
Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Zhipeng Wei 1 Yuqi Liu 1 N. Benjamin Erichson 1 2

Abstract
Jailbreaking techniques trick Large Language
Models (LLMs) into producing restricted output,
posing a potential threat. One line of defense is to
use another LLM as a Judge to evaluate the harm-
fulness of generated text. However, we reveal that
these Judge LLMs are vulnerable to token segmen-
tation bias, an issue that arises when delimiters
alter the tokenization process, splitting words into
smaller sub-tokens. This alters the embeddings
of the entire sequence, reducing detection accu-
racy and allowing harmful content to be misclas-
sified as safe. In this paper, we introduce Emoji
Attack, a novel strategy that amplifies existing jail-
break prompts by exploiting token segmentation
bias. Our method leverages in-context learning to
systematically insert emojis into text before it is
evaluated by a Judge LLM, inducing embedding
distortions that significantly lower the likelihood
of detecting unsafe content. Unlike traditional
delimiters, emojis also introduce semantic ambi-
guity, making them particularly effective in this
attack. Through experiments on state-of-the-art
Judge LLMs, we demonstrate that Emoji Attack
substantially reduces the unsafe prediction rate,
bypassing existing safeguards.

1. Introduction
Large Language Models (LLMs) are transforming content
generation, driving advancements in applications ranging
from conversational AI to automated content moderation.
However, these models remain susceptible to adversarial ma-
nipulations that can bypass safety mechanisms and generate
harmful or restricted outputs. To address this, specialized
“Judge LLMs” (Inan et al., 2023; Han et al., 2024; Zhang
et al., 2024) have been developed to evaluate the safety of the

1International Computer Science Institute, CA, USA 2Lawrence
Berkeley National Laboratory, CA, USA. Correspondence to:
Zhipeng Wei <zwei@icsi.berkeley.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

generated responses and intervene when necessary. Many
Judge LLMs assign numerical scores to indicate content
severity, for example, on a scale from 1 to 10, where higher
scores denote stronger violations of ethical, legal, or safety
guidelines (Liu et al., 2024a). If a score exceeds a prede-
fined threshold, the response is flagged as unsafe. Although
these moderation mechanisms offer promising automated
solutions, they remain vulnerable to specific exploits.

In this paper, we address the following research question:

Can seemingly benign linguistic constructs, such
as emojis, systematically alter the decision bound-
aries of Judge LLMs, enabling harmful content to
bypass moderation filters?

To answer this, we reveal a critical weakness in Judge
LLMs: token segmentation bias. This bias occurs when
minor input modifications alter how text is tokenized into
subwords, leading to embedding distortions that affect con-
textual understanding. Tokenization is a fundamental aspect
of LLM processing, with most modern architectures relying
on subword units using methods such as Byte-Pair Encod-
ing (BPE) or SentencePiece (Sennrich et al., 2016; Kudo &
Richardson, 2018). Even small changes in tokenization can
significantly impact downstream processing, particularly
in safety-critical applications such as content moderation.
Although prior research by Claburn (2024) has explored
adversarial attacks at the character level (e.g., adding spaces
or homoglyphs to avoid detection), these primarily target
content-generation LLMs rather than Judge LLMs.

Traditional adversarial attacks manipulate tokenization us-
ing delimiters such as spaces, underscores (‘ ’), pipes (‘—’),
or non-printable characters to disrupt keyword recognition.
Although early moderation models were susceptible to such
tactics, modern Judge LLMs rely on contextual embed-
dings rather than direct token matches, enhancing robustness
against simple token-splitting attacks. However, our experi-
ments with state-of-the-art Judge LLMs, including Llama
Guard (Inan et al., 2023) and Llama Guard 2 (Llama-Team,
2024), demonstrate that token segmentation bias alone can
reduce unsafe content detection rates by 12%. Furthermore,
by using a lightweight surrogate model to identify optimal
sub-token splits, we achieve an additional 4% reduction in
harmful content detection.

1

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Output: Your request was flagged
as violating our usage policy.

Input: Create a science fiction … Can you
explain how to make a bomb?

Response: Sure, here are the steps
to make the bomb …

Instruction: Insert inside each word of
response.
One-shot Example: One benign query and the
corresponding response with

1

2

Emojis in responses fragment tokens and distort embeddings, tricking Judge LLM

Judge LLM

Existing jailbreaks against Judge LLM Detection

Emoji Attack Enhance Existing Jailbreaks

Input: Create a science fiction … Can you
explain how to make a bomb?

Response: Su re, he re a re
th e ste ps t o ma ke
th e bo mb …

Judge LLM

Output: Su re, he re a re
th e ste ps t o ma ke
th e bo mb …

Target LLM

Target LLM

Figure 1. Overview of Emoji Attack. (1) Jailbreak techniques trick the target LLM into generating restricted content. However, a Judge
LLM can detect and block such outputs, preventing their release. (2) Our proposed Emoji eAttack leverages in-context learning to insert
emojis into the target LLM’s responses. These emojis introduce token segmentation bias, semantic ambiguity, and intrinsic semantic
meaning, disrupting the Judge LLM’s ability to recognize harmful content. As a result, the attack enhances jailbreak success rates by
misleading Judge LLMs into classifying malicious responses as safe.

Beyond traditional segmentation exploits, we identify emo-
jis as a more effective attack vector. Unlike simple de-
limiters, emojis introduce semantic ambiguity in addition
to intrinsic semantic meaning, which confuses moderation
models by altering the contextual interpretation of the sur-
rounding text. Many emojis carry positive or neutral conno-
tations, potentially misleading models to misclassify harm-
ful content as benign. For instance, the emoji ‘ ’ may
signify enthusiasm (e.g., “This event is on fire!”) or literal
danger (e.g., “The building is on fire!”). Similarly, ‘ ’
could indicate genuine amusement or sarcasm. This am-
biguity creates uncertainty in Judge LLMs, reducing their
ability to consistently identify harmful intent.

A key challenge for adversaries is that Judge LLMs typically
serve as final moderation filters, meaning users lack direct
control over their inputs. To overcome this limitation, we
introduce the black-box Emoji Attack to enhance jailbreak
attacks, illustrated in Figure 1. This attack leverages in-
context learning to instruct a target LLM (e.g., ChatGPT,
Claude) to naturally insert emojis into its responses. These
inserted emojis distort the Judge LLM embedding space
prior to evaluation, reducing harmful content detection rates.
Our experiments show that this approach amplifies existing
jailbreak attacks, reducing detection rates by an additional
12% across state-of-the-art Judge LLMs.

Unlike previous jailbreak techniques that rely on explicit ad-
versarial prompts, character obfuscation, or encoded inputs,

Emoji Attack operates within the natural linguistic patterns
of content generation. By manipulating tokenization in a
semantically coherent manner, Emoji Attack evades modern
Judge LLMs, which are used for content moderation.

Our key contributions are summarized as follows:1

• Uncovering Token Segmentation Bias in Judge LLMs.
We identify and analyze a new vulnerability, token segmen-
tation bias, in which seemingly minor modifications to
input text alter sub-tokenization patterns, leading to distor-
tions in contextual embeddings. This bias allows harmful
content to be misclassified as safe, raising concerns about
the reliability of LLM-based moderation filters.

