algorithm 5.)

Theorem A.1 gives the sample complexity guarantee for Algorithm 5 to learn the true causal graph,
including all latent confounders, with a given confidence level. The Algorithm 5 first calls Algorithm
2 to learn the observable graph structure. We have already proved in Theorem 4.1 that Algorithm 2
learns the true observable graph with a probability of at least 1− 1

n
α

2dmax
−2 −8αdmax log(n)(nδ1+δ2)

with a maximum of 8αdmax log n(KAn+B) interventional samples. The next phase in Algorithm
5 is to learn/detect latent confounders between any pair of variables. For all pairs of nodes Xi and
Xj such that Xj /∈ An(Xi), we define a set of nodes Wij ⊆ V such that Xi, Xj /∈ Si, where
Wij = (Pa(Xi) ∪ Pa(Xj) \ {Xi}). Also, note that |Wij | ≤ 2dmax. Let us define the event Eij
= [Wij ⊆ W & Xj , Xi /∈ W]. The probability of this event for one run of the outer loop in
Algorithm 2 with the assumption that 2dmax ≥ 2 is given by:
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P [Eij ] =
1

4d2max

(1− 1

2dmax
)|Wij | ≥ 1

4d2max

(1− 1

2dmax
)2dmax≥ 1

d2max

1

16
. (52)

The last inequality holds for dmax ≥ 2. Note that we reuse all the interventional data samples from
Algorithm 2 in Algorithm 5. Under Assumption 4.2, if the event Eij happens with a large enough
number of samples, we can detect the presence or absence of latent confounders between Xi and Xj .
The outer loop runs for 8αdmax log(n) iterations, and the elements of the set W are independently
sampled. The probability of failure, i.e., the event under consideration does not happen for all runs of
the outer loop in Algorithm 2, is bounded as follows:

P [Ecij ] ≤ (1− 1

16 d2max

)8αdmax log(n) ≤ e−
α

2dmax
log(n) =

1

n
α

2dmax

. (53)

For a graph with a total number of variables n, the total number of such bad events will be
(
n
2

)
since

a graph can have at most
(
n
2

)
edges. Using union bounding, the probability of bad events for every

pair of variables is given by:

P [Failure] ≤
(
n

2

)
× 1

n
α

2dmax

≤ 1

n
α

2dmax
−2

. (54)

This implies with a probability of 1− 1

n
α

2dmax
−2 , we will be able to find an appropriate interventional

dataset to test the presence of latent confounders between any pair of variables using Assumption 4.2
after running Algorithm 2. We still need to make sure we have enough interventional samples to be
able to test the latents. This is because we need to accurately estimate conditional effects to carry out
the test, as in Assumption 4.2. We first consider estimation of the causal effect P̂ (xj |do(xi), do(w))
for any randomly sampled set W. Now, consider a fixed Xi, Xj ∈ V \W. We have access to

max
(

8
ϵ2 ,

8
γ2

)
log 2nK2

δ1
samples for every xi ∈ [K]. We have already shown that under the good

event, we have the following:∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ min(
ϵ

4
,
γ

4
)

∀xi, xj ∈ [K] , ∀Xi ∈ V \W , ∀Xj ∈ V \ (W ∪ {Xi}) w.p. at least 1− nδ1
(55)

Now, we consider estimation of the conditional causal effects, i.e., P̂ (xj |xi, do(w)). Note the while
running the Algorithm 2 we have access to B = 8

ϵ2 log
2nK2

δ2
samples form intervention do(w)

and in the step 7 of Algorithm 5 we add more samples to the data set and have access to at least
C = 16

ηγ2 log(
2n2K2

δ3
) + 1

2η2 log(
2n2K2

δ4
) samples instead. Now, consider a fixed Xi, Xj ∈ V \W.

