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Abstract

We generalize the notion of average Lipschitz smoothness proposed by Ashlagi
et al. [2021] by extending it to Hölder smoothness. This measure of the “effective
smoothness” of a function is sensitive to the underlying distribution and can be
dramatically smaller than its classic “worst-case” Hölder constant. We consider
both the realizable and the agnostic (noisy) regression settings, proving upper and
lower risk bounds in terms of the average Hölder smoothness; these rates improve
upon both previously known rates even in the special case of average Lipschitz
smoothness. Moreover, our lower bound is tight in the realizable setting up to
log factors, thus we establish the minimax rate. From an algorithmic perspective,
since our notion of average smoothness is defined with respect to the unknown
underlying distribution, the learner does not have an explicit representation of
the function class, hence is unable to execute ERM. Nevertheless, we provide
distinct learning algorithms that achieve both (nearly) optimal learning rates. Our
results hold in any totally bounded metric space, and are stated in terms of its
intrinsic geometry. Overall, our results show that the classic worst-case notion of
Hölder smoothness can be essentially replaced by its average, yielding considerably
sharper guarantees.

1 Introduction

A fundamental theme throughout learning theory and statistics is that “smooth” functions ought to be
easier to learn than “rough” ones — an intuition that has been formalized and rigorously established
in various frameworks [Györfi et al., 2002, Tsybakov, 2008, Giné and Nickl, 2021]. Hölder continuity
is a natural and well-studied notion of smoothness that measures the extent to which nearby points
can differ in function value and includes Lipschitz continuity as an important special case.

These global moduli of smoothness, while convenient for theoretical analysis, suffer from the short-
coming of being overly pessimistic. Indeed, being distribution-independent, they fail to distinguish
a function that is highly oscillatory everywhere from one that is smooth over most of the probabil-
ity mass; see Figure 1 for a simple illustration. Moreover, classically studied classes of average
smoothness (e.g. Besov space) typically fix some distribution in advance (predominantly uniform),
and then turn to consider smooth functions with respect to that single distribution. Thus, from a
distribution-free statistical learning perspective — where the underlying distribution is assumed to be
unknown — such classes fall short.
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Figure 1: Illustration of a function and a measure µ exhibiting a large gap between “worst-case”
smoothness (occurring in low density regions) and average-smoothness with respect to µ.

Seeking to address these drawbacks, Ashlagi et al. [2021] proposed a natural notion of average Lips-
chitz smoothness with respect to a distribution. Their average Lipschitz modulus can be considerably
(even infinitely) smaller than the standard Lipschitz constant, while still being able to control the
excess risk. However, the risk bounds obtained by Ashlagi et al. are far from optimal, while the
optimal rates for distribution-free learning of average smoothness classes remained unknown. In
particular, the cost of adapting to the smoothness with respect to the underlying distribution (in
contrast to using classic worst-case smoothness) remained unclear so far.

Our contributions. In this work, we generalize the aforementioned notion of average Lipschitz
smoothness by extending it to Hölder smoothness of any exponent β ∈ (0, 1]. After formally
defining the average Hölder smoothness of a function with respect to a distribution in Section 2.1,
our contributions can be summarized as follows:

• Bracketing numbers upper bound (Theorem 3.1). We establish a nearly-optimal distribution-free
bound on the bracketing entropy of our proposed average-smooth function class, serving as the
main crux on which we base our analyses throughout the paper. In particular, although it is known
that asymptotically empirical covering numbers yield sharper bounds than bracketing numbers,1 in
the case of average smoothness we reveal that the latter are tight up to a logarithmic factor.

• Realizable sample complexity (Theorem 3.4). We derive a nearly-optimal sample complexity
required for uniform convergence of average-Hölder functions in the realizable case, which was
not previously known even in the special case of average Lipschitz functions.

• Optimal realizable learning algorithm (Theorem 4.1). Since our notion of average smoothness
is defined with respect to the unknown sampling distribution, the learner does not have an explicit
representation of the function class, and hence is unable to execute ERM.2 We are able to overcome
this obstacle by constructing a realizable nonparametric regression algorithm with a nearly-optimal
learning rate. Such a rate was not previously known even in the special case of average Lipschitz
smoothness.

• Agnostic learning algorithm (Theorem 5.1). We provide yet another learning algorithm for the
fully agnostic (i.e. noisy) regression setting. Once again, our derived rate was not previously known
even in the special case of average Lipschitz smoothness.

• Matching lower bound (Theorem 6.1). We prove a lower bound, showing that all the results
mentioned above are tight up to logarithmic factors in the realizable case, establishing the (nearly)
minimax risk rate for average-smooth classes.

• Illustrative comparisons (Section 7). Finally, we illustrate the extent to which the proposed
smoothness notion is sharper than previously studied notions. We provide examples in which

1Uniform convergence of the L1(D) distance between the upper and lower bracket functions implies that, in
the limit of sample size, the ε-bracket functions are almost surely an empirical (1 + o(1))ε-cover; see Section 2
for a reminder of relevant definitions.

2Indeed, the learner cannot know for sure whether any given non-classically Hölder function belongs to the
average-Hölder class.
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the “optimistic” average-Hölder constant is infinitely apart from both its “pessimistic” worst-case
counterpart, or even the average-Lipschitz (β = 1) constant, exemplifying the substantial (possibly
infinite) speed-ups in terms of learning rates.

1.1 Related work.

The sample complexities associated to distribution-free learning of (classic) Hölder classes is well
covered in the literature, see for example the books by Györfi et al. [2002], Tsybakov [2008].

Previous notions of average smoothness include Bounded Variation (BV) [Appell et al., 2014] in
dimensions one and higher [Kuipers and Niederreiter, 1974, Niederreiter and Talay, 2006]. One-
dimensional BV has found learning-theoretic applications [Bartlett et al., 1997, Long, 2004, Anthony
and Bartlett, 1999], but to our knowledge the higher-dimensional variants have not. Moreover, the
positive results require µ to be uniformly distributed on a segment, and the aforementioned results
break down for more general measures — especially if µ is not known to the learner.

Sobolev spaces, and the Sobolev-Slobodetskii norm in particular [Agranovich, 2015], bear some
resemblance to our average Hölder smoothness. However, Ashlagi et al. [2021, Appendix I] demon-
strate that from a learning-theoretic perspective this notion is inadequate for general (i.e., non-uniform
or Lebesgue) measures, as it cannot be used to control sample complexity. Results for controlling
bracketing in terms of various measures of average smoothness include Nickl and Pötscher [2007],
who bound the bracketing numbers of Besov- and Sobolev-type classes and Malykhin [2010], who
used the averaged modulus of continuity developed by Sendov and Popov [1988]; again, these are
all defined under the Lebesgue measure. While it is easy to define these smoothness notions with
respect to arbitrary distributions, we are not aware of any existing work to bound their corresponding
sample complexity (or even their covering or bracketing numbers) in a distribution-independent
manner. Moreover, the smoothness notion studied in this paper is defined over arbitrary metric spaces,
whereas previous notions are typically restricted to Euclidean structures (or variants thereof). Despite
of the considerable generality of our setting, we are able to provide tight bounds for all metric spaces
alike, without requiring specialized analyses.

A seminal work on recovering functions with spatially inhomogeneous smoothness from noisy
samples is Donoho and Johnstone [1998]. Arguably in the spirit of µ-dependent Hölder smoothness,
some of the classic results on k-NN risk decay rates were refined by Chaudhuri and Dasgupta [2014]
via an analysis that captures the interplay between the metric and the sampling distribution. Another
related notion is that of Probabilistic Lipschitzness (PL) [Urner and Ben-David, 2013, Urner et al.,
2013, Kpotufe et al., 2015], which seeks to relax a hard Lipschitz condition on the regression function.
While PL is in the same spirit as our notion, one critical distinction from our work is that, while
existing analyses of learning under PL have focused specifically on binary classification, our interest
in the present work is learning real-valued functions.

As previously mentioned, the main feature setting this work apart from others studying regression
under average smoothness is that our notion is defined with respect to a general, unknown measure
µ. The notable exception is, of course, Ashlagi et al. [2021] — who introduced the framework of
efficiently learning smooth-on-average functions with respect to an unknown distribution. Although
extending their definition from Lipschitz to Hölder average smoothness was straightforward, optimal
minimax rates are likely inaccessible via their techniques, which relied on empirical covering numbers.
Estimating the magnitude of these random objects was a formidable challenge, and Ashlagi et al. were
only able to do so to within an additive error decaying with sample size; this sampling noise appears
to present an inherent obstruction to optimal rates. Thus, our results required a novel technique to
overcome this obstruction, which we did by tightly controlling the bracketing entropy. Our Hölder-
type extension is a direct adaptation of the Pointwise Minimum Slope Extension (PMSE) developed
for the Lipschitz special case by Ashlagi et al., which in turn is closely related to the one introduced
by Oberman [2008].

2 Preliminaries.

Setting. Throughout the paper we consider functions f : Ω → [0, 1] where (Ω, ρ) is a metric space.
We will consider a distribution D over Ω× [0, 1] with marginal µ over Ω, such that (Ω, ρ, µ) forms a
metric probability space (namely, µ is supported on the Borel σ-algebra induced by ρ). We associate
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to any measurable function f : Ω → [0, 1] its L1 risk LD(f) := E(X,Y )∼D |f(X) − Y |, and its
empirical risk LS(f) := 1

n

∑n
i=1 |f(Xi) − Yi| with respect to a sample S = (Xi, Yi)

n
i=1 ∼ Dn.

More generally, we associate to any measurable function its L1 norm ∥f∥L1(µ) := EX∼µ |f(X)|,
and given a sample (X1, . . . , Xn) ∼ µn we denote its L1 norm with respect to the empirical measure
∥f∥L1(µn) :=

1
n

∑n
i=1 |f(Xi)|.

We say that a distribution D over Ω × [0, 1] is realizable by a function class F ⊂ [0, 1]Ω if there
exists an f∗ ∈ F such that LD(f

∗) = 0. Thus, f∗(X) = Y almost surely, where (X,Y ) ∼ D.

