KVSharer: Efficient Inference via Layer-Wise
Dissimilar KV Cache Sharing

Anonymous ACL submission

Abstract

The development of large language models
(LLMs) has significantly expanded model sizes,
resulting in substantial GPU memory require-
ments during inference. The key and value
storage of the attention map in the KV (key-
value) cache accounts for more than 80% of
this memory consumption. Nowadays, most
existing KV cache compression methods fo-
cus on intra-layer compression within a sin-
gle Transformer layer but few works consider
layer-wise compression. In this paper, we pro-
pose a plug-and-play method called KVSharer,
which shares the KV cache between layers to
achieve layer-wise compression. Rather than in-
tuitively sharing based on higher similarity, we
discover a counterintuitive phenomenon: shar-
ing dissimilar KV caches better preserves the
model performance. Experiments show that
KVSharer can reduce KV cache computation
by 30%, thereby lowering memory consump-
tion without significantly impacting model per-
formance and it can also achieve at least 1.3
times generation acceleration. Additionally, we
verify that KVSharer is compatible with exist-
ing intra-layer KV cache compression methods,
and combining both can further save memory.

1 Introduction

Recently, large language models (LLMs) built on
the Transformer (Vaswani et al., 2017) architecture
have demonstrated remarkable abilities (Touvron
et al., 2023; Cai et al., 2024; Yang et al., 2024a;
Brown, 2020; Jiang et al., 2023). However, these
impressive capabilities come with increased model
size, leading to significant GPU memory costs dur-
ing inference. The memory consumption of LLM
during inference primarily comes from model pa-
rameters and the KV cache. The KV cache, widely
used for efficient inference, stores keys and values
from the attention mechanism, allowing for reuse in
subsequent generation processes to improve infer-
ence speed, but also substantially increasing mem-

Previous Methods KVSharer
000,00 O 00 0O Ox
[Layer 4] [Layer 4]

O 00Q0 0000
[Layer 3] [Layer 3]j

{oNoJoNOXO) O000O0
[Layer 2] [Layer 2]
00000 0000 0=
00000 | 00000 |
v Layer-wise sharin:g of
Evicted from KV cache

dissimilar KV caches

Figure 1: Previous methods primarily focus on discard-
ing Keys and Values within layers. In contrast, we share
KV caches across layers based on their dissimilarity.

ory consumption. Typically, the KV cache accounts
for 80% of the total memory usage during the in-
ference phase, making it essential to optimize the
KV cache to reduce memory consumption for effi-
ciency inference (Yang et al., 2024b; Zhang et al.,
2024b), particularly for long-context scenario (Bai
et al., 2023; Chen et al., 2024).

Recent research has seen a proliferation of meth-
ods aimed at KV cache compression (Zandieh et al.,
2024; Xu et al., 2024; Yang et al., 2024b; Zhang
et al., 2024b,a; Dong et al., 2024). However, these
efforts have predominantly focused on intra-layer
KV cache compression within individual Trans-
former layers. In contrast, layer-wise KV cache
compression strategies, which calculate the KV
cache for only a subset of layers to minimize mem-
ory usage, remain largely unexplored. The limited
existing work on layer-wise KV cache compression
typically requires additional training to maintain
performance (Wu and Tu, 2024; Liu et al., 2024a).

In this paper, we propose KVSharer, a plug-and-
play method for compressing the KV cache of well-
trained LLMs. Contrary to the intuitive expectation
of sharing similar KV caches, our method lever-
ages a counterintuitive observation: sharing dissim-

! Representation Similarity > 7°; Compression Ratio ~ R

O O O O O*KV Cache,
Layer 4

1 O O O O O+KV Cache,

1 Top i
1 7
: O O O O O*KV Cache; (KV Cache;, KV Cachey)| i
! Layer 4 Top > ﬁ
Em:“ (KV Cache,, KV Cache,)| ™ 1}
— ¥ i

Ranking Topy

(KV Cache,, KV Caches) * i
- M

! Layer 3 Simmilarit ©Py3 i
'O 00O O+KV Cachez‘ imilarity | (KV Caches, KV Cache,)|” |

Layer 2
1 O O O O O>KV Cache;

100000

i KV Cache Pairs in
' Transformer

Descending Order

(a) KV Cache Similarity Ranking

Layer 2
O O O O O+KV Cache

00000

Transformer

0 O O O O+KV Cache, |
Layer 4 ;

O O O O O+KV Cache, 0O O O O>KV Cache, |
|
O O O O O+KV Cache, O O O O O+KV Cache,!

Layer 2

Ranked KV O O O O O+KV Cache, 5

1 Cache Pairs
OO0OO0O0O0O
KV Shared Transformer
(b) KV Cache Sharing Strategy Searching

Figure 2: An illustration of the strategy searching process of the KVSharer. For a given LLM, process (a) performs
inference on the calibration dataset and computes the Euclidean distance between flattened KV cache vectors from
any two layers, sorting pairs in descending order. (b) KV cache pairs are sequentially replaced, ensuring the final
hidden-state similarity with the original model exceeds threshold 7 until the KV cache compression ratio reaches

R.

ilar KV caches during inference causes minimal
performance degradation. The paradox in this dis-
covery lies in that previous methods for sharing
parameters or activation values have always relied
on replacing similar values (Dehghani et al., 2018;
Reid et al., 2021; Cao et al., 2024). In contrast,
we are the first to show that, in the context of KV
caches, model performance can be effectively main-
tained by sharing dissimilar layer-wise KV caches.
Leveraging this observation, KVSharer employs a
search strategy to identify the KV cache sharing
strategy across different layers during inference.
KVSharer significantly reduces GPU memory con-
sumption while maintaining most of the model per-
formance. For example, it retains over 95% of
the model performance while using only 70% of
the original memory. As a layer-wise KV cache
compression technique, KVSharer is compatible
with existing intra-layer KV cache compression
methods, offering a complementary approach to
memory optimization in LLMs. KVsharer is also
a general method and not task-specific, meaning
that once a sharing strategy is found on a general
calibration dataset, it can be directly applied to
any downstream task. Our key contributions are
summarized as:

* We observe a counterintuitive phenomenon
where sharing dissimilar KV caches mini-
mally impacts performance. Leveraging this,
we propose KVSharer, a layer-wise KV cache
sharing mechanism for efficient inference
without retraining.

* Experiments with PPL (Perplexity) and down-
stream benchmarks show that KVSharer re-
duces GPU memory usage with minimal im-

pact on performance while improving genera-
tion speed.

* KVSharer is compatible with intra-layer KV
cache compression, allowing further memory
reduction while preserving performance.

