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ABSTRACT

In this paper, we present a challenging code reasoning task: vulnerability detection.
Large Language Models (LLMs) have shown promising results in natural-language
and math reasoning, but state-of-the-art (SOTA) models reported only 54.5%
Balanced Accuracy in our vulnerability detection evaluation, even those models
pre-trained on large amounts of source code. Our error analysis on LLM responses
shows that the models struggle to reason about the code semantics relevant to
identifying vulnerabilities, especially subtle semantic differences caused by small
textual changes. We explored prominent models and training settings to understand
their effects on vulnerability detection performance — including better prompts,
larger models, more pre-training data, and fine-tuning — but none led to significant
improvements. This raises the question of whether simply scaling training data and
model size will allow us to “solve” complex code reasoning tasks like vulnerability
detection, or if a fundamental shift in modeling and training techniques is required.
We also explored adding domain knowledge to prompts; although it helped certain
models understand some code semantics, vulnerability detection requires multi-
step reasoning, and these models still failed in steps, such as reasoning about
variable relations. Our results suggest that new models, new training methods, or
more execution-specific pretraining data may be needed to conquer vulnerability
detection. We speculate that auto-regressive pre-training on source code may not
effectively extract code semantics, especially on the current pretraining mixtures,
in which execution data is scarce. Success on vulnerability detection as a code
reasoning task can benefit many areas of software engineering such as debugging,
test input generation, and program repair. Our code and data are available at
https://figshare.com/s/78fe02e56e09ec49300bl

1 INTRODUCTION

Thousands of new software vulnerabilities are discovered each year, costing users and companies
millions of dollars (NIST}2024a). This makes vulnerability detection critically important for software
security. Since Devign in 2019 Zhou et al.|(2019), many deep learning approaches have been proposed
to predict the presence of vulnerabilities, but model performance has not breached 70% F1 score
on realistic datasets |Chen et al.|(2023)). In this paper, we show that though existing LLMs achieve
impressive results on math, natural language, code reasoning and code generation tasks Talmor et al.
(2019);|Cobbe et al.|(2021); |Gu et al.|(2024); |Chen et al.|(2021) they struggle to detect vulnerabilities
(Section 2). We show that vulnerability detection is a complex code reasoning challenge, requiring
both multi-step analysis and an accurate understanding of code semantics. This paper makes the case
that vulnerability detection presents a compelling new target task for the ML community; solving it
could significantly impact related software engineering tasks, such as debugging, test input generation,
and program repair, thereby enhancing developer productivity. Furthermore, improving LLMs’ ability
to reason about code and identify vulnerabilities could potentially drive progress in broader reasoning
tasks.

As shown in to detect a vulnerability, a developer first needs to accurately locate the
statements relevant to a potential vulnerability. Second, a developer must understand the semantics
of those relevant statements, which requires domain knowledge, such as recognizing bounds/NULL
checks and understanding the effects of string, pointer, and arithmetic operations. Sometimes only a
single operator distinguishes vulnerable and non-vulnerable versions of code, and effective vulnera-
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( ( '
1 get_next_file (FILE *VFile, char sptr) ({ 1 mrb_class_real (struct RClass* cl) {
2 char xret; 2 if (cl == 0) return NULL;
3 ret = fgets(ptr, PATH_MAX, VFile); 3 cl->super = NULL;
4 if (!ret)return NULL; 4 Il oo
5 5 while ((cl->tt == MRB_TT_SCLASS) || (cl->tt
6 - if (ptrlstrlen(ptr) - 1] == '\n') <~ == MRB_TT_ICLASS)
7 = ptr[strlen(ptr) - 1] = '\0'; 6 ) {
8 + size_t len = strlen (ptr); 7 cl = cl->super;
9 + if (len > 0 && ptr[len - 1] == '\n') 8 + if (cl == 0) return NULL;
10 + ptr[len — 1] = '"\0'; 9 }
11 return ret; 10 return cl;
12} 11}
\ \ v

(A) Buffer Overflow (BOF). To detect this vulner- (B) Null-Pointer Dereference (NPD). To detect this vul-
ability in the vulnerable version, the model/devel- nerability in the vulnerable version, the model/developer
oper takes several reasoning steps: (step 1) identify takes several reasoning steps: (step 1) identify the rele-
the BOF-relevant statements, e.g., buffer allocation ~ vant statements, e.g. the assignments c1->super =
in line 3 and access in line 6; (step 2) understand NULL inline 3 and c1 = cl->super inline 7, and
that the allocated buffer may be empty depending dereference of c1 in line 5; (step 2) understand that in
on user input and that strlen (ptr) returns O line 3, c1->super is set to NULL; (step 3) connect
in line 6 if the buffer is empty; (step 3) connect the the facts, recognizing that after assigning c1 to NULL
facts, recognizing that if the buffer is empty, then in line 7, it will be dereferenced when the loop condition
line 6 will access index —1, causing a BOF. In the is evaluated in line 5, causing a NPD. In the patched
patched version, the model/developer should rec- version, the model/developer should recognize in step
ognize in step (2) that line 9 checks the length of (2) that line 8 checks if c1 is NULL and returns safely,
the buffer before accessing it, and therefore, step 3  thus there is no vulnerability.

concludes that this vulnerability is not exploitable.

FIGURE 1. Examples of vulnerability detection as a complex code reasoning task. Diffed lines (+/-)
show the lines changed to patch the vulnerability.

bility detection requires understanding these nuances of program semantics. Finally, the developer
must logically connect the individual facts about the statements to infer whether a vulnerability exists.
This last step requires reasoning about the ranges of values and the temporal relations of symbolic
variables, and then comparing them to the application’s security policy, which is often implicit.

These steps are challenging for LLMs, both individually and in combination. We studied 14 SOTA
LLMs and 7 prompting methods on SVEN (He & Vechev, [2023), a high-quality, real-world dataset
consisting of 386 vulnerable functions and their corresponding fixed versions, covering 772 programs.
We found that all models and prompts performed close to random guessing (50-55% Balanced
Accuracy) (Section 2)). Even GPT-4, a SOTA model, couldn’t distinguish vulnerable code from its
fixed version for 67.4% cases.