Metric notions. The diameter of A ⊂ Ω is diam(A) := supx,x′∈A ρ(x, x′), and we denote
by B(x, r) := {x′ ∈ Ω : ρ(x, x′) ≤ r} the closed ball around x ∈ Ω of radius r > 0. For
t > 0, A,B ⊂ Ω, we say that A is a t-cover of B if B ⊂

⋃
a∈A B(a, t), and define the t-covering

number NB(t) to be the minimal cardinality of any t-cover of B. We say that A ⊂ B ⊂ Ω is a
t-packing of B if ρ(a, a′) ≥ t for all a ̸= a′ ∈ A. We call V a t-net of B if it is a t-cover and a
t-packing. The induced Voronoi partition of B with respect to a net V is its partitioning into subsets
sharing the same nearest neighbor in V (with ties broken in some consistent arbitrary manner). A
metric space (Ω, ρ) is said to be doubling if there exists d ∈ N such that every r-ball in Ω is contained
in the union of some d r/2-balls. The doubling dimension is defined as mind≥1 log2 d where the
minimum is taken over d satisfying the doubling property.

Bracketing. Given any two functions l, u : Ω → [0, 1], we say that f : Ω → [0, 1] belongs to the
bracket [l, u] if l ≤ f ≤ u. A set of brackets B is said to cover a function class F if any function
in F belongs to some bracket in B. We say that [l, u] is a t-bracket with respect to a norm ∥ · ∥ if
∥u− l∥ ≤ t. The t-bracketing number N[ ](F , ∥ · ∥, t) is defined as the minimal cardinality of any
set of t-brackets that covers F . The logarithm of this quantity is called the bracketing entropy.

Remark 2.1 (Covering vs. bracketing). Having recalled two notions that quantify the “size” of a
normed function space (F , ∥ · ∥) — namely, its covering and bracketing numbers — it is useful to
note they are related through

NF (ε) ≤ N[ ](F , ∥ · ∥, 2ε) , (1)

though no converse inequality of this sort holds in general. On the other hand, the main advantage of
using bracketing numbers for generalization bounds is that it suffices to bound the ambient bracketing
numbers with respect to the distribution-specific metric, as opposed to the empirical covering numbers
which are necessary to guarantee generalization [van der Vaart and Wellner, 1996, Section 2.1.1].

Strong and weak mean. For any non-negative random variable Z we define its weak mean by
W[Z] := supt>0 tPr[Z ≥ t], and note that W[Z] ≤ E[Z] by Markov’s inequality. In the special
case where Z has finite support of size N ≥ 3 where each atom has mass 1/N we have the reverse
inequality E[Z] ≤ 2 log(N)W[Z] [Ashlagi et al., 2021, Lemma 22].

2.1 Average smoothness.

For β ∈ (0, 1] and f : Ω → R, we define its β-slope at x ∈ Ω to be Λβ
f (x) := supy∈Ω\{x}

|f(x)−f(y)|
ρ(x,y)β

.

Recall that f is called β-Hölder continuous if ∥f∥Hölβ := supx∈Ω Λβ
f (x) < ∞, with this quantity

serving as its Hölder seminorm. In particular, when β = 1 these are exactly the Lipschitz functions
equipped with the Lipschitz seminorm. For a metric probability space (Ω, ρ, µ), we consider the
average β-slope to be the mean of Λβ

f (X) where X ∼ µ. Namely, we define

Λ
β

f (µ) := EX∼µ[Λ
β
f (X)] ,

Λ̃β
f (µ) := WX∼µ[Λ

β
f (X)] = sup

t>0
t · µ(x : Λβ

f (x) ≥ t) .

Notably,

Λ̃β
f (µ) ≤ Λ

β

f (µ) ≤ ∥f∥Hölβ , (2)
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where each subsequent pair can be infinitely apart — as we demonstrate in Section 7. Having defined
notions of averaged smoothness, we can further define their corresponding function spaces

HölβL(Ω) := {f : Ω → [0, 1] : ∥f∥Hölβ ≤ L} ,

Höl
β

L(Ω, µ) :=
{
f : Ω → [0, 1] : Λ

β

f (µ) ≤ L
}
,

H̃öl
β

L(Ω, µ) :=
{
f : Ω → [0, 1] : Λ̃β

f (µ) ≤ L
}
.

We occasionally omit µ when it is clear from context. Note that HölβL(Ω) ⊂ Höl
β

L(Ω, µ) ⊂
H̃öl

β

L(Ω, µ) due to Eq. (2), where both containments are strict in general. The special case of
β = 1 recovers the average-Lipschitz spaces LipL(Ω) ⊂ LipL(Ω, µ) ⊂ L̃ipL(Ω, µ) studied by
Ashlagi et al. [2021].

3 Generalization bounds

Our first goal is to bound the bracketing entropy (namely, the logarithm of the bracketing number) of
average-Hölder classes. We present this bound in full generality in terms of the underlying metric
space, as captured by its covering number (see Corollary 3.5 for the typical scaling of covering
numbers). As we will soon establish, this bound implies nearly-tight generalization guarantees in
terms of the average smoothness constant.
Theorem 3.1. For any metric probability space (Ω, ρ, µ), any β ∈ (0, 1] and any 0 < ϵ < L, it holds

logN[ ](Höl
β

L(Ω, µ), L1(µ), ε) ≤ logN[ ](H̃öl
β

L(Ω, µ), L1(µ), ε)

≤ NΩ

((
ε

128L log(1/ε)

)1/β
)

· log
(
16 log2(1/ε)

ε

)
.

Crucially, the bound above does not depend on µ, allowing us to obtain distribution-free generalization
guarantees. We defer the proof of Theorem 3.1 to Appendix B.1. We start by showing that bounding
the bracketing entropy implies a generalization bound in the realizable case:
Proposition 3.2. Suppose (Ω, ρ) is a metric space, F ⊆ [0, 1]Ω is a function class, and let D be a
distribution over Ω× [0, 1] which is realizable by F , with marginal µ over Ω. Then with probability
at least 1− δ over drawing a sample S ∼ Dn it holds that for all f ∈ F :

LD(f) ≤ 1.01LS(f) + inf
α≥0

(
α+

205 logN[ ](F , L1(µ), α)

n

)
+

205 log(1/δ)

n
.

Remark 3.3 (Constant is arbitrary). In Proposition 3.2 and in what follows, the constant multiplying
LS(f) is arbitrary, and can be replaced by (1 + γ) for any γ > 0 at the expense of multiplying the
remaining summands by γ−1. In the next section we will provide a realizable regression algorithm
that returns an approximate empirical risk minimizer f for which LS(f) ≈ 0, thus this constant will
not matter for our purposes.

We prove Proposition 3.2 in Appendix B.2. By combining Theorem 3.1 with Proposition 3.2 and
setting α = ε/2, we obtain the following realizable sample complexity result.
Theorem 3.4. For any metric space (Ω, ρ), any β ∈ (0, 1] and any 0 < ϵ < L, let D be a distribution

over Ω× [0, 1] realizable by H̃öl
β

L(Ω, µ). Then there exists N = N(β, ε, δ) ∈ N satisfying

N = Õ

NΩ

((
ε

256L log(1/ε)

)1/β)
+ log(1/δ)

ε


such that as long as n ≥ N , with probability at least 1− δ over drawing a sample S ∼ Dn it holds

that for all f ∈ H̃öl
β

L(Ω, µ) :
LD(f) ≤ 1.01LS(f) + ε .

The same claim holds for the smaller class Höl
β

L(Ω, µ).
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Corollary 3.5 (Doubling metrics). In most cases of interest, (Ω, ρ) is a doubling metric space of
some dimension d,3 e.g. when Ω is a subset of Rd (or more generally a d-dimensional Banach space).
For d-dimensional doubling spaces of finite diameter we have NΩ(ε) ≲

(
1
ε

)d
[Gottlieb et al., 2016,

Lemma 2.1], which, plugged into Theorem 3.4, yields the simplified sample complexity bound

N = Õ

(
Ld/β

ε(d+β)/β

)
,

or equivalently

LD(f) ≤ 1.01LS(f) + Õ

(
Ld/(d+β)

nβ/(d+β)

)
,

up to a constant which depends (exponentially) on d, but is independent of L, n.

Remark 3.6 (Tightness). The bounds in Theorem 3.1 and Theorem 3.4 are both tight up to logarithmic
factors, as we will prove in Section 6.

4 Realizable learning algorithm

Recall that without knowing µ, the underlying distribution over Ω, we cannot know for sure whether
a function f belongs to Höl

β

L(Ω, µ) (except for the trivial case f ∈ HölβL(Ω)). This gives rise to the
challenge of designing a fully empirical algorithm — since standard empirical risk minimization is
not possible. To that end, we provide the following algorithmic result with optimal guarantees (up to
logarithmic factors).

Theorem 4.1. For any metric space (Ω, ρ), any β ∈ (0, 1] and any 0 < ϵ < L, let D be a distribution
over Ω× [0, 1] realizable by Höl

β

L(Ω, µ). Then there exists a polynomial time learning algorithm A,
which, given a sample S ∼ Dn of size n ≥ N for some N = N(β, ε, δ) ∈ N satisfying

N = Õ

NΩ

((
ε

256L log(1/ε)

)1/β)
+ log(1/δ)

ε

 ,

constructs a hypothesis f = A(S) such that LD(f) ≤ ε with probability at least 1− δ.

Remark 4.2 (Doubling metrics). As mentioned in Corollary 3.5, in most cases of interest we have
NΩ(ε) ≲

(
1
ε

)d
. In that case, the algorithm above has sample complexity

N = Õ

(
Ld/β

ε(d+β)/β

)
,

or equivalently

LD(f) = Õ

(
Ld/(d+β)

nβ/(d+β)

)
,

up to a constant which depends (exponentially) on d, but is independent of L, n.

Remark 4.3 (Computational complexity). The algorithm constructed in Theorem 4.1 involves a
one-time preprocessing step after which f(x) can be evaluated at any given x ∈ Ω in O(n2) time.
We note that the computation at inference time matches that of (classic) Lipschitz/Hölder regression
(e.g. Gottlieb et al., 2017). Furthermore, the computational complexity of the preprocessing step is
similar to that in Ashlagi et al. [2021, Theorem 7] for the average Lipschitz case, where it is shown to
run in time Õ(n2). The complexity analysis of our prepossessing step is entirely analogous to theirs,
and we forgo repeating it here.