With access to C samples as given above, following from Equation 48 in the Proof of Lemma 4.3, we
have the following result:

∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ ≤ γ

4
∀xi, xj ∈ [K] w.p. at least 1− δ3

n2
− δ4

n2
. (56)

Note that in the above equation, we have δ3
n2 and δ4

n2 instead of δ3 and δ4 as in Equation 48, because
here in the number of samples C, we also have δ3

n2 and δ4
n2 instead of δ3 and δ4 when compared to the

number of samples in Equation 45. Now, using the union bound we have the following:

∣∣∣∣P̂ (xj |xi, do(w))− P (xj |xi, do(w))

∣∣∣∣ ≤ γ

4

∀xi, xj ∈ [K] , ∀Xj ∈ V \ (W ∪ {Xi}) w.p. at least 1− δ3
n
− δ4

n
. (57)
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Again using the union bound over all Xi ∈ V \W we have the following:

∣∣∣∣P̂ (xj |do(xi), do(w))− P (xj |do(xi), do(w))

∣∣∣∣ ≤ γ

4

∀xi, xj ∈ [K] , ∀Xi ∈ V \W , ∀Xj ∈ V \ (W ∪ {Xi}) w.p. at least 1− δ3 − δ4 (58)

This implies that under the good event, for every randomly sampled intervention set W ⊆ V, the
estimate of the conditional causal effect is accurate within the desired γ

4 threshold. This would imply
that the test for detection of latent variables is perfect under this good event. We have already shown
that to ensure we have access to sufficient datasets to detect latent variables between any pair of
nodes, the 8αdmax log n randomly sampled target sets in Algorithm 2 W are sufficient. Combining
these results with the results from Theorem 4.1, we have the following:

The Algorithm 5 learns the true causal graph along with all latents with a probability of at least
1− 1

n
α

2dmax
−2 − 1

n
α

2dmax
−2 −8αdmax log(n)(nδ1+δ2)−8αdmax log(n)(δ3+δ4) = 1− 2

n
α

2dmax
−2 −

8αdmax log(n)(nδ1 + (δ2 + δ3 + δ4)) with a maximum 8αdmax log n(KAn+max(B,C)) inter-
ventional samples. Also If we set α =

2dmax log ( 4
δ+2)

logn , δ1 = δ
64αdmaxn logn and δ2 = δ3 = δ4 =

δ
64αdmax logn , then Algorithm 2 learns the true causal graph with all latents with a probability of at
least 1− δ. We have:

A = max

(
8

ϵ2
,
8

γ2

)
log

2nK2

δ1
, B =

8

ϵ2
log

2nK2

δ2
, (59)

C =
16

ηγ2
log(

2K2

δ3
) +

1

2η2
log(

2K2

δ4
). (60)

This completes the proof for Theorem A.1.

A.10 Full Version of The Algorithm 3 and Proof of Theorem 5.1

Algorithm 3 or its full version (Algorithm 6) starts by learning the transitive closure of the graph,
denoted as Gtc. This is because Gtc can give us An(Y ), and every possible POMIS is a subset
of An(Y ). Thus, we can restrict ourselves to ancestors of the read node. From Lemma A.4,
we can learn the transitive closure Gtc with a probability of at least 1 − δ with a maximum of
KAn+B interventional samples by setting δ1 = δ

2n and δ2 = δ
2 . Then, Algorithm 1 learns the true

transitive closure with a probability of at least 1 − δ. (We have A = max
(

8
ϵ2 ,

8
γ2

)
log 2nK2

δ1
and

B = 8
ϵ2 log

2nK2

δ2
as in line 2 of Algorithm 1). Thus, the total interventional samples for this step

turn out to be: Knmax
(

8
ϵ2 ,

8
γ2

)
log 4n2K2

δ + 8
ϵ2 log

4nK2

δ .

The next step is to learn the complete observable graph induced on the reward node and its ancestors
and then learn/detect only a subset of latent confounders which are characterized to be necessary and
sufficient to learn the true set of POMISs (Theorem 3.1). Although this step saves us interventional
samples compared to the full discovery Algorithm 5, which learns/detects latents between all pairs of
variables, the exact saving will depend on the structure of the underlying causal graph.

For the regret upper bound, we can use the results from Theorem A.1 to bound the number of
interventional samples for learning the true POMIS set from the ancestors of the reward node. This
implies that given the true set of ancestors of the reward An(Y ), we can learn the true POMIS set

with a probability of at least 1− δ using 8αdmax

(
KA

∣∣An(Y )
∣∣+B

)
log

(∣∣An(Y )
∣∣) interventions,

where A and B are given by line 2 of Algorithm 1, and C is given by line 3 of Algorithm 5 by setting
α =

2dmax log ( 4
δ+2)

log
∣∣An(Y )

∣∣ , δ1 = δ

64αdmax

∣∣An(Y )
∣∣ log ∣∣An(Y )

∣∣ , and δ2 = δ3 = δ4 = δ

64αdmax log
∣∣An(Y )