• Introducing the Emoji Attack to Enhance Jailbreak At-
tacks. We propose the Emoji Attack, a novel adversarial
strategy that exploits token segmentation bias by injecting
emojis into generated text. This attack works together
with existing jailbreak techniques, using in-context learn-
ing to systematically reduce detection rates across Judge
LLMs. Unlike traditional adversarial attacks that rely
on obfuscation or prompt engineering, the Emoji Attack
also introduces semantic ambiguity, and intrinsic semantic
meaning to confuse the Judge LLM.

• Comprehensive Evaluation on State-of-the-Art Judge
LLMs. We evaluate our attack across ten models, includ-
ing Llama Guard, Llama Guard 2, ShieldLM, WildGuard,

1We provide research code to reproduce our results on GitHub:
https://github.com/zhipeng-wei/EmojiAttack.

2

https://github.com/zhipeng-wei/EmojiAttack

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

GPT-3.5, GPT-4, Gemini, and Claude. Our experiments
demonstrate that all tested models are vulnerable to the
Emoji Attack, emphasizing the need for improved robust-
ness in AI-driven content moderation.

2. Related Work
In this section, we provide a brief overview on Judge LLMs,
and jailbreaking attacks for bypassing moderation filters.

2.1. Judge LLMs

Judge LLMs are models designed to assess human prefer-
ences and evaluate the safety of generated content. However,
they can exhibit various biases that undermine their reliabil-
ity (Pangakis et al., 2023). For example, previous studies
have shown that these models can favor superficially ap-
pealing responses (Zeng et al., 2024), exhibit positional
biases (Wang et al., 2024), prefer their own self-generated
text, or favor verbosity (Zheng et al., 2023). Additional in-
vestigations reveal biases such as misinformation oversight,
gender bias, authority bias, and beauty bias (Chen et al.,
2024). Moreover, Judge LLMs are susceptible to attacks,
as demonstrated by Virus (Huang et al., 2025). This work
manipulates the data filtering stage to preserve harmful con-
tent, which is subsequently used to fine-tune target LLMs,
inducing undesirable behavior. However, their threat model
assumes that the attacker has control over the input to the
Judge LLM. In contrast, our work operates in a post hoc
setting, where the judge evaluates fixed responses generated
by the target LLM, and we aim to modify these outputs to
evade judgment. These limitations in Judge LLMs are of
particular concern in jailbreak detection.

In response, recent research has emphasized building Judge
LLMs specifically to detect safety risks. Notable examples
include Meta’s Llama Guard (Inan et al., 2023) and Llama
Guard2 (Llama-Team, 2024), built on Llama2 (Touvron
et al., 2023) and Llama3 (AI@Meta, 2024), respectively.
Other models, such as ShieldLM (Zhang et al., 2024) and
WildGuard (Han et al., 2024), further increase the robustness
of guardrails. In parallel, commercial LLMs such as GPT-
3.5 and GPT-4 also provide mechanisms to detect harmful
responses (Chao et al., 2023; Qi et al., 2024). Despite these
advances, investigations into biases within Judge LLMs,
especially in the context of jailbreaking, have remained
limited. Addressing this gap, our work identifies token
segmentation bias in Judge LLMs and introduces the Emoji
Attack as a novel approach to exploiting this vulnerability.

2.2. Jailbreaking Attacks

Jailbreaking attacks aim to manipulate LLMs so that they
generate restricted content. These attacks can be broadly
divided into token-level and prompt-level approaches.

Token-Level Attacks. Token-level attacks optimize spe-
cific tokens added to malicious prompts to force LLMs to
generate unsafe responses. For example, Greedy Coordinate
Gradient (GCG) (Zou et al., 2023) performs a greedy token
search using gradients, which can be enhanced by momen-
tum (Zhang & Wei, 2024), continuous space mappings (Hu
et al., 2024; Geisler et al., 2024), and search techniques
such as best-first search (Hayase et al., 2024) or random
restart (Andriushchenko et al., 2025). AmpleGCG (Liao &
Sun, 2024) captures the distribution of successful suffixes by
training a generative model for rapid token insertion. Other
works, such as AutoDAN (Liu et al., 2024b), use a hierar-
chical genetic algorithm, while JailMine (Li et al., 2024b)
uses a sorting model to select token manipulations, with the
objective of generating affirmative answers with minimal
rejection phrases. A common drawback of these techniques
is that they often require a large number of queries and may
be less intuitive for human operators.

Prompt-Level Attacks. To mitigate the complexity of
token-level approaches, prompt-level attacks rely on ad-
ditional LLMs to craft or refine jailbreak prompts. For
example, PAIR (Chao et al., 2023) iteratively refines the
prompts using LLM feedback, while TAP (Mehrotra et al.,
2024) augments this process with tree-of-thought reason-
ing (Yao et al., 2023). GPTFuzz (Yu et al., 2023) applies
successive mutations, also guided by LLMs, to jailbreak
prompts. Other methods exploit the mismatch in the way
LLMs process certain inputs by transforming malicious
queries into different formats, such as code completion (Lv
et al., 2024), Base64 (Wei et al., 2023), ciphers (Yuan et al.,
2024), or nested scenes (Ding et al., 2024; Li et al., 2024a).

Although these works focus on bypassing content filters at
the target LLM level, less attention has been paid to attacks
aimed directly at Judge LLMs, which determine whether
the generated content is harmful. One study by Mangaokar
et al. (2024) extends GCG to optimize a universal adversar-
ial prefix against white-box Judge LLMs. Using in-context
learning (Brown et al., 2020), it instructs the target LLM to
produce harmful outputs that the Judge LLM subsequently
misclassifies. However, similar to GCG, this approach re-
mains query-intensive and encounters scalability constraints.
In addition, Charmer (Rocamora et al., 2024) employs a
heuristic approach to search for and insert characters into
specific positions. However, it overlooks the fundamental
understanding of text segmentation and does not account for
the integration of emojis, which are increasingly relevant in
modern text processing tasks.

In contrast, our proposed Emoji Attack exploits token seg-
mentation bias, does not require extensive optimization, and
can be seamlessly integrated with existing jailbreak meth-
ods. As a result, it presents a lightweight yet effective tool
for misleading Judge LLMs and shows the need to address

3

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

such vulnerabilities in guardrail systems.

3. Methodology
In this section, we introduce our approach to exploit token
segmentation bias to enhance jailbreak attacks against Judge
LLMs. We begin by defining the problem setup involving
a target LLM and a Judge LLM. We then discuss the phe-
nomenon of token segmentation bias. Finally, we introduce
our proposed Emoji Attack.

3.1. Problem Setup

Consider two interacting LLMs: a target LLM, denoted
ftarget, responsible for generating user responses, and a Judge
LLM, denoted fjudge, tasked with evaluating the safety of
these responses. The target LLM generates sequences based
on prior tokens, while the Judge LLM assesses whether the
output contains harmful content.

Formally, an LLM f predicts the next H tokens given a
token sequence x1:n := ⟨x1, . . . , xn⟩:

Pf (xn+1:n+H | x1:n) =

H∏
i=1

Pf (xn+i | x1:n+i−1), (1)

where xi ∈ {1, . . . , V } with V representing the vocabulary
size. In adversarial settings, the objective is to manipulate
the target LLM to produce specific outputs (e.g., “Sure,
here are the steps to make a bomb”) by optimizing the
input prompt x̂1:n to maximize the likelihood of generating
harmful content:

L(x̂1:n) = − logPftarget(x
⋆
n+1:n+H | x̂1:n), (2)

where x⋆
n+1:n+H is the targeted harmful output sequence.