We will now outline the proof of Theorem 4.1, which appears in Appendix B.3. The key idea is to
analyze a natural fully-empirical quantity that will serve as an estimator of the true unknown average

3Namely, any ball of radius r > 0 can be covered by 2d balls of radius r/2.
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smoothness. To that end, given a sample S = (Xi, Yi)
n
i=1 ∼ Dn and a function f : Ω → [0, 1],

consider the following quantity which can be established directly from the data:

Λ̂β
f :=

1

n

n∑
i=1

sup
Xj ̸=Xi

|f(Xi)− f(Xj)|
ρ(Xi, Xj)β

.

Namely, this is the empirical average smoothness with respect to the sampled points. It would suit
us well if the empirical average smoothness of a function did not greatly exceed its true average
smoothness, with high probability. The fact something like this turns out to be true is somewhat
surprising and may be of independent interest:

Proposition B.1. (Informal) Let f∗ : Ω → [0, 1]. Then with high probability Λ̂β
f∗ ≲ Λ

β

f∗ .

The proposition above implies that restricting to the sample, and letting f̂(Xi) := Yi yields a function
over {X1, . . . , Xn} which is empirically average-smooth over the sample (with high probability).
We then turn to show that any such function can be approximately extended to the whole space, in a
way that guarantees its average smoothness with respect to the underlying distribution.

Proposition B.3. (Informal) Let f̂ : {X1, . . . , Xn} → [0, 1] where (Xi)
n
i=1 ∼ µn. Then it is

possible to construct f : Ω → [0, 1] such that with high probability f(Xi) ≈ f̂(Xi) for all i ∈ [N ],
and Λ

β

f (µ) ≲ Λ̂β

f̂
.

We will now sketch the procedure described in Proposition B.3, which serves as the main challenge in
proving Theorem 4.1. Roughly speaking, the algorithm sorts the sampled points with respect to their
relative slope to one another. Then, it discards a fraction of the sampled points with largest relative
slope, which can be thought of as “outliers”. Then, the algorithm proceeds to extend the function in a
smooth fashion among the remaining “well-behaved” samples. A careful probabilistic analysis shows
that disregarding just the right amount of samples induces small error, while being average-smooth
with high probability.

Overall this procedure yields a function f : Ω → [0, 1] which is an approximate empirical-minimizer
(since f(Xi) ≈ f̂(Xi) = Yi), while guaranteed to be averagely-smooth with respect to the unknown
distribution. Thus we can apply the uniform convergence of Theorem 3.4, proving Theorem 4.1.

5 Agnostic learning algorithm

Noticeably, up to this point, both the uniform convergence result we derived (Theorem 3.4) as well as
the algorithmic result (Theorem 4.1) are tailored for the realizable regression setting. Inspired by a
recent result of Hopkins et al. [2022] that showed a reduction from agnostic learning to realizable
learning, we provide an algorithm for agnostic (i.e. noisy) regression of average-smooth functions.
It is worth noting that the following algorithm does not require any prior assumption on the noise
model, unlike many nonparametric regression methods, due to our distribution free analysis.
Theorem 5.1. There exists a learning algorithm A such that for any metric space (Ω, ρ), any
β ∈ (0, 1], 0 < ϵ < L, and any distribution D over Ω × [0, 1], given a sample S ∼ Dn of size
n ≥ N for some N = N(β, ε, δ) satisfying

N = Õ

NΩ

((
ε

640L log(1/ε)

)1/β)
+ log(1/δ)

ε2

 ,

the algorithm constructs a hypothesis f = A(S) such that LD(f) ≤ inf
f∗∈Höl

β
L(Ω,µ)

LD(f
∗) + ϵ

with probability at least 1− δ.
Remark 5.2 (Doubling metrics). As mentioned in Corollary 3.5, in most cases of interest we have
NΩ(ε) ≲

(
1
ε

)d
. In that case, the algorithm above has sample complexity

N = Õ

(
Ld/β

ε(d+2β)/β

)
,
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or equivalently

LD(f) = inf
f∗∈Höl

β
L(Ω,µ)

LD(f
∗) + Õ

(
Ld/(d+2β)

nβ/(d+2β)

)
,

up to a constant which depends (exponentially) on d, but is independent of L, n.

Though our agnostic algorithm is similar in spirit to that obtained by the reduction of Hopkins
et al. [2022], our analysis is self-contained and crucially relies on the bracketing bound given by
Theorem 3.1, as well as analyzing the empirical smoothness estimator as provided by Proposition B.1.
We also note that unlike our algorithm for realizable learning, the agnostic algorithm is not computa-
tionally efficient. This seems to be inherent for such reductions, and we do not know whether this
blow-up in running time can be avoided or not.

We will now describe the proof of Theorem 5.1 which appears in Appendix B.4. Given a sample
S of size n, consider dividing it into two sub-samples S1 ∪ S2 = S of size n/2 each. We first use
S1 in order to construct an empirical ϵ-net h1, . . . , hN : S1 → [0, 1], namely a set of functions
which are sufficiently empirically smooth over the sample, yet far away enough from one another
when averaged over the sample. Recalling that bracketing numbers upper bound covering numbers
(Eq. (1)), and since Theorem 3.1 holds true for every measure (in particular for the empirical
measure), we can bound logN ≲ NΩ((ϵ/L)

1/β). Moreover, using Proposition B.1 we know that
f∗ := argmin

f∈Höl
β
L(Ω,µ)

LD(f) is likely to be Õ(L) average-smooth over S1, so there must exist
some hj with ϵ excess empirical loss (since f∗ is in the class we are ϵ-covering). Thus running
the realizable algorithm of Theorem 4.1 over all {h1, . . . , hN}, producing f1, . . . , fN : Ω → [0, 1],
yields at least one function which has both small excess empirical error, while being smooth with
respect to the underlying distribution. Finally, running ERM over {f1, . . . , fN} with respect to the
fresh sample S2 reveals such a good candidate function within log(N)+log(1/δ)

ϵ2 samples by applying
standard uniform convergence for finite classes (i.e. Hoeffding’s inequality with the union bound).

6 Lower bound

We now turn to show that the bounds proved in Theorem 3.1, Theorem 3.4 and Theorem 4.1 are all
tight up to logarithmic factors. In fact, since the bracketing entropy bound of Theorem 3.1 implies the
generalization bound of Theorem 3.4 and the latter implies the sample complexity in Theorem 4.1, it
is enough to show that the latter is nearly optimal.
Theorem 6.1. For any β ∈ (0, 1], ε ∈ (0, 1) any metric space (Ω, ρ) and L ≥ 8

diam(Ω) , there exists

a distribution D over Ω × [0, 1] which is realizable by Höl
β

L(Ω) such that any learning algorithm
that produces f = A(S) with LD(f) ≤ ε with constant probability, must have sample complexity

n = Ω

(
NΩ((ε/L)

1/β)

ε

)
.

Remark 6.2 (Typical case). In most cases of interest it holds that NΩ(ε) ≳
(
1
ε

)d
for some constant d,

e.g. when Ω is a subset of non-empty interior in Rd (or more generally in any d-dimensional Banach
space).4 That being the case, Theorem 6.1 yields the simplified sample complexity lower bound of

n = Ω

(
Ld/β

ε(d+β)/β

)
Equivalently, we obtain an excess risk lower bound of

LD(f) = Ω

(
Ld/(d+β)

nβ/(d+β)

)
.

We will now provide a proof sketch of Theorem 6.1, while the full proof appears in Appendix B.5.
Suppose K ⊂ Ω is a (ε/L)1/β-net of most of Ω, yet x0 ∈ Ω is some “isolated” point at constant

4Note that assuming a subset has nonempty interior implies that it cannot be isometrically embedded to a
lower dimensional space. Hence, this d encapsulates the “true” intrinsic metric dimension.
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distance away from K (we show that such x0,K always exist). Let µ be the measure that assigns
1 − ε probability mass to x0, while the rest of the probability mass is distributed uniformly over
K. Now consider a (random) function that independently assigns either 0 or 1 to each point in K
uniformly, and is constant over x0. Since points in K are (ε/L)1/β away from one another, the local
β-slope at each point in K is roughly 1/((ε/L)1/β)β = L/ε, while the slope at x0 is small since it is
far enough from other points. Averaging over the space with respect to µ, we see that the function is
µ(K) · L/ε = L average-Hölder. Now, we imitate the standard lower bound proof for VC classes
over K: Since any point in K is sampled with probability ε/|K|, any learning algorithm with much
fewer than |K|/ε ≈ NΩ((ε/L)

1/β)/ε examples will guess wrong a large portion of K, suffering
L1-loss of at least order of µ(K) = ε.

7 Illustrative examples

Having established the control that average-Hölder smoothness has on generalization, we illustrate the
vast possible gap between the average smoothness and it’s “worst-case” classic counterpart. Indeed,
in the examples we provide, the gap is infinite. Moreover, we also show that classes of average-Hölder
smoothness are significantly richer than the previously studied average-Lipschitz, motivating the
more general Hölder framework considered in this work. Finally, it is illuminating to notice that
both claims to follow actually consist of the same simple function f(x) = 1[x > 1

2 ] though with
respect to different distributions, emphasizing the crucial role of the underlying distribution in terms
of establishing the function classes.

Claim 7.1. For any L > 0, β ∈ (0, 1), there exist f : Ω → [0, 1] and a probability measure µ such
that

• f is average-Hölder: f ∈ Höl
β

L(Ω, µ) .

• f is not Hölder with any finite Hölder constant: For all M > 0 : f /∈ HölβM (Ω) .

• f is not (even) weakly-average-Lipschitz with any finite modulus: For all M > 0 : f /∈
L̃ipM (Ω, µ) .

Thus, Höl
β

L(Ω, µ) ̸⊂
⋃∞

M=0

(
HölβM (Ω) ∪ L̃ipM (Ω, µ)

)
.

Claim 7.2. For any L > 0, β ∈ (0, 1), there exist f : Ω → [0, 1] and a probability measure µ such
that

• f is weakly-average-Hölder: f ∈ H̃öl
β

L(Ω, µ) .

• f is not strongly-average-Hölder with any finite modulus: For all M > 0 : f /∈ Höl
β

M (Ω) .