∣∣ .
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Algorithm 6: Full version of Algorithm for causal bandits with unknown graph structure
1 Set the Parameter δ, dmax

2 Calculate α, δ1, δ2, δ3, δ4 as in Theorem 5.1
3 Gtc = LearnTransitiveClosure(W = ϕ, δ

2n ,
δ
n )

4 G, IData = LearnObservableGraph(An(Y )Gtc , α, dmax, δ1, δ2)

5 C = 16
ηγ2 log(

2n2K2

δ3
) + 1

2η2 log(
2n2K2

δ4
) , B = 8

ϵ2 log
2nK2

δ2

6 #Learn the bi-directed edges between reward Y and all nodes Xi ∈ An(Y ) and update G.
7 for every Xi ∈ An(Y )Gtc do
8 Set Xj := Y
9 Find interventional data sets do(W = w) and do(Xi = xi,W = w) from IData s.t.

(Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆W and Xi & Xj /∈W
10 Get max(0, B − C) new samples for do(W = w)

11 if ∃ xi, xj ∈ [K] s.t. |P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))| > γ
2 then

12 Add bi-dirceted edge Xi ←→ Xj to graph G

13 while There is a new pair that is tested do
14 Find a new pair (Z,X) s.t. Z ∈ An(Y ) such that Z and Y don’t have a bi-directed edge

between them in G and X ∈ MUCT(GPa(Z),Bi(Z,G), Y )

15 # test for the latent between the pair (Z,X) and update G.
16 Set Xi := Z,Xj := X
17 if Xj ∈ An(Xi) swap them.
18 Find interventional data sets do(W = w) and do(Xi = xi,W = w) from IData s.t.

(Pa(Xi) ∪ Pa(Xj) \ {Xi}) ⊆W and Xi & Xj /∈W
19 Get max(0, B − C) new samples for do(W = w)

20 if ∃ xi, xj ∈ [K] s.t. |P̂ (xj |do(xi), do(w))− P̂ (xj |xi, do(w))| > γ
2 then

21 Add bi-directed edge Xi ←→ Xj to graph G

22 Learn the set of POMISs IG from the graph G Using Algorithm 1 in [5].
23 Run UCB algorithm over the arm set A = {Ω(I) | ∀I ∈ IG}.

The last phase is just running the UCB algorithm over the set of all possibly optimal arms, i.e.,

A = {Ω(I) | ∀I ∈ IG}. This phase has a regret bound of
∑

s∈{Ω(I)|∀I∈IG} ∆do(s)

(
1 + log T

∆2
do(s)

)
[22]. Now combining all the results we have the following:

Algorithm 3 learns the true set of POMISs IG with probability at least 1− δ− δ = 1− 2δ, and under
the good event E that it learns POMISs correctly, the cumulative regret is bounded as follows:

Rt ≤ Knmax

(
8

ϵ2
,
8

γ2

)
log

4n2K2

δ
+

8

ϵ2
log

4nK2

δ

(61)

+ 8αdmax

(
KA

∣∣An(Y )
∣∣+max(B,C)

)
log

(∣∣An(Y )
∣∣) +

∑
s∈{Ω(I)|∀I∈IG}

∆do(s)

(
1 +

log T

∆2
do(s)

)
,

where A and B are given by line 2 of Algorithm 1, and C is given by line 3 of Algorithm 5 by setting
α =

2dmax log ( 4
δ+2)

log
∣∣An(Y )

∣∣ , δ1 = δ

64αdmax

∣∣An(Y )
∣∣ log ∣∣An(Y )

∣∣ and δ2 = δ3 = δ4 = δ

64αdmax log
∣∣An(Y )

∣∣ . This

completes the proof of the Theorem 5.1

A.11 Additional simulations to demonstrate the advantage of Algorithm 3 over full discovery

We present additional results to demonstrate that partial discovery by Algorithm 3 to construct
POMISs saves us interventional samples compared to full discovery, i.e., learning all possible latents
for randomly sampled causal graphs with a variety of density parameters ρ and ρL. The procedure to
sample the graphs is the same as described in the main paper. Figure 5 shows that for a wide range of
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Figure 5: Additional simulations to demonstrate the advantage of Algorithm 3 over full graph
discovery (Learning all possible latents)

density parameters ρ and ρL, Algorithm 3 can learn the true POMIS set with fewer interventional
samples compared to full discovery. The exact advantage depends on the density parameter ρL for
latent confounders, as seen from the plot in Figure 5.
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