After manually analyzing 300 of the LLM responses (Section 3)), we found errors occurring at all
three steps of the reasoning process. For instance, in step 1, localization, the models frequently
(50% of inspected functions) failed to recognize bounds or NULL checks, resulting in false positives.
Explicit marking of bounds checks is easily done by humans but seems to be difficult for LLMs to
recognize. In step 2, LLMs misinterpreted string, pointer, and integer operations in 10%, 6%, and
8% of functions, respectively. Understanding bounds/NULL checks and the operations requires a
precise understanding of code execution semantics, which LLMs generally struggle with |Gu et al.
(2024); our results confirm this finding and further indicate which structures were most challenging.
We attribute the models’ lack of understanding of code semantics, even after using various prompting
methods, to two key factors: (1) the models may have limited exposure to execution data during
pre-training, which restricts their ability to learn semantics directly — although LLMs might acquire
some semantic understanding indirectly from simple executions aligned with code text, or developer’s
discussions about semantics; and (2) the current autoregressive pre-training methods face inherent
difficulty of learning execution semantics from code text alone. This is likely why we observe that
scaling up model size or dataset volume, and performing fine-tuning, did not significantly improve
performance and [3.2)); since the necessary data are not in the dataset, it is unlikely that
LLMs can learn this complex reasoning via scaling alone. Annotating code semantics in prompts
reduced some of these errors in certain models (Section 3.3), but determining vulnerabilities require
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a multi-step analysis. There are errors in other reasoning steps can further prevent the detection. We
show that in step 3, LLMs frequently failed at multi-step logical reasoning, leading to inconsistent or
non-sequential inferences in 9% of responses.

To the best of our knowledge, this paper is the first to utilize vulnerability detection to systematically
explore the capabilities of existing LLMs to reason about complex code properties. |Ullah et al.
(2023)) compared GPT-4’s responses with human-written vulnerability summaries using metrics like
BLEU, ROUGE, and GPT-4 evaluations, but did not delve into the specific failure modes which
occurred in responses. |Yu et al.| (2024); Nong et al.| (2024) examined GPT-4 and GPT-3.5’s responses
about vulnerabilities but did not perform systematic studies on a set of models, and on the impact of
model sizes, training data, training methods, and adding domain knowledge. We classified the errors
based on the challenges of reasoning steps, resulting in categories which are more fine-grained and
actionable; we explored mitigating a specific type of error using a prototype with CoT-Annotations,

as discussed in[Section 3.

In summary, we make the following contributions:

(1) We clarify vulnerability detection as a complex reasoning challenge;

(2) We demonstrate that current SOTA LLMs severely underperform in vulnerability detection,
achieving only 50-55% balanced accuracy at best;

(3) Through manual analysis of hundreds of LLM responses, we reveal that LLMs struggle with
all stages of reasoning, particularly in understanding semantics of statements involving bound-
s/NULL checks, string operations, and pointer handling, which contributes significantly to their poor
performance;

(4) We show that these reasoning failures and low performance cannot be easily mitigated by
increasing model size, improving training data, and applying fine-tuning, even when the model is
provided with domain-specific knowledge.

The fact that vulnerability detection exposes the limitations in current models’ abilities to reason about
vulnerabilities, coupled with the availability of well-defined vulnerability data, makes vulnerability
detection an ideal benchmark for evaluating and challenging LLM reasoning capabilities.

2 CAN LLMS EFFECTIVELY DETECT VULNERABILITIES?

Prompts: We used the baseline prompting methods including Basic (zero-shot) Fu et al.|(2023) and
In-context (n-shot)|Liu et al.|(2023b); |[Zhou et al.| (2024) prompts. We used a system prompt to set
the context and instructions including the vulnerability definition (MITRE| 2024} and the program

source code (see for details).

We designed three additional prompting methods that leverage the metadata available in vulnerability
datasets to encourage reasoning and provide the domain knowledge to the model, namely: (1) In-
context examples from contrastive pairs (Contrastive), which uses pairs before and after a bug-fix
as in-context examples, with the goal of instructing the model the fine-grained differences which
caused the bug, (2) Chain-of-Thought from CVE descriptions (CoT-CVE), which uses CVE bug
reports (CVEL 2024)) from the Big-Vul dataset (Fan et al.,[2020), prompting the model to respond with
the explanations of vulnerability, and (3) Chain-of-Thought from static analysis (CoT-StaticAnalysis),
which adapts vulnerability proofs output by a static analyzer (Calcagno & Distefanol 2011) as
reasoning steps for the example response, conditioning the model to reason step-by-step. We obtained
the proofs from the D2A dataset[Zheng et al| (2021) (see[Section A]for details).

Models: We evaluated 14 LLMs which are the SOTA in code generation, based on [Zhao et al.
(2023); L1u et al.| (2023a)) and the HumanEval leaderboard (PapersWithCode, 2023)) (as of March
2024). The models include LLAMA 2 (Touvron et al.,[2023)), Code LLAMA (Roziere et al., [2023)),
StarCoder (L1 et al.l 2023b)), StarChat (Tunstall et al., [2023)), StarCoder2 (Lozhkov et al., [2024),
StarChat2 (HuggingFaceH4 Team, 2024), Mistral (Jiang et al., 2023)), Mixtral (Jiang et al.,|2024),
MagiCoder (Wei et al.| [2023)), Wizardcoder (Luo et al.,[2023)), DeepSeek-Coder(Guo et al.| [2024]),
GPT-3.5 (OpenAll 2023)), GPT-4 (OpenAl, 2024), and Gemini 1.0 Pro (Gemini Team), [2023). See
[Section Bl for details.
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FIGURE 2. Vulnerability detection performance. Bar height shows the average performance of three
random seeds and error bars show standard deviations; stars (v¥) mark the best-performing prompt for
each model.

