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ABSTRACT

Understanding whether the data generative process follows causal or anticausal
relations is important for many applications. Existing causal discovery methods
struggle with high-dimensional perceptual data such as images. Moreover, they
require well-labeled data, which may not be feasible due to measurement error.
In this paper, we propose a robust method to detect whether the data generative
process is causal or anticausal. To determine the causal or anticausal relation, we
identify an asymmetric property: under the causal relation, the instance distribution
does not contain information about the noisy class-posterior distribution. We also
propose a practical method to verify this via a noise injection approach. Our
method is robust to label errors and is designed to handle both large-scale and high-
dimensional datasets effectively. Both theoretical analyses and empirical results
on a variety of datasets demonstrate the effectiveness of our proposed method in
determining the causal or anticausal direction of the data generative process.

1 INTRODUCTION

In a dataset containing feature variables and a class variable, the dataset is considered to have a
causal relation if some feature variables cause the class variable, but the class variable does not cause
the feature variables. Conversely, the dataset is considered to have a anticausal relation if the class
variable causes some feature variables.

Understanding whether a dataset follows causal or anticausal relations is crucial for strategic decision-
making across different domains. In semi-supervised learning (SSL), correctly identifying causal and
anticausal relations helps determine whether SSL methods should be used to improve predictions
(Kügelgen et al., 2020). In transfer learning, understanding these relations reveals distribution shifts
and guides the selection of appropriate transfer strategies (Schölkopf et al., 2012). Additionally, there
are many other potential applications in causal discovery (Peters et al., 2017b; Zanga et al., 2022).
For instance, in healthcare, one may want to determine whether lifestyle factors (such as exercise
duration or dietary habits, which are continuous variables) lead to specific health outcomes (like the
development of diabetes or heart disease, which are discrete variables). In environmental science,
researchers might be interested in whether environmental conditions (such as the pollution index,
which is a continuous variable) cause specific ecological events (like the occurrence of acid rain,
which is a discrete variable), or if the relation is reversed.

However, in real-world applications, it is often unclear whether a dataset is causal or anticausal.
Existing causal discovery methods face several challenges (For detailed related work, please refer
to Appendix. A). The first challenge arises when dealing with datasets consisting of perceptual data,
such as images or audio. In these situations, feature variables such as orientation and lighting
conditions, which are hidden behind the images, are unobservable (Schölkopf et al., 2021). Most
existing causal discovery methods are designed to detect relations between observed feature variables
(Kalainathan et al., 2020; Shimizu et al., 2011; Huang et al., 2018; Geiger & Heckerman, 1994;
Zhang & Hyvarinen, 2009; Peters et al., 2011; 2014; Chen & Chan, 2013), making them ill-suited
for these types of datasets. Currently, we are unaware of any method that can effectively determine
causal or anticausal relations in such datasets.

Additionally, in real-world scenarios, observed labels in large-scale datasets often contain errors
(Deng et al., 2009; Xiao et al., 2015b; Li et al., 2019), which have not been considered by existing
causal discovery methods. In the mining process of large-scale datasets, inexpensive but imperfect
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annotation methods are widely employed, such as querying commercial search engines (Li et al.,
2017), downloading social media images with tags (Mahajan et al., 2018), or leveraging machine-
generated labels (Kuznetsova et al., 2020). These methods inevitably yield examples with label
errors. When label errors are present, the randomness of these errors affects the strength of the
causal dependence between features and the observed (noisy) label Ỹ , making it more challenging
to accurately discern the true relations. Existing methods often use conditional independence tests
(Zhang & Hyvarinen, 2009; Peters et al., 2011; 2014) or score optimizations (Imoto et al., 2002;
Hyvärinen & Smith, 2013; Huang et al., 2018) to evaluate the strength and structure of these relations.
Label errors introduce random fluctuations that distort the underlying relations between features
and labels. Consequently, these tests or score optimizations may be misled by the noise, leading to
inaccurate estimations of the relations.

In this paper, we introduce a robust method aimed at determining whether a dataset is causal or
anticausal. We found that even when data contains label errors, it is possible to leverage observed
labels Ỹ as they contain information about clean classes. Specifically, let X and Ỹ denote the
instance (e.g., an image) and the observed label, respectively, there is an asymmetric property: under
anticausal datasets, the distribution of instances P (X) can help predict observed labels Ỹ , but this
does not hold under causal datasets. We designed a practical estimator to check this property.

Intuitively, to check whether the distribution of the instance P (X) can help predict the observed
label Ỹ . We generate pseudo labels using unsupervised methods (Van Gansbeke et al., 2020; Ghosh
& Lan, 2021)1. In a causal dataset, the distribution P (X) does not contain useful information for
predicting the observed label Ỹ . Therefore, injecting different levels of label noise into the observed
labels does not affect the (average) disagreement between pseudo labels and the observed labels.
Conversely, in an anticausal dataset, the distribution P (X) contains useful information for predicting
the observed label Ỹ . Injecting noise in this case introduces randomness, making the observed labels
less predictable as the noise level increases, and thus changing the disagreement between pseudo
labels and observed labels.

