
A Unified Few-Shot Classification Benchmark to
Compare Transfer and Meta Learning Approaches

Vincent Dumoulin⇤, Neil Houlsby⇤, Utku Evci, Xiaohua Zhai, Ross Goroshin,
Sylvain Gelly, Hugo Larochelle

Google Research, Brain Team
{vdumoulin,neilhoulsby,evcu,xzhai,goroshin}@google.com

{sylvaingelly,hugolarochelle}@google.com

Abstract

Meta and transfer learning are two successful families of approaches to few-shot
learning. Despite highly related goals, state-of-the-art advances in each family are
measured largely in isolation of each other. As a result of diverging evaluation
norms, a direct or thorough comparison of different approaches is challenging.
To bridge this gap, we introduce a few-shot classification evaluation protocol
named VTAB+MD with the explicit goal of facilitating sharing of insights from
each community. We demonstrate its accessibility in practice by performing a
cross-family study of the best transfer and meta learners which report on both a
large-scale meta-learning benchmark (Meta-Dataset, MD), and a transfer learning
benchmark (Visual Task Adaptation Benchmark, VTAB). We find that, on average,
large-scale transfer methods (Big Transfer, BiT) outperform competing approaches
on MD, even when trained only on ImageNet. In contrast, meta-learning approaches
struggle to compete on VTAB when trained and validated on MD. However, BiT
is not without limitations, and pushing for scale does not improve performance
on highly out-of-distribution MD tasks. We hope that this work contributes to
accelerating progress on few-shot learning research.

1 Introduction

Few-shot learning is a challenge that has received a lot of attention from the machine learning
research community in the past few years (see Wang et al. [66] for a recent survey). We do not yet
have an algorithm that can match the human ability to acquire diverse new concepts from very few
examples, rather than from orders of magnitude more training data [33]. From a practical perspective,
data collection and labeling is often time-consuming or expensive, and as a result, not all learning
problems afford large quantities of training data.

Few-shot learning approaches can be grouped into two main categories: transfer learning and
meta-learning.2 For transfer learning, a model is firstly pre-trained on an “upstream” dataset (e.g.
ImageNet [12]), and later fine-tuned on different downstream tasks. Transfer learning approaches [44]
are best exemplified when less downstream data is available. Typical downstream tasks have thousands
or more training examples, but transfer may in principle be applied to few-shot classification.

Meta-learning may also be used to solve few-shot classification problems. Instead of relying on
a hand-designed algorithm to transfer pre-trained representations to new tasks, meta-learning (i.e.

⇤Equal contribution.
2We use this categorization for convenience and simplicity in writing. However we highlight that an

alternative consideration could view meta-learning as belonging to transfer learning approaches, as they indeed
can be used to model forms of transfer.
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“learning to learn”) attempts to discover a learning algorithm which yields good generalization [25, 50].
Meta-learning seeks an “algorithmic solution” to few shot learning, and does not place great emphasis
on the data and architectures to train them. In contrast, transfer learning approaches tend to focus on
learning representations using simple algorithms (supervised learning and fine-tuning), and focus
more on the data source, architectures, and scale.

The existence of these different subfields, each with their standardized evaluation protocols, means
that practical knowledge on how to learn from few labeled examples can sometimes be fragmented.
Recent advances in transfer learning and meta-learning are not directly comparable if they are
evaluated in different ways, which limits the adoption of best practices.

To bridge this gap, we design a few-shot classification evaluation protocol that can be adopted by
both transfer learning and meta-learning to facilitate “apples-to-apples” comparisons between recent
advances. To offer a low barrier of entry and leverage prior work, we combine the Visual Task
Adaptation Benchmark [71] (VTAB)3 and Meta-Dataset [60] (MD)4 — two comprehensive few-shot
classification benchmarks recently introduced in the transfer learning and few-shot classification
literature, respectively — into an evaluation protocol which we refer to as VTAB+MD. With this,
we can verify whether advances in one field transfer across benchmarks, and can test overfitting to a
particular benchmark. Our main contributions are:

Protocol We introduce a few-shot classification evaluation protocol allowing SOTA meta-learning
and transfer learning approaches to be compared directly. Our proposed unification of two challenging
transfer learning (VTAB) and few-shot classification (MD) benchmarks lowers the barrier of entry
for approaches that already evaluate on either.