2 Related Work

2.1 KV cache compression

Most existing KV cache compression meth-
ods focus on intra-layer compression within
a single transformer layer. Techniques like
StreamingL.LM (Xiao et al., 2023), H20 (Zhang
et al., 2024b), Scissorhands (Liu et al., 2024b),
PyramidInfer (Yang et al., 2024b), FastGen (Ge
et al., 2023), and SnapKV (Li et al., 2024) achieve
sparsification by discarding unimportant tokens or
optimizing key-value storage within layers. How-
ever, these methods operate only within individual
layers and do not address layer-wise KV cache
compression.

Recently, a few approaches have explored layer-
wise KV cache compression. MiniCache (Liu et al.,
2024a) merges KV caches across layers to enhance
throughput, LCKV (Wu and Tu, 2024) caches KVs
for fewer layers to save memory, CLA (Brandon
et al., 2024) introduces inter-layer attention for KV
sharing, and YOCO (Sun et al., 2024) enforces KV
reuse across layers. However, these methods re-
quire additional model training. In contrast, we
propose the first layer-wise KV cache compres-
sion method for well-trained LLMs that requires
no further training and is compatible with existing
intra-layer compression techniques.

Algorithm 1 Workflow of Strategy Searching

Require: LLM M, Target Shared KV Cache Layers C, Calibration Dataset D, Threshold for representa-

tion similarity 7
Ensure: Sharing Strategy Z
1: § + Euclidean_KV_Dis(M, D)

> Perform inference on the calibration dataset D, calculate the

Euclidean distances between KV caches of all layer pairs, and record them as S

R <+ Descend_Rank(S)
Z+ 0
P+0
for each r in R do
Z+ ZUr
Mimp < Sharing KV(M, 2)

NN RN

> Sort KV cache layer pairs by Euclidean distance in descending order

> Initialize candidate sharing strategy as Z
> Initialize current number of shared layers as P

> Add the current pair r to the candidate set

> Apply layer-wise KV cache sharing to M according to the

current candidate strategy and get candidate model M,

8: 5 <= Avg_Cos_Sim(Myy,, M, D)

> Compute the similarity of the final layer hidden-state

between the two models on the calibration dataset as s

9: if s <=7 then

10: Z«— Z\r

11: else

12: P+—P+1

13: if P == C then
14: return Z
15: end if

16: end if

17: end for

18: return None

> Discard the pair r if the output similarity falls below the threshold

> Find a replacement and increase the shared layers P by 1

> Return the currently found optimal strategy

2.2 Attention Map & Parameter sharing

Since the introduction of Transformer-based pre-
trained language models (PLMs) like BERT (De-
vlin et al., 2018), attention map sharing and param-
eter sharing have been explored to enhance model
efficiency. Lazyformer (Ying et al., 2021) reuses
lower-layer attention maps in higher layers, improv-
ing throughput. Xiao et al. (2019) share attention
weights across layers to speed up machine trans-
lation inference, while Takase and Kiyono (2021)
propose rule-based parameter sharing strategies for
efficiency. Shim et al. (2023) evaluate various at-
tention map sharing methods comprehensively.

In the era of LLMs, parameter and attention map
sharing have been widely adopted. Multi-Query
Attention (MQA) (Shazeer, 2019) and Grouped-
Query Attention (GQA) (Ainslie et al., 2023) op-
timize efficiency by sharing attention queries and
keys within layers. Cao et al. (2024) analyze at-
tention map and parameter similarity in LLMs,
proposing sharing strategies to reduce memory us-
age. However, none of these works have extended
to the KV cache. They all rely on replacing lay-
ers with higher parameter similarity or activation

values, which aligns with intuition, whereas we
replace dissimilar KV cache.

3 KVSharer

The main steps of KVSharer are divided into two
parts. First, for a given LLM, it searches a shar-
ing strategy, a list that specifies which layers’ KV
caches should be replaced by those of other spe-
cific layers. Then, during the subsequent prefill
and generation processes on all the tasks, the KV
caches of the relevant layers are directly replaced
according to this list, enabling efficient inference.

3.1 Strategy Searching

To heuristically search for a sharing strategy, we
infer on a calibration dataset, calculate Euclidean
distances between KV caches of all layer pairs, and
sort them in descending order. We then sequentially
replace KV caches, ensuring output consistency
with the original model. The process is detailed in
Algorithm 1 and Figure 2.

3.1.1 Initialization

For a given LLM M and target shared KV cache
layers C, we use a calibration dataset D of plain

sentences. Forward computations are performed
with both the shared KV cache model and the orig-
inal model, ensuring their output cosine similarity
exceeds the threshold 7.

3.1.2 Searching

KV Cache Similarity Calculation & Initializa-
tion (1-4) First, we perform a forward pass using
the original model M on the calibration dataset
D, saving the KV cache for each layer during the
forward pass of each sentence. Then, we average
the KV cache for each layer across all samples to
obtain the average KV cache for each layer. Fi-
nally, we flatten the keys and values of the KV
cache for each layer into a one-dimensional vector,
and then average the keys and values separately
to represent the KV cache for that layer. We then
calculate the Euclidean distance between the KV
cache representations of any two layers to obtain
S. We then sort S in descending order to get R,
since a larger Euclidean distance indicates a lower
similarity. Consequently, dissimilar layer pairs are
prioritized. We then set two variables, Z and P,
to record the candidate KV cache sharing strategy
and the current number of shared layers.

Sharing Strategy Searching (5-18) Based on the
values in R, we sequentially select a pair of layers
to add to Z for sharing. When sharing, we replace
the layer closer to the output with the one closer to
the input, as the layers near the input end in LLMs
are more sensitive, and modifying them could result
in significant performance degradation (Cao et al.,
2024; Yang et al., 2024c).

We then apply the candidate strategy Z by di-
rectly replacing the KV cache of one layer with
another during the forward pass. Using the model
with KV cache sharing and the original model, we
perform inference on the calibration dataset to ob-
tain the output representation from the last layer.
We then average these representations across differ-
ent sentences. If the cosine similarity between the
averaged output representations of the two mod-
els exceeds the threshold 7, we retain the current
pair replacement r; otherwise, we discard it. This
iteration continues until the predefined number of
compressed layers C is reached. At the end of the
iteration, we obtain an optimal KV cache sharing
strategy Z through the heuristic search.

3.2 Inference With KV cache Sharing

After deriving the sharing strategy Z, we apply it to
all inference tasks, including prefill and generation.