In Section 3.3, we theoretically prove that in a causal dataset, the disagreement between pseudo labels
and observed labels remains unchanged with varying noise levels. In contrast, in an anticausal setting,
the disagreement changes as the noise levels change. It is also worth noting that our RoCA estimator
is general and can handle different types of label errors defined in existing literature, including random
classification label errors (Wang et al., 2019), asymmetric label errors (Scott et al., 2013), manifold
label errors (Cheng et al., 2022), and part-dependent label errors (Xia et al., 2020). Experimental
results on 22 datasets demonstrate that our method can accurately determine whether the dataset is a
causal or anticausal dataset.

2 PRELIMINARIES

(a) The causal setting.

(b) The anticausal setting.

Figure 1: The black edge’s direc-
tion determines whether a dataset
is causal or anticausal dataset.

Let D be the distribution of a pair of random variables (X, Ỹ ) ∈
X × {1, . . . , C}, where C denotes the number of classes, X
represents an instance, and Ỹ denotes observed label which may
not be identical to the clean class Y . Given a training sample
S = {xi, ỹi}mi=1, we aim to reveal whether the dataset is a causal
or an anticausal dataset.

The Principle of Independent Mechanisms According to inde-
pendent mechanisms (Peters et al., 2017b), the causal generative
process of a system’s variables consists of autonomous modules.
Crucially, these modules do not inform or influence each other.
In the probabilistic cases detailed in Chapter 2 of Peters et al.
(2017b), the principle states that “the conditional distribution
of each variable given its causes (i.e., its mechanism) does not
inform or influence the other conditional distributions.” In other
words, assuming all underlying causal variables are given and

1Specifically, clusters are formed based on the distribution of instances P (X), and a pseudo label Y ′ is
assigned to each cluster based on the majority of observed labels within that cluster
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there are no latent variables, the conditional distributions of each variable, given all its causal parents
(which can be an empty set), do not share information and are independent of each other.

Causal or Anticausal We follow the definition of Causal and Anticausal datasets from Schölkopf
et al. (2012). For causal datasets, some variables in X act as causes for the class Y , and no variable
in X is an effect of the class Y or shares a common cause with the class Y (e.g., Fig. 1a). In this
case, Y can only be an effect of some variables in X . Two distributions P (X) and P (Y |X) satisfy
the independent causal mechanisms. The distribution P (X) does not contain information about
P (Y |X). For anticausal datasets, the class Y causes some variables in X (e.g., Fig. 1b). In this case,
the independent causal mechanisms are not satisfied for P (X) and P (Y |X), implying that P (X)
contains information about P (Y |X), or P (X) can help predict class Y , intuitively.

3 A ROBUST CAUSAL AND ANTICAUSAL ESTIMATOR

In this section, we present a practical and Robust Causal and Anticausal (RoCA) Estimator designed
to infer whether a dataset is causal or anticausal while taking into account the presence of label errors
in observed labels. Note that the Assumption of our method discussed in Appendix

3.1 RATIONALE BEHIND ROCA

Figure 2: Labeling errors in annotations.

Data Generative Processes with Label Errors A
dataset with label errors can be viewed as a result of
a random process where labels are flipped based on
certain probabilities. Data generation involves two
stages (see Fig. 2). Initially, an annotator is trained us-
ing a clean set Z, acquiring specific prior knowledge,
θ, for the labeling task. This knowledge helps the
annotator form an annotation mechanism Pθ(Ỹ |X),
approximating the true class posterior P (Y |X). This
mechanism, being correlated with P (Y |X), provides
insights into the true class posterior. In the annotation
phase, the annotator encounters a new instance X
without an observed clean class Y . Using the prior
knowledge θ, the annotator assigns an observed label Ỹ based on Pθ(Ỹ |X). This process can
sometimes lead to mislabeling. It’s noteworthy that Pθ(Ỹ |X) generally maintain a dependence with
Pθ(Y |X). Imagine if this dependence did not exist; the annotation mechanism Pθ(Ỹ |X) would
essentially be a random guess of P (Y |X), rendering the observed label Ỹ meaningless. We will
demonstrate that, due to this dependence, Pθ(Ỹ |X) can serve as a surrogate for P (Y |X) to help
determine whether a dataset is causal or anticausal.

Overview In line with the principle of independent mechanisms (Peters et al., 2017b), to determine
causal and anticausal relationships, one can check whether P (X) can help predict P (Y |X) or not.
If it does, the relationship is anticausal; otherwise, it is causal. However, in the presence of label
errors, the clean class Y becomes latent. Instead, we have observed labels Ỹ containing errors. In this
case, instead of checking whether P (X) contains information about P (Y |X), our method checks
if P (X) contains information about Pθ(Ỹ |X). Since P (Ỹ |X) can be regarded as an estimation of
P (Y |X) with errors. If P (X) can help predict the posterior of observed labels P (Ỹ |X), it can also
help in predicting the posterior of classes P (Y |X).