Large-scale Study To demonstrate the practical benefits of our benchmark contribution, we perform
a large-scale study on several competitive few-shot classification approaches from both research
communities. We establish BiT-L [31] as SOTA on this unified evaluation protocol, and show that
competitive approaches on the MD benchmark struggle to compete on VTAB.

Analysis of transfer learning We carefully study the impact of different aspects of the BiT model
formulation (network scale, data, normalization layer choice, and resolution). Beyond showing
aggregate benefits on MD learning episodes, coherent with observations in [31], we demonstrate
that not all effects are consistent across all of MD’s sources of test tasks. In particular, we identify
Omniglot and QuickDraw as two data sources for which BiT-L does no better than competing
approaches despite being significantly larger both in terms of data and architecture size.

Analysis of meta-learners We show that despite recent advances in cross-domain few-shot classifi-
cation, meta-learning approaches still struggle to generalize to test tasks that are significantly outside
of the training task distribution, as evidenced by their poor performance on VTAB with respect to
comparable transfer learning implementations. We identify adaptability and scale as two promising
avenues of future research to overcome these difficulties.

As evidenced by our results comparing transfer learning and meta-learning approaches on VTAB+MD,
the collaboration across these fields that the benchmark affords is beneficial to both research com-
munities, and we hope to facilitate the sharing of insights and accelerate progress on shared goal of
learning from a limited number of examples.

2 Background and related Work

2.1 Transfer Learning

Transfer learning has long been used to exploit knowledge obtained on one task to improve perfor-
mance on another, typically with less data. In the context of computer vision, the most popular form
of transfer is to initialize a network with weights obtained by pre-training on ImageNet [26]. More re-
cently, transfer from larger datasets has been shown effective, including 100M Flickr images [29, 35],
JFT with 300M images [55], and 3.5B Instagram images [38]. Most state-of-the-art methods on
image classification benchmarks now use some form of transfer learning, and the best results are
obtained by combining large-scale networks with large pre-training datasets [31, 70, 15]. Transfer

3https://github.com/google-research/task_adaptation
4https://github.com/google-research/meta-dataset
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learning has made a considerable impact in few-shot learning, most recently in in NLP [5] where
very large models have proven successful for learning transfer with few datapoints. In computer
vision, learning with few datapoints is, perhaps, more commonly addressed with semi-supervised
learning (e.g. [53]), however, [31] show that large vision models transfer well to popular classification
benchmarks (ImageNet, CIFAR, etc.) and VTAB-1k.

Several recent papers report that well-tuned transfer learning baselines are competitive with more
complex few-shot classification approaches [8, 13, 9, 58]. Such results highlight the importance of
being able to compare recent advances in transfer learning and meta-learning, which can sometimes be
siloed due to differences in evaluation protocols. Our proposed protocol makes it very straightforward
for transfer learners which were evaluated on VTAB to report results on VTAB+MD (and similarly
for meta-learners which were evaluated on MD). To demonstrate this, we establish a very strong
transfer learning baseline (BiT-L) on VTAB+MD.

While recent work highlights the strength of large-scale transfer learning, its limitations receive less
attention, and our proposed benchmark allows to identify learning settings in which it falls short of
its advertised performance. We also dissect what contributes to BiT-L’s overall success.

2.2 Episodic approaches to few-shot classification

Few-shot classification evaluation proceeds by sampling learning episodes from a test set of classes:
first the test classes are subsampled into an N -way classification problem, then examples of the N
sampled test classes are subsampled and partitioned into a k-shot support set (used to fit the model
on k examples per class, for a total of Nk support examples) and a query set (used to evaluate
the model’s generalization performance on the learning episode). Meta-learning approaches to
few-shot classification are usually trained in a way that mimics the evaluation conditions (called
episodic training). Episodes are formed using a disjoint training set of classes and the meta-learner
is trained in an end-to-end fashion by learning from the support set, evaluating on the query set,
and backpropagating the loss through the learning procedure. This is hypothesized to be beneficial
to performance on test episodes [64], and iconic gradient-based and metric-based meta-learning
approaches such as MAML [18] or Prototypical Networks [52] (respectively) are trained episodically.
The recent literature is rich in few-shot classifiers, and an exhaustive survey is beyond the scope of
this paper; see Wang et al. [66] for an overview.