Prefill & Generation Phase

! © 0 0 © O+KV Cache; O O O © O+KV Cache, !
Layer 5 Layer 5 i
i O O O O O*KV Cache, O O O O O+KV Cache; |
Layer 4 Layer 4 :

i O O O O O>KV Cache; O O O O O*KV Cache, !
s f
i O O O O O*KV Cache, O © O O O+>KV Cache, |
f |

! O O O O O+KV Cache, O O O O O-+KV Cache, |

Optimal
Sharing Strategy

1 00000 00000
i Transformer KV Shared Transformer

Figure 3: During the inference process of prefill and
generation, according to the currently found optimal
sharing strategy, KVSharer directly copy the result of
the KV cache from a previously computed layer to the
current layer during the forward computation.

As shown in Figure 3, when a layer’s KV cache is
shared based on Z, it is directly copied from the
corresponding layer, and subsequent computations
proceed as in the original model.

4 Experiments

4.1 Models

To evaluate the effectiveness of the proposed
KVSharer, we perform experiments on widely-
used English LLMs, specifically Llama2-7B and
13B (Touvron et al., 2023). We also examine its ef-
fectiveness on bilingual LLMs, namely InternL.M2-
7B and 20B (Cai et al., 2024), which support both
Chinese and English. For main experiments, we
utilize the chat versions of Llama2-7B, InternLM2-
7B, Intern.M2-20B and Llama2-13B. We choose
these two model series because they offer open-
source models in a relatively complete range of
different sizes and versions (Base or Chat). Addi-
tionally, we include experiments on the advanced
Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) to val-
idate the universality of our method.

4.2 Benchmarks

To evaluate the model’s broad capabilities, we use
the OpenCompass framework (Contributors, 2023),
focusing on five areas: Reasoning, Language,
Knowledge, Examination, and Understanding, with
selected benchmarks for each category. Reason-
ing: CMNLI (Xu et al., 2020), HellaSwag (HeSw)
(Zellers et al., 2019), PIQA (Bisk et al., 2019). Lan-
guage: CHID (Zheng et al., 2019), WSC (Levesque
et al.,, 2012). Knowledge: CommonSenseQA
(CSQA) (Talmor et al., 2018), BoolQ (Clark et al.,
2019). Examination: MMLU (Hendrycks et al.,
2021), CMMLU (Li et al., 2023b). Understand-

LLM ‘ Layer Average

Percent ‘ Reasoning Language Knowledge Examination Understanding

32 4655 100% 60.83 40.67 68.67 38.89 33.03
Llama2 7B 28 5289 113.6% | 60.73 54.41 71.86 36.18 44.73

ama 24 4558 97.9% 57.74 51.00 60.52 33.12 31.15

20 3855 82.8% 53.68 38.52 53.90 26.94 25.37

40 5813 100% 62.90 60.56 75.67 46.67 49.67

Llama2 138 35 5632 96.9% 61.31 57.33 74.56 46.16 47.77
amaz- 30 5197 89.4% 61.35 4738 73.66 46.03 40.51

25 4050 69.7% 57.46 43.75 52.39 35.39 21.97

32 6863 100% 62.00 71.30 76.37 64.46 69.82

memiMo7p | 28 6657 97.0% 60.81 66.99 75.32 60.26 69.36
nternvies 24 6659 97.0% 62.19 65.37 74.66 62.70 68.71
20 6501 94.7% 61.10 63.74 74.28 62.54 65.51

48 7082 100% 70.66 67.34 77.88 66.26 72.33

42 6980 98.6% 69.02 66.84 77.39 65.94 70.75

InterntM2-20B | 30 6099 97.4% | 66.82 65.55 77.41 65.45 70.76
30 6696 94.5% 66.58 59.62 77.41 65.07 68.48

32 6413 100% 64.78 62.76 79.03 53.49 62.53

Mistral. 7B 28 6156 96.0% 64.40 57.88 77.35 50.02 60.05

1stral- 24 5667 88.4% 63.28 50.15 76.18 4523 52.55

20 5053 78.8% 61.40 49.72 71.50 35.50 40.02

Table 1: The main results of our experiments. “Layer” represents the number of layers where the KV cache is
actually computed. We present the average values of the model across different aspects of tasks and the average
scores of all tasks as percentages relative to the full KV cache.

ing: Race-High/Middle (H/M) (Lai et al., 2017),
XSum (Narayan et al., 2018), C3 (Sun et al., 2020).
Evaluations use OpenCompass official scripts in
zero-shot or few-shot settings, with two modes: per-
plexity (PPL) and generation (GEN) '. GEN is used
for CHID and XSum, while both PPL (WSCp) and
GEN (WSCg) are applied to WSC. Other bench-
marks are evaluated in PPL mode. Scores are com-
puted by OpenCompass, with higher values indi-
cating better performance.

4.3 Settings

We configure the compression rates for each model
at 12.5%, 25%, and 37.5% by setting the target
shared layers C, as subsequent results show that the
models can maintain relatively good performance
within this range. For all the models, we randomly
select 30 sentences from English Wikipedia as the
calibration dataset where each sentence has 64 to-
kens. We set 7 to 0.5 for all the models 2. All
experiments related to the PPL evaluation are con-
ducted on a Wikipedia dataset consisting of 200
sentences, where the token length of each sentence

"https://opencompass.readthedocs.io/en/latest/
get_started/faq.html

*When strategy searching, the similarity of the last layer’s
hidden state between the compressed model and the original
model is usually greater than 0.8. We set a threshold of 0.5 to
avoid rare cases of model output collapse. Since this situation
is infrequent, we do not perform an ablation study on 7.

is set to 2048. We perform experiments on a server
equipped with 4 Nvidia A100 80GB GPUs.

4.4 Main Result

We conduct experiments on each dataset, calculate
the average score for each aspect, the average score
across all tasks, and the percentage of the average
score for all tasks using KVShare compression rel-
ative to the average score with the full KV cache
in Table 1. Detailed results can be found in Table 8
of Appendix A.1.