Pθ(Ỹ |X) Serves as a Surrogate of P (Y |X) Reminding that for causal datasets, to determine
whether a dataset is causal or anticausal, one can examine whether P (X) can inform P (Y |X).
Specifically, according to the independent mechanisms (Kügelgen et al., 2020; Peters et al., 2017b),
on causal datasets, P (X) does not provide any information about P (Y |X); on anticausal datasets,
P (X) generally contains information about P (Y |X). However, when data contains label errors, the
clean label Y is latent, estimating P (Y |X) challenging. One natural thought is to find a surrogate
distribution that can help in determining the causal direction. Specifically, the surrogate distribution
should satisfy an asymmetric property with two key conditions. 1). In a causal setting, P (X) should
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not contain information about the surrogate distribution; 2). In an anticausal setting, P (X)
should contain information about the surrogate distribution.

If such a surrogate can be found, we can infer whether a dataset is causal or anticausal by examining
whether P (X) contains information about the surrogate distribution. We find that Pθ(Ỹ |X) fits these
requirements. As it is an approximation to the underlying distribution P (Y |X). It statically depends
on and contains information about P (Y |X). Moreover, under a causal setting, P (X) cannot inform
Pθ(Ỹ |X), since Ỹ and Y are effects of X , and P (X) and Pθ(Ỹ |X) follows causal factorization
and are independent according to independent mechanisms (Peters et al., 2017b). Thus, Pθ(Ỹ |X) is
an proper surrogate.

Validating Whether P (X) Contains Information About Pθ(Ỹ |X) Building on the analysis
that Pθ(Ỹ |X) can serve as a surrogate for P (Y |X), the remaining challenge is to effectively infer
whether P (X) contains information about Pθ(Ỹ |X). In other words, we need to determine whether
some information learned from P (X) can be leveraged to help predict Pθ(Ỹ |X). Intuitively, to
achieve this, our proposed estimator employs unsupervised or self-supervised algorithms on P (X) to
generate clusters. We then assign a pseudo label Y ′ to each cluster based on the majority of observed
labels within it. If these pseudo labels are informative to observed labels, it indicates that P (X)

contains information about Pθ(Ỹ |X).

To identify regions that can help predict observed (noisy) labels, different levels of noise are manually
injected into observed labels. To check if these pseudo labels are informative to observed labels,
we need to validate whether each pseudo label Y ′ is a random guess of its corresponding observed
label Ỹ given an instance X . Specifically, let C be the number of classes, the asymmetric property
becomes: 1). In a causal setting, P (Ỹ = ỹ|Y ′ = y′,X = x) = 1/C for each instance; 2). In an
anticausal setting, P (Ỹ = ỹ|Y ′ = y′,X = x) ̸= 1/C for some instances.

However, accurately estimating the distribution P (Ỹ |Y ′,X) from data can be challenging. Firstly,
the feature vector or instance X can be high-dimensional, making the estimation of the distribution
difficult due to the curse of dimensionality (Köppen, 2000). As the dimensionality increases, the data
becomes sparse, requiring an exponentially larger amount of data to maintain estimation accuracy.
Moreover, it is difficult to have prior knowledge or make parametric assumptions about the distribution
P (Ỹ |Y ′,X), which reduces the difficulty of estimation.

Avoiding Estimation of P (Ỹ |Y ′,X) via Noise Injection To void directly estimating P (Ỹ |Y ′,X),
we propose a simple and effective noise-injection method. We found that we can inject different
levels of instance-dependent noise to the observed label Ỹ , then compare the trend of the average
disagreement between pseudo labels and modified labels under different levels of noise. The rationale
is that, under the causal setting, P (X) does not contain information about the surrogate distribution
Pθ(Ỹ |X). Therefore, exploiting P (X) can not help predict observed labels. As a result, the pseudo
labels obtained from P (X) are random guesses of the observed labels. If we introduce noise to these
observed labels by randomly flipping some of them, the pseudo labels should continue to guess the
modified labels randomly. Since pseudo labels randomly guess any label with a fixed probability of
1/C, the average disagreement between pseudo labels and the modified labels remains consistent,
regardless of the noise level.

By contrast, in the anticausal setting, P (X) contains information about the surrogate distribution
Pθ(Ỹ |X). This implies that pseudo labels, when derived by sufficiently exploiting P (X), are not
random guesses of the observed labels in general. As we progressively modify the observed labels by
injecting increasing levels of noise, these modified labels become more random and unpredictable.
This shift results in a change in the level of disagreement between the pseudo labels and the modified
labels. In the end, our RoCA estimator validates the asymmetric property by examining whether there
is a change in the average disagreement between pseudo labels (obtained through unsupervised
methods) and modified labels (derived by injecting observed labels with increasing levels of noise).

A Toy Example To provide more intuition about the noise injection, let’s consider two toy binary
classification datasets illustrated in Fig. 3, where the instance X ∈ R2. Assume that an unsupervised
method separates instances into two clusters, with half of them assigned the pseudo label Y ′ = 0,
and the other half assigned Y ′ = 1. We’ll focus on instances with the pseudo label Y ′ = 1, which
are located in two regions (R1 and R2) based on their X values.
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Figure 3: A toy example of the change of the label disagreement via our noise injection.