2.3 Benchmarks

Many visual classification benchmarks consist of single datasets, e.g. ImageNet [12], CIFAR [32],
COCO [36], etc. However, benchmarks with multiple datasets are becoming more popular. The
Visual Decathlon [47] contains ten classification tasks, and focuses on multi-task learning. The
Facebook AI SSL challenge5 contains various vision tasks (classification, detection, etc.) and targets
linear transfer of self-supervised models.

Established episodic evaluation benchmarks range in scale and domain diversity from Omniglot [33]
to mini-ImageNet [64], CIFAR-FS [3], FC100 [43], and tiered-ImageNet [48]. Guo et al. [22]
propose a cross-domain few-shot classification evaluation protocol where learners are trained on
mini-ImageNet and evaluated on episodes sampled from four distinct target domains.

We use VTAB (1k example version) and Meta-Dataset as representative benchmarks for few-shot
classification since they offer the largest domain variety. Further, these benchmarks have been used
in the development of state-of-the-art transfer learning and meta-learning methods, respectively.

3 Unifying VTAB and Meta-Dataset

We first describe VTAB and Meta-Dataset, both of which evaluate tasks with limited training data.
The tasks that can be used for learning prior to evaluation are referred to as upstream tasks in VTAB
and training tasks in MD. Similarly, tasks on which evaluation performance is reported are referred
to as downstream and test tasks by VTAB and MD, respectively. Since each test task itself contains
training and test examples, MD refers to these as support and query sets. To avoid confusion, when
appropriate, we will prefer MD’s nomenclature.

5https://sites.google.com/corp/view/fb-ssl-challenge-iccv19/home
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VTAB features 19 evaluation tasks which can be grouped into “natural”, “structured”, and “specialized”
sets of tasks. Each task corresponds to an existing classification problem (e.g. CIFAR100) or one
converted into classification (e.g. DMLab). For the VTAB-1k variant (that we use in VTAB+MD),
the support set is constructed by taking the original problem’s training set and randomly subsampling
1000 examples. The performance on the task is then measured as the average accuracy on a query
set which consists of the original problem’s entire test set. VTAB allows a model to be trained or
validated on any dataset except the 19 evaluation tasks, and it does not provide validation tasks.

Meta-Dataset features 10 test “sources” (i.e. existing classification problems) from which learning
episodes are formed by 1) selecting a source, 2) randomly subsampling classes, and 3) randomly
subsampling examples within the selected classes that are assigned either to the support set or query
set. Performance is measured as the query accuracy averaged over many (typically 600) test episodes
and aggregated across the 10 test sources. Training and validation sources are also provided, some
of which intersect with the 10 test sources. For intersecting sources, the classes are partitioned into
training, validation, and test set classes so that the validation and test classes are never seen during
training. Meta-Dataset also features several datasets whose classes are never sampled during training
or validation, in order to measure out-of-distribution (OOD) performance.

Conceptually, VTAB and Meta-Dataset can be combined by either treating the 19 VTAB evaluation
tasks as 19 test episodes6 or treating every Meta-Dataset test episode as a evaluation task and grouping
the tasks into 10 additional sets of tasks.7 This makes it easy for approaches that already evaluate on
Meta-Dataset or VTAB to extend their evaluation to VTAB+MD.

In combining the benchmarks, we have to resolve certain task/source collisions, which also represents
an opportunity to improve on their design choices. To disambiguate between the original VTAB and
MD formulations and their VTAB+MD-adapted counterparts, we refer to the VTAB+MD ones as
VTAB-v2 and MD-v2, respectively. We make the following changes:

• VTAB does not provide a validation set of tasks; we therefore propose to use Meta-Dataset’s
validation episodes for that purpose.