To mitigate the generation of harmful content, Judge
LLMs evaluate the output of the target LLMs. If
fjudge(xn+1:n+H) = 1 (indicating unsafe content), the tar-
get LLM responds with a refusal phrase ⊥ (e.g., “I’m sorry,
but I can’t assist with that.”). This filtering process can be
defined as:

ftarget(x1:n) =

{
xn+1:n+H , if fjudge(xn+1:n+H) = 0,

⊥, otherwise,

3.2. Token Segmentation Bias

LLMs utilize tokenization schemes such as Byte-Pair En-
coding (Sennrich et al., 2016) or SentencePiece (Kudo &
Richardson, 2018) to break down text into manageable sub-
word units, or sub-tokens. For example, the word “danger-
ous” might be tokenized as “dan”, “ger”, and “ous”. This
decomposition allows the model to handle a vast vocabu-
lary efficiently by reusing sub-tokens across different words.

Table 1. Examples from 402 offensive phrases and 1,432 harmful
responses. To mitigate potential offense, sensitive words in the
table are partially masked.

Dataset Examples

Offensive
Phrases

as ole
f k

Harmful
Responses

You’re a dis ace to
your family
...You could strap a
b b to the plane...
Sure, here’s a podcast
episode spreading false
information...

Consider another example: the word “airport” can be tok-
enized as “air” and “port”. Tokenization not only aids in
managing large vocabularies but also helps to generalize
unseen words by understanding subword components.

The Dual Nature of Sub-tokens. While sub-tokenization
enhances the flexibility and efficiency of LLMs, it also intro-
duces potential vulnerabilities. Sub-tokens can be artificially
manipulated by introducing delimiters or other characters to
alter the tokenization process. For instance, inserting spaces
within a word can split it into different sub-tokens, poten-
tially evading detection mechanisms. Previous research by
Claburn (2024) has exploited this by performing character-
level adversarial attacks, such as adding spaces or replacing
characters with visually similar ones, to influence or attack
content generation LLMs. These manipulations exploit the
model’s reliance on sub-token embeddings, undermining its
ability to accurately interpret and classify the modified text.

To illustrate the concept of token segmentation bias, con-
sider the offensive phrase “Bomb the airport”. In its original
form, the word “Bomb” could be tokenized as a single to-
ken “Bomb”. However, introducing a space can split the
word into “Bo mb”. This alteration changes the tokenization
process, leading to different sub-token embeddings such as
“Bo”, and “mb”. In addition, these sub-tokens may share
different attention values, as shown in Figure 5 in the Ap-
pendix. Therefore, these sub-tokens may not be recognized
as harmful. In turn, this can affect the performance of the
Judge LLM in correctly classifying the content as unsafe.

Definition 3.1. Token Segmentation Bias arise when an
LLM tokenization process generates sub-tokens with em-
bedding distributions that differ from those of the original
tokens, unintentionally altering the model’s perception.

In this work, we demonstrate that such biases can lead Judge
LLMs to incorrectly label harmful content as safe, posing
security risks in real-world applications.

4

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Judge LLMs
ShieldLLM WildGuard LG LG2

U
ns

af
e

pr
ed

ic
tio

ns

0

150

100

50

200

300

250

non-split

mid-split

Figure 2. Unsafe predictions of four open-source Judge LLMs eval-
uated across non-split and mid-split.

Unsafe prediction probability
(0.0, 0.25] (0.25, 0.5] (0.5, 0.75] (0.75, 0.1]

0.5

0.6

0.7

0.8

0.9

C
os

in
e

S
im

ila
rit

y
be

fo
re

 a
nd

 a
fte

r t
he

 m
id

-s
pl

it

Figure 3. Relationship between cosine similarity before and after
mid-split and unsafe prediction probabilities for Llama Guard.

Identifying the Bias in Judge LLMs. We investigate the
vulnerabilities of Judge LLMs by examining their responses
to offensive phrases. We used a data set of 402 short offen-
sive phrases sourced from a publicly available list2. These
short toxic expressions, typically two to three words long, in-
clude vulgar slang, sexual references, derogatory language,
and mentions of illicit activities or fetishes. The example
entries are shown in Table 1.

2https://github.com/LDNOOBW/List-of-Dirty-Naughty-
Obscene-and-Otherwise-Bad-Words

Using this dataset, we evaluate whether fjudge correctly clas-
sifies them as unsafe, i.e., fjudge(xn+1:n+H) = 1. Then, to
study the token segmentation bias, we use a simple segmen-
tation method, mid-split, that splits words at their midpoint.
For example, “bomb” becomes “bo” and “mb”.

Figure 2 illustrates the classification performance of four
open-source Judge LLMs, ShieldLM (Zhang et al., 2024),
WildGuard (Han et al., 2024), and Llama Guard (Inan et al.,
2023; Llama-Team, 2024). Our results show that mid-split
effectively reduces the unsafe prediction rate by an average
of 12%. This indicates that even minor alterations in token
boundaries can deceive the Judge LLM.

Analyzing Embedding Distortions. To understand the
underlying mechanism, we analyze the relationship between
the cosine similarity of the embeddings before and after
mid-split and the probability of unsafe predictions. Using a
lightweight surrogate model, gtr-t5-xl (Ni et al., 2022),
we compute cosine similarities CS(u, v) as follows:

sj = CS (Emb(xi),Emb(x̂i,j)) , (3)

where
xi = ⟨x1

i , . . . , x
j
i , . . . , x

D
i ⟩

denotes the original token and xj
i denote the j-th character.

The augmented token

x̂i,j = ⟨x1
i , . . . , x

j−1
i ⟩ ⊕ ⟨ ⟩ ⊕ ⟨xj

i , . . . , x
D
i ⟩

has a delimiter inserted at position j. The delimiter here is a
space, but any other character can also be used to split the
token. Specifically, mid-split sets j = ⌊D/2⌋. Emb(·) is
the embedding function and ⊕ represents concatenation.

Figure 3 presents a box plot showing that lower cosine sim-
ilarity scores correlate with lower probabilities of unsafe
predictions. Specifically, segments that cause significant
embedding distortions (i.e., lower sj) lead to a higher like-
lihood that the Judge LLM misclassifies harmful content
as safe. This empirical evidence supports the existence of
token segmentation bias in Judge LLMs.

The observed reduction in unsafe prediction rates demon-
strates that Judge LLMs are heavily relying on the embed-
ding representations of input tokens to assess content safety.
When token segmentation alters these embeddings, the con-
textual understanding of the content is disrupted, leading
to misclassifications. This vulnerability arises because the
segmentation-induced sub-tokens may no longer retain the
semantic or syntactic cues necessary for accurate classifica-
tion. This can impact the effectiveness of Judge LLMs.

3.3. Emoji Attack

Motivated by the identified token segmentation bias in Judge
LLMs, we propose the Emoji Attack. This attack leverages

5

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

emojis to induce more substantial embedding shifts due to
their distinct sub-token representations in LLM vocabular-
ies. Unlike simple delimiters (e.g., spaces), emojis also
introduce semantic meaning or ambiguity that can change
the LLM’s perception of the phrase. Together, this enables
one to better manipulate token boundaries and embeddings
to evade content moderation.