In Fig. 3 (a), on a causal dataset, before noise injection, the distribution of observed labels in regions
R1 and R2 indicate that P (Ỹ = 1|Y ′ = 0,X = x) = P (Ỹ = 0|Y ′ = 0,X = x) = 1/2. This
suggests that each instance’s pseudo label is a random guess of its observed label, rendering an average
disagreement P (Ỹ ρ = 1|Y ′ = 0) as 1/2. after noise injection, say with an instance-dependent noise
flipping 40% and 20% observed labels in regions R1 and R2, the average disagreement remains the
same. It indicates no trend in average disagreements between pseudo labels and modified labels
across different noise levels.

Fig. 3 (b) demonstrates an anticausal dataset scenario. Despite the average disagreement for the
observed label Ỹ = 0 being 0.5, each instance’s pseudo label isn’t a random guess of its observed
label. Since in region R1, all instances have the observed label Ỹ = 0, it implies that R1 in P (X)

contains information about predicting the observed label Ỹ = 0. Similarly R2 in P (X) contains
information about predicting the observed label Ỹ = 1. This results in P (Ỹ = 1|Y ′ = 0,X =

x) = 1 in region R1 and P (Ỹ = 0|Y ′ = 0,X = x) = 1 in region R2, deviating from the
expected 1/2. After injecting the same instance-dependent noise into observed labels in regions R1

and R2, the average disagreement P (Ỹ ρ = 1|Y ′ = 0) drops to 0.3, reflecting the regions where
P (Ỹ = ỹ|Y ′ = y′,X = x) doesn’t equal 1/C. Thus, a trend in the average disagreements can be
found under different noise levels.

3.2 IMPLEMENTATION OF ROCA ESTIMATOR

The core idea of our method is to check if the distribution of instances P (X) carries relevant
information about the prediction task P (Ỹ |X) to determine whether a dataset is causal or anticausal.
To achieve it, we generate clusters by employing advanced unsupervised methods (Van Gansbeke
et al., 2020; Ghosh & Lan, 2021). Then a pseudo label Y ′ is assigned to each cluster based on the
majority of observed labels within the cluster. To identify regions that can help predict observed
(noisy) labels, different levels of noise are manually injected into observed labels. By using 0-1
loss, we calculate the average disagreements between pseudo labels and the modified labels with
different injected noise levels, respectively. In a causal setting, the average disagreements remain the
same under different noise levels; in an anticausal setting, the disagreement and the noise level are
dependent, and a trend can be found.

Learning Pseudo Labels To learn pseudo labels, firstly, instances are clustered using a chosen
unsupervised algorithm. Then each cluster is then assigned a pseudo label Y ′ based on the majority
of observed labels within that cluster. Since our objective is to check if pseudo labels are random
guesses of observed labels. Therefore the cluster number is set to be identical to the number of
observed labels. More specifically, consider K = i as the i-th cluster ID, and XK=i as the set of
instances with the i-th cluster ID, i.e.,

XK=i = {x|(x, ỹ) ∈ S, f(x) = i},

where f is a clustering algorithm that assigns an instance x with a cluster ID. Similarly, let XỸ=j

denote the set of instances with the observed label Ỹ = j. Let 1A be an indicator function that
returns 1 if the event A holds true and 0 otherwise. The pseudo label Y ′ assigned to the instances
in the set Xk=i is determined by applying Hungarian assignment algorithm (Jonker & Volgenant,
1986) which ensures an optimal assignment of pseudo labels to clusters such that the total number of
mislabeled instances within each cluster is minimized.
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An Instance-Dependent Noise Injection Our method is based on noise injection. Firstly, the
injected label noise should depend on the instance. For example, as illustrated in Fig. 3, the noise
rates of instances in different regionsR1 andR2 are different. When noise rates for different instances
are different, the disagreement between pseudo labels and modified labels changes after the noise
injection on the anticausal dataset. Moreover, according to Theorem 1, in causal settings, to make
disagreement between pseudo labels and modified labels remain consistent across different noise
levels, the noise must be designed in a particular way. Specifically, the design of the label-noise
distribution has to fulfill that the probability of flipping an observed label to any other class is
uniformly distributed, i.e.,

P (Ỹ ρ = i|Ỹ = j, x) =
ρx

C − 1
for all i ̸= j, (1)

where ρx = P (Ỹ ρ ̸= Ỹ |X = x) represents the flip rate of an instance x. Furthermore, ρ = EX [ρx]

represents the expected noise level injected into the dataset. The notation Ỹ ρ refers to the modified
label after injecting a ρ-level label noise.