• Meta-Dataset partitions ImageNet classes into training, validation, and test sets of classes,
which makes it awkward to leverage pre-trained ImageNet initializations; we therefore
choose to treat ImageNet as a training-only source in MD-v2.

• Finally, VTAB’s Flowers102 and DTD tasks are scattered into training, validation, and test
classes in Meta-Dataset, which we resolve by entirely removing Flowers as a MD-v2 source
and removing DTD as a VTAB-v2 task, respectively.

We report both aggregated and per-dataset accuracies for VTAB+MD. Aggregated reporting consists
of the average query accuracy for episodes of all MD-v2 test sources and the average test accuracy
for all VTAB-v2 tasks, which is further decomposed into “natural”, “specialized”, and “structured”
task averages (Figure 1). Detailed reporting breaks down the accuracies into their individual MD-v2
sources and VTAB-v2 tasks; we provide detailed reporting figures and tables in the Appendix.

We allow the following data for upstream training or meta-training: (i) All of the ImageNet training
set. (ii) The training sets of classes of the Omniglot, Aircraft, CU Birds, DTD, QuickDraw, and Fungi
datasets as defined by MD-v2. (iii) Any dataset whose images do not overlap with VTAB+MD’s
evaluation images. The use of any subset of these choices ensures no overlap with data used by test
tasks (e.g., using choices (i) and (ii) are referred to as all MD-v2 sources in our experiments). In
reporting our results, we consider two main “tracks”, namely ImageNet-only (i) and all allowed data
(iii). However, since more tracks may be added in the future, work evaluating on VTAB+MD should
describe exactly what dataset and data processing was used for training.

Note: In order to preserve credit attribution for the data sources used by VTAB+MD, we ask that

work citing it also acknowledges the contributors to its underlying data sources. We provide a sample

data acknowledgement section, which is also available in VTAB+MD’s instruction webpage.
7

6Rather than sampling random ways and shots, the meta-learning algorithms treat the 1k training examples
of a given VTAB task as the “support” set (using full-ways, i.e. all available classes), and the test examples as
the “query” set. As a result, the same per-task data are available to both meta-learning and transfer learning
approaches to VTAB.

7See https://github.com/google-research/meta-dataset/blob/main/VTAB-plus-MD.md for a more detailed de-
scription.

4

https://github.com/google-research/meta-dataset/blob/main/VTAB-plus-MD.md


4 Experiments

4.1 Evaluated approaches

In conjunction with the VTAB+MD evaluation protocol, we provide a set of baseline results which
highlight the ease with which recent advances in the transfer learning and meta-learning literature can
be compared. For transfer learning, we consider the recent Big Transfer [31] algorithm, which attains
near SOTA performance on VTAB as well as a number of other benchmark image classification
datasets such as ImageNet [12], CIFAR-10/100 [32], Oxford-IIIT Pets [45], and Flowers-102 [42].

We also consider recent SOTA approaches on Meta-Dataset: SUR [16], which is trained on mul-
tiple training sources, and CrossTransformers [14], which is trained only on ImageNet. We also
include representatives of metric-based and gradient-based meta-learning approaches: Prototypical
Networks [52] and ProtoMAML [60], respectively.

Prototypical Networks [52] learn a representation (via episodic training) for which a Gaussian
classifier with an identity covariance matrix performs well. For any given episode, the support
embeddings of each class are averaged into prototypes, and the classifier logits are computed as the
“query-embedding to prototype” Euclidean distances.

ProtoMAML [60] is a variant of MAML [18] (also trained episodically) which initializes the output
layer weights and biases in a way that is equivalent to Prototypical Network’s Gaussian classifier.
During training, the optimization loop on the support set is unrolled, the query loss computed at the
end is backpropagated through the optimization loop to update the trainable initialization parameters.
Note that ProtoMAML uses the first-order variant of MAML, which ignores second-order derivatives
to save on computation and memory.