Llama2-7B and InternL.M2-7B each have 32 lay-
ers, while Llama2-13B and InternLM2-20B have
40 and 48 layers, respectively. To evaluate perfor-
mance, we apply different numbers of compressed
layers to the four models at compression rates of
12.5%, 25%, and 37.5%. Additionally, we include
models with full KV cache for comparison. Based
on the main results, KVSharer exhibits minimal
performance degradation compared to the full KV
cache in the vast majority of tasks. Notably, when
the compression rate is 25% or less, the perfor-
mance remains close to 90%, and in some cases,
even exceeds 95%. Furthermore, the model does
not suffer significant performance drops in any
specific aspect, as no individual score approaches
zero. These results demonstrate that KVSharer
effectively preserves the model’s overall and task-
specific performance. To present the results in Ta-

https://opencompass.readthedocs.io/en/latest/get_started/faq.html
https://opencompass.readthedocs.io/en/latest/get_started/faq.html

Llama2-7B Llama2-13B InternL. M2-7B InternL M2-20B
204 KVSharer+H20 KVSharer+H20 KVSharer 91 KVSharer

KVSharer+Pyr. KVSharer+Pyr. 124 Full Full

KVSharer 151 KVSharer

Full Full

64

1250% 25.00% 37.50% 12.50% 25.00% 37.50%

1250% 25.00% 37.50% 12.50% 25.00% 37.50%

Figure 4: The model’s perplexity on the Wikipedia dataset at different compression rates. “+H20” and “+Pyr.” refer
to the additional use of the H20 and PyramidInfer for intra-layer compression.

70 673
60.4

=Y
=

(%3
S

N
=

w
=)

26.3

23.9 24.5

Searching Time (s)

[N
=]

)

0 Llama2-7B Llama2-13B InternLM2-7BInternLM2-20B Mistral-7B

Figure 5: The searching time cost by KVSharer for
different models. The search time is typically around
60 seconds or less.

ble 1 more intuitively, we show the average perfor-
mance of each model across all tasks at different
compression rates, as illustrated in Appendix A.1
Figure 7. It can also be observed that KVSharer
can maintain the model’s performance well with
a compression rate of 25% or less, and even im-
proves the average performance of the model at a
12.5% compression rate on Llama2-7B.

We also validate the larger Llama2-70B model
using several benchmarks and PPL, discovering
that KVSharer is also effective for it, maintaining
most of its performance, as in Appendix A.2.

4.5 Strategy Searching Time

To evaluate the time consumption of KVSharer,
we also test the time required for the most time-
consuming part of the algorithm, Strategy Search-
ing, as shown in Figure 5. The results show that
searching for a sharing strategy on the models takes
approximately one minute or less. This is expected,
as Strategy Searching only requires the model to
perform several inferences on a calibration dataset
consisting of a few to several dozen sentences, a
process that can be completed within minutes on
a GPU. Note that our sharing strategy is general
rather than task-specific, allowing for only one

search per model, which significantly reduces the
time required.

4.6 Compatibility with Intra-layer
Compression

Since KVSharer is a layer-wise KV cache compres-
sion method, it is inherently orthogonal to intra-
layer KV cache techniques. Therefore, we explore
the effectiveness of combining it with existing intra-
layer KV cache methods. Specifically, we combine
it with H20 (Zhang et al., 2024b) and Pyramidln-
fer (Yang et al., 2024b), which are popular intra-
layer compression methods. We conduct experi-
ments on Llama2-7B and Llama2-13B, first using
KVSharer to identify 8 layers for shared KV cache,
effectively calculating the KV cache for only 24
out of the 32 layers. Then, these two layer-wise
compression methods are further applied for an ad-
ditional 20% compression. The reproduction of
PyramidInfer and H20 can be found in the Ap-
pendix B. We present the changes in PPL after
adding H20 and PyramidInfer in Figure 4. At
12.5% and 25% KVSharer compression rates, both
methods cause only a slight increase in PPL. The
impact of PyramidInfer on PPL is lower compared
to H20, which is expected since PyramidInfer gen-
erally maintains better model performance.

Figure 4 also shows the PPL of InternLM?2 and
Llama?2 series under different KVSharer compres-
sion rates. At compression rates up to 25%, the
PPL remains below 15, or even 10, ensuring good
generation quality. Case studies of the model’s
outputs are provided in Appendix C, Table 12.

4.7 Memory Cost & Inference Speed

In this section, we aim to explore the memory sav-
ings and the impact on inference speed brought
by KVSharer. Specifically, we test the memory
consumption, prefill time, and generation speed
of Llama2-13B-Chat under the following settings:

Llama2-7B Llama2-13B Interim2-7B Interim2-20B
KVSharer-Sim. KVSharer-Sim. 507 KVSharer-Sim. KVSharer-Sim.
1501 KVSharer-Dis. 1001 KVSharer-Dis. KVSharer-Dis. 80 1 KVSharer-Dis.
Full Full 401 Full Full
4 60 4
= 100 30 1
= 40
50 >0 201
204
101
0+ T T T T T T T T T T T
12.50% 25.00% 37.50% 12.50% 25.00% 37.50% 12.50% 25.00% 37.50% 12.50% 25.00% 37.50%

Figure 6: The model’s PPL when using KVSharer with similarity-based sharing (+Sim.) and dissimilarity-based
sharing (+Dis.). The PPL for dissimilarity-based sharing is significantly better than for similarity-based sharing.

‘ SeqLen. ‘ 512432 25642048 51242048 1024+4096

Layer ‘ PPL ‘ Quality ‘ SFiction ‘ Coursera ‘ MultiDoc2Dial

Full |Memory| 28461 36095 51639 58177
| Prefill | 0.088 0.047 0.088 0.193
| Gen. | 110 180 182 18.7

‘SeqLen. ‘ 512432 256+2048 512+2048 1024+4096

Momory| 28257 31403 37049 37231
KVSharer Y (99%) ©®1%) (12%) (64%)

25%
(25%) \ Prefill \ 0.087 0.046 0.087 0.191
Gen | 139 298 30.0 28.7
©l(x1.26) (x1.66) (x1.65) (x1.53)

‘ SeqLen. ‘ 512432 25642048 51242048 1024+4096

24852 26195 30891 31591
KVSharer Memory
25%) (87%) (13%) (60%) (54%)
+ H20 ‘ Prefill ‘ 0.090 0.044 0.089 0.190
Gen 14.1 29.2 28.3 27.1
©(x1.28) (x1.62) (x1.55) (x1.45)

| SeqLen. | 512432 256+2048 512+2048 1024+4096

23195 26059 30141 31417
KVSharer Memory
(25%) 81%) (12%) (58%) (54%)
+Pyr. | Prefill | 0.089 0048 0.089 0.195
145 338 34.1 334
Gen.
(x1.31) (x1.88) (x1.87) (x1.79)

Table 2: Memory usage (MB), prefill time (s) and gen-
eration speed (tokens/s) of the Llama2-13B-Chat. “Se-
gLen.” represents the “input length” + “maximum out-
put length”. “Gen.” represents the “Generation”.

Full KV cache, KVSharer with 25% compression,
KVSharer with 25% compression + H20, and
KVSharer with 25% compression + PyramidInfer,
across different input and maximum output lengths.
We show the results in Table 2.