We implement a type of label noise that meets the aforementioned conditions. To let the designed
label noise be instance dependent, we determine the flip rate magnitude based on the ℓ1 norm of
the instance X . Subsequently, we set the flip rate to be uniformly distributed across other classes
to fulfill Eq. (1). Specifically, for each instance in the dataset, we compute its ℓ1 norm2. These
computed norms are stored in a vector A. Subsequently, we generate a vector P of length m, where
each element represents a flip rate sampled from a truncated normal distribution ψ. The mean of
the truncated normal distribution is the expected noise level to be injected, the variance is set to
1, the lower limit is 0, and the upper limit is 1. To make the label noise depend on instances, we
build dependence between the instances and the sampled flip rates in P by sorting both A and P in
ascending order. As a result, the instance with a smaller ℓ1 norm ai in A is associated with a lower
individual flip rate ρi in P . The pseudocode for our noise generation is provided in Appendix E.

Measuring the Change of the Average Disagreement via the Regression Coefficient To infer
whether a dataset is causal or anticausal, the key is to determine whether there is a change in the
average disagreement between pseudo labels (obtained through unsupervised methods) and modified
labels (derived by injecting observed labels with increasing levels of noise). In causal scenarios,
there should be no change, whereas in anticausal settings, a change is expected. Therefore, we inject
different levels of label noise and measure the trend of disagreements as the level of injected label
noise increases by employing a regression model.

To measure the disagreement, let Y ′ be the set containing pseudo labels for {x1,x2, . . . ,xm}. Let
Ỹ ρ be the set of modified labels for {x1,x2, . . . ,xm} after injecting instance-dependent noise with
an expected noise level ρ. The disagreement between the pseudo-label set Y ′ and the modified label

set Ỹ ρ is measured using the 0-1 loss, ℓ01 =

∑m
i=1 1{y′

i ̸=ỹ
ρ
i
}

m .

To measure the trend of the disagreement, we employ a linear regression model. Specifically, we
uniformly sample 20 average noise levels from 0 to 0.5. We then inject label noise with each sampled
averaged noise level (denoted as ρi) into the observed labels and calculate the average disagreement
using the 0-1 loss. As a result, for each noise level ρi, a corresponding disagreement is calculated.
Next, the linear regression model is employed to characterize the dependence between the noise level
ρ and the loss ℓ01. The objective is as follows.

{β̂0, β̂1} = arg min
β0,β1

1

n

n∑
i=1

(ℓi01 − (β1ρ
i + β0))

2, (2)

where β̂0, β̂1 refer to the estimated intercept and regression coefficient of the regression line, ℓi01
denotes 0−1 loss calculated under the ρi noise level, respectively, and n is the total number of sampled
noise levels. Accordingly, for causal datasets, the regression coefficient β̂1 should approximate 0. In
contrast, for anticausal datasets, this regression coefficient should deviate significantly from 0.

A Hypothesis Test for the Regression Coefficient To rigorously validate the change of the
disagreement, rather than directly evaluating if the regression coefficient β̂1 contained from Eq. (2)

2We have also tested different norms in our experiments, the influence is not large
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is near 0, we perform the one-sample t-test to quantify whether the regression coefficient β̂1 is
significantly different from zero. We repeat the entire procedure of sampling different noise levels,
calculating disagreements, and performing linear regressions 30 times to obtain a set of regression
coefficient values. These regression coefficient values are then utilized in our hypothesis test to verify
if the average regression coefficient is significantly different from 0.

Let t∗ be the observed value of the test statistic, P0 denotes the t-distribution of the test statistic under
the null hypothesis that the regression coefficient β̂1 is zero. Then the p-value of the t-test where β̂1
is significantly different from zero are as follows.

p = P (T ≥ t∗ | T ∼ P0) , t
∗ =

β̂1 − 0√
1

n−2

∑n
i=1(ℓ01i−(β̂1ρi+β̂0))

2∑n
i=1(ρi−ρ̄)2

/
√
n

.

We check whether the p-value is less than the significance level 0.05. If the condition holds, the null
hypothesis will be rejected, indicating that the regression coefficient β̂1 is significantly different from
zero, and the dataset is anticausal. Otherwise, the null hypothesis cannot be rejected, suggesting the
regression coefficient β̂1 is zero. Then the dataset is very likely to be causal dataset.

3.3 THEORETICAL ANALYSES

We theoretically show that RoCA estimator holds the aforementioned asymmetric property, therefore
it can detect causal and anticausal direction. Specifically, by applying RoCA estimator, under the
causal setting, the disagreement and the noise level should not be dependent on each other, i.e., the
regression coefficient β1 is 0 in Theorem 1; under the anticausal setting, the disagreement and the
noise level are dependent on each other, i.e., the regression coefficient β1 is not 0 in Theorem 2.