SUR [16] trains separate feature extractors for each of MD’s training sources via supervised learning.
To make a prediction for a test episode, the model constructs a representation by concatenating the
modulated embeddings of each backbone and then optimizes sigmoidal modulation coefficients (one
per feature extractor) to minimize a nearest-centroid loss (computed using the cosine similarity) on
the support set and its corresponding class centroids. Query examples are then classified based on
their cosine similarity with these class centroids.

CrossTransformers [14] improves on centroid-based few-shot classification approaches by introduc-
ing a Transformer-based [62] component which replaces the feature extractor’s final global pooling
operation and whose purpose is to build class prototypes which are query-aligned and spatially
aware. The paper also introduces an auxiliary self-supervised task which reformulates SimCLR [7]’s
contrastive instance discrimination task into an episodic learning problem (called SimCLR episodes).

Big Transfer (BiT) [31] consists of pre-trained weights and a transfer learning protocol. BiT models
are based on ResNet-v2, except that batch normalization layers are replaced with group normalization,
and weight standardization is applied. BiT models are pre-trained on datasets of different sizes:
The ILSVRC-2012 ImageNet datasets (1.3M images) “BiT-S”, the full ImageNet-21k dataset (13M
images) [12] “BiT-M”, or JFT-300M (300M images) [55] “BiT-L”.

MD-Transfer refers to the transfer learning baseline used in [60]. In contrast to BiT, it (1) uses
the entire episode when calculating gradients,8 (2) uses batch normalization, (3) does validation on
MD-v2 for model selection, (4) fine-tunes using the Adam optimizer, a constant learning rate of 0.01,
and 100 parameter updates, and (5) uses a cosine classifier head. Note: (4) and (5) were selected
based on the accuracy on MD-v2 validation episodes.

4.2 Method

We follow the prescriptions of the baselines’ respective papers closely, which is necessary because
practices differ between transfer learning and few-shot classification evaluation. Few-shot classifica-
tion benchmarks tend to standardize around a restricted set of input resolutions (84⇥ 84, 126⇥ 126)
and network architectures (four-layer CNN, ResNet-18, etc.). Episodic training also imposes restric-
tions on input resolution and network capacity, since the batch size is determined by an episode’s
ways and shots and the support set cannot be trivially sharded into independent batches and distributed

8When data augmentation is used, resulting images are not re-sampled for different batches. In contrast, BIT
uses a fixed batch size of 512 images, which can include two different augmented versions of the same image.
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Figure 1: VTAB-v2 and MD-v2 aggregated accuracies for approaches trained only on ImageNet (left)
or larger-scale datasets (right). BiT-L (ResNet-101x3) emerges as SOTA, both in the ImageNet-only
setting and when using larger-scale datasets.
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tion (MD-Transfer) communities exhibit different
performance profiles.
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capacity contributes to BiT’s success on MD-v2,
but not across all test sources. For Omniglot and
QuickDraw a higher resolution decreases perfor-
mance for larger-capacity networks. All models
are trained on ImageNet. CTX accuracies are
shown for reference.

across multiple accelerators. This is especially true for large-scale benchmarks such as Meta-Dataset,
where support sets can contain up to 500 examples. This makes it difficult to scale up meta-learners;
one notable effort is the CrossTransformer model, which trains a ResNet-34 architecture on 224⇥224
inputs using a customized multi-GPU implementation. Transfer learning benchmarks on the other
hand typically train at 224 ⇥ 224 (and may evaluate at even higher resolution), and routinely use
network architectures in the ResNet-50 scale and beyond. We summarize some of these high level
details and differences here:

• For BiT we use the ResNet-101x3 architecture trained on JFT (“BiT-L-R101x3”).9 This
model is trained and evaluated at 224⇥ 224 resolution. While increasing resolution during
transfer is recommended [59], we match the pre-training and test resolutions to match the
other methods.

• In accordance with the practice established in Meta-Dataset, MD-Transfer, ProtoMAML, and
ProtoNets are initialized from a ResNet-18 classifier trained on ImageNet at 126⇥126. They
are then further trained (episodically for ProtoMAML and ProtoNets) on either ImageNet or
all MD-v2 training sources.