SVEN HumanEval CruxEval GSMS8k CSQA
Model (params) Vuln. detection Code gen. Code execution Math NL reasoning
StarChat 50.9 - - - -
LLAMA 2 (34b) 51.2 22.6 - 42.2 -
StarCoder (15.5b) 52.2 45.8 34.2 - -
Mistral (7b) 514 30.5 343 36.5 62.5
Mixtral (8x7b) 51.9 40.2 40.5 58.4 86.7
Code LLAMA (34b) 52.6 48.8 42.4 - -
WizardCoder (33b) 52.4 59.8 434 - -
MagiCoder (7b) 50.9 70.7 44 .4 - -
StarCoder2 (16b) 54.5 46.3 47.1 - -
GPT-3.5-turbo 51.8 64.9 49.4 57.1 85.5
DeepSeek (33b) 52.1 69.2 49.9 - -
GPT-4-turbo 52.9 87.1 68.7 87.1 95.3
Gemini 1.0 Pro 52.1 67.7 - 86.5 84.7
StarChat2 53.6 71.3 - - -

TABLE 1. Performance on vulnerability detection vs. NL/math reasoning, code generation, and code
execution. Sources for code, math, and NL reasoning performance are cited in

Benchmark and Metrics: We used the SVEN dataset (He & Vechev] [2023), which contains 772
vulnerable and fixed functions from real-world C/C++ projects (average length = 168 lines). Existing
vulnerability datasets like PrimeVul are useful for fine-tuning but suffer from
label noise, reducing the reliability of evaluations; in contrast, SVEN aggregates and manually
vets vulnerabilities from multiple benchmarks, with 94% reported label accuracy
[2025). Because the commonly used F1 score can bias towards models which predict vulnerable

more often (Zhou et al.| 2024), we used Balanced Accuracy (Brodersen et al,[2010) (defined as

(Sorrectuul 4 _COTTECInuul ) /9 to evaluate the models.
examples, examplesnyul

Results: shows the performance of the baseline methods and our proposed prompts.
While our new prompts slightly improved the best-case performance for 11 out of 14 models, with
Contrastive prompts enhancing 8 out of 14, none of the models or prompts exceeded the random-
guessing baseline (Balanced Accuracy = 50) by more than 5% Balanced Accuracy. In doubt of
whether the complexity of the real-world code is the main challenging factor, we studied simple code
examples (25 lines per function on average) from the CWE and SARD databases
and found that the models still did not predict simple functions correctly, reporting
42-67% Balanced Accuracy across all the models (see [Section D). [Table 1] compares the models’
vulnerability detection performance with their performance in other domains. While new models

have made steady advances in code generation|Chen et al.| (2021)), code execution|Gu et al|(2024), NL
reasoning [Talmor et al.|(2019), and math reasoning |[Cobbe et al.| (2021)), their vulnerability detection

performance has not increased in step, remaining close to the random-guess baseline. This result
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implied that the until-now successful strategies of scaling model size and training data have not yet
proven to be sufficient to solve vulnerability detection; to further confirm this, we investigated further

in[Sections 3.Tland 3.2

TABLE 2. Models’ abilities to distinguish pairs of vulnerable and non-vulnerable examples. Cell
values display the number and percentage of pairs in each category.

Distinguished
Model Can’t Distinguish  Both Correct Both Wrong
StarChat 86.1% 7.9% 6.1%
DeepSeek 82.5% 6.3% 11.2%
StarCoder 82.1% 12.5% 5.4%
GPT-3.5-turbo 80.9% 11.3% 7.8%
LLAMA 2 76.5% 15.6% 8.0%
MagiCoder 75.2% 11.9% 12.9%
Mixtral 67.8% 18.3% 13.9%
GPT-4-turbo 67.4% 18.9% 13.7%
Gemini 64.4% 19.1% 16.5%
Mistral 61.8% 20.6% 17.6%
StarChat2 61.4% 21.0% 17.6%
StarCoder2 57.5% 19.0% 23.5%
Code LLAMA 57.3% 22.3% 20.4%
WizardCoder 55.0% 23.8% 21.1%
Average 69.7% 16.3% 14.0%

presents our results on the models’ capabilities of distinguishing pairs of vulnerable code and
its fixed version. In the table, under Column Can’t Distinguish, we show that, on average across all
the models, 69.7% of pairs could not be distinguished, indicating that the models do not understand
the nuanced semantics of the vulnerability. Some models/prompts were better than average, but at
best, 55.0% of pairs could not be distinguished. The Both Correct and Both Wrong columns indicate
that the models predicted both versions correctly in some instances (16.3% of pairs), but there were
also cases (14.0% of pairs) where the models predicted both versions incorrectly.

3 WHY DO LLMS FAIL TO REASON ABOUT VULNERABILITIES?

We manually inspected 300 vulnerable predictions (covering 100 programs) from 14 models, re-
garding the vulnerability reasoning steps, including locating and understanding the semantics of
statements related to vulnerability decisions, as well as the logical reasoning that can integrate variable
values and relations, and compare them with the security policy. To reduce subjectivity, our manual
inspection used independent ratings from three authors, following Islam et al.| (2019), and adopted
best practices for inductive coding (Saldafa, [2021]). See Section for the details of our protocol.