• f is not (even) weakly-average-Lipschitz with any finite modulus: For all M > 0 : f /∈
L̃ipM (Ω, µ) .

Thus, H̃öl
β

L(Ω, µ) ̸⊂
⋃∞

M=0

(
Höl

β

M (Ω, µ) ∪ L̃ipM (Ω, µ)
)

.

We prove both of the claims above in Appendix B.6.

8 Discussion

In this work, we have defined a notion of an average-Hölder smoothness, extending the average-
Lipschitz one introduced by Ashlagi et al. [2021]. Using proof techniques based on bracketing
numbers, we have established the minimax rate for average-smoothness classes in the realizable
setting with respect to the L1 risk up to logarithmic factors, and have provided a nontrivial learning
algorithm that attains this nearly-optimal learning rate. Moreover, we have also provided yet another
learning algorithm for the agnostic setting. All of these results improve upon previously known rates
even in the special case of average-Lipschitz classes.
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A few notes are in order. First, the choice of focusing on L1 risk as opposed to general Lp losses is
merely a matter of conciseness, as to avoid introducing additional parameters. Indeed, the only place
throughout the proofs which we use the L1 loss is in the proof of Proposition 3.2, where we show
that the loss-class LF := {x 7→ |f(x)− f∗(x)| : f ∈ F} satisfies

N[ ](LF , L1(µ), α) ≤ N[ ](F , L1(µ), α) .

It is easy to show via essentially the same proof that for any p ∈ [1,∞), the Lp-composed loss-
class satisfies N[ ](LF , L1(µ), α) ≤ N[ ](F , L1(µ), α

1/p), and the remaining proofs can be invoked
verbatim. This yields a realizable sample complexity (in the typical, d-dimensional case) of order
N = Õ

(
Ld/pβ

ε(d+pβ)/pβ

)
, or equivalently Lp-risk decay rate of LD(f) = Õ

(
Ld/(d+pβ)

npβ/(d+pβ)

)
which are also

easily translatable to their corresponding agnostic rates.

Focusing again on L1 minimax rates of average-Hölder classes, it is interesting to compare them
to the minimax rates of “classic” (i.e., worst-case) Hölder classes. Schreuder [2020] has shown the
minimax risk to be of order n−β/d, whereas we showed the average-smooth case has the slightly
worse rate of n−β/(d+β) (which cannot be improved, due to our matching lower bound). However,
comparing the rates alone is rather misleading, since both risks are multiplied by a factor depending
on their corresponding Hölder constant, which can be considerably smaller in the average-case result.
Still, it is interesting to note that in the asymptotic regime there is a marginal advantage in case the
learned function is worst-case Hölder, as opposed to Hölder on average.

Our work leaves open several questions. A relatively straightforward one is to compute the minimax
rates and construct an optimal algorithm for the classification setting, which is not addressed by
this paper. Moreover, there is a slight mismatch between our established upper and lower bounds
in the agnostic setting, ranging between Õ(n−β/(d+2β)) and Ω(n−β/(d+β)). Closing this gap is an
interesting problem which we leave for future work.
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A Minimal β-slope Hölder extension

In this section we describe a procedure that extends Hölder functions in an optimally smoothest
manner at every point, as it will serve as a crucial ingredient in our proofs. That is, given a subset of
a metric space A ⊂ Ω and a function f : Ω → [0, 1], it produces FA : Ω → [0, 1] such that

1. It extends f |A : FA|A = f |A.

2. For any F̃ : Ω → [0, 1] that extends f |A, it holds that Λβ
FA

(x) ≤ Λβ

F̃
(x) for all x ∈ Ω.

Such a procedure was described for Lipschitz extensions (namely when β = 1) in Ashlagi et al.
[2021]. The purpose of this section is to generalize this procedure to any Hölder exponent.

Throughout this section we fix β ∈ (0, 1], ∅ ̸= A ⊂ Ω and f : Ω → [0, 1], and will always assume
the following.
Assumption A.1. ∥f |A∥Hölβ < ∞ and diam(A) < ∞.

Keeping in mind that the case we are really interested in is when A is finite (i.e. a sample), the
conditions above are trivially satisfied. Nonetheless, everything we will present continues to hold in
this more general setting. For u, v ∈ A we introduce the following notation:

Rx(u, v) :=
f(v)− f(u)

ρ(x, v)β + ρ(x, u)β
,

Fx(u, v) := f(u) +Rx(u, v)ρ(x, u)
β ,

R∗
x := sup

u,v∈A
Rx(u, v) ,

Wx(ε) := {(u, v) ∈ A×A : Rx(u, v) > R∗
x − ε} , 0 < ε < R∗

x

Φx(ε) := {Fx(u, v) : (u, v) ∈ Wx(ε)} .

Definition A.2. We define the β-pointwise minimal slope extension (β-PMSE) to be the function
FA : Ω → R satisfying

FA(x) := lim
ε→0+

Φx(ε) .

In the degenerate case in which f(u) = f(v) for all u, v ∈ A, define FA(x) := f(u) for some (and
hence any) u ∈ A.
Theorem A.3. Let ∅ ≠ A ⊂ Ω, f : Ω → [0, 1], such that Assumption A.1 holds. Then FA : Ω →
[0, 1] is well defined, and satisfies for any x ∈ Ω : Λβ

FA
(x) ≤ Λβ

f (x). Furthermore, if A is finite,
then FA(x) can be computed for any x ∈ Ω within O(|A|2) arithmetic operations.
Remark A.4. When Rx(·, ·) has a unique maximizer (u∗

x, v
∗
x) ∈ A×A, the definition of FA simplifies

to

FA(x) = f(u∗
x) +

ρ(x, u∗
x)

β

ρ(x, u∗
x)

β + ρ(x, v∗x)
β
(f(v∗x)− f(u∗

x)) . (3)

We conclude that under Assumption A.1, we can assume without loss of generality that for each
x ∈ Ω there is such a unique maximizer (since the function is well defined, thus does not depend on
the choice of the maximizer). Furthermore, this readily shows that when A is finite, we can compute
FA(x) for any x ∈ Ω within O(|A|2) arithmetic operations — simply by finding this maximizer.

Proof. (of Theorem A.3)

We will assume that there exist u, v ∈ A such that f(u) ̸= f(v), since the degenerate (constant
extension) case is trivial to verify. This assumption implies that R∗

x > 0. It is also easy to verify that
supx∈Ω R∗

x < ∞ ⇐⇒ ∥f∥Hölβ < ∞.

Lemma A.5. FA is well defined. Namely, under Assumption A.1 the limit limε→0+ Φx(ε) ∈ [0, 1]
exists.

Proof. Fix x ∈ Ω (we will omit the x subscripts from now on). Let ε < R∗/2, (u, v), (u′, v′) ∈
W (ε). Note that R(u, v) > 0 and that F (u, v) = f(v)−R(u, v)ρ(x, v)β . Hence

f(u) ≤ F (u, v) ≤ f(v) , (4)
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and the same clearly holds if we replace (u, v) by (u′, v′). Assume without loss of generality that
F (u, v) ≤ F (u′, v′), hence f(u) ≤ F (u, v) ≤ F (u′, v′) ≤ f(v′). We get

R(u′, v′) + ε > R∗

≥ f(v′)− f(u)

ρ(x, v′)β + ρ(x, u)β

=
f(v′)− F (u′, v′) + F (u, v)− f(u)

ρ(x, v′)β + ρ(x, u)β
+

F (u′, v′)− F (u, v)

ρ(x, v′)β + ρ(x, u)β

=
R(u′, v′)ρ(x, v′)β +R(u, v)ρ(x, u)β

ρ(x, v′)β + ρ(x, u)β
+

F (u′, v′)− F (u, v)

ρ(x, v′)β + ρ(x, u)β

≥ R(u′, v′)ρ(x, v′)β + (R(u′, v′)− ε)ρ(x, u)β

ρ(x, v′)β + ρ(x, u)β
+

F (u′, v′)− F (u, v)

2diam(A)β

≥ R(u′, v′)− ε+
F (u′, v′)− F (u, v)

2diam(A)β

=⇒ |Fx(u, v)− Fx(u
′, v′)| ≤ 4εdiam(A)β .

We conclude that if diam(A) < ∞ then limε→0+ Φx(ε) indeed exists.

It remains to prove the optimality of the β-slope. Throughout the proof we will denote for any
u ̸= v ∈ Ω :

S(u, v) :=
|FA(u)− FA(v)|

ρ(u, v)β
,

and for any point x ∈ Ω, subset B ⊂ Ω and function g : Ω → [0, 1] we let

Λβ
g (x,B) := sup

y∈B\{x}

|g(x)− g(y)|
ρ(x, y)β

.

The proof is split into three claims.

Claim I. ∀x ∈ Ω \A : Λβ
FA

(x,A) ≤ Λβ
f (x,A).

Let x ∈ Ω \ A, and let (u∗, v∗) ∈ A × A be its associated maximizer of Rx. Recall Eq. (4) from
which we can deduce that FA(u

∗) ≤ FA(x) ≤ FA(v
∗). Also note that a simple rearrangement based

on Eq. (3) (and the fact that f and FA agree on A) shows that S(u∗, x) = Rx(u
∗, v∗) = S(x, v∗).

Furthermore, we claim that Λβ
FA

(x,A) := supy∈A\{x} S(x, y) = S(x, u∗). If this were not true then
we would have S(x, y) > S(x, u∗) = S(x, v∗) for some y ∈ A \ {x, u∗, v∗}. Using the mediant
inequality, if f(y) ≥ f(x) this implies

Rx(u
∗, y) =

f(y)− f(u∗)

ρ(x, y)β + ρ(x, u∗)β
=

FA(y)− FA(x) + FA(x)− FA(u
∗)

ρ(x, y)β + ρ(x, u∗)β
> S(x, u∗) = Rx(u

∗, v∗) ,

while if f(y) < f(x) then

Rx(y, v
∗) =

f(v∗)− f(y)

ρ(x, v∗)β + ρ(x, y)β
=

FA(v
∗)− FA(x) + FA(x)− FA(y)

ρ(x, v∗)β + ρ(x, y)β
> S(x, v∗) = Rx(u

∗, v∗) ,

both contradicting the maximizing property of (u∗, v∗) - so indeed Λβ
FA

(x,A) = S(x, u∗) =
S(x, v∗). In particular, we see that if FA(x) ≥ f(x) then

Λβ
f (x,A) = sup

y∈A\{x}

|f(y)− f(x)|
ρ(y, x)β

≥ f(v∗)− f(x)

ρ(v∗, x)β
≥ FA(v

∗)− FA(x)

ρ(v∗, x)β
= S(x, v∗) = Λβ

FA
(x,A) ,

while if FA(x) < f(x) then

Λβ
f (x,A) = sup

y∈A\{x}

|f(x)− f(u)|
ρ(x, y)β

≥ f(x)− f(u∗)

ρ(x, u∗)β
>

FA(x)− FA(u
∗)

ρ(x, u∗)β
= S(x, u∗) = Λβ

FA
(x,A) ,

proving Claim I in either case.
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Claim II. ∀x ∈ Ω \A : Λβ
FA

(x,Ω \A) ≤ Λβ
FA

(x,A), in particular Λβ
FA

(x,Ω) = Λβ
FA

(x,A).