• CTX (CrossTransformers) trains a ResNet-34 architecture from scratch on 224⇥ 224 Ima-
geNet episodes as well as SimCLR episodes.

• SUR reuses the 84⇥ 84 ResNet-18 backbones provided by the paper authors, with two key
differences: (1) we re-train the ImageNet backbone using the entire ImageNet dataset using
the recommended hyperparameters, and (2) we remove the Flowers backbone, since Flowers
is an evaluation task in VTAB+MD.

9The BiT paper also presents an even larger ResNet-152x4, however we limit to the ResNet-101x3 to speed
up experiments which run on many episodes, and it R101x3 large enough to demonstrate the effect of scale.
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are trained with 224⇥ 224 inputs. CTX and SUR
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Full implementation details are provided in the Appendix. The differences in performance will
undoubtedly be influenced by design decisions informed by each approach’s original evaluation
setting, which we investigate through ablations on BiT-L (subsection 4.4).

All non-BiT learning approaches and baselines considered in this work perform model selection on
MD-v2 validation episodes using Triantafillou et al. [60]’s hyperparameter search space (detailed in
the Appendix, along with the best values found).

For BiT, we follow hyperparameter selection strategies similar to previous works. For MD-v2 we use
the transfer heuristic suggested in Kolesnikov et al. [31]: 500 steps of SGD with learning rate 0.003,
momentum 0.9. However, instead of the recommended task-dependent image resolutions, we use
a fixed resolution of 224⇥ 224 since other methods all use constant resolution. For VTAB-v2, we
use the same optimizer but with a small hyperparameter sweep suggested in Zhai et al. [71] over the
product of {2.5k, 10k} steps and learning rate {0.01, 0.001}. We train on the VTAB recommended
800 training example splits, select the single hyperparameter with the best average performance
across tasks on the 200 example validation splits, and evaluate that setting on the test sets. Therefore,
for each of VTAB and MD, each model uses a single set of hyperparameters for all tasks.

4.3 Comparison of selected approaches

BiT-L achieves SOTA BiT-L (trained on ImageNet/JFT) is the overall best-performing approach
on VTAB+MD, outperforming other algorithms by at least 3.5/7.8% and 10.4/14.4% on MD-v2 and
VTAB-v2, respectively (Figure 1). The Appendix contains tables summarizing all numbers in the
figures. This observation is consistent with few-shot classification work which shows that “baseline”
transfer learners benefit from scaling up the input architecture [8] and the upstream dataset [13].
Kolesnikov et al. [31] report that on standard transfer datasets (CIFAR-10, etc.), increasing network
capacity further does not appear to show clear signs of overfitting on tasks for which there is little
training data available; our results show that the observation also holds on MD-v2, whose learning
episode sampling procedure allows for even smaller data regimes. This observation highlights one
of the disadvantages that episodic approaches face: scaling is a significantly harder engineering
challenge. This doesn’t preclude the possibility that other approaches trained on JFT using a ResNet-
101x3 network architecture would perform as well as BiT-L, but it is a hypothetical setting that is
out of reach for most of the existing implementations. In the Appendix we make a first attempt to
scale up SUR’s backbones to ResNet-50 trained on 224 ⇥ 224 images. This yields an overall 5%
improvement on VTAB-v2, but a marginal improvement on MD-v2 (< 1%).

Meta-learning performance suffers on VTAB-v2 In contrast to BiT, Figure 1 shows that meta-
learning approaches struggle to compete with transfer learning on VTAB-v2. MD-Transfer outper-
forms MD-v2’s meta-learning champions (CTX, SUR), with the exception of CTX on VTAB-v2’s
natural tasks. A scaled-down ResNet-18 variant of BiT trained on 126⇥ 126 inputs (yellow column)
consistently outperforms CTX and SUR. This is consistent with Chen et al. [8]’s and Wallingford
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et al. [65]’s observation that meta-learning approaches may be competitive on tasks derived from
classes similar to those used in training but struggle with cross-dataset generalization. This is espe-
cially noticeable for SUR, which underperforms CTX on VTAB-v2 despite having been trained on
more datasets. This represents an opportunity to apply existing cross-domain few-shot classification
approaches [61, 56, 46, 37, 6] at scale.