Does the response contain an error?
B No M Yes

No error observed 131 (44%)

(1,2) Localizing & understanding
individual operations
(3) Logical reasoning

130 (43%)

28 (9%)
31 (10%)

0 50 100 150 200
# Responses

Cross-cutting errors

FIGURE 3. Error categories observed in responses from all LLMs. Bar width shows the number of
responses that contained the category of error. One response can contain more than one type of error.

summarizes the errors. The results show that LLMs had some successes in reasoning, with
44% of responses containing no observed errors; however, still more than half of the responses
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TABLE 3. Error analysis from 300 responses covering 100 programs. We analyzed the errors manually
using the rubric and inter-rater agreement procedure detailed in[Section ||

Reasoning step Error Count
(1,2) Localizing and understanding Misunderstood Bounds/NULL check  80/159 (50%)
statements related to vulnerability Misunderstood string operation 3/29 (10%)
Misunderstood arithmetic operation 8/96 (8%)
Misunderstood pointer operation 9/147 (6%)
Misunderstood alloc/free operation 4/81 (5%)
Misunderstood index operation 1/60 (2%)
Misunderstood execution order 11
Improper assumption 8
Misunderstood syntax 6
Total 125
(3) Logical reasoning Faulty implication (=) 14
Inconsistent (L) 14
Total 28
Cross-cutting errors Hallucination 15
Memorization 11
Repetition 5
Total 31

contained an error in at least one step. LLMs made errors on localizing and understanding individual
statements for 43% examples; this causes them to make faulty inferences about the effects of the
code and flag potential vulnerabilities in safe code. LLMs also made cross-cutting errors such as
hallucination and repetition 10% of the time and made incorrect logical inferences 9% of the time.

The LLMs frequently made errors related to several specific code structures, shown in
For example, out of 159 responses explaining bounds/NULL checks, 80 (50%) were incorrect.
The semantics of bounds/NULL checks are critically important for determining whether several
pertinent vulnerabilities exist, including buffer overflow, null-pointer dereference, and use after free.
Such checks often follow predictable code patterns and thus are relatively simple for developers
and static analysis tools to identify — we used static analysis to recognize them in —
however, the LLMs often failed to recognize these patterns. In addition, the models face challenges
of understanding the semantics of operations; for example, the models incorrectly interpreted 10%
string operations and 8% of arithmetic operations, which are necessary for reasoning about buffer
overflow and integer overflow vulnerabilities.

FIGURE 4. Missed Bounds/NULL check.

Source code (label: non-vulnerable, prediction: vulnerable)

static int changedline (const Proto *p, i

ldpc, int newpc) {
if (p->lineinfo NULL) + no debug in 2tion? =*/

1

2 atl1on:

3 return 0;

4 while (oldpct newpc) {

5 if (p->lineinfo[oldpc]!= 0)

6 return (luaG_getfuncline(p, oldpc 1) '= luaG_getfuncline (p,
< newpc));

7}

§ return 0; Model response (StarChat)

9}

The function dereferences the *p->1ineinfo * pointer without checking if it is null. This
can cause a crash or other unexpected behavior if the pointer is null. ..

In StarChat reported that there is an unchecked null-pointer dereference at line 5 (p—
>lineinfo[oldpc]). However, it overlooked the safety check at line 2, where null values for
p->lineinfo are handled safely. provides an example of a Misunderstood arithmetic
operation error. GPT-4 correctly identified the bounds-check at line 6, which had been added by
developers to prevent overflows (MITRE, 2024). However, the LLM failed to reason about the
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FIGURE 5. Misunderstood arithmetic operation.

Source code (label: non-vulnerable, prediction: vulnerable)

| void AllccateDataSet (cmsIT8+ it8) {
TABLE+ t = GetTable(it8);
if (t -> Data) return; S/ A te

- N S Y

if (t -> nSamples < 0 t->nSamples > Ox7ffe
- t->nPatches > 0Ox7ffe)
7 SynError (it8, "AllocateDataSet: too much d
8 else |

t-> nSamples atoi{CmsITSGetPropérty(itS, L)
t-> nPatches = atoi(cmsITBGetProperty (it8, "N

NUMBER_OF_FIELDS")) ;
“R_OF_¢ 5")) ;
t->nPatches -

ata");

t->Data = (char+x)AllocChunk(it8, ((cmsUInt32Number)t->nSamples

— + 1) * ((cmsUInt32Number)t->nPatches + 1)
10 if (t->Data == NULL) {
1 SynError (it8, "AllocateDataSet: Unable t

— array");

® } Model response (GPT-4)

4} Both t->nSamples and t—>nPatches are user-controlled and can be large. When these
— values are incremented by | and then multiplied by each other and further multiplied by
sizeof (char«), the result can overflow a 32-bit integer if the values are sufficiently

large...

Before performing the allocation, the function checks if nSamples and nSamples are
within a certain range (0 to 0x7 £ fe). However, this check does not prevent overflow. For
example, values close to the upper limit can still cause the multiplication result to wrap
around, leading to a smaller allocation than required.

» sizeof (char«+));

o allocate data

calculation of the argument value to A11locChunk at line 9. Given the upper bound of 0x7fff
for nSamples+1 and nPatches+1, even the maximum values would not cause an overflow in an
unsigned integer (Ox7££f x 0x7f£ff * 8 = 0x£££80008), so the LLM’s alert is a false positive.

As a follow-up to the error analysis, we conducted a form of natural experiment[Wikipedial (2024)
to compare various LLMs and assess whether prominent training strategies improved vulnerability
performance. This study design enabled us to evaluate each training strategy independently while
controlling other variables. We compared models of different sizes and models trained
with varying data and training methods, including increased training data volume, code vs. NL
training data, instruction fine-tuning, and adapter fine-tuning (Section 3.2). We also investigated the
use of external tools to add domain knowledge targeting the types of reasoning errors

we found in[lable 3|

3.1 DOES MODEL SIZE MATTER?

We evaluated several models which released different
sizes: LLAMA 2 (7b, 13b), Code LLAMA (7b, 13D,
34b), Mistral 7b vs. Mixtral 8x7b, and DeepSeek-
Coder (1.3b, 6.7b, and 33b). shows that
model performance did not significaly improve by
scaling up the model size, and we found that there
was no statistical correlation between model size and
performance (R?> = 0.02, p = 0.72). We manu-
ally analyzed the responses using the methodology
in|Section 3|and found that all models had error rates
similar to those shown in although larger
models were better at following in-context prompts.
For example, Code LLAMA 7b, often analyzed the in-
context examples instead of the queried example; this
error happened less frequently with Code LLAMA
13b, and not at all with Code LLAMA 34b. This
aligns with previous results show-
ing that in-context learning is an emergent property
of larger models.