It suffices to show that for any x, y ∈ Ω \A :

S(x, y) ≤ min{Λβ
FA

(x,A),Λβ
FA

(y,A)} ,

since taking the supremum of the left hand side over y ∈ Ω\A shows the claim. Let (u∗
x, v

∗
x), (u

∗
y, v

∗
y)

the associated maximizers of Rx, Ry respectively, and note that by definition we have

Λβ
FA

(x,A) = sup
z∈A\{x}

S(x, z) ≥ max{S(x, u∗
y), S(x, v

∗
y)} . (5)

We assume without loss of generality that Λβ
FA

(x,A) ≤ Λβ
FA

(y,A), and recall that by Eq. (4) we
can deduce that FA(u

∗
x) ≤ FA(x) ≤ FA(v

∗
x) and FA(u

∗
y) ≤ FA(y) ≤ FA(v

∗
y). Now suppose by

contradiction that S(x, y) > Λβ
FA

(x,A). If FA(x) ≤ FA(y) then

FA(v
∗
y) = FA(x) + ρ(x, y)βS(x, y) + ρ(y, v∗y)

βΛβ
FA

(y,A)

> FA(x) + ρ(x, y)βΛβ
FA

(x,A) + ρ(y, v∗y)
βΛβ

FA
(x,A)

≥ FA(x) + ρ(x, v∗y)
βΛβ

FA
(x,A) ,

thus S(x, v∗y) =
|FA(x)−FA(v∗

y)|
ρ(x,v∗

y)
β > Λβ

FA
(x,A) which contradicts Eq. (5). On the other hand, if

FA(x) > FA(y) then

FA(x) = FA(u
∗
y) + ρ(u∗

y, y)
βΛβ

FA
(y,A) + ρ(y, x)βS(x, y)

> FA(u
∗
y) + ρ(u∗

y, y)
βΛβ

FA
(x,A) + ρ(y, x)βΛβ

FA
(x,A)

≥ FA(u
∗
y) + ρ(u∗

y, x)
βΛβ

FA
(x,A) ,

thus S(x, u∗
y) =

|FA(x)−FA(u∗
y)|

ρ(x,u∗
y)

β > Λβ
FA

(x,A) which contradicts Eq. (5), and proves claim Claim II.

Claim III. ∀x ∈ A : Λβ
FA

(x,Ω) = Λβ
FA

(x,A) ≤ Λβ
f (x,Ω).

Let x ∈ A. Assume towards contradiction that there exists y /∈ A such that

ΛFA
(x,Ω) ≥ S(x, y) > Λβ

FA
(x,A) .

We denote by (u∗
y, v

∗
y) ∈ A×A the maximizer of Ry(·, ·). Recall that since x ∈ A, in the proof of

Claim I we showed that S(x, y) ≤ S(y, u∗
y) = S(y, v∗y). If FA(x) ≤ FA(y) ≤ FA(v

∗
y) then

S(x, v∗y) =
FA(v

∗
y)− FA(x)

ρ(v∗y , x)
β

≥
FA(v

∗
y)− FA(y) + FA(y)− FA(x)

ρ(v∗y , y)
β + ρ(x, y)β

≥ min{S(y, v∗y), S(x, y)} = S(x, y) > Λβ
FA

(x,A) ,

while on the other hand if FA(x) > FA(y) ≥ FA(u
∗
y) then

S(x, u∗
y) =

FA(x)− FA(u
∗
y)

ρ(x, u∗
y)

β
≥

FA(x)− FA(y) + FA(y)− FA(u
∗
y)

ρ(x, y)β + ρ(u∗
y, y)

β

≥ min{S(x, y), S(y, u∗
y)} = S(x, y) > Λβ

FA
(x,A) ,

where in both calculations we used the mediant inequality. Both inequalities above contradict the
definition of Λβ

FA
(x,A), thus proving Claim III.

Combining the ingredients. We are now ready to finish the proof. For x ∈ Ω, if x ∈ A then Claim
III provides the desired inequality. Otherwise, if x ∈ Ω \A then

Λβ
FA

(x,Ω)
Claim II

= Λβ
FA

(x,A)
Claim I
≤ Λβ

f (x,A) ≤ Λβ
f (x,Ω) .
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B Proofs

B.1 Proof of Theorem 3.1

We start by stating a strengthened version of the triangle inequality (also known as the “snowflake”
triangle inequality) which we will use later on. For any β ∈ (0, 1], x ̸= y, z ∈ Ω:

ρ(x, y)β ≤ ρ(x, z)β + ρ(z, y)β . (6)

Indeed, this follows from

ρ(x, z)β + ρ(z, y)β

ρ(x, y)β
≥ ρ(x, z)β + ρ(z, y)β

(ρ(x, z) + ρ(z, y))β
=

(
ρ(x, z)

ρ(x, z) + ρ(z, y)

)β

+

(
ρ(z, y)

ρ(x, z) + ρ(z, y)

)β

≥
(

ρ(x, z)

ρ(x, z) + ρ(z, y)

)
+

(
ρ(z, y)

ρ(x, z) + ρ(z, y)

)
= 1 .

Let 0 < ε < 1
4 , denote K := ⌈log2(1/ε)⌉, ε′ := 1

(K+1)2K
and note that

ε′ ≥ 1

(log2(1/ε) + 2) 2log2(1/ε)+1
=

ε

2 (log2(1/ε) + 2)
≥ ε

4 log2(1/ε)
. (7)

Let N = {x1, . . . , x|N |} be a
(

ε′

32L

)1/β
-net of Ω of size |N | = NΩ

((
ε′

32L

)1/β)
, and let Π =

{C1, . . . , C|N |} be its induced Voronoi partition. We define B = {[lj , uj ]}j∈J ⊂ [0, 1]Ω × [0, 1]Ω to
be the pairs of functions constructed as follows:

• l, u are both constant over every cell Ci ∈ Π, and map each cell to a value in
{0, ε′

2 , ε
′, 3ε′

2 , . . . , 1}.

• Choose some cells S1 ⊂ Π such that µ(
⋃

Ci∈S1
Ci) ≤ ε′ and set for any Ci ∈ S1 : l|Ci =

0, u|Ci
= 1.

• For m = 2, . . . ,K choose some “unchosen” cells Sm ⊂ Π \
⋃

j<m Sj such
that µ(

⋃
Ci∈Sm

Ci) ≤ 2m−1ε′ and set for any Ci ∈ Sm : l|Ci ∈
{0, 1

2m , 2
2m , . . . , 2m−2

2m }, , u|Ci
= l + 1

2m−1 .

• In the ”remaining” cells SK+1 := Π \
⋃

j≤K Sj set for any Ci ∈ SK+1 :

l|Ci
∈
{
0,

1

2K+1
,

2

2K+1
, . . . ,

2K+1 − 2

2K+1

}
, u|Ci

= l +
1

2K
.

Notice that for any [l, u] ∈ B we have

∥l − u∥L1(µ) =
∑
Ci∈Π

∫
Ci

|l(x)− u(x)|dµ(x) =
K+1∑
m=1

∑
Ci∈Sm

∫
Ci

|l(x)− u(x)|dµ(x)

=

K+1∑
m=1

∑
Ci∈Sm

∫
Ci

1

2m−1
dµ(x) =

K+1∑
m=1

1

2m−1

∑
Ci∈Sm

µ(Ci)

=

K+1∑
m=1

2m−1ε′

2m−1
= ε′(K + 1) =

1

2K
≤ ε .

Furthermore, we can bound |B| by noticing that any such l is defined by its values over |N | cells
who all belong to {0, ε′

2 , ε
′, . . . , 1}, and that once l is fixed then any associated u has at most K + 1

possible values over each cell since it equals l + 1
2m−1 for some m ∈ [K + 1]. Thus

|B| ≤ (K + 1)

(
8

ε′

)|N |

≤ log2

(
1

ε

)
·
(
16 log2(1/ε)

ε

)N
(
( ε

128L log(1/ε) )
1/β

)
,
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where the last inequality uses Eq. (7) and definition of K. In order to finish the proof, in remains to

show that B indeed cover H̃öl
β

L(Ω, µ) as brackets. Namely, that for any f ∈ H̃öl
β

L(Ω, µ) there exist

[l, u] ∈ B such that l ≤ f ≤ u. To that end, let f ∈ H̃öl
β

L(Ω, µ). Denote

Sf
1 :=

{
Ci ∈ Π : ∀x ∈ Ci : Λ

β
f (x) ≥

L

ε′

}
and notice that

⋃
{Ci ∈ Sf

1 } ⊆ {x : Λβ
f (x) ≥ L/ε′} =⇒ µ(

⋃
{Ci ∈ Sf

1 }) ≤ ε′. Hence we can
pick [l, u] ∈ B such that (l|Ci

, u|Ci
) ≡ (0, 1) for any Ci ∈ Sf

1 (serving as S1 in their construction).
Clearly any such l, u bound f over these cells. Furthermore, for m = 2, . . . ,K we denote

Sf
m :=

Ci ∈ Π \
⋃
j<m

Sf
j : ∀x ∈ Ci : Λ

β
f (x) ≥

L

2m−1ε′

 ,

and notice that
⋃
{Ci ∈ Sf

m} ⊆ {x : Λβ
f (x) ≥ L/(2m−1ε′)} =⇒ µ(

⋃
{Ci ∈ Sf

m}) ≤ 2m−1ε′.
Consequently we can let Sf

m serve as Sm in the construction of [l, u] ∈ B, assuming we will show
such a choice can serve as a bracket of f over such cells. Indeed, for any x ∈ Ci we have

|f(x)− f(zi)| ≤ Λβ
f (zi) · ρ(x, zi)

β
Eq. (6)

≤ L

2m−2ε′
· 2ε′

32L
=

1

2m+2
,

which by the triangle inequality shows in particular that for any x, y ∈ Ci :

|f(x)− f(y)| ≤ |f(x)− f(zi)|+ |f(zi)− f(y)| ≤ 1

2m+1
=

1

4 · 2m−1
.