ProtoMAML is competitive with transfer learning on the specialized VTAB-v2 tasks, but less so on
other splits. The adaptation protocol for both ProtoMAML is similar to fine-tuning used by transfer
learning. The main differences are in the trained initial weights, and the hyperparameter selection
strategy. ProtoMAML weights are initialized by ImageNet weights used for the MD-Transfer baseline.
However, during meta-training ProtoMAML uses few adaptation steps, and it uses similarly few
during adaptation (see Appendix). As a result it seems that limiting the ability for the model to adapt,
even when the episodes are small, outweighs the refined initialization weights.

Large-scale transfer is not always a silver bullet Examining a per-source performance break-
down for MD-v2 reveals a more nuanced picture: whereas BiT-L outperforms other approaches on
Birds, Textures, and MSCOCO, it underperforms competing approaches on Omniglot and QuickDraw
despite being significantly larger (Figure 4). On those sources, the benefits of meta-learning — and
more generally of incorporating inductive biases informed by knowledge of the test distribution of
tasks — appear clearer. SUR performs well on Omniglot and QuickDraw, most likely because some
of its backbones were trained on classes similar to those used to form test episodes. CTX, which is
only trained on ImageNet classes, outperforms BiT-L trained on JFT, even in the face of a significant
capacity and data disadvantage. This shows that while success cases of large-scale transfer learning
have been recently highlighted [31, 15], its failure cases should be examined and tackled as well, and
that recent approaches to few-shot classification can offer insights in that regard.

4.4 Deconstructing BiT-L’s success on MD-v2
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Figure 6: Group normalization and weight stan-
dardization (GNWS) contribute to BiT’s success
on MD-v2. Replacing them with batch normaliza-
tion (BN) causes performance to degrade across
all sources. Both models are trained on ImageNet
with 224⇥ 224 inputs. The dashed line represents
the best performing meta-learner (CTX)’s average
accuracy on MD-v2.

BiT [31] established that large-scale transfer
learning performs well on few-shot classifica-
tion tasks, including VTAB-1k evaluation tasks,
and benefits from both larger network architec-
tures and upstream datasets. As our results show,
these performance gains are not uniform across
MD-v2 test sources. This raises the following
questions: To what extents do specific findings

in transfer learning carry over to MD-v2?

Implementation details matter We scale
down BiT-L to the typical few-shot classification
regime (ResNet-18, 126⇥ 126 inputs) in order
to control for network architecture and input
resolution. Figure 1 shows that while transfer
learning remains competitive with meta-learning
approaches, SOTA approaches on Meta-Dataset
(SUR, CTX) still achieve the best MD-v2 perfor-
mance in that regime (although as noted above,
their performance degrades severely on VTAB-
v2 tasks). This observation is consistent with re-
cent work which shows that such transfer learn-
ing baselines are competitive, but not optimal, on few-shot classification tasks, both on Meta-
Dataset [9] and on smaller benchmarks [8, 13].

Interestingly, the scaled-down BiT model’s performance profile differs from that of MD-Transfer,
despite sharing the same network capacity and input resolution: it underperforms on MD-v2’s
Omniglot, Aircraft, and Traffic Sign (Figure 2) but outperforms MD-Transfer on VTAB-v2.

This highlights the fact that several design decisions influence performance, some of which are
seldom discussed in the literature. For instance, Saikia et al. [49] reports that using cross-domain
and cross-task data for hyperparameter tuning yields few-shot classification improvements in a cross-
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domain setting, and Gulrajani and Lopez-Paz [21] advocates that the model selection strategy should
be considered as part of the model specification when evaluating domain adaptation approaches.
MD-Transfer benefits from training on multiple MD-v2 sources, however, this difference pales in
comparison to the differences introduced by different hyperparameters in the baselines.