Model class

M Mistral B DeepSeek-Coder
B Code LLAMA HELLAMA?2
— Regression
60
>
@ 55
% 50 e
;—E 45
40
0 10 20 30
Model size

FIGURE 6. Larger models did not improve on
vulnerability detection.
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3.2 DO MODEL TRAINING DATA & METHODS MATTER?

Dataset Training method
Less data General-purpose Base Prompting
M More data M Code M Instruct M Fine-Tuning

General-purpose vs. Code Code LLAMA/Instruct Code LLAMA/MagiCoder Balanced
gso | 50 ' ! 50 |
E
¥
<
® 25 25 25
2
B
3

0 0 0

Training on more data DeepSeek/WizardCoder StarCoder2/StarChat2 Imbalanced
350 L 50 ! | 50 |
5
I+
<
T 25 25 25
2
o
3

0] 0 0

(A) Data vol. & modality. (B) Instruction fine-tuning. (c) Adapter fine-

tuning.

FIGURE 7. Expanding the training dataset and incorporating fine-tuning had minimal impact on
vulnerability detection capability.

M Figure 7al (top), General-purpose vs. code training data: Models trained mainly on natural
language may lack the knowledge of code seen in models which have been fine-tuned on code.
This raises the question: do models specialized for code outperform general-purpose models? To
explore this, we compared LLAMA 2, designed as a general-purpose chat assistant
[2023), against Code LLAMA, which was initialized from the base weights of LLAMA 2 and further
fine-tuned on code (Roziere et al., 2023)). [Figure 7al (top) shows that code-specialized training did not
substantially improve Code LLAMA’s vulnerability detection capability.

M [Figure 7a| (bottom), Training on more data: HuggingFace’s Bigcode team released StarCoder
and its updated version, StarCoder2, with the primary difference being that StarCoder2 trained on
more than twice as much code (Lozhkov et al,[2024). This setup provides a relatively controlled
environment to assess the impact of this additional training data. (bottom) indicates that
scaling up the dataset resulted slightly improved StarCoder2’s vulnerability detection capability, but
yielded only a 4% improvement.

M [Figure 7b] Instruction fine-tuning : Instruction fine-tuning can improve the truthfulness and
relevance of responses (Ouyang et all,[2022)), as well as performance and generalization (Chung et al.|
[2024). This leads us to ask: do instructed models perform better than their base counterparts? We com-
pared the base versions of DeepSeek Coder, StarCoder2, and Code LLAMA against their instruction
fine-tuned counterparts, namely WizardCoder, StarChat2, and Code LLAMA-Instruct/MagiCoder
respectively, and found no substantial difference in performance (Figure 7b), indicating that instruc-
tion fine-tuning did not improve vulnerability detection performance, even though our vulnerability
detection prompts are tailored for instruction-tuned models.

M ([Figure 7¢, Adapter fine-tuning: We fine-tuned the StarCoder2 7b model using the vulnerability
dataset PrimeVul |Ding et al. (the cleanest supervised dataset large enough for fine-tuning) and
compared it with the base 7b model using the Basic prompt on SVEN. We evaluated the models on
balanced and imbalanced label distributions, following [Chakraborty et al.| (2022)). [Figure 7¢|shows
that finetuning did not substantially improve the model’s performance in either case; the fine-tuned
model performed worse on balanced data and only 1.2% better on imbalanced data.

3.3 DOES ADDITIONAL DOMAIN KNOWLEDGE HELP?

indicates that one of the important challenges that prevented LLMs from detecting vulnerabil-
ities is their incapability of understanding bounds/NULL checks and pointer operations. Thus, we
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CoT-Annotations prompt for the source code in[Figure 1b|

Code Explanation: The pointer c1 is passed as parameters in this function, which could be null. In line
cl->super = NULL, the pointer c1->super is assigned to NULL. In line while ((cl->tt
== MRB_TT_SCLASS) .. ., the pointer c1 is dereferenced. The function has a NULL check in line
if (¢l == 0) return NULL; for the pointer c1.

Instructions: For the Query Example only, think step-by-step using these steps, then give an answer
based on the Code Explanation. Assume pointers which are passed in will not cause a null-pointer
dereference.

1. identify which locations pointers are likely to be null.

2. identify which of these are dereferenced.

3. identify which of these dereferences of potentially-null pointers are checked and handled. Filter
these out.

4. if any unchecked dereferences remain, then the function is vulnerable. Otherwise, the function is not
vulnerable.

Example response

Reasoning: The function dereferences the pointer c1 without checking if it is NULL. c1 may be
assigned to NULL in the line c1 = cl->super. If cl is NULL, the function will crash when it
tries to access the field c1->tt in the loop condition.

Answer: Yes, the function is buggy.

FIGURE 8. Example CoT-Annotations using the NPD vulnerability from CoT-Annotations
uses static analysis to annotate null assignments, parameters, dereferences, and null-checks (top) and
provides reasoning example responses to encourage reasoning (bottom).

developed Chain-of-Thought with Annotations (CoT-Annotations), shown in[Figure 8] We introduced
an external static analysis tool which annotates the code to highlight possible NULL assignments to
pointers, NULL checks, on pointers, and dereferences of pointers. These annotations provide the
exact information that defines the vulnerability and that a domain expert would use to identify NULL-
pointer dereference vulnerabilities. We integrated such knowledge into the prompt and evaluated
performance on detecting Null-Pointer Dereference (NPD) vulnerabilities for the models we studied
above, as a case study. As a quality measure, we manually verified the static analysis output and
excluded incorrect annotations caused by heuristic errors.

Prompt
B Without additional knowledge M With additional knowledge
Bounds/NULL Check Error Analysis Performance
70
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g 50 g 40
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Model Model
(A) Reasoning errors related to bounds/NULL checks. (B) Vulnerability detection performance.