When sentence length is short (e.g., 512+32),
KVSharer shows minimal memory savings, as
memory is dominated by the model itself. However,
as length increases, the effect becomes significant,
reaching up to 30% savings at 256+2048 tokens.

In terms of speed, although there is no accelera-

32 [626 3514 | 8.14 11.01 8.01
28 | 7.88 | 29.29 6.91 19.19 6.53
24 [10.05| 25.74 | 5.60 10.07 5.68

Table 3: The performance of longchat-7b-v1.5-32k with
KVSharer under different compression rates. PPL rep-
resents the perplexity on the Wikipedia corpus with the
sentence length of 16k. Quality, SFiction, Coursera, and
MultiDoc2Dial are subsets of L-EVAL.

tion during the prefill phase, there is a significant
acceleration during the generation phase as our
results also show at least 1.2 times acceleration.
When the length reaches 51242048, it can provide
over 1.6 times acceleration during the generation.
After adding PyramidInfer and H20, the mem-
ory usage is further reduced. Additionally, Pyra-
midInfer further accelerates the generation speed.

4.8 Long-Context Scenario

As long-context is a key application of efficiency
inference, we evaluate KVSharer using PPL and
the L-EVAL benchmark (An et al., 2023). We use
longchat-7b-v1.5-32k (Li et al., 2023a), a model
fine-tuned from LLaMA 2 for extended context.
PPL is tested on a Wikipedia corpus with the 16k
sentence length, and the benchmark evaluation in-
cludes four L-EVAL subsets: Quality, SFiction,
Coursera, and MultiDoc2Dial. Results are shown
in Table 3. In terms of PPL, KV Sharer shows a sim-
ilar impact on model performance in long-context
and short-context scenarios. At a 25% compression
rate (Layer=24), the model maintains good PPL,
demonstrating effective preservation of generation
capability in the long-context scenario. On the sub-
sets of L-EVAL, KVSharer is able to retain most of
the performance and even achieves improvements
on some subsets, such as Coursera. This further
demonstrates that KVSharer remains effective in
long-context scenarios.

Layer
WJ 28 24 20

Similar | 8.96 15.68 424.81
| 8.57 15.11 30.67

Dissimilar

Table 4: The PPL results of using cosine similarity as
the metric for KV cache similarity.

5 Ablation Study

5.1 Sharing by KV Cache Similarity or
Dissimilarity?
We adopt a counterintuitive strategy by compress-
ing during inference through sharing dissimilar KV
caches instead of the intuitive approach of sharing
similar ones. This section demonstrates experimen-
tally that dissimilarity-based sharing outperforms
similarity-based sharing. We modify Algorithm 1
to sort KV caches in ascending order of Euclidean
distance while keeping other steps unchanged, and
test it on the four models from the main experiment.
Figure 6 shows that similarity-based sharing
results in significantly higher PPL, often dou-
bling or more compared to dissimilarity-based
sharing at the same compression rates, supporting
dissimilarity-based approach in KVSharer.

5.2 Effect of Different Similarity Metrics

In Algorithm 1, we use the Euclidean distance to
measure the similarity between the KV caches of
any two layers. In this section, we also explore
whether cosine similarity can be used as an al-
ternative metric. Specifically, we conduct experi-
ments using Llama-2-7B-Chat, replacing the Eu-
clidean distance with cosine similarity while keep-
ing other settings unchanged. We set different ac-
tual computed layers, as well as similarity-based
and dissimilarity-based sharing, as shown in Ta-
ble 4. The results indicate that when cosine similar-
ity is used instead of Euclidean distance similarity,
the observed pattern also remains consistent: lever-
aging dissimilarity for sharing performs better than
using similarity for sharing. Moreover, since mod-
els with the same compression rate achieve better
PPL when using Euclidean distance for sharing
compared to cosine similarity, we chose to use Eu-
clidean similarity as the metric.

5.3 Random Sharing v.s. KVSharer

KVSharer compresses KV caches by sharing dis-
similar caches, prompting us to test whether ran-
dom sharing can achieve similar results. We ran-
domly replace 25% of layers’ KV caches, keep-

LLM Strategy |BoolQ PIQA HeSw PPL
Uama2 78 | i) 67 5915 aao7 210
Uama2- 138 |' 0| 60 S1a1 4299 S
toternlM27B | | 33 6193 813 1358

InternLM2-20B '] (5 Gt 5539 1850

Table 5: Model performance using KVSharer and ran-
dom sharing strategies at a 25% compression rate.

ing other settings unchanged, and evaluate perfor-
mance on benchmarks and PPL, averaging results
over three runs. As shown in Table 5, random
sharing significantly increases PPL, reaching up
to 50 for Llama2-13B, compared to KVSharer’s
PPL under 10. Benchmark performance also drops
by around 30%. These results show that ran-
dom sharing fails to maintain performance, while
KVSharer’s search-based approach finds a more
effective strategy. However, the results reveal sur-
prising findings: randomly sharing the KV cache
does not lead to performance collapse, such as a
complete failure or a PPL explosion. This sug-
gests potential redundancy in the KV cache or a
lesser-than-expected impact of self-attention keys
and values on hidden-state calculations. We will
investigate this further in future work .

6 Conclusion

In this paper, we introduce KVSharer, a layer-wise
KV cache sharing method designed for efficient
inference. By counterintuitively sharing dissimilar
KV caches, KVSharer reduces memory usage and
boosts prefill speed during inference. Our exper-
iments show that KVSharer maintains over 90%
of the original performance of mainstream LLMs
while reducing KV cache computation by 30%.
It can also provide at least 1.3 times acceleration
in generation. Additionally, KVSharer can be in-
tegrated with existing intra-layer KV cache com-
pression methods to achieve even greater mem-
ory savings and faster inference. We also explore
the effectiveness of the dissimilarity-based sharing
approach and perform ablation studies on several
components of the method.

3Further ablation studies on the calibration dataset, com-
patibility with quantized models, and applicability to Base
models are provided in Appendix A.3.

Limitations

KVSharer is based on empirical observations,
demonstrating that compression can be achieved
by sharing dissimilar KV caches. A theoretical
analysis of this counterintuitive phenomenon is left
for future work.

Layer-wise KV cache compression is rare, and
existing methods require training, whereas ours is
training-free, leaving no directly comparable base-
lines. We are exploring suitable baselines for future
comparisons.

In the long-context scenario, L-EVAL metrics
like Rouge may be influenced by output length,
potentially affecting objectivity. We plan further
experiments in scenarios like the "Needle-In-A-
Haystack" benchmark.