So clearly there exists αi ∈ {0, 1
2m , 2

2m , . . . , 2m−2
2m } such that αi ≤ f |Ci

≤ αi+
1

2m−1 , and by setting
l|Ci

, u|Ci
= (αi, αi +

1
2m−1 ) for any Ci ∈ Sf

m we ensure the bracketing property. Finally, for any of
the remaining cells Sf

K+1 := Π \
⋃

j≤K Sf
j we get by construction that ∃zi ∈ Ci : Λ

β
f (zi) <

L
2Kε′

(otherwise they would satisfy the condition for some previously constructed Sf
m). Hence for any

x ∈ Ci we have

|f(x)− f(zi)| ≤ Λβ
f (zi) · ρ(x, zi)

β
Eq. (6)

≤ L

2Kε′
· 2ε′

32L
=

1

2K+4
,

which by the triangle inequality shows that for any x, y ∈ Ci :

|f(x)− f(y)| ≤ 1

2K+3
=

1

8 · 2K
.

So as before, there clearly exists αi ∈ {0, 1
2K+1 ,

2
2K+1 , . . . ,

2K+1−2
2K+1 } such that αi ≤ f |Ci

≤ αi+
1
2K

,
and by setting l|Ci

, u|Ci
= (αi, αi +

1
2K

) for any Ci ∈ Sf
m we ensure the bracketing property over

all of Ω, which finishes the proof.

B.2 Proof of Proposition 3.2

Recalling that the realizability assumption ensures a “perfect” predictor f∗ ∈ F , we start by
introducing the loss class LF ⊂ [0, 1]Ω :

LF = {ℓf (x) := |f(x)− f∗(x)| : f ∈ F} .

Fix α > 0. We observe that LF is no larger than F in terms of bracketing entropy, namely

N[ ](LF , L1(µ), α) ≤ N[ ](F , L1(µ), α) . (8)

Indeed, suppose we are given an α-bracketing of F denoted by Bα, and denote for any f ∈ F by
[lf , uf ] ∈ Bα its associated bracket. Then any ℓf ∈ LF is inside the bracket [lℓf , uℓf ] where

lℓf := max{0 , min{lf − f∗, f∗ − uf}} ,
uℓf := min{1 , max{uf − f∗, f∗ − lf}} .
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It is straightforward to verify that ∥uℓf − lℓf ∥L1(µ) ≤ ∥uf − lf∥L1(µ) ≤ α, and clearly the set of all
such brackets is of size at most |Bα|, yielding Eq. (8).

Now notice that for any f ∈ F :

LD(f)− 1.01LS(f) = ∥ℓf∥L1(µ) − 1.01∥ℓf∥L1(µn) ≤ α+ ∥lℓf ∥L1(µ) − 1.01∥lℓf ∥L1(µn) ,

hence

sup
f∈F

(LD(f)− 1.01LS(f)) ≤ α+max
lℓf

(∥lℓf ∥L1(µ) − 1.01∥lℓf ∥L1(µn)) . (9)

In order to bound the right hand side, fix some lℓf , and note that Var(lℓf ) ≤ ∥l2ℓf ∥L1(µ) ≤ ∥lℓf ∥L1(µ),
since lℓf (x) ∈ [0, 1]. Thus by Bernstein’s inequality and the AM-GM inequality we get that with
probability at least 1− γ :

∥lℓf ∥L1(µ) − ∥lℓf ∥L1(µn) ≤
log(1/γ)

n
+

√
2∥lℓf ∥L1(µ) log(1/γ)

n

≤ 202 log(1/γ)

n
+

1

101
∥lℓf ∥L1(µ)

=⇒ ∥lℓf ∥L1(µ) − 1.01∥lℓf ∥L1(µn) ≤
205 log(1/γ)

n
.

Setting γ = δ/N[ ](F , L1(µ), α) and taking a union bound over lℓf whose number is bounded due to
Eq. (8), we see that with probability 1− δ :

max
lℓf

(∥lℓf ∥L1(µ) − 1.01∥lℓf ∥L1(µn)) ≤
205 logN[ ](F , L1(µ), α) + 205 log(1/δ)

n
.

Plugging this back into Eq. (9), and minimizing over α > 0 finishes the proof.

B.3 Proof of Theorem 4.1

Proposition B.1. Let f : Ω → [0, 1]. Then with probability at least 1− δ/2 over drawing a sample
it holds that

Λ̂β
f ≤ 4 log2(4n/δ)Λ

β

f (µ) +
4 log2(4n/δ)

n
.

Corollary B.2. If D is realizable by Höl
β

L(Ω, µ), then for f∗ : Ω → [0, 1] such that LD(f
∗) = 0

it holds with probability at least 1− δ/2 : Λ̂β
f∗ ≤ 5 log2(4n/δ)L. Hence, f̂(Xi) := f∗(Xi) = Yi

satisfies LS(f̂) = 0 and Λ̂β

f̂
≤ 5 log2(4n/δ)L .

Proof. (of Proposition B.1) Fix f : Ω → [0, 1]. Given a sample (Xi)
n
i=1 ∼ µn which induces an

empirical measure µn, we get

Λ̂β
f ≤ 1

n

n∑
i=1

sup
z ̸=Xi

|f(Xi)− f(z)|
ρ(Xi, z)β

= E
X∼µn

[Λβ
f (X)] ≤ 2 log(n)WX∼µn [Λ

β
f (X)] , (10)

where the last inequality follows from the reversed strong-weak mean inequality for uniform measures.
We will now show that with high probability WX∼µn

[Λβ
f (X)] ≲ WX∼µ[Λ

β
f (X)] = Λ̃β

f . To that

end, we denote for any t > 0 : Mf (t) := {x : Λβ
f (x) ≥ t} ⊂ Ω, let K := Λ̃β

f (µ), N :=

⌈2 log(4n/δ) log log(4n/δ)⌉ and note that

WX∼µn
[Λβ

f (X)] = sup
t>0

tµn(Mf (t)) (11)

≤ sup
0<t≤K

tµn(Mf (t)) + 2 max
j∈{0,1,...,N−1}

2jKµn(Mf (2
jK)) + sup

t≥2NK

tµn(Mf (t)) .

We will bound all three summands above. We easily bound the first term by

sup
0<t≤K

tµn(Mf (t)) ≤ K · 1 = Λ̃β
f (µ) . (12)
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For the second term, denote for any t > 0 by M+
f (t) ⊃ Mf (t) a containing set for which 1

n ≤
µ(M+

f (t)) ≤ µ(Mf (t))+
1
n . We can always assume without loss of generality that such a set exists.5

By the multiplicative Chernoff bound we have for any t, α > 0 :

Pr
S

[
µn(M

+
f (t)) ≥ (1 + α)µ(M+

f (t))
]
≤ eα

(1 + α)1+α
,

hence by the union bound we get with probability at least 1− Neα

(1+α)1+α :

max
j∈{0,1,...,N−1}

2jKµn(Mf (2
jK)) ≤ max

j∈{0,1,...,N−1}
2jKµn(M

+
f (2jK))

≤ (1 + α) max
j∈{0,1,...,N−1}

2jLµ(M+
f (2jK))

≤ (1 + α) max
j∈{0,1,...,N−1}

2jK

(
µ(Mf (2

jK)) +
1

n

)
≤ (1 + α)Λ̃β

f (µ) +
1 + α

n
.

Letting α = log(4n/δ) − 1, by our choice of N = ⌈2 log(4n/δ) log log(4n/δ)⌉ we get that with
probability at least 1− δ/4 :

2 max
j∈{0,1,...,N−1}

2jKµn(Mf (2
jK)) ≤ 2 log(4n/δ)Λ̃β

f (µ) +
2 log(4n/δ)

n
. (13)

In order to bound the last term in Eq. (11), we observe that the empirical measure satisfies for any
A ⊂ Ω : µn(A) < 1

n ⇐⇒ µn(A) = 0, and that Mf (s) ⊂ Mf (t) for s > t. Furthermore, by
definition of K = Λ̃β

f (µ) we have µ(Mf (t)) ≤ K
t , hence by Markov’s inequality

Pr
S

[
sup
s≥t

µn(Mf (s)) ̸= 0

]
≤ Pr

S
[µn(Mf (t)) ̸= 0] = Pr

S

[
µn(Mf (t)) ≥

1

n

]
≤ nK

t
.

For t := 2NK yields PrS
[
sups≥2nK µn(Mf (s)) ̸= 0

]
≤ n

2N
≤ δ

4 . Combining this with Eq. (12),
Eq. (13) and plugging back into Eq. (11), we get that with probability at least 1− δ/2 :

WX∼µn [Λ
β
f (X)] ≤ (1+2 log(4n/δ))Λ̃β

f (µ)+
2 log(4n/δ)

n
≤ (1+2 log(4n/δ))Λ

β

f (µ)+
2 log(4n/δ)

n
.

Recalling Eq. (10), we get overall that

Λ̂β
f ≤ 2 log(n)

[
(1 + 2 log(4n/δ))Λ

β

f (µ) +
2 log(4n/δ)

n

]
.

Simplifying the expression above finishes the proof.

Proposition B.3. Under the same setting, for any γ > 0 there exists an algorithm that given a sample
S ∼ Dn and any function f̂ : S → [0, 1], provided that n ≥ N for N = Õ

(
NΩ(γ)+log(1/δ)

γ

)
,

constructs a function f : Ω → [0, 1] such that with probability at least 1− δ/2 :

• ∥f − f̂∥L1(µn) ≤ γ(1 + 2Λ̂β

f̂
). In particular LS(f) ≤ LS(f̂) + γ(1 + 2Λ̂β

f̂
).