FIGURE 9. Domain knowledge is helpful for one step but not much for overall performance. Some
models, e.g., CodeLLAMA, respond to domain knowledge better: case study on NPD vulnerabilities.

By analyzing a sample of 198 responsesﬂ with/without annotations, we observed that CoT-Annotations
reduced the errors of bounds/NULL checks recognition by 15-70% for Code LLAMA, MagiCoder,

!This sample represents the intersection of vulnerable responses across all six models, with a maximum of 25
responses per model. We used the error categories established in[Section 3] with each rater analyzing one-third
of the responses (each response was reviewed by a single rater due to time constraints).
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and Mistral, shown in[Figure 9a} however, these models still missed 23-67% of bounds checks. We
also observed that the improvement of understanding bounds/NULL checks did not significantly
improve the models’ performance (see [Figure 9b). We speculate that this is because there are other
blocking issues such as logical reasoning about relations of variables.

4 RELATED WORK

Recent studies have initiated investigation into the usage of LLMs for vulnerability detection, using
zero-shot prompting [Purba et al.| (2023)); [Fu et al.| (2023)), in-context learning |Gao et al.|(2023); [Liu
et al.| (2023b)); Chan et al.[(2023), and fine-tuning Shestov et al.| (2024); |Yusuf & Jiang| (2024);|Yang
et al.| (2024). Several papers have utilized chain-of-thoughts (CoT), such as “Let’s think step-by-
step”|Li et al.| (2023a); Feng & Chen|(2024); Sun et al.[(2024), multi-step prompts [Ullah et al.|(2023));
Yu et al.| (2024), and generic information such as CFG, DFG, PDG, and API calls|Zhang et al.|(2023);
Nong et al.|(2024); Khare et al.|(2023)); Ullah et al.|(2023)). In this work, we studied the most common
prompting methods and proposed four novel prompt approaches tailored for vulnerability detection,
integrating information from bug-fix commits (contrastive pairs), CVE descriptions (CoT-CVE),
static analysis reports (CoT-StaticAnalysis), and domain knowledge annotations (CoT-Annotations).
We further studied the LLMs’ capabilities to distinguish buggy and patched versions of code and
studied the reasoning errors in their responses.

Several recent papers have analyzed errors in LLM-generated vulnerability detection responses. [Ullah
et al.|(2023) used BLEU, ROUGE, and GPT-4 to automatically compare GPT-4’s reasoning summaries
with human-generated ones. |Yu et al.| (2024)); Nong et al.[(2024) examined 82-100 responses from
GPT-4 and GPT-3.5, supporting our findings that the models struggled with correctness, logic and
consistency in general. However, existing studies do not match the depth and breadth of ours. Our
error classifications provide more actionable and detailed categories, enabling us to identify specific
code structures and LLM weaknesses (see[Table 3). Additionally, we analyzed factors such as model
size, training data, and training strategies, providing cause for concern about future improvements
from model scaling. To our knowledge, our study is the most comprehensive manual analysis of
LLMs for vulnerability detection, including 14 models and manually analyzing 300 LLM responses
with a rigorous multi-rater agreement protocol.

5 CONCLUSION

In this paper, we have show that vulnerability detection is complex, multistage reasoning task that
current LLMs struggle to solve. We conducted a thorough study to show that the SOTA models and
prompts performed only slightly better than random guessing. None of the model advancements
we explored led to significant improvements, including increasing model size, expanding training
data, and instruction/adapter fine-tuning. The models particularly struggled to distinguish between
vulnerable and fixed versions of code, where small textual differences cause large changes in
semantics. We demonstrated that external tools and domain knowledge helped somewhat with
single-step reasoning, but did not significantly improve the models’ performance, which depends on
accurate multi-step reasoning. Our findings bring concerns about further research in this area, raising
the question of whether auto-regressively pre-trained LLMs are a good fit for tasks which require
deep understanding of code semantics. We suggest that a fundamental shift in modeling and training
methods may be necessary in order to overcome the reasoning failures of current LLMs. We believe
that solving code reasoning in vulnerability detection could help address many other challenging tasks
in software engineering, such as debugging, code execution prediction, test input generation, and
program repair. Reasoning-based models fine-tuned for inherent chain-of-thought, such as OpenAl
ol (OpenAl,|2024) and DeepSeek R1 (DeepSeekl [2024), offer a promising approach to this challenge.
Furthermore, frequent localization/understanding errors, such as missing bounds/NULL checks in
50% of cases, demonstrate the need for additional context or scaffolding, as demonstrated by our
CoT-Annotations prototype We hope that our paper laid out some key insights and
motivation for the machine learning community to solve this important challenge.
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REPRODUCIBILITY STATEMENT

Our code and data, including the materials and tool used for error analysis, are available at this
link: https://figshare.com/s/78fe02e56e09ec49300b. To encourage replication and
transparency, we include several appendices detailing our prompts (Section A}, the model ID’s
we used (Section B)), the NL/math/coding benchmarks we cited (Section C), and our manual error
analysis methodology (Section Fj.
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SUPPLEMENTARY MATERIAL

APPENDIX A VULNERABILITY DETECTION PROMPTS

We explored several prompt designs, guided by model performance on a small dev set or the entire
SVEN dataset.

Basic (zero-shot) prompting (Fu et al., 2023): We first designed a system prompt to set the context:
“I want you to act as a vulnerability detection system”, along with natural-language instructions: (1)
Basic query: “Is the following function buggy? Please answer Yes or No.” (We also tried “Is the
following function vulnerable?”’; however, our pilot study shows that it did not perform as well.) (2)
CWE list: This prompt starts with “Does the following function contain one of the following bug
types?”, followed by a fixed list of bug types, e.g., “CWE-190: Integer Overflow”; (3) Q/A: Begin the
query with “Question:” and begin the model’s response with “Answer:”. This conditions the model
to respond in a question-answering mode.