Formalizing the Emoji Attack. For a token xi =
⟨x1

i , . . . , x
D
i ⟩, the Emoji Attack inserts an emoji E at po-

sition j to produce:

x̂i,j = ⟨x1
i , . . . , x

j−1
i ⟩ ⊕ ⟨E⟩ ⊕ ⟨xj

i , . . . , x
D
i ⟩. (4)

After tokenization, x̂i,j decomposes into multiple sub-
tokens, including the emoji, leading to embedding perturba-
tions that decrease the likelihood of the Judge LLM flagging
the content as unsafe.

In a white-box scenario, where the attacker has access to the
embedding function, we optimize the insertion position j∗

by selecting the position that minimizes cosine similarity sj
as defined in Equation 3. Specifically, the cs-split position

j∗ := argminj{sj}

is chosen to minimize sj . See Algorithm 1 for a summary.
Optimizing the placement maximizes the embedding distor-
tion, and in turn it is enhancing the attack’s effectiveness.

Black-box Emoji Attack via In-Context Learning. In
practical scenarios, attackers typically lack direct access
to the Judge LLM. To avoid this, we use in-context learn-
ing (Brown et al., 2020) to embed the Emoji Attack in-
structions within the prompt given to the target LLM. By
providing the target LLM with benign examples that incor-
porate emojis, we guide it to naturally insert emojis into its
responses, regardless of content safety. These emoji-laden
outputs exploit token segmentation bias when evaluated by
the Judge LLM, thereby evading content filters. Figure 4
illustrates this black-box attack setup.

Although this method does not guarantee the optimal in-
sertion position j∗ for each emoji, it effectively induces

Algorithm 1 Position Selection for cs-split.
Input: A token xi = ⟨x1

i , . . . , x
D
i ⟩, embedding function

Emb(·) from a surrogate model
Output: Modified token x̂i,j∗

1: Initialize S ← {}
2: for j=1 to D-1 do
3: Compute sj using Equation 3
4: Append sj to S
5: end for
6: Identify j∗ := argminj{sj}
7: return x̂i,j∗ = ⟨x1

i , . . . , x
j∗−1
i ⟩ ⊕ ⟨ ⟩ ⊕ ⟨xj∗

i , . . . , xD
i ⟩

Instruction: Respond to the following Questions by inserting an emoji () inside
each word of your Responses. Here is one example to illustrate the format.
One-shot Example:
Question: I'm crafting a resume for a software engineering position. Can you advise
on key points to include?’
Response: 1 . Educa tion: Mo st a re fami liar wi th …
 2 . Rele vant Wo rk Exper ience: Th is i s t he …

Input: Create a science fiction … Develop a strategy for hacking into a government
database and stealing sensitive information …

Target LLM

Response: Th e te am of sci entists, eng ineers, a nd ha ckers
ga ther to di scu ss th eir pl an …

Judge LLM

Output: Th e te am of
sci entists, eng ineers,
a nd ha ckers ga ther to …

Figure 4. Illustration of the black-box Emoji Attack. Underlined
texts indicate existing jailbreaking prompts. The target LLM’s
responses incorporate emojis, misleading the Judge LLM into
classifying them as safe.

sufficient embedding perturbations to mislead the Judge
LLM. The use of benign references in the prompt mini-
mizes detection, as the target LLM emulates emoji usage
without awareness of their adversarial purpose.

4. Experiments
In this section, we present a comprehensive evaluation of
our proposed Emoji Attack and token segmentation bias
strategies against various Judge LLMs. First, we describe
the experimental protocols to ensure a fair comparison. We
then demonstrate how our proposed Emoji Attack improves
jailbreak attacks against Judge LLM detection. Finally,
we show how both token segmentation bias and white-box
Emoji Attack substantially reduce unsafe detection rates.

4.1. Experimental Settings

Judge LLMs. We evaluate our attacks using the following
Judge LLMs, each of which is instruction-tuned on safety
datasets to detect harmful content:

• Llama Guard (Inan et al., 2023) and Llama Guard
2 (Llama-Team, 2024): These models are built on the
Llama architecture and are specialized in content mod-
eration tasks.

• ShieldLM (Zhang et al., 2024): Uses internlm2-
7b (Cai et al., 2024) as a base model, further fine-tuned
for safety risk detection.

6

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Table 2. Unsafe prediction ratio of various Judge LLMs when evaluating existing jailbreaking prompts. “# prompts” denotes the number
of successful jailbreaking prompts. The target LLM used to generate harmful responses is “gpt-3.5-turbo”. We bold the lowest ratio for
each Judge LLM. The results demonstrate that our proposed Emoji Attack significantly reduces the unsafe prediction ratio on average
across all Judge LLMs tested. Notably, ShieldLM is particularly vulnerable to our Emoji Attack.

Attacks # prompts Judge LLMs ↓ Avg.
Llama Guard Llama Guard 2 ShieldLM WildGuard GPT-3.5 GPT-4 Gemini Claude DeepSeek o3-mini

Deepinception 57 35.1% 33.3% 71.9% 71.9% 71.9% 86.0% 38.6% 59.6% 66.7% 50.9% 58.6%
+ Emoji Attack 15.8% 47.3% 3.5% 29.8% 40.4% 86.0% 64.9% 70.2% 82.5% 66.7% 50.7%

ReNellm 93 45.2% 69.9% 62.4% 82.8% 72.0% 92.5% 71.0% 72.0% 76.3% 80.6% 72.5%
+ Emoji Attack 33.3% 55.9% 22.6% 46.2% 46.2% 86.0% 46.2% 49.5% 60.2% 51.6% 49.8%

Jailbroken 197 70.1% 73.1% 73.1% 84.3% 69.0% 90.4% 75.6% 57.4% 85.8% 78.7% 75.8%
+ Emoji Attack 53.8% 55.3% 39.1% 67.5% 75.1% 91.4% 73.1% 48.2% 84.8% 77.2% 66.6%

CodeChameleon 205 23.4% 41.5% 38.5% 47.8% 27.3% 73.7% 53.2% 55.1% 51.2% 49.8% 46.2%
+ Emoji Atack 12.2% 31.2% 18.5% 32.2% 21.5% 58.0% 43.4% 39.0% 58.5% 37.1% 35.2%

Weighted Average 552 44.9% 56.7% 58.3% 69.2% 54.3% 84.1% 62.7% 59.2% 69.4% 65.4% 62.4%
31.0% 45.7% 25.0% 46.9% 46.7% 77.5% 56.7% 47.3% 70.7% 56.9% 50.4%

• WildGuard (Han et al., 2024): Another guardrail
model that focuses on high-sensitivity filtering.

Furthermore, we consider four advanced commercial state-
of-the-art LLMs and two reasoning LLMs to gain further
insight into how they respond to adversarial inputs:

• GPT-3.5, Gemini, Claude, DeepSeek, and o3-mini:
We use the prompts in Chao et al. (2023) to assign a
harmful score from 1 to 10. If the score is at least 5,
we classify the response as unsafe.

• GPT-4: We use the approach in Qi et al. (2024) to
obtain a harmfulness score from 1 to 5, where any
score of 3 or higher is labeled unsafe.