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023. Gqa: Training generalized multi-query trans-
former models from multi-head checkpoints. arXiv
preprint arXiv:2305.13245.

Chenxin An, Shansan Gong, Ming Zhong, Mukai
Li, Jun Zhang, Lingpeng Kong, and Xipeng Qiu.
2023. L-eval: Instituting standardized evalua-
tion for long context language models. Preprint,
arXiv:2307.11088.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2023. Longbench: A bilingual, mul-
titask benchmark for long context understanding.
arXiv preprint arXiv:2308.14508.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piga: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

William Brandon, Mayank Mishra, Aniruddha
Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. 2024. Reducing transformer key-value cache
size with cross-layer attention. arXiv preprint
arXiv:2405.12981.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen, Zhi
Chen, Pei Chu, et al. 2024. Internlm?2 technical re-
port. arXiv preprint arXiv:2403.17297.

Zouying Cao, Yifei Yang, and Hai Zhao. 2024. Head-
wise shareable attention for large language models.
arXiv preprint arXiv:2402.11819.

Zhi Chen, Qiguang Chen, Libo Qin, Qipeng Guo, Hai-
jun Lv, Yicheng Zou, Wanxiang Che, Hang Yan, Kai
Chen, and Dahua Lin. 2024. What are the essential
factors in crafting effective long context multi-hop in-
struction datasets? insights and best practices. arXiv
preprint arXiv:2409.01893.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2018. Universal
transformers. arXiv preprint arXiv:1807.03819.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang
Wang, Yuejie Chi, and Beidi Chen. 2024. Get
more with less: Synthesizing recurrence with kv
cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2023. Model tells you
what to discard: Adaptive kv cache compression for
1ms. arXiv preprint arXiv:2310.01801.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
arXiv preprint arXiv:1506.06726.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. arXiv
preprint arXiv:1704.04683.

https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/2307.11088
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth international conference on the principles of
knowledge representation and reasoning.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph E. Gonzalez, lon Stoica, Xuezhe
Ma, and Hao Zhang. 2023a. How long can open-
source llms truly promise on context length?

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai
Zhao, Yeyun Gong, Nan Duan, and Timothy Bald-
win. 2023b. Cmmlu: Measuring massive multi-
task language understanding in chinese. Preprint,
arXiv:2306.09212.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cai,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
LIm knows what you are looking for before genera-
tion. arXiv preprint arXiv:2404.14469.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholam-
reza Haffari, and Bohan Zhuang. 2024a. Minicache:
Kv cache compression in depth dimension for large
language models. arXiv preprint arXiv:2405.14366.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2024b. Scis-
sorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time.
Advances in Neural Information Processing Systems,
36.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. Preprint, arXiv:1808.08745.

Machel Reid, Edison Marrese-Taylor, and Yutaka Mat-
suo. 2021. Subformer: Exploring weight sharing
for parameter efficiency in generative transformers.
arXiv preprint arXiv:2101.00234.

Noam Shazeer. 2019. Fast transformer decoding:
One write-head is all you need. arXiv preprint
arXiv:1911.02150.

Kyuhong Shim, Jungwook Choi, and Wonyong Sung.
2023. Exploring attention map reuse for effi-
cient transformer neural networks. arXiv preprint
arXiv:2301.12444.

Kai Sun, Dian Yu, Dong Yu, and Claire Cardie. 2020.
Investigating prior knowledge for challenging chi-
nese machine reading comprehension. Transactions
of the Association for Computational Linguistics.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui
Wang, Shuming Ma, Quanlu Zhang, Jianyong Wang,
and Furu Wei. 2024. You only cache once: Decoder-
decoder architectures for language models. arXiv
preprint arXiv:2405.05254.

10

Sho Takase and Shun Kiyono. 2021. Lessons on pa-
rameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv
cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Tong Xiao, Yingiao Li, Jingbo Zhu, Zhengtao Yu, and
Tongran Liu. 2019. Sharing attention weights for fast
transformer. arXiv preprint arXiv:1906.11024.

Liang Xu, Hai Hu, Xuanwei Zhang, Lu Li, Chenjie
Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu,
Cong Yu, et al. 2020. Clue: A chinese language
understanding evaluation benchmark. arXiv preprint
arXiv:2004.05986.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang,
Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. 2024. Think: Thinner
key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin
Zhang, and Hai Zhao. 2024b. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm
inference. arXiv preprint arXiv:2405.12532.

Yifei Yang, Zouying Cao, and Hai Zhao. 2024c¢. Laco:
Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187.

Chengxuan Ying, Guolin Ke, Di He, and Tie-Yan Liu.
2021. Lazyformer: Self attention with lazy update.
arXiv preprint arXiv:2102.12702.

https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://lmsys.org/blog/2023-06-29-longchat
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/2306.09212
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1808.08745
https://arxiv.org/abs/1904.09679v3
https://arxiv.org/abs/1904.09679v3
https://arxiv.org/abs/1904.09679v3

Amir Zandieh, Insu Han, Vahab Mirrokni, and
Amin Karbasi. 2024. Subgen: Token generation
in sublinear time and memory. arXiv preprint
arXiv:2402.06082.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024a. Q-
hitter: A better token oracle for efficient llm inference
via sparse-quantized kv cache. Proceedings of Ma-
chine Learning and Systems, 6:381-394.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuan-
dong Tian, Christopher Ré, Clark Barrett, et al. 2024b.
H2o0: Heavy-hitter oracle for efficient generative in-
ference of large language models. Advances in Neu-
ral Information Processing Systems, 36.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019.
ChID: A large-scale Chinese IDiom dataset for cloze
test. In ACL.

11

A Supplementary Results
A.1 Main Result

Figure 7 shows the average performance of each
model across all tasks at different compression
rates in the main results. Table 8 presents the de-
tailed results of the main results.

A.2 Experiments on Large-size LLMs

Due to limitations in computational resources, we
only validate the effectiveness of KVSharer on
a subset of benchmarks and using PPL on the
Llama2-70B model as shown in Table 6. We set
the compression rates to 12.5% and 25%, and find
that KVSharer effectively maintains most of the
model’s performance.

LLM | Layer | BoolQ | PIQA | HeSw | PPL

| 80 | 86.45 | 79.61 | 7849 | 4.25
Lf%“[i‘z | 70 | 8459 | 76.93 | 77.01 | 5.59
| 60 | 8373 | 75.11 | 7557 | 7.01

Table 6: The model performance achieved by applying
KVSharer with different compression rates on Llama?2-
70B.