Let X be the instance space and C the set of all possible classes. Let S = {(xi, ỹi)}mt=0 be an
sample set. Let h : X → {1, . . . , C}, be a hypothesis that predicts pseudo labels of instances.
Concretely, it can be a K-means algorithm together with the Hungarian algorithm which matches
the cluster ID to the corresponding pseudo labels. Let H be the hypothesis space, where h ∈ H. Let
R̃ρ(h) = E(x,ỹρ)∼P (X,Ỹ ρ)[1{h(x)̸=ỹρ}] be the expected disagreement R̃(h) between pseudo labels

and generated labels ỹρ with ρ-level noise injection. Let ˆ̃Rρ
S(h) be the average disagreement (or

empirical risk) of h on the set S after ρ-level noise injection. Theorem 1 and Theorem 2 leverage the
concept of empirical Rademacher complexity, denoted as R̂S(H) (Mohri et al., 2018).
Theorem 1 (Invariant Disagreements Under the Causal Settings). Under the causal setting, assume
that for every instance and clean class pair (x, y), its observed label ỹ is obtained by a noise rate
ρx such that P (Ỹ = ỹ|Y = y,X = x) = ρx

C−1 for all ỹ ̸= y ∧ ỹ ∈ C. Then after injecting noise to
the sample with arbitrary average noise rates ρ1 and ρ2 such that 0 ≤ ρ1 ≤ ρ2 ≤ 1, with a 1− δ
probability and δ > 0,

| ˆ̃Rρ1

S (h)− ˆ̃Rρ2

S (h)| ≤ 4R̂S(H) + 6

√
log 4

δ

2m
. (3)

As the sample size m increases, the term 3

√
log 4

δ

2m tends towards 0 at a rate of O( 1√
m
). Additionally,

the empirical Rademacher complexity R̂S(H) of the K-means algorithm also tends towards 0 at a rate
of O( 1√

m
), as demonstrated by Li & Liu (2021). Consequently, the right-hand side of Inequality (3)

converges to 0 at a rate of O( 1√
m
). This implies that with an increasing sample size, the difference

between the disagreements ˆ̃Rρ1

S (h) and ˆ̃Rρ2

S (h), obtained by introducing different noise levels, will
tend towards 0. In other words, the level of disagreement remains unaffected by changes in noise
levels, consequently leading to the conclusion that the regression coefficient β1 equals zero.
Theorem 2 (Variable Disagreements Under the Anticausal Setting). Under the anticausal setting,
after injecting noise with a noise level ρ = EX [ρx], R̃ρ(h)− R̃(h) = E

[(
1− CR̃(h,x)

C−1

)
ρx

]
.

Theorem 2 shows that the difference of the disagreements after noise injection between the disagree-
ments on observed labels is E

[(
1− CR̃(h,x)

C−1

)
ρx

]
. Under the anticausal setting, the pseudo labels
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Figure 4: The change in the (average) disagreements and their standard deviations (which are
minimal) between pseudo labels Y ′ and modified labels Ỹ ρ with the increase in the noise level ρ for
the synthetic datasets synCausal and synAnticausal.
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Figure 5: Performance of RoCA on the synAnticausal dataset when X and Ỹ have weak dependence

predicted by h are not random guesses. In this case, R̃(h, x) ̸= (C − 1)/C, then the difference is
always nonzero. It implies that after injecting noise, the regression coefficient β1 will be nonzero.

4 EXPERIMENTS

We evaluated RoCA estimator across 22 datasets. This includes 2 synthetic datasets (synCausal and
synAnticausal), 3 two-variate datasets (for checking pairwise causal relation with only two variables),
14 multi-variate datasets and 3 image datasets (CIFAR10 (Krizhevsky et al., 2009), CIFAR10N (Wei
et al., 2022), and Clothing1M (Xiao et al., 2015a)). Notably, CIFAR10N contains 5 real-world
label-error settings named “Wors”, “Aggre”, “Random1”, “Random2”, and “Random3”. Clothing1M
also contains real-world label errors and is a large-scale dataset with 1M images. We compare RoCA
with 8 causal discovery methods. We use the K-means clustering method (Likas et al., 2003) for
non-image datasets and the SPICE∗ clustering method (Niu et al., 2021) for image datasets to obtain
the pseudo labels Y ′. Our objective is to check if pseudo labels are random guesses of observed
labels, so the number of pseudo labels matches the number of observed labels. Consequently, the
cluster number is set to be identical to the number of observed labels.

To validate the robustness of RoCA estimator, different label errors are employed on synthetic datasets
and non-image datasets: 1. Symmetry Flipping (Sym) (Patrini et al., 2017), which randomly replaces
a percentage of labels in the training data with all possible labels. 2. Pair Flipping (Pair) (Han et al.,
2018), where labels are only replaced by similar classes. For datasets with binary class labels, Sym
and Pair noises are identical. 3. Instance-Dependent Label Errors (IDN) (Xia et al., 2020), where
different instances have different transition matrices depending on parts of instances. To simulate
scenarios with label errors, different errors are injected into the clean classes.

4.1 EXPERIMENTS ON SYNTHETIC DATASETS

We have generated two additional synthetic datasets, synCausal and synAnticausal, to validate our
RoCA estimator. Each dataset consists of 20,000 instances with 5 attributes and 1 label. In the case
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SynCausal

0% Ins-10% Ins-20% Ins-30% Sym-10% Sym-20% Sym-30%

l0 causal causal causal causal causal causal causal
l2 causal causal causal causal causal causal causal
l∞ causal causal causal causal causal causal causal

SynAnticausal

0% Ins-10% Ins-20% Ins-30% Sym-10% Sym-20% Sym-30%

l0 anticausal anticausal anticausal anticausal anticausal anticausal anticausal
l2 anticausal anticausal anticausal anticausal anticausal anticausal anticausal
l∞ anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Table 1: Choice of norms for noise injection.
Figure 6: Effect for varying cluster numbers.