In-context (n-shot) prompting(Liu et al.,[2023bj; Zhou et al., 2024): In this prompt, we provide
examples of inputs and responses for in-context learning (Brown et al. [2020). The in-context
examples condition the model to reply in the same format as the example responses (Xie & Min,
2022). The selection of in-context examples can impact the performance. We studied three settings:
(1) randomly selecting examples, (2) using retrieval-augmented generation (RAG, Lewis et al.|(2020))
to retrieve the examples that had similar CodeBERT (Feng et al., [2020) embeddings to the query
example, and (3) selecting examples from contrastive pairs (see below for details). We explored
several options for formatting in-context examples, such as appending all the examples in one chat-
assistant message versus using separate messages (one message performed best) and varying the
number of examples from 1 to 10 (6 performed best).

In-context prompting based on contrastive pairs: We formed contrasting pairs of in-context
examples by providing the vulnerable version of the code (before the bug-fixing commit) and the
fixed version (after the commit) as in-context examples in the same prompt. Since these two versions
of the source code differ primarily in the portion related to the bug-fix, our intention is that this
prompt template would highlight the cause of the bug and instruct the model to learn that the small
differences in code can lead to different labels.

1)

In-context prompting based on CoT from CVE descriptions: We designed ‘““chain-of-thought
prompts by providing intermediate reasoning steps which lead to the answer, inspired by |Wei et al.
(2022b). We use in-context examples from the Big-Vul dataset (Fan et al., 2020), which includes the
CVE bug reports. For vulnerable examples, we used the default in-context query and provide the
chain-of-thought response. To produce such response, we adapt the descriptions in these bug reports
to describe how the bug manifests. For example, CVE-2017-9211 (Corporation| (2024) describes the
vulnerability, including the symptoms, attack surface, and variable involved:

The crypto_skcipher_init_tfm function in crypto/skcipher.c in the Linux
kernel through 4.11.2 relies on a setkey function that lacks a key-size
check, which allows local users to cause a denial of service (NULL
pointer dereference) via a crafted application.

We use this description as the CoT response and append “Therefore, the example is buggy” to
complete the example response. For non-vulnerable examples, we provide the default in-context
example query/response.

To ensure high-quality examples in spite of label noise |Croft et al.| (2023), we removed duplicate
examples, excluded examples with overly long or short source code (50-750 tokens), and retained
only those examples tied to vulnerabilities (i.e., bug reports) of the same types in SVEN.

In-context prompting based on CoT from static analysis: We also used the output buggy paths
reported by the Infer (Calcagno & Distefano, [2011)) static analysis tool to prepare the chains of thought
prompt. Infer reports a single bug-triggering path for each example. The buggy path consists of a
list of statements that can lead to the bug. We use in-context examples from the D2A datasetZheng
et al.| (2021)), which lists buggy paths from the Infer static analyzer |Facebook] (2024)) for several
open-source C++ projects. We convert the buggy paths to natural language descriptions and use them
as the response. This is an example CoT response for a buffer overflow vulnerability:
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1. A buffer buf of size 10 is allocated at line 1.

2. An index 1 is initialized to a value in the range [0, 100] at line 2.
3. The index i is used to access buf at line 3. This may exceed the
bounds of buf.

We append “Therefore, the example is buggy” to complete the example response. For non-vulnerable
examples, we provide the default response.

To ensure high-quality examples in spite of label noise |Croft et al.| (2023), we removed duplicate
examples, excluded examples with overly long or short source code (50-750 tokens), and selected
examples with complete vulnerability proofs within the vulnerable function and removed those with
incomplete reports.

The key difference between our CoT-Annotation prompt and the CoT-StaticAnalysis
prompt is that the former uses lightweight, custom-built static analysis to provide targeted information
about specific vulnerability semantics, such as bounds and NULL checks—areas where LLMs
struggle, as shown in[Section 3] The latter relies on a heavyweight, off-the-shelf commercial static
analyzer (Infer) to supply proofs for the vulnerabilities it is designed to handle, but cannot provide
customized information.

APPENDIX B MODELS

We used the model sizes shown in and the text generation parameters shown in for
our experiments. The model IDs are documented in our data package.

TABLE 4. 14 models we studied.

Model Parameters Context Length
GPT-4|OpenAl| (2024) - 128k
Gemini 1.0 Pro|Gemini Team|(2023) - 32k
GPT-3.5|0OpenAl| (2023) - 4k
Mixtral-MoE Jiang et al.[(2024)) 45B 8k~128k
Code LLAMA [Roziere et al.| (2023) 7B, 13B, 34B 16k~100k
LLAMA 2[Touvron et al.[(2023) 7B, 13B 4k
WizardCoder|Luo et al.| (2023) 33B 2k
DeepSeek-Coder [Touvron et al.[(2023) 1.3B, 6.7B, 33B 4k
StarChat2 HuggingFaceH4 Team! (2024) 15.5B 16k
StarCoder2 |[HuggingFaceH4 Team| (2024) 15.5B 16k
StarChat [Tunstall et al.| (2023) 15.5B 8k
StarCoder L1 et al.[(2023b) 15.5B 8k
MagiCoder |Wei et al.[(2023) 7B 16k~100k
Mistral Jiang et al.| (2023)) 7B 8k~128k

APPENDIX C BENCHMARKS FOR OTHER DOMAINS

We gathered the benchmark performance results for[Table I|from public benchmarks and from the
papers associated with each model:

e CruXeval: https://crux—eval.github.io/leaderboard.html

e HumanEval: https://paperswithcode.com/sota/code—generation—on—humaneval

* GSMSk: reported in the models’ papers (Touvron et al.,|2023; Jiang et al.| 2023 2024} |OpenAl,
2023; 2024} |Gemini Team, 2023)).

* CSQA: reported in the models’ papers (Jiang et al., [2023; |2024; |OpenAl, 2023}, 2024} |(Gemini
Team, 2023).
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TABLE 5. Text generation parameters we used.