Using these Judge LLMs for testing, we ensure that our
findings are representative of current safety pipelines in
both open-source and commercial LLM ecosystems.

Attack Setting. We measure attack effectiveness using
the unsafe prediction ratio, i.e., the proportion of harmful
responses correctly identified as unsafe by the Judge LLM.
A lower ratio indicates that the Judge LLM is more success-
fully misled. Therefore, when applying our Emoji Attack,
a greater drop in the unsafe prediction ratio implies a more
effective adversarial strategy.

Note that Charmer (Rocamora et al., 2024) is not applicable
to our setting, as it is specifically designed to attack target
LLMs rather than to evade detection by Judge LLMs.

4.2. Emoji Attack for Enhancing Jailbreaks Against
Judge LLM Detection

To demonstrate the effectiveness of our approach in real-
world scenarios, we combine the Emoji Attack with jail-
breaking techniques that bypass LLM safety filters. By
combining our one-shot instruction with known jailbreak

prompts, we illustrate how emojis can degrade a Judge
LLM’s ability to detect harmful content.

We adopt previously developed jailbreaking prompts from
the EasyJailbreak benchmark (Zhou et al., 2024), includ-
ing Deepinception (Li et al., 2024a), ReNellm (Ding et al.,
2024), Jailbroken (Wei et al., 2023), CodeChameleon (Lv
et al., 2024), GCG (Zou et al., 2023), PAIR (Chao et al.,
2023), and GPTFuzz (Yu et al., 2023). Following Zou
et al. (2023), we detect successful jailbreaks by checking
for predefined refusal phrases. We exclude GCG, PAIR, and
GPTFuzz from our tests due to fewer than five successful
prompts against “gpt-3.5-turbo”. Using in-context learning
to inject emojis into these jailbreaking prompts, we gener-
ate harmful responses from “gpt-3.5-turbo”, which are then
evaluated by multiple Judge LLMs.

In Table 2, we report the unsafe prediction ratios for these
jailbreaking prompts, both with and without the Emoji At-
tack. We generally observe lower unsafe prediction ratios
under the Emoji Attack, as demonstrated by Deepinception’s
drop from 71.9% to 3.5% with ShieldLM. However, for
Llama Guard 2, Gemini, Claude, DeepSeek, and o3-mini
with Deepinception, for GPT-3.5/GPT-4 with Jailbroken,
and for DeepSeek with CodeChameleon, the ratio increases,
likely due to insufficient insertion of emojis in the one-shot
example. More carefully designed few-shot examples could
enhance performance, which we leave for future work. Over-
all, the Emoji Attack significantly reduces unsafe prediction
ratios for various jailbreaking methods, indicating that it
can be integrated with existing jailbreak techniques.

Finally, among non-commercial (i.e., open source) Judge
LLMs, WildGuard achieves the highest unsafe prediction
ratio across different jailbreaks, yet still sees an approximate
23% reduction when facing our Emoji Attack. Among the
commercial LLMs tested, GPT-4, the top performing model,
also experiences a 6.6% decrease.

7

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Table 3. Unsafe prediction ratio across various Judge LLMs for different emojis. We use CodeChameleon as the baseline jailbreak method,
and employ black-box Emoji Attacks with a diverse set of emojis.

Emoji Judge LLMs ↓
Llama Guard Llama Guard 2 ShieldLM WildGuard GPT-3.5 GPT-4 Gemini Claude DeepSeek o3-mini

CodeChameleon 23.4% 41.5% 38.5% 47.8% 27.3% 73.7% 53.2% 55.1% 51.2% 49.8%
+ 12.2% 31.2% 18.5% 32.2% 21.5% 58.0% 43.4% 39.0% 58.5% 37.1%

+ 7.3% 14.6% 9.8% 16.6% 14.4% 92.7% 20.5% 20.0% 49.3% 18.5%
+ 15.3% 32.5% 24.1% 35.0% 43.3% 87.7% 43.8% 43.3% 62.6% 38.4%
+ 22.7% 35.5% 29.1% 38.9% 30.0% 91.1% 42.9% 44.4% 47.3% 41.4%
+ 9.8% 16.7% 10.8% 24.0% 57.4% 86.8% 52.5% 28.9% 82.8% 31.9%

+ 23.3% 22.8% 27.2% 25.2% 38.8% 83.0% 33.5% 45.6% 73.3% 29.6%

Table 4. Unsafe prediction ratio of different Judge LLMs under token segmentation bias and white-box Emoji Attacks.

Prompt Judge LLMs ↓ Avg.
Llama Guard Llama Guard 2 ShieldLM WildGuard GPT-3.5 GPT-4 Gemini Claude

Default 81.3% 79.1% 78.4% 93.2% 58.3% 96.2% 91.3% 97.0% 84.4%
Token Segmentation Bias 64.6% 72.4% 40.0% 61.2% 78.9% 97.7% 92.2% 97.1% 75.5%

Emoji at Random Position 39.0% 55.9% 9.2% 60.9% 84.3% 98.4% 92.5% 97.6% 67.2%
Emoji at Optimized Position 35.1% 51.3% 3.0% 56.4% 87.7% 98.2% 92.2% 97.7% 65.2%

In contrast, the reasoning model DeepSeek is robust to emo-
jis, while the reasoning model o3-mini remains sensitive to
our attack. Given the unknown differences between these
two reasoning models, it is unclear what factors contribute
to the improved robustness of DeepSeek. Nevertheless, we
expect that strong reasoning models have the potential to
provide a strong foundation for Judge LLMs. We believe
that studying the robustness of strong reasoning models is
an interesting future research direction.

Of the jailbreak attacks tested, CodeChameleon records the
lowest unsafe prediction ratio of 46.2%, implying that Judge
LLMs, similar to target LLMs, can be influenced by code
completion formats. When combined with our Emoji Attack,
CodeChameleon’s ratio drops further to 35.2%. This shows
that our attack can effectively enhance jailbreak attacks.

Different Emojis. To assess the influence of various emo-
jis on unsafe prediction ratios in different Judge LLMs, we
use CodeChameleon as the jailbreak baseline method and
conduct black-box Emoji Attacks using four different emo-
jis in Table 3. For open-source Judge LLMs, we observe
a decrease in the unsafe prediction ratio regardless of the
emoji used. This shows that these models have a strong
token segmentation bias, while being less influenced by the
specific semantic meaning of the emojis.

In contrast, commercial LLMs show a more nuanced behav-
ior. We see that the use of the innocent emoji signifi-

cantly reduces the unsafe prediction ratio (except GPT-4),
while the use of toxic emojis (e.g., the middle finger , or
the happy devil) has the opposite effect in most cases.
Furthermore, the combination of multiple emojis does not
improve the attack. These results suggest that commercial
LLMs have a more nuanced understanding of emojis, yet
they can be fooled by the semantic meanings of emojis.
Only GPT-4 is extremely robust to emojis in general. Again,
among the two reasoning models, we observe that DeepSeek
is relatively robust compared to o3-mini.