• Λ
β

f (µ) ≤ 5Λ̂β

f̂
.

5Such a set does not exist only in the case of atoms x0 ∈ Ω with large probability mass µ(x0). If that is the
case, consider a “copy” metric space Ω̃ with x0 split into two points x1, x2 ∈ Ω̃ at distance ε apart and each of
mass µ(x0)/2. Any function f : Ω → R is extended to f̃ : Ω̃ → R via f̃(x1) = f̃(x2) = f(x0). Repeating
the split if necessary and taking ε ↓ 0, we obtain a space Ω̃ with all of the relevant properties of Ω but no atoms
of large mass.
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Proof. Throughout the proof, we denote for any point x ∈ Ω, subset B ⊂ Ω and function g : B →
[0, 1] :

Λβ
g (x,B) := sup

y∈B\{x}

|g(x)− g(y)|
ρ(x, y)β

.

Give the sample S = (Xi, Yi)
n
i=1, we denote Sx = (Xi)

n
i=1. Let γ > 0. The algorithm constructs

f : Ω → [0, 1] as follows:

1. Let Sx(γ) ⊂ Sx consist of the ⌊γn⌋ points whose Λf̂ (·, Sx) values are the largest (with ties
broken arbitrarily), and S′

x(γ) := Sx \ Sx(γ) be the rest.

2. Let A ⊂ S′
x(γ) be a γ1/β-net of S′

x(γ).

3. Define f : Ω → [0, 1] to be the β-PMSE extension of f̂ from A to Ω as defined in
Definition A.2 (and analyzed throughout Appendix A).

We will prove that f satisfies both requirements. For the first requirement, since f |A = f̂ |A and
Sx = S′

x(γ) ⊎ Sx(γ) we have

∥f−f̂∥L1(µn) :=
1

n

n∑
i=1

|f(xi)−g(xi)| =
1

n

∑
x∈Sx(γ)\A

|f(x)−f̂(x)|+ 1

n

∑
x∈S′

x(γ)\A

|f(x)−f̂(x)| .

The first summand above is bounded by γ since 0 ≤ f, f̂ ≤ 1 =⇒ |f(x) − f̂(x)| ≤ 1 and
|Sx(γ)| ≤ γn. In order to bound the second term, we denote by NA : S′

x(γ) → A to be the mapping
of each element to its nearest neighbor in the net, and note that ρ(x,NA(x)) ≤ γ1/β . Then

1

n

∑
x∈S′

x(γ)\A

|f(x)− f̂(x)| ≤ 1

n

∑
x∈S′

x(γ)\A

γ

ρ(x,NA(x))β
|f(x)− f̂(x)|

≤ γ

n

∑
x∈S′

x(γ)\A

|f(x)− f̂(NA(x))|+ |f̂(NA(x))− f̂(x)|
ρ(x,NA(x))β

=
γ

n

∑
x∈S′

x(γ)\A

|f(x)− f(NA(x))|
ρ(x,NA(x))β

+
|f̂(NA(x))− f̂(x)|

ρ(x,NA(x))β

≤ γ

n

∑
x∈S′

x(γ)\A

Λβ
f (x,A) + Λβ

f̂
(x,A)

[Theorem A.3] ≤ 2γ

n

∑
x∈S′

x(γ)\A

Λβ

f̂
(x,A)

≤ 2γL .

So overall we get ∥f − f̂∥L1(µn) ≤ γ + 2γL = γ(1 + 2L) as claimed in the first bullet.

We move on to prove the second bullet. Let U ⊂ Ω be a γ1/β

4 -net of Ω, Π be its induced Voronoi
partition and let m := |Π| ≤ NΩ(γ

1/β/4). Let Consider the following partition of Π into “light” and
“heavy” cells:

Πl := {C ∈ Π : µn(C) < nγ/m} , Πh := Π \Πl .

We will now state three lemmas required for the proof, two of which are due to [Ashlagi et al., 2021].

Lemma B.4. Suppose A ⊂ Ω and that f : Ω → [0, 1] is the β-PMSE extension of some function from

A to Ω. Let E ⊂ Ω such that diam(E)β ≤ 1
2 minx̸=x′∈A ρ(x, x′)β . Then supx,x′∈E

Λβ
f (x)

Λβ
f (x

′)
≤ 2.

Proof. Let u∗
x, v

∗
x ∈ A be the pair of points which satisfy Λβ

f (x) =
f(v∗

x)−f(u∗
x)

ρ(v∗
x,x)

β+ρ(u∗
x,x)

β . By
assumption on E, we know that 2diam(E)β ≤ ρ(v∗x, u

∗
x)

β ≤ ρ(v∗x, x)
β + ρ(u∗

x, x)
β , hence
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ρ(v∗x, x)
β + ρ(u∗

x, x)
β + 2diam(E)β ≤ 2(ρ(v∗x, x)

β + ρ(u∗
x, x)

β). We get

Λβ
f (x

′) ≥ f(v∗x)− f(u∗
x)

ρ(v∗x, x
′)β + ρ(u∗

x, x
′)β

≥ f(v∗x)− f(u∗
x)

ρ(v∗x, x)
β + diam(E)β + ρ(u∗

x, x)
β + diam(E)β

≥ f(v∗x)− f(u∗
x)

2(ρ(v∗x, x)
β + ρ(u∗

x, x)
β)

=
1

2
Λβ
f (x) .

Lemma B.5 (Ashlagi et al., 2021, Lemma 16). If nγ2 ≥ m, then

Pr
S∼Dn

[
min
C∈Πh

µn(C)

µ(C)
>

1

2

]
≥ 1−m exp(−nγ/4m) ,

Pr
S∼Dn

[
max
C∈Πh

µn(C)

µ(C)
< 2

]
≥ 1−m exp(−nγ/3m) ,

Pr
S∼Dn

[∑
C∈Πl

µ(C) < 2γ

]
≥ 1− exp

(
−n(γ −

√
m/n)2/2

)
.

Lemma B.6 (Ashlagi et al., 2021, Lemma 17). ∥f∥Hölβ ≤ 2L
γ .

Equipped with the three lemmas, we calculate

Λ
β

f (µ) =

∫
Ω

Λβ
f (x)dµ =

∑
C∈Πl

∫
C

Λβ
f (x)dµ+

∑
C∈Πh

∫
C

Λβ
f (x)dµ . (14)

The first summand above is bounded with high probability using Lemma B.5 and Lemma B.6, since
under the event described in Lemma B.5 we have:∑

C∈Πl

∫
C

Λβ
f (x)dµ ≤

∑
C∈Πl

∫
C

2L

γ
dµ =

2L

γ

∑
C∈Πl

µ(C)

≤ 2L

γ
· 2q =

L

4
.

In order to bound the second term in Eq. (14), let C ∈ Π, x′ ∈ C and note that by applying
Lemma B.4 to E := Sx ∩ C we get that Λβ

f (x
′) ≤ 2minx∈Sx∩C Λβ

f (x). Thus, under the high
probability event described in Lemma B.5 we have∑

C∈Πh

∫
C

Λβ
f (x)dµ ≤

∑
C∈Πh

∫
C

2 min
x∈Sx∩C

Λβ
f (x)dµ = 2

∑
C∈Πh

min
x∈Sx∩C

Λβ
f (x)µ(C)

≤ 4
∑

C∈Πh

min
x∈Sx∩C

Λβ
f (x)µn(C) =

4

n

∑
C∈Πh

∑
x′∈Sx∩C

min
x∈Sx∩C

Λβ
f (x)

≤ 4

n

∑
C∈Πh

∑
x′∈Sx∩C

Λβ
f (x

′) ≤ 4

n

∑
x′∈Sx

Λβ
f (x

′) ≤ 4L ,

where the last inequality is due to the extension property of Theorem A.3. Overall, plugging these
bounds into Eq. (14) and using the union bound to ensure all required events to hold simultaneously,
we see that the desired second bullet holds holds with probability at least 1−m exp(−nγ/4m)−
exp

(
−n(γ −

√
m/n)2/2

)
. A straightforward computation shows that by our assumption on n

being large enough, this probability exceeds 1− δ/2 as required.

We are now ready to finish the proof of Theorem 4.1. Let γ > 0. By Corollary B.2, we can
construct f̂ : S → [0, 1] such that with probability at least 1 − δ/2 : LS(f̂) = 0 and Λ̂β

f̂
≤
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5 log2(4n/δ)L. Assuming n is appropriately large, we further apply Proposition B.3 in order to
obtain f : Ω → [0, 1] such that with probability at least 1− δ/2 : f ∈ Höl

β

25 log2(4n/δ)L(Ω) and also

LS(f) ≤ LS(f̂) + γ(1 + 2L) = γ(1 + 2L). By the union bound, we get that with probability at
least 1− δ :

LD(f) = 1.01LS(f) + (LD(f)− 1.01LS(f))

≤ γ(1 + 2L) + sup
f∈Höl

β

25 log2(4n/δ)L
(Ω)

(LD(f)− 1.01LS(f)) .

(∗)
≤ ε

2
+

ε

2
= ε ,

where (∗) is justified by setting γ = Θ(ε/L) and applying Theorem 3.4 for appropriately large n.

B.4 Proof of Theorem 5.1

Given a sample S = (Xi, Yi)
n
i=1 ∼ Dn, denote the empirically smooth class

Ĥöl :=
{
f : {X1, . . . , X⌊n/2⌋} → [0, 1] : Λ̂β

f ≤ 5 log2(4n/δ)L
}

.

Consider the following procedure:

1. (Empirical cover) Construct h1, . . . , hN ∈ Ĥöl for maximal N such that ∀i ̸= j ∈
[N ] : ∥hi − hj∥L1(µn) ≥ ϵ

4 .

2. (Run realizable algorithm on cover) For any j ∈ [N ], execute the realizable algorithm
Arealizable of Theorem 4.1 on the “relabeled” dataset (Xi, hj(Xi))

⌊n/2⌋
i=1 , and obtain fj :

Ω → [0, 1].
3. (ERM) Return argminf1,...,fN

∑n
i=⌊n/2⌋+1 |fj(Xi)− Yi|.