A.3 More Ablation Studies
A.3.1 Effect of Different Calibration Datasets

To investigate the impact of different calibration
datasets, we replace the Wikipedia dataset with
a randomly selected, equally sized subset of the
BookCorpus dataset (Kiros et al., 2015). We set the
compression rate to 25% and rerun the experiments,
keeping all other settings unchanged.

LLM C%;btiteif“ BoolQ | PIQA | HeSw | PPL
Lama2-7B | s | 7201 | 74.10| 6405|513
Llama2-13B || 7534 | 7681 | 72,18 | o017
InternLM27B | 0 s | 8037 | 79,49 | 7322 | 978

InternLM2-208 |y B 16108 | 8053 | 7546 | 701

Table 7: Model performance at a 25% compression
rate using Wikipedia and BookCorpus as calibration
dataset. For each model, using a subset of BookCorpus
as the calibration dataset has little impact on KVSharer
compared to using a subset of the Wikipedia dataset.

The results are shown in Table 7. The findings
indicate that using the two different calibration

https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830

N
=3

N
O

(=)
=

Average Score
W W
=3 w

&
O

&
=3

3

5

Compression Rates
0%
[—
[m—
3 37.5%

12.5%
25%

100.0%

100.0%,

97.0%:97.0%

100.0%

113.6%

o
100.0 97.9%

82.8%

96.9%

89.4%

69.7%

94.7%

98.6%
94.6% 94.5%

100.0%

96.0%

88.4%

78.8%

Llama2-7B

Llama2-13B

InternLM2-7B

InternLM2-20B

Mistral-7B

Figure 7: The percentage of the model’s average score at different compression rates relative to the full KV cache

model.
Reasoning Language Knowledge Examination Understanding

LLM |Layer
CMNLI HeSw PIQA|CHID WSCp WSCg |[CSQA BoolQ|MMLU CMMLU [Racey Racey XSum C3
32 3298 71.35 78.18|46.04 37.50 38.46 | 66.67 70.67 | 45.92 31.86 |35.51 33.15 19.68 43.78
Llama2| 28 35.11 70.37 76.71|42.08 63.46 57.69 | 69.62 74.10 | 38.63 33.74 |53.95 55.92 23.24 45381
-7B 24 34.89 63.97 74.37|37.62 55.77 59.62 | 48.65 72.39 | 38.38 27.87 [30.33 31.27 21.30 41.70
20 34.49 55.11 71.44|32.18 52.61 30.77 | 48.65 59.14 | 28.46 2542 (2281 23.19 16.81 38.68
40 35.06 75.41 78.24|48.02 66.35 67.31|69.78 81.56 | 54.64 38.71 |58.46 64.07 25.84 50.30
Llama2| 35 3427 72.84 76.82|46.04 63.46 62.50 | 68.71 80.40 | 53.87 38.44 |58.18 64.14 20.30 48.44
-13B 30 3493 7240 76.71|44.06 53.85 44.23 | 69.12 78.20 | 53.88 38.19 |53.60 60.45 0.71 47.29
25 34.93 64.07 73.39|33.17 58.65 39.42|39.80 64.98 | 40.81 2997 |[25.13 25.00 0.04 37.70
32 33.09 73.30 79.60|82.18 61.54 70.19 | 69.53 83.21 | 65.98 62.94 |[84.19 89.00 33.56 72.55
Intern. | 28 33.07 72.64 76.71|83.66 51.92 65.38 | 69.70 80.95 | 58.12 62.40 |83.68 89.00 32.43 72.33
-7B 24 33.87 73.22 79.49|81.68 45.19 69.23 | 6896 80.37 | 63.11 62.29 |[83.33 88.72 30.62 72.16
20 33.44 7223 77.64|78.71 4231 70.19 | 68.47 80.09 | 63.27 61.81 [80.96 86.84 25.14 69.10
48 54.01 76.57 81.39|86.63 50.00 65.38 | 74.05 81.71 | 66.55 6598 |[86.51 90.25 33.04 79.51
Intern. | 42 50.14 76.17 80.74|85.15 50.00 65.38 | 73.59 81.19 | 66.17 65.70 |[86.48 90.39 26.63 79.51
20B | 36 | 4365 75.84 80.96|84.16 56.73 55.77 | 74.20 80.61 | 65.98 64.92 |86.13 90.60 26.47 79.84
30 4398 75.89 79.87|83.66 42.31 52.88 | 72.73 82.08 | 65.32 64.82 |[86.11 90.67 17.48 79.67
32 32.99 78.59 82.75|48.51 67.31 72.45|74.86 83.21 | 62.62 4437 [75.30 79.25 34.59 60.99
Mistral | 28 32.99 78.87 81.34|47.03 57.69 68.91|73.55 81.16 | 58.21 41.83 |[71.73 77.09 31.38 60.00
-7B 24 32.99 76.07 80.79|47.52 36.54 66.39 | 73.55 78.81 | 52.61 37.85 |57.66 62.19 30.36 60.00
20 32.99 73.62 77.58|47.52 36.54 65.10 | 66.99 76.02 | 41.06 2994 [41.02 44.99 28.63 45.42

Table 8: The main results of our experiments. “Layer” represents the number of layers where the KV cache is
actually computed.

datasets has almost no impact on model perfor-
mance, with only minimal differences in perfor-
mance across several benchmarks and PPL. For
InternLM2-7B, the same sharing strategy is iden-
tified with both datasets, further indicating that

KVSharer is not sensitive to the calibration dataset.

A.3.2 Effect of Calibration Dataset Size

We also conduct an ablation study on the size of the
calibration dataset, experimenting with different

12

LLM Llama2-7B Llama2-13B InternLM2-7B InternLM2-20B
Version Base ‘ Chat Base ‘ Chat Base ‘ Chat Base ‘ Chat

Layer | 32 24 | 32 24 | 40 30 | 40 30 | 32 24 | 32 24 | 48 36 | 48 36

BoolQ | 70.67 69.2770.67 7239 |71.50 65.63 |81.56 78.20|71.28 70.40|83.21 80.37|65.44 54.04|81.71 80.61

PIQA |78.18 76.66|78.18 74.37(79.71 75.35|78.24 76.71|80.30 79.00|79.60 79.49|82.10 81.23|81.39 80.96

HeSW | 71.28 69.43|71.35 63.97|74.83 67.81|75.41 72.40(73.43 7246 |73.30 73.22|75.46 74.99|76.57 75.84

PPL | 525 11.13] 6.62 939 | 432 773 [599 9.11]| 727 1059|699 978 | 513 738|567 7.05

Table 9: Comparison of performance on different benchmarks and PPL between Chat and Base versions of the
models at the same compression rate.