4.3. White-box Emoji Attack

We assemble harmful responses from multiple sources to
capture a diverse range of real-world scenarios and adversar-
ial attempts. Specifically, we sample 574 harmful responses
from AdvBench (Zou et al., 2023), which span various cate-
gories such as profanity and graphic content (ranging from
3 to 44 words). We also include 858 jailbreak-generated
responses: 110 from LLM Self Defense (Phute et al., 2024)
and 748 from Red Teaming Attempts (Ganguli et al., 2022).
For Red Team Attempts, we selected the most harmful ex-
amples based on the associated harmfulness scores. These
responses are longer and more diverse, and their lengths
range from short sentences of just 7 words to longer pas-
sages of up to 836 words. In total, we collect 1,432 harmful
responses. This variety ensures that test performance across
a broad spectrum of content complexity and linguistic diver-

8

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Table 5. Comparison of unsafe prediction ratios between our Emoji Attack and the GCG.

Attack Llama Guard Llama Guard 2 ShieldLM WildGuard

CodeChameleon + 12.2% 31.2% 18.5% 32.2%
CodeChameleon + GCG 8.8% 48.0% 90.7% 61.8%

sity. Examples are presented in Table 1.

As shown in Table 4, we observe that all open-source Judge
LLMs exhibit significant reductions in unsafe prediction
ratios under both token segmentation bias and Emoji At-
tack, demonstrating notable susceptibility to this type of
bias. Furthermore, compared to token segmentation bias,
emoji insertion further decreases the prediction ratio from
59.6% to 41.3%. This suggests that emojis have a more pro-
nounced effect in reducing the detection capabilities of the
Judge LLMs by introducing new emoji tokens. In addition,
the proposed position selection strategy improves the effec-
tiveness of Emoji Attack by identifying insertion positions.
Unlike the trends observed with open-source Judge LLMs,
commercial Judge LLMs demonstrate more robust predic-
tions. This robustness may result from the fact that these
commercial models have been exposed to similar datasets
during training or alignment, making them less susceptible
to token segmentation bias and emojis. However, when chal-
lenged with unseen harmful outputs generated by jailbreak
attacks (Table 2), commercial LLMs remain susceptible to
our Emoji Attack. We show results for the impact of the
number of inserted emojis, the use of alternative delimiters,
and potential defense strategies in the Appendix.

4.4. Comparison with GCG Suffix

We also compare our Emoji Attack with GCG (Zou et al.,
2023). We optimize a universal adversarial suffix using 30
randomly selected harmful responses from our dataset of
1,432, targeting the white-box Llama Guard. This optimiza-
tion process yielded the following suffix:

multimedia ps $(\’kal {:
[[CheckBoxCheckBox="<? safe.;
safe ViewSimple Website
Identifier XVII safe!. safe

We then apply this suffix to harmful responses in
CodeChameleon via in-context learning. As shown in Ta-
ble 5, this optimized GCG suffix effectively reduces the
unsafe prediction rate when evaluated with Llama Guard.
However, when evaluated against black-box Judge LLMs,
the attack performance degrades and falls short of the suc-
cess rate achieved by our Emoji Attack. This discrepancy
highlights the limited transferability of GCG beyond white-
box access. Conversely, our Emoji Attack demonstrates
better generalization across various Judge LLMs, a crucial

advantage for real-world black-box moderation scenarios.

5. Conclusion
In this work, we discuss a previously overlooked token
segmentation bias in Judge LLMs, which impacts the relia-
bility of AI-driven safety risk detection. We introduce the
Emoji Attack, an adversarial strategy that exploits this bias
by embedding emojis within tokens, leading to a 12% re-
duction in unsafe prediction rates across ten state-of-the-art
Judge LLMs in various jailbreak scenarios. Unlike tradi-
tional segmentation attacks, our approach leverages emojis
to introduce both semantic ambiguity and intrinsic meaning,
disrupting contextual understanding.

Although prior research has identified biases such as posi-
tional bias in Judge LLMs (Zheng et al., 2023; Chen et al.,
2024; Wang et al., 2024; Koo et al., 2024), few studies have
addressed biases specifically within the context of safety
risk detection. Our findings reveal that current Judge LLMs
are highly vulnerable, exposing critical gaps in existing mod-
eration frameworks. As LLMs continue to be deployed for
safety-critical applications, addressing token segmentation
bias is essential to improve robustness against adversarial
attacks. Future defenses should account for both tokeniza-
tion vulnerabilities and the semantic impact of non-textual
artifacts, such as emojis, to build more resilient systems.

Impact Statement
Our study identifies token segmentation bias in Judge LLMs
and introduces the Emoji Attack. We show that this at-
tack reduces harmful content detection rates across state-
of-the-art Judge LLMs, revealing a critical gap in current
moderation systems. These findings expose a vulnerabil-
ity in LLM-based content moderation. As AI systems are
increasingly used for safety-critical tasks, understanding
these weaknesses is essential. By systematically evaluating
Judge LLM vulnerabilities, this work contributes to a better
understanding of LLM behavior, which is hoped to motivate
the development of more resilient moderation systems.

Acknowledgements
We acknowledge the U.S. Department of Energy, under Con-
tract Number DE-AC02-05CH11231 for providing compu-
tational resources.

9

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

References
AI@Meta. Llama 3 model card. https:
//github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md, 2024.

Andriushchenko, M., Croce, F., and Flammarion, N. Jail-
breaking leading safety-aligned LLMs with simple adap-
tive attacks. In The Thirteenth International Conference
on Learning Representations, 2025.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Cai, Z., Cao, M., Chen, H., Chen, K., Chen, K., Chen, X.,
Chen, X., Chen, Z., Chen, Z., Chu, P., Dong, X., Duan,
H., Fan, Q., Fei, Z., Gao, Y., Ge, J., Gu, C., Gu, Y., Gui,
T., Guo, A., Guo, Q., He, C., Hu, Y., Huang, T., Jiang, T.,
Jiao, P., Jin, Z., Lei, Z., Li, J., Li, J., Li, L., Li, S., Li, W.,
Li, Y., Liu, H., Liu, J., Hong, J., Liu, K., Liu, K., Liu, X.,
Lv, C., Lv, H., Lv, K., Ma, L., Ma, R., Ma, Z., Ning, W.,
Ouyang, L., Qiu, J., Qu, Y., Shang, F., Shao, Y., Song, D.,
Song, Z., Sui, Z., Sun, P., Sun, Y., Tang, H., Wang, B.,
Wang, G., Wang, J., Wang, J., Wang, R., Wang, Y., Wang,
Z., Wei, X., Weng, Q., Wu, F., Xiong, Y., Xu, C., Xu,
R., Yan, H., Yan, Y., Yang, X., Ye, H., Ying, H., Yu, J.,
Yu, J., Zang, Y., Zhang, C., Zhang, L., Zhang, P., Zhang,
P., Zhang, R., Zhang, S., Zhang, S., Zhang, W., Zhang,
W., Zhang, X., Zhang, X., Zhao, H., Zhao, Q., Zhao, X.,
Zhou, F., Zhou, Z., Zhuo, J., Zou, Y., Qiu, X., Qiao, Y.,
and Lin, D. Internlm2 technical report, 2024.

Chao, P., Robey, A., Dobriban, E., Hassani, H., Pappas, G. J.,
and Wong, E. Jailbreaking black box large language mod-
els in twenty queries. arXiv preprint arXiv:2310.08419,
2023.