Parameter HuggingFace OpenAl Google
Top-p 0.9 1.0 1.0
Temperature 0.1 0.1 0.1
Max. tokens generated 512 512 512

APPENDIX D SIMPLE CWE EXAMPLES

shows a simple integer overflow vulnerability example. The CodeLLAMA model could
detect this vulnerability. The response of the CodeLLAMA model is shown in The
performances of all models on these simple examples are shown in[Table 6]

Integer Overflow

// Variable for sales revenue for the quarter
float quarterRevenue = 0.0f;

getMonthlySales (JAN); /x Get sales in January x/
getMonthlySales (FEB); /* Get sales in February */
getMonthlySales (MAR); /% Get sales in March =/

short JanSold
short FebSold
short MarSold

SV U s LR —

// Calculate quarterly total
short quarterSold = JanSold + FebSold + MarSold;

N

// Calculate the total revenue for the quarter
quarterRevenue = calculateRevenueForQuarter (quarterSold);

<o W

saveFirstQuarterRevenue (quarterRevenue) ;

©

return 0;

)
(=1

FIGURE 10. A simple integer overflow example collected from CWE database. The summation of
three short int numbers can be more than the value of the maximum short int number, which will
introduce integer overflow vulnerability.

Example response

No, the function does not contain any of the following vulnerability types:
* CWE-190: Integer Overflow

* CWE-476: Null Pointer Dereference

* CWE-125: Out-of-bound Read

* CWE-787: Out-of-bound Write

* CWE-416: Use After Free

FIGURE 11. Code LLAMA’s response to the simple example in
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TABLE 6. The performance of the studied models on simple CWE examples.

Model Performance
GPT-4|0OpenAl| (2024) 65.78
Gemini 1.0 Pro/Gemini Team| (2023) 50.87
GPT-3.5|0penAl| (2023)) 56.14
Mixtral-MokE |Jiang et al.| (2024) 61.40
Code LLAMA [Roziere et al.[(2023) 61.40
LLAMA 2 [Touvron et al.| (2023) 46.49
WizardCoder Luo et al.| (2023) 51.75
DeepSeek-Coder Touvron et al.|(2023)) 66.67
StarChat2 HuggingFaceH4 Team|(2024) 55.26
StarCoder2 HuggingFaceH4 Team|(2024) 50.87
StarChat [Tunstall et al.| (2023) 50.00
StarCoder L1 et al.|(2023b) 41.52
MagiCoder |Wei et al.|(2023) 62.28
Mistral Jiang et al.|(2023) 57.01

APPENDIX E  PERFORMANCE BREAKDOWN BY BUG TYPE

[Table 7| provides a breakdown of model performance by bug type.

TABLE 7. Performance breakdown by bug type.

Model CWE-125 CWE-190 CWE-416 CWE-476 CWE-787

(OOB Read) (Integer Overflow) (UAF) (NPD) (OOB Write)
Code LLAMA 53.67 55.29 51.88 52.42 55.86
Gemini 55.08 54.65 57.73 55.51 52.68
GPT-3.5-turbo 53.83 53.16 51.59 51.09 54.5
GPT-4-turbo 54.53 54.65 53.17 55.61 53.57
LLAMA 2 53.66 52.17 50.13 51.72 52.83
MagiCoder 53.67 52.04 55.91 52.44 57.23
Mistral 52.95 51.25 52.49 51.32 54.46
Mixtral 52.72 55.54 50.55 53.08 55.96
StarChat 50.84 52.06 52.58 52.52 50.92
StarChat2 53.54 52.66 54.36 52.56 56.58
StarCoder 56.70 58.44 54.91 53.17 58.66
StarCoder2 58.65 52.03 52.11 51.69 54.99
WizardCoder 53.01 53.85 55.38 53.55 57.55
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APPENDIX F ERROR ANALYSIS METHODOLOGY

To support measurable and targeted improvements in model reasoning, we open-sourced our error
analysis tool /Anonymous| (2024). Researchers can use this tool to quickly analyze a sample of LLM
responses to measure whether and how much the LLMs improved on a specific reasoning error, as we
demonstrated in [Section 3.3] By offering concrete metrics and a practical tool to measure them, we
aim to accelerate both advancements in LLM reasoning research and the adoption of reasoning-based
models for vulnerability detection tasks.

F.1 INTER-RATER AGREEMENT

We first analyzed 50 examples to create detailed error categories for each reasoning step. All three
raters independently identified errors in the LLM responses, refining the protocol after processing /4,
Y, and all of the data. We added new error categories when needed, and merged similar categories
after analysis concluded. We measured inter-rater agreement using Fleiss’ kappa () |Fleiss| (1971),
achieving 0.78 with 86% agreement. We resolved disagreements by majority vote, followed by
discussion for the final categorization. After the categories were set in[Section 3] we used one rater to

analyze the responses reported in to[3.3]

F.2 ERROR ANALYSIS Ul

Example 2 (idx 207, pair idx 207) Jump to example

Explanation Resolution

SSSSSS

FIGURE 12. Error analysis user interface.

is a screenshot of the user interface (UI) used by the raters for error analysis. The interface
features a display of the source code (center), the model’s response and explanation (bottom left), and
metadata about the vulnerability (top left). Additionally, it provides a configurable set of checkboxes
to select one or more error categories, along with a section for free-form text notes (bottom right).
We believe that this tool could be valuable for future large-scale manual analyses of LLM responses,
which is why we have included it in our data package.

F.3 ERROR CATEGORIES

Filtering: We chose the 100 shortest examples by line count in SVEN to ensure annotators could
easily understand the analyzed code. We included only examples where the LLM predicted “vulnera-
ble” to study its reasoning about vulnerabilities. We filtered for responses where the LLM provided
reasoning, excluding simple answers like “Yes” or “No.” To balance responses across models, we
randomly excluded a small number (1-10) of responses from later-released models, StarCoder2 and
DeepSeek, to reach an even total of 300. This decision also considered the cost of our rigorous
manual annotation process.
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Table 8|shows the definitions for the error categories which we developed in our

Error categories
manual analysis.
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TABLE 8. Definitions of Model Reasoning Errors
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