Scale helps, but less so on OOD MD tasks Figure 3 shows a global trend where increasing the
input resolution and network capacity helps with performance on MD-v2, but with a few exceptions.
Omniglot and QuickDraw are non-natural, highly out-of-distribution with respect to ImageNet, and
contain fairly low resolution images. On these tasks, increasing capacity and resolution does not have
clear positive effect; in fact, on Omniglot larger models perform worse. Traffic Sign also contains
low resolution images; it benefits from an increase in resolution, but there is not a clear trend with
respect to network size. Overall, while the 224⇥ 224 ResNet-50 variant of BiT trained on ImageNet
is able to surpass CTX’s average performance on MD-v2 by 1.69%, it mainly does so by increasing
the performance gap on data sources for which it already outperforms CTX.

BiT-L’s normalization strategy matters Figure 6 shows that replacing BiT-L’s group normaliza-
tion and weight standardization (GNWS) with batch normalization (BN) degrades its performance on
MD-v2. This result is remarkably consistent, and appears on all tasks. Since BN is problematic for
few-shot classification [4], GNWS shows promise alongside alternatives such as Bronskill et al. [4]’s
TaskNorm layer.

Sometimes more data is a good solution BiT-L trained on JFT is obviously at an advantage in
terms of data, but interestingly Figure 4 shows that the trend is very much test source-dependent
on MD-v2. For Traffic Sign the trend reverses: BiT-L is better off training on ImageNet than on
ImageNet-21k or JFT. Overall ImageNet-21k and JFT exhibit similar performance profiles, with two
exceptions: training on JFT increases performance on Aircraft, and a similar effect is observed with
ImageNet-21k on Fungi. Furthermore, for some MD-v2 test sources such as Omniglot, QuickDraw
and Traffic Sign BiT-L underperforms CTX even when trained on a much larger upstream task. This
suggests that the extent to which data scaling helps with performance is highly dependent on the
contents of the dataset itself.

We run two ablations to verify this hypothesis (Figure 5). We train ResNet-50 BiT models on three
variants of JFT: (green) JFT itself, (orange) JFT deduplicated based on all MD-v2 test sources
(⇠ 0.002% of JFT’s training data), and (purple) JFT where all aircraft-, bird-, and fungi-related
classes were removed (⇠ 3% of JFT’s training data). While the effect of deduplication is negligible,
the removal of classes related to some of MD-v2’s test sources has a large impact on Aircraft and
Birds performance, even if the corresponding reduction in training data is relatively small. This result
is consistent with our findings that SUR performs best on tasks which match its pre-training sources:
while individual image duplicates appear unimportant, domain coverage is, and large-scale datasets
are more likely to cover more domains.

5 Conclusion

We introduce a few-shot classification evaluation protocol called VTAB+MD which aims to facilitate
exchanging and comparing ideas between the transfer learning and few-shot classification commu-
nities. We demonstrate this in practice by evaluating a set of competitive recent approaches from
both both communities. Doing so highlights interesting avenues for future research. BiT’s scaling
advantage diminishes when moving to tasks that are extremely out-of-distribution, and leveraging
information from multiple upstream training tasks (as exemplified by SUR) may prove beneficial
in that respect. Meta-learning approaches are hindered because they struggle to make use of large
backbones and input resolutions due to engineering/implementation difficulties, but we may yet see
the true benefits of meta-learning when these issues have been overcome.

While VTAB+MD provides a diverse set of tasks, the evaluation remains limited to image classifi-
cation. Even withing computer vision, there are many more task types, such as object detection or
segmentation. Although it is generally the case that better classification backbones provide better
backbones for other tasks, this hypothesis cannot be confirmed by VTAB+MD alone. Therefore,
broad conclusions on few-shot learning algorithms should be corroborated by results in other domains
as well. In broader terms, benchmarks provide a necessary yardstick to measure progress across the
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larger machine learning field. However, benchmarking can have adverse side-effects: over-indexing
on benchmark results can inhibit the development of new ideas, and there is risk to meta-overfit
the benchmark tasks themselves. By focussing on a diverse combination of tasks spanning two
communities, we hope that VTAB+MD can provide useful information to guide the development of
many different approaches to the few-shot learning challenge.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] We use existing datasets which are widely
reported on, whose details are discussed in their respective papers.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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