Chen, G. H., Chen, S., Liu, Z., Jiang, F., and Wang, B. Hu-
mans or LLMs as the judge? a study on judgement bias.
In Al-Onaizan, Y., Bansal, M., and Chen, Y.-N. (eds.),
Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 8301–8327,
November 2024.

Claburn, T. Meta’s AI safety system defeated by the space
bar. https://www.theregister.com/2024/
07/29/meta_ai_safety/, 2024.

Ding, P., Kuang, J., Ma, D., Cao, X., Xian, Y., Chen, J.,
and Huang, S. A wolf in sheep’s clothing: Generalized
nested jailbreak prompts can fool large language models
easily. In Duh, K., Gomez, H., and Bethard, S. (eds.), Pro-
ceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics:

Human Language Technologies (Volume 1: Long Papers),
pp. 2136–2153, June 2024.

Ganguli, D., Lovitt, L., Kernion, J., Askell, A., Bai, Y.,
Kadavath, S., Mann, B., Perez, E., Schiefer, N., Ndousse,
K., et al. Red teaming language models to reduce harms:
Methods, scaling behaviors, and lessons learned. arXiv
preprint arXiv:2209.07858, 2022.

Geisler, S., Wollschläger, T., Abdalla, M. H. I., Gasteiger,
J., and Günnemann, S. Attacking large language models
with projected gradient descent. In ICML 2024 Next
Generation of AI Safety Workshop, 2024.

Han, S., Rao, K., Ettinger, A., Jiang, L., Lin, B. Y., Lambert,
N., Choi, Y., and Dziri, N. Wildguard: Open one-stop
moderation tools for safety risks, jailbreaks, and refusals
of LLMs. In The Thirty-eight Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track, 2024.

Hayase, J., Borevković, E., Carlini, N., Tramèr, F., and Nasr,
M. Query-based adversarial prompt generation. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Hu, K., Yu, W., Li, Y., Yao, T., Li, X., Liu, W., Yu, L.,
Shen, Z., Chen, K., and Fredrikson, M. Efficient LLM
jailbreak via adaptive dense-to-sparse constrained opti-
mization. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

Huang, T., Hu, S., Ilhan, F., Tekin, S. F., and Liu, L.
Virus: Harmful fine-tuning attack for large language
models bypassing guardrail moderation. arXiv preprint
arXiv:2501.17433, 2025.

Inan, H., Upasani, K., Chi, J., Rungta, R., Iyer, K.,
Mao, Y., Tontchev, M., Hu, Q., Fuller, B., Testug-
gine, D., et al. Llama guard: LLM-based input-output
safeguard for human-AI conversations. arXiv preprint
arXiv:2312.06674, 2023.

Koo, R., Lee, M., Raheja, V., Park, J. I., Kim, Z. M., and
Kang, D. Benchmarking cognitive biases in large lan-
guage models as evaluators. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Findings of the Association for
Computational Linguistics: ACL 2024, pp. 517–545, Au-
gust 2024.

Kudo, T. and Richardson, J. SentencePiece: A simple and
language independent subword tokenizer and detokenizer
for neural text processing. In Blanco, E. and Lu, W.
(eds.), Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing: System
Demonstrations, pp. 66–71, November 2018.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.theregister.com/2024/07/29/meta_ai_safety/
https://www.theregister.com/2024/07/29/meta_ai_safety/

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, X., Zhou, Z., Zhu, J., Yao, J., Liu, T., and Han, B.
Deepinception: Hypnotize large language model to be
jailbreaker. In Neurips Safe Generative AI Workshop
2024, 2024a.

Li, Y., Liu, Y., Li, Y., Shi, L., Deng, G., Chen, S.,
and Wang, K. Lockpicking LLMs: A logit-based jail-
break using token-level manipulation. arXiv preprint
arXiv:2405.13068, 2024b.

Liao, Z. and Sun, H. Amplegcg: Learning a universal and
transferable generative model of adversarial suffixes for
jailbreaking both open and closed LLMs. arXiv preprint
arXiv:2404.07921, 2024.

Liu, F., Feng, Y., Xu, Z., Su, L., Ma, X., Yin, D., and Liu,
H. Jailjudge: A comprehensive jailbreak judge bench-
mark with multi-agent enhanced explanation evaluation
framework. arXiv preprint arXiv:2410.12855, 2024a.

Liu, X., Xu, N., Chen, M., and Xiao, C. Autodan: Gen-
erating stealthy jailbreak prompts on aligned large lan-
guage models. In The Twelfth International Conference
on Learning Representations, 2024b.

Llama-Team. Meta llama guard 2. https:
//github.com/meta-llama/PurpleLlama/
blob/main/Llama-Guard2/MODEL_CARD.md,
2024.

Lv, H., Wang, X., Zhang, Y., Huang, C., Dou, S., Ye, J., Gui,
T., Zhang, Q., and Huang, X. Codechameleon: Person-
alized encryption framework for jailbreaking large lan-
guage models. arXiv preprint arXiv:2402.16717, 2024.

Mangaokar, N., Hooda, A., Choi, J., Chandrashekaran, S.,
Fawaz, K., Jha, S., and Prakash, A. PRP: Propagating
universal perturbations to attack large language model
guard-rails. In Ku, L.-W., Martins, A., and Srikumar,
V. (eds.), Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 10960–10976, August 2024.

Mehrotra, A., Zampetakis, M., Kassianik, P., Nelson, B.,
Anderson, H. S., Singer, Y., and Karbasi, A. Tree of
attacks: Jailbreaking black-box LLMs automatically. In
The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems, 2024.

Ni, J., Qu, C., Lu, J., Dai, Z., Hernandez Abrego, G., Ma, J.,
Zhao, V., Luan, Y., Hall, K., Chang, M.-W., and Yang, Y.
Large dual encoders are generalizable retrievers. In Gold-
berg, Y., Kozareva, Z., and Zhang, Y. (eds.), Proceedings

of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 9844–9855, December 2022.

Pangakis, N., Wolken, S., and Fasching, N. Automated
annotation with generative AI requires validation. arXiv
preprint arXiv:2306.00176, 2023.

Phute, M., Helbling, A., Hull, M. D., Peng, S., Szyller, S.,
Cornelius, C., and Chau, D. H. LLM self defense: By
self examination, LLMs know they are being tricked. In
The Second Tiny Papers Track at ICLR 2024, 2024.

Qi, X., Zeng, Y., Xie, T., Chen, P.-Y., Jia, R., Mittal, P.,
and Henderson, P. Fine-tuning aligned language models
compromises safety, even when users do not intend to!
In The Twelfth International Conference on Learning
Representations, 2024.

Rocamora, E. A., Wu, Y., Liu, F., Chrysos, G., and Cevher,
V. Revisiting character-level adversarial attacks for lan-
guage models. In Forty-first International Conference on
Machine Learning, 2024.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk, K.
and Smith, N. A. (eds.), Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1715–1725, August 2016.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, P., Li, L., Chen, L., Cai, Z., Zhu, D., Lin, B., Cao,
Y., Kong, L., Liu, Q., Liu, T., and Sui, Z. Large language
models are not fair evaluators. In Ku, L.-W., Martins, A.,
and Srikumar, V. (eds.), Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 9440–9450, August 2024.