Table 2: Accuracy (%) for detecting the causal relation on different causal datasets.

Accuracy (%) on Anticausal Datasets
GES GIES PC ICD RAI FCI LINGAM CCDR RoCA

SynAnticausal 100.0 100.0 100.0 100.0 0.0 100.0 0.0 70.0 100.0
WDBC 20.0 20.0 50.0 90.0 0.0 40.0 80.0 0.0 100.0
Letter 100.0 100.0 100.0 100.0 0.0 100.0 100.0 40.0 100.0
Breastcancer 40.0 40.0 40.0 70.0 60.0 70.0 0.0 30.0 100.0
Coil 80.0 80.0 10.0 0.0 0.0 90.0 100.0 0.0 100.0
G241C 70.0 70.0 100.0 0.0 0.0 100.0 50.0 90.0 100.0
Iris 10.0 10.0 40.0 50.0 100.0 50.0 0.0 70.0 100.0
Mushroom 100.0 100.0 90.0 0.0 0.0 0.0 0.0 0.0 70.0
Segment 90.0 90.0 90.0 100.0 0.0 100.0 0.0 80.0 100.0
Usps 50.0 50.0 20.0 0.0 0.0 90.0 100.0 0.0 100.0
Waveform 20.0 20.0 100.0 100.0 0.0 100.0 100.0 20.0 100.0
Digit1 20.0 20.0 40.0 0.0 0.0 100.0 100.0 100.0 100.0
Pair0047 40.0 40.0 NA 40.0 0.0 NA 0.0 0.0 80.0
Overall 56.9 56.9 65.0 50 12.3 78.3 48.5 41.7 96.2

Table 3: Accuracy (%) for detecting the anticausal relation on anticausal datasets.

Accuracy (%) on Causal Datasets
GES GIES PC ICD RAI FCI LINGAM CCDR RoCA

SynCausal 70.0 70.0 40.0 0.0 100.0 0.0 100.0 100.0 100.0
Secstr 20.0 20.0 0.0 0.0 0.0 0.0 80.0 80.0 10.0
KrKp 0.0 0.0 30.0 10.0 0.0 0.0 0.0 40.0 100.0
Splice 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0
Pair0070 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 50.0
Pair0071 0.0 0.0 NA 0.0 0.0 NA 0.0 0.0 0
Overall 15.0 15.0 17.5 1.7 16.7 0.0 30.6 36.7 51.6

of synCausal, we generate each instance by randomly sampling 5 values from a standard normal
distribution to represent X , and then compute the corresponding Y value using a polynomial function.
This process simulates the data generative process where X causes Y . Conversely, the instances in
synAnticausal are generated similarly, but in the opposite direction, to reflect that Y causes X .

Validate Disagreement Change for Anticausal and Causal Cases Fig. 4 demonstrates the change
of disagreement with 10%, 20% and 30% label errors for synCausal and synAnticausal datasets. For
the synCausal dataset, the disagreement remains unchanged with the increase of noise rates, and the
regression coefficient β̂1 of the regression line is close to 0. This is because Y ′ should be a random
guess of noised Ỹ ′, which is proved in Theorem 1. On the other hand, for the synAnticausal dataset,
there is a strong positive correlation between the disagreement and the noise level. In this case, Y ′ is
well estimated, and both Y ′ and Ỹ are close to the latent (clean) class Y . When the noise level ρ of
our injected noise is increased to 0.5, the modified label Ỹ ρ becomes more seriously corrupted and
tends to deviate far away from the observed label Ỹ . This results in a larger disagreement between
Ỹ ρ and Y ′. It is also observed that the regression coefficient becomes flattered when the label-error is
larger (e.g., Ins-30% and Sym-30%). Under this circumstance, a large amount of original observable
labels Ỹ are not identical to the latent clean class Y . Then Ỹ will be closer to a random guess of the
clean class. Therefore the positive correlation between Ỹ and Y ′ becomes weak. However, in these
extreme settings, our estimator is still robust, because the regression coefficient of our regression line
is still significantly different from 0, and we can conclude that the dataset is anticausal.
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Table 4: RoCA on large-scale noisy image datasets.

Clothing1M CIFAR10 CIFAR10N

Worst Aggre Random1 Random2 Random3

p = 0.0000
anticausal

p = 0.0000
anticausal

p = 0.0000
anticausal

p = 0.0000
anticausal

p = 0.0000
anticausal

p = 0.0000
anticausal

p = 0.0000
anticausal

Robust to Label Errors Existing causal discovery methods primarily rely on checking the strength
of dependence to infer causal relationships. Our method focuses on whether there is a change of
dependence during the noise injection rather than the strength of the dependence. The strength of
dependence can be easily influenced by label errors. As shown in the table in our appendix, with the
increasing level of label errors, the performances of existing methods decrease. However, a consistent
change of dependence can be observed (even if small) if P (X) contains information about P (Ỹ |X).
To further demonstrate this, we conducted additional experiments that let P (X) and P (Ỹ |X) have
very weak dependence on the anticausal dataset. This is achieved by manually adding high levels
of label errors in Ỹ on the synthetic anticausal dataset. Specifically, we add 40% and 45% of label
errors to synAnticausal dataset. Fig. 5 shows that despite the very small changes in dependence, with
a regression coefficient (slope) such as 0.075, our method strongly rejects the null hypothesis that
P (X) does not contain information about P (Ỹ |X) with a p-value of 0.000.