LLM ‘]g:z:‘tlzils)er?tsi(i);e BoolQ ‘ PIQA ‘ HeSw ‘ PPL th§ models. We cor.lduct comparative experimepts
using the Base versions of different models, setting
\ 10 | 72.01 | 74.21 | 63.54 | 9.48 the compression rate at 25%, and also comparing

Lla;;;az \ 30 | 72.39 | 74.37 | 63.97 | 9.39 the results with those of the full KV cache.
) ‘ 50 ‘ 72.41 ‘ 74.00 ‘ 63.98 ‘ 933 ‘We show the results in the Table 9. As shown in

the result, KVSharer also works for Base models,

Table 10: Ablation study on calibration dataset size as it similarly maintains a minor impact on both

conducted on Llama2-7B under 25% compression rate. various tasks and PPL, comparable to its effect

on the Chat model. This also demonstrates that

Layer | 32 28 24 20 KVSharer has strong generalizability.
PPL | 861 10.40 16.68 25.89

B Details of Reproduction
Table 11: The PPL of GPTQ-quantized Llama2-7B- 4 . 5 . .
Chat with KVSharer under different compression rates. ~ T'or H20 ™ and PyramidlInfer °, we integrate their
official code with our KVSharer. Specifically, we

sparsify the KV caches for each layer sequentially
: : o according to their methods. If a particular layer’s

As shown in Table 10, the impact of calibration gy cache needs to utilize the sparsified KV cache
dataset size on KVSharer is also minimal, as the fom 2 previous layer based on KVSharer, we di-
model still mai'ntains good pe':r'formance undet a rectly place the sparsified KV cache from that pre-
25% compression rate. To mitigate the potential yjous Jayer into the current layer. This process is
risk of obtaining suboptimal sharing strategies due |¢eq during both the strategy searching phase and
to a smaller calibration dataset size, we recommend he inference phase of KV sharing in KVSharer.
using a larger size. We first tune their respective hyperparameters
A.3.3 Compatibility with quantized model on the full attention model to achieve approxi-
mately 20% compression rate, and then directly
apply these hyperparameters to their combination
with KVSharer.

sizes selected from the Wikipedia dataset.

Since quantization is also a mainstream approach
for efficiency inference, we further explore whether
KVSharer is compatible with quantization meth-
ods. We conducted experiments using a GPTQ- ¢ (Cgge Study
quantized (Frantar et al., 2022) Llama2-7B-Chat

model combined with KVSharer. The results are ~ Table 12 presents the outputs of different models
shown in Table 11. We also find that KVSharer for the same prompt. The results indicate that, un-
does not significantly increase the model’s PPL der a 25% KVSharer compression rate, the models
within a 25% compression rate, further demonstrat- ~ can still generate fluent and meaningful responses.
ing its effectiveness.

A.3.4 Effect of KVSharer on different Model

Versions
Since the models used in our main experiments are
all Chat versions, we also want to explore whether “https://github.com/FMInference/H20
KVSharer can be effective on the Base versions of Shttps://github.com/mutonix/pyramidinfer

13

https://github.com/FMInference/H2O
https://github.com/mutonix/pyramidinfer

Prompt

Hello, please give a brief introduction to the Earth.

Llama2-7B

The planet Earth is the third planet from the sun in our solar system and the
only known inhabited world. With a mass of approximately 5.97 x 1worlds, Earth
has a radius of about 6,311 kilometers at the equator and an average surface
temperature of around 15 degrees CelsiVCentered on the axis of rotation, Earth
rotates on its axis every 24 hours, which means it takes approximately 24 hours
for the planet to rotate once on its axis. The planet orbits the sun at an
average distance of about 149.6 million kilometers every 365 days.

Llama2-13B

The Earth is the third planet from the Sun and the fifth largest of the eight
planets in our solar system. It is a terrestrial planet, meaning it is made
up of rock and metal, and has a solid surface that is suitable for life. The
Earth is approximately 93 million miles (150 million kilometers) away from the
Sun and takes 365.25 days to complete one orbit around the star. The planet is
composed of three main layers: the crust, the mantle, and the core. The crust
is the outermost layer and is made up of a variety of minerals such as granite
and basalt. The mantle is the largest layer and is made up of hot, viscous rock
that can flow over long periods of time. The core is divided into two layers:
the inner core is solid and made up of iron and nickel, while the outer core is
molten and also made up of iron and nickel.

InternLM2-7B

The earth is an oblate spheroidal planet in our solar system and third from
out of five known as "terrestrial” (rocky) planets. It’s not quite round; it
"wobbles’ slightly on its axis which we call precession or wobble for short!
The two main features that you can see with your own eyes are: - A day/night
cycle this means one side will be lighted at all times when they’re facing
their star while other parts have no direct sunlight but do get some indirect
illumination through scattering by gasses & dust. This also has implications
about what timezones people use around here!

InternL.M?2-20B

The earth is our home and it’s where we live on this planet that has been around
for about four billion years or so according to scientists who study these
things called geologists (people with degrees from universities). It’s made up
of land masses known as continents which are separated by large bodies of water
such as oceans like Pacific Ocean; there are also smaller seas including the
Mediterranean Sea.

There have always existed life forms living here but they were not human beings
until millions upon millions year ago when early humans first appeared out into
open air after evolving over time through a natural selection process involving
genetic mutations occurring randomly throughout history leading them towards
becoming more advanced than their earlier ancestors had ever dreamed possible!

Table 12: Under a 25% KVSharer compression rate, different models respond based on the prompts. The results
show that the model’s responses remain fluent and meaningful.

14

	Introduction
	Related Work
	KV cache compression
	Attention Map & Parameter sharing

	KVSharer
	Strategy Searching
	Initialization
	Searching

	Inference With KV cache Sharing

	Experiments
	Models
	Benchmarks
	Settings
	Main Result
	Strategy Searching Time
	Compatibility with Intra-layer Compression
	Memory Cost & Inference Speed
	Long-Context Scenario

	Ablation Study
	Sharing by KV Cache Similarity or Dissimilarity?
	Effect of Different Similarity Metrics
	Random Sharing v.s. KVSharer

	Conclusion
	Supplementary Results
	Main Result
	Experiments on Large-size LLMs
	More Ablation Studies
	Effect of Different Calibration Datasets
	Effect of Calibration Dataset Size
	Compatibility with quantized model
	Effect of KVSharer on different Model Versions

	Details of Reproduction
	Case Study