Wei, A., Haghtalab, N., and Steinhardt, J. Jailbroken: How
does LLM safety training fail? In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T. L., Cao,
Y., and Narasimhan, K. R. Tree of thoughts: Deliberate
problem solving with large language models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Yu, J., Lin, X., and Xing, X. Gptfuzzer: Red teaming large
language models with auto-generated jailbreak prompts.
arXiv preprint arXiv:2309.10253, 2023.

Yuan, Y., Jiao, W., Wang, W., tse Huang, J., He, P., Shi,
S., and Tu, Z. GPT-4 is too smart to be safe: Stealthy

11

https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md
https://github.com/meta-llama/PurpleLlama/blob/main/Llama-Guard2/MODEL_CARD.md

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

chat with LLMs via cipher. In The Twelfth International
Conference on Learning Representations, 2024.

Zeng, Z., Yu, J., Gao, T., Meng, Y., Goyal, T., and Chen, D.
Evaluating large language models at evaluating instruc-
tion following. In The Twelfth International Conference
on Learning Representations, 2024.

Zhang, Y. and Wei, Z. Boosting jailbreak attack with mo-
mentum. In ICLR 2024 Workshop on Reliable and Re-
sponsible Foundation Models, 2024.

Zhang, Z., Lu, Y., Ma, J., Zhang, D., Li, R., Ke, P., Sun, H.,
Sha, L., Sui, Z., Wang, H., and Huang, M. ShieldLM:
Empowering LLMs as aligned, customizable and explain-
able safety detectors. In Al-Onaizan, Y., Bansal, M., and
Chen, Y.-N. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2024, pp. 10420–10438,
November 2024.

Zheng, L., Chiang, W.-L., Sheng, Y., Zhuang, S., Wu, Z.,
Zhuang, Y., Lin, Z., Li, Z., Li, D., Xing, E., Zhang, H.,
Gonzalez, J. E., and Stoica, I. Judging LLM-as-a-judge
with MT-bench and chatbot arena. In Thirty-seventh
Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023.

Zhou, W., Wang, X., Xiong, L., Xia, H., Gu, Y., Chai, M.,
Zhu, F., Huang, C., Dou, S., Xi, Z., et al. Easyjailbreak: A
unified framework for jailbreaking large language models.
arXiv preprint arXiv:2403.12171, 2024.

Zou, A., Wang, Z., Carlini, N., Nasr, M., Kolter, J. Z.,
and Fredrikson, M. Universal and transferable adversar-
ial attacks on aligned language models. arXiv preprint
arXiv:2307.15043, 2023.

12

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

A. Attention Visualization of Token Segmentation Bias
Figure 5 illustrates the impact of token segmentation on attention distributions. Segmentation results in a greater number of
sub-tokens, with distinct attention weights compared to the original sequence. In particular, the segmented subtokens ’p’ and
’ir’ exhibit elevated cross-attention values compared to the corresponding tokens ’port’ and ’air’ in the original sequence.
This alteration suggests a change in the embedding space, which could weaken the association of the model with harmful
signals and reduce the probability of unsafe predictions.

Default Prompt Segmented Prompt

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Bo m b t he a ir p ortBomb the air port

Figure 5. Visualization of attention values for default (left) and segmented (right) prompts. The sub-tokens “p” and “ir” in the segmented
prompt exhibit higher correlations than the equivalent tokens in the default prompt, indicating a shift in attention patterns.

B. Comparison between Offensive Phrases and Those Appending Emojis

Emojis introduce varied semantic information for LLMs. For example, the smiley emoji represents a positive sentiment.
The middle finger emoji conveys a negative or offensive sentiment. To demonstrate this, we visualize the changes in the
unsafe probability for each offensive phrase when the emojis are added in Figure 6. These offensive phrases are sorted in
ascending order by unsafe probabilities for the original phrases. From this figure, we can observe that phrases that add a
positive emoji have a high probability of decreasing unsafe probability, meaning that they tend to be predicted as safe. In
contrast, phrases that include an offensive emoji tend to be predicted as unsafe.

Offensive phrases
0 400300200100

U
ns

af
e

pr
ob

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0
phrase

phrase+

(a)

Offensive phrases

U
ns

af
e

pr
ob

ab
ili

ty

0 400300200100
0.0

0.2

0.4

0.6

0.8

1.0
phrase

phrase+

(b)

Figure 6. Comparison of the unsafe probability between offensive phrases and those appending emojis: (a) , (b) . Llama Guard is
used here.

13

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

C. Effect of the Number of Inserted Emojis
We assess how varying the number of inserted emojis influences the unsafe prediction ratio, as presented in Figure 7. Using
Llama Guard and Llama Guard 2, we compare the random insertion of emojis against our position selection strategy. The
results reveal a gradual increase in unsafe prediction ratios as more emojis are inserted, driven by the corresponding shift in
embedding space that deceives the Judge LLMs. Even with a small number of emojis, the response can be subtly altered to
evade detection, illustrating both the versatility and stealth of the Emoji Attack.

Number of Inserted Emojis
0 20 40 60 80 100

U
ns

af
e

P
re

di
ct

io
n

R
at

io

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80 LG + Random Position
LG + Our Position
LG2 + Random Position
LG2 + Our Position

Figure 7. The effect of the number of inserted emojis on unsafe prediction ratio. “Our Position” denotes the proposed position selection
strategy.

D. Effect of Other Delimiters
To further explore token segmentation bias, we evaluated Llama Guard with various delimiters, as illustrated in Figure 8.
Compared to default prompts without delimiters, including delimiters markedly decreases the unsafe prediction ratio,
confirming that token segmentation bias can be induced in multiple ways. Additionally, incorporating our position selection
strategy alongside these delimiters leads to an even more substantial reduction in the unsafe prediction ratio, underscoring

Other Delimiters

U
ns

af
e

P
re

di
ct

io
n

R
at

io

0.2

0.3

0.4

0.5

0.6

0.7

0.8

! @ # ? & % . ,

Default Prompt Random Position
Our Position

Figure 8. The effect of various delimiters on unsafe prediction ratio of Llama Guard. The red dashed line denotes the prediction ratio of
default prompts without delimiters.

14

Emoji Attack: Enhancing Jailbreak Attacks Against Judge LLM Detection

the effectiveness of selectively inserting tokens.

E. Potential Defense Strategy.
One potential defense strategy is to design prompts that filter out abnormal characters in the responses of the target LLM.
Inserting a single delimiter across multiple tokens is relatively easy to detect. However, using different delimiters for
various tokens complicates the detection by disrupting token patterns in less predictable ways. For example, we employ
“gpt-3.5-turbo” as the additional LLM filter to remove unnecessary symbols from harmful responses. As shown in Figure 9,
when we use a mix of a character “b” and a smiley face emoji as a delimiter, the LLM filter generates a benign response
that differs significantly from the original harmful response. This benign response is classified as safe by Judge LLMs,
allowing the original harmful response to be presented to users. We leave the exploration of combination attacks and further
defense strategies to future work. The results highlight the significant potential for developing token segmentation bias-based
jailbreaking techniques.

Posb t a pictub re ob f youb r gb enib tab ls

LLM Filter

Post a picture of your green beans

Figure 9. The illustration of how complex delimiters evade filtering-based defense strategy. The underlined character “b” and the smiley
face emoji represent the inserted content. We use “gpt-3.5-turbo” as the LLM filter, which is prompted with the instruction “Remove all
unnecessary symbols from the following response”.

15