We will now prove that the algorithm above satisfies the theorem. Let f∗ ∈
argmin

f∈Höl
β
L(Ω,µ)

LD(f),6 and note that by Proposition B.1 (as explained in Corollary B.1) we

have f∗ ∈ Ĥöl with probability at least 1−δ/2. By construction, h1, . . . , hN is a maximal ϵ
4 -packing

of Ĥöl, which is known to imply that it is also a ϵ
4 -net [Vershynin, 2018, Lemma 4.2.8] with respect

to the metric L1(µn). In particular, this implies that there exists j∗ ∈ [N ] such that

∥f∗ − hj∗∥L1(µn) ≤
ϵ

4
=⇒ LS(hj∗) ≤ LS(f

∗) +
ϵ

4
.

Further note for any j ∈ [N ] : hj ∈ Ĥöl, so our realizable algorithm (as manifested in Proposition B.3
for γ = Θ(ϵ/L)) when fed the “smoothed” labels (Xi, hj(Xi))

⌊n/2⌋
i=1 will produce fj such that

LS(fj) ≤ LS(hj) ≤ ϵ
4 and Λ

β

fj (µ) ≤ 5Λ̂β
hj

≤ 25 log2(4n/δ)L. In particular

LS(fj∗) ≤ LS(hj∗) +
ϵ

4
≤ LS(f

∗) +
ϵ

2
.

Finally, by Eq. (1) and Theorem 3.1 (which holds for any measure, in particular for the empirical
measure µn)

logN ≤ logN
Ĥöl

(ϵ/2)

≤ logN[ ](Ĥöl, L1(µn), ϵ)

≤ logNΩ

((
ε

640 log2(4n/δ)L log(1/ε)

)1/β
)

· log
(
16 log2(1/ε)

ε

)
.

Hence, by a standard Chernoff-Hoeffding bound over the finite class {f1, . . . , fN}, step (3) of the
algorithm yields ϵ

2 excess risk as long as n
2 = Ω

(
log(N)+log(1/δ)

ϵ2

)
.

6We assume without loss of generality that the infimum is obtained. Otherwise we can take a function whose
loss is arbitrarily close enough to the optimal value and continue with the proof verbatim.
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B.5 Proof of Theorem 6.1

We start by providing a simple structural result which we will use for our lower bound construction,
showing that in any metric space there exists a sufficiently isolated point from a large enough subset.
Lemma B.7. There exists a point x0 ∈ Ω and a subset K ⊂ Ω such that

• ∀x ∈ K : ρ(x0, x) ≥ diam(Ω)
4 .

• ∀x ̸= y ∈ K : ρ(x, y) ≥ (ε/L)1/β .

• |K| =
⌊
NΩ((ε/L)1/β)

2

⌋
.

Proof. Denote D := diam(Ω), let x0, x1 be two points such that ρ(x0, x1) > D/2, and let Π =
{C0, C1} be a Voronoi partition of Ω induced by {x0, x1}. For γ > 0, let Nγ be a maximal γ-packing
of Ω. By the pigeonhole principle there must exist a cell Ci ∈ Π such that |Ci ∩ Nγ | ≥ |Nγ |/2,
which we assume without loss of generality to be C1. Now note that any x ∈ C1 satisfies ρ(x, x0) ≥
1
2ρ(x, x0) +

1
2ρ(x, x1) ≥ 1

2ρ(x0, x1) > D/4. Finally, set γ := ε1/β and let K ⊂ C1 ∩Nγ be any

subset of size
⌊
NΩ((ε/L)1/β)

2

⌋
.

Given x0,K from the lemma above, we denote K = {x0} ∪K and define the distribution µ over
Ω supported on K such that µ(x0) = 1 − ε

2 and µ(x) = ε
2|K| for all x ∈ K. From now on, the

proof is similar to a classic lower bound strategy for VC classes in the realizable case (e.g. Kearns
and Vazirani, 1994, Proof of Theorem 3.5). To that end, it is enough to provide a distribution over
functions in Höl

β

L(Ω, µ) such that with constant probability any algorithm must suffer significant loss
for some function supported by the distribution.

We define such a distribution over functions f : K → {0, 1} as follows: Pr[f(x0) = 0] = 1, while
for any x ∈ K : Pr[f(x) = 0] = Pr[f(x) = 1] = 1

2 independently of other points. We will now
show that any such f : K → {0, 1} is average Hölder smooth with respect to µ. Indeed, for every
x ∈ K :

Λβ

f
(x) = sup

x′∈K\{x}

|f(x)− f(x′)|
ρ(x, x′)β

≤ 1

ε/L
=

L

ε
,

while

Λβ

f
(x0) = sup

x′∈K\{x0}

|f(x0)− f(x′)|
ρ(x0, x′)β

≤ 1

diam(Ω)/4
=

4

diam(Ω)
,

hence
Λ
β

f (x) = µ(x0)Λ
β

f
(x0) +

∑
x∈K

µ(x)Λβ

f
(x) ≤ 4

D
+

L

2
≤ L .

Finally, we define the (random) function f∗ : Ω → [0, 1] to be the β-PMSE extension of f from
K to Ω as defined in Definition A.2, and note that f∗ satisfies the required smoothness assumption.
Setting D over Ω× [0, 1] to have marginal µ and Y = f∗(X), we ensure that D is indeed realizable
by Höl

β

L(Ω).

Now assume A is a learning algorithm which is given a sample S of size |S| ≤ |K|
4ε and produces

A(S) : Ω → [0, 1]. We call a point x ∈ K "misclassified" by the algorithm if |A(S)(x)−f∗(x)| ≥ 1
2 ,

and denote the set of misclassified points by M ⊂ K. Recalling that ∀x ∈ K : Pr[f(x) = 0] =
Pr[f(x) = 1] = 1

2 independently, and that µ(x) = ε
2|K| , we observe that with probability at least 1

2

the algorithm will misclassify more than |K|/2 points.7 Thus, we get that with probability at least 1
2 :

LD(A(S)) = E
X∼µ

[|A(S)(X)− f∗(X)|] ≥
∑
x∈M

µ(x) · |A(S)(x)− f∗(x)| ≥ |K|
2

· ε

2|K|
· 1
2
=

ε

8
.

7Indeed, denoting C = K \ M we see that Pr[|C| ≥ |K|/8] ≤ 8
|K| · E[|C|] = 8

|K| ·
|S|
2

· µ(K) ≤
8

|K| ·
|K|
8ε

· ε
2
= 1

2
.
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By rescaling ε, we see that in order to obtain LD(A(S)) ≤ ε the sample size must be of size

Ω

(
|K|
ε

)
= Ω

(
NΩ((ε/L)

1/β)

ε

)
.

B.6 Proofs from Section 7

Proof of Claim 7.1. Let β ∈ (0, 1). Consider the unit segment Ω = [0, 1] with the standard
metric, equipped with the probability measure µ with density dµ

dx = 1
Z |x − 1

2 |
β−1
2 (where Z =∫ 1

0
|x− 1

2 |
β−1
2 < ∞ is a normalizing constant). We examine the function f(x) = 1[x > 1

2 ] which is
clearly not Hölder continuous since it is discontinuous. Furthermore,

µ({x : Λ1
f (x) ≥ t}) = µ

({∣∣∣∣x− 1

2

∣∣∣∣ ≤ 1

t

})
=

2

Z

∫ 1/t

0

x
β−1
2 dx ≍ t−

β+1
2

=⇒ Λ̃1
f = sup

t>0
t · µ({x : Λ1

f (x) ≥ t}) ≍ sup
t>0

t
1−β
2 = ∞ ,

hence f /∈ L̃ipM (Ω, µ) for all M > 0. On the other hand, Λβ
f (x) =

1
|x− 1

2 |β
so

Λ
β

f =

∫ 1

0

Λβ
f (x)dµ =

1

Z

∫ 1

0

|x− 1
2 |

β−1
2

|x− 1
2 |β

dx =
1

Z

∫ 1

0

1

|x− 1
2 |

β+1
2

dx
(β<1)
< ∞ ,

thus f ∈ Höl
β

L(Ω) for some L < ∞. Note that by normalizing the function, the claim holds even for
L = 1.

Proof of Claim 7.2. Let β ∈ (0, 1). Consider the unit segment Ω = [0, 1] with the standard
metric, equipped with the probability measure µ with density dµ

dx = 1
Z |x − 1

2 |
β−1 (where Z =∫ 1

0
|x− 1

2 |
β−1dx < ∞ is a normalizing constant). We examine the function f(x) = 1[x > 1

2 ]. Note
that for any x ̸= 1

2 : Λ1
f (x) =

1
|x− 1

2 |
, hence

µ({x : Λ1
f (x) ≥ t}) = µ

({
x : |x− 1

2
| ≤ 1

t

})
=

2

Z

∫ 1/t

0

xβ−1dx ≍ t−β .

This shows that
Λ̃1
f = sup

t>0
t · µ({x : Λ1

f (x) ≥ t}) ≍ sup
t>0

t1−β = ∞ ,

hence f /∈ L̃ipM (Ω, µ) for all M > 0. Furthermore, for x ̸= 1
2 : Λβ

f (x) =
1

|x− 1
2 |β

so

Λ
β

f =

∫ 1

0

1

|x− 1
2 |β

dµ =
1

Z

∫ 1

0

1

|x− 1
2 |
dx = ∞ ,

hence f /∈ H̃öl
β

M (Ω, µ) for all M > 0. On the other hand

µ({x : Λβ
f (x) ≥ t}) = µ({|x− 1

2
| ≤ t−1/β}) = 2

Z

∫ t−1/β

0

xβ−1dx ≍ t−1

=⇒ Λ̃β
f = sup

t>0
t · µ({x : Λβ

f (x) ≥ t}) < ∞ ,

thus f ∈ H̃öl
β

L(Ω) for some L < ∞. Note that by normalizing the function, the claim holds even for
L = 1.

23


	Introduction
	Related work.

	Preliminaries.
	Average smoothness.

	Generalization bounds
	Realizable learning algorithm
	Agnostic learning algorithm
	Lower bound
	Illustrative examples
	Discussion
	Minimal -slope Hölder extension
	Proofs
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Proof of Theorem 6.1
	Proofs from Section 7