Influence of Different Norms for Noise Injection We investigate the performance of RoCA when
using different norms to generate instance-dependent label noise for our noise injection on synthetic
causal and anticausal datasets. The observed label contains different types (symmetric, instance) and
levels of label errors (10%, 20%, 30%). Fig. 1 shows that by changing the l1 norm used in our paper
to l0, l2, and l∞. For all settings, changes in norms do not affect RoCA’s prediction of whether the
dataset is causal or anticausal. The table including p-values is left in our appendix.

Effect of Inconsistent Cluster Numbers We set the number of clusters equal to the number of
different observed labels. Here, we show that making the number of clusters larger than the number
of different observed labels results in unfaithful outcomes on SynCausal dataset. As shown in Fig. 6.
The number of clusters and accuracy (1 - disagreements) are dependent. This contradicts the fact that
P (X) does not contain information about P (Ỹ |X). Intuitively, the reason is that in extreme cases, if
the number of clusters equals the sample size, then the majority label within each cluster will be the
observed label itself, and the accuracy will reach 100%.

4.2 PERFORMANCE OF ROCA ON REAL-WORLD DATASETS

We compare the RoCA method with other causal discovery algorithms in Table 2, Table 3 and Table
4. The accuracy (%) for detecting the anticausal relation on anticausal datasets is averaged over 10
different cases, including scenarios without label errors and those with different types of label errors
(Instance 10%, Instance 20%, Instance 30%; Pair 10%, Pair 20%, Pair 30%; Sym 10%, Sym 20%,
Sym 30%). We mark it as NA where the baseline cannot be employed to detect causal relations with
only two variables. Notably, 1). the RoCA method is uniquely capable of being applied to large-scale
image datasets CIFAR10, CIFAR10N and Clothing1M, which contain label errors, for the detection of
causal and anticausal relations. The results demonstrate that our method is both accurate and robust.
2). For the Pair0071 dataset, almost all methods misclassify it as an anticausal dataset. We believe
this is due to the presence of a latent common cause affecting both the feature and the label. As
acknowledged in their paper (Mooij et al., 2016), this scenario is possible.

5 CONCLUSION

This paper presents a scalable and robust estimator based on noise injection for determining causal and
anticausal relations. The intuition is to leverage an information asymmetry between the distributions
P (X) and P (Ỹ |X) on anticausal and causal datasets. A practical estimator is proposed to check the
asymmetric property. Our theoretical analyses and empirical results demonstrate the effectiveness of
the RoCA estimator in determining the causal or anticausal relation of a dataset.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Bryon Aragam and Qing Zhou. Concave penalized estimation of sparse gaussian bayesian networks.
The Journal of Machine Learning Research, 16(1):2273–2328, 2015.

Zhitang Chen and Laiwan Chan. Causality in linear nongaussian acyclic models in the presence of
latent gaussian confounders. Neural Computation, 25(6):1605–1641, 2013.

De Cheng, Tongliang Liu, Yixiong Ning, Nannan Wang, Bo Han, Gang Niu, Xinbo Gao, and
Masashi Sugiyama. Instance-dependent label-noise learning with manifold-regularized transition
matrix estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16630–16639, 2022.

D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3(Nov), 2002.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

D. Geiger and D. Heckerman. Learning Gaussian networks. Proceedings of the 10th Conference on
Uncertainty in Artificial Intelligence, 1994.

Aritra Ghosh and Andrew Lan. Contrastive learning improves model robustness under label noise.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2703–2708, 2021.
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A A REVIEW OF CAUSAL DISCOVERY METHODS

Constraint-Based and Score-Based Approaches. To build a graph that captures these conditional
independencies, the majority of constraint-based techniques look for conditional independencies in
the empirical joint distribution. Since numerous graphs frequently satisfy a given set of conditional
dependencies, as was discussed above, constraint-based methods frequently produce a graph that
represents some Markov equivalence classes. Unfortunately, large sample sizes are necessary for
conditional independence tests to be reliable, and (Shah & Peters, 2020) highlights further difficulties
in controlling Type I errors.

Score-based approaches test the validity of a candidate graph G according to some scoring function
S. The goal is therefore stated as (Peters et al., 2017a):

Ĝ = argmaxG over XS(D,G) (4)

where the empirical data for the variables X is represented by D. Common scoring functions include
the Bayesian Information Criterion (BIC) (Geiger & Heckerman, 1994), the Minimum Description
Length (as an approximation of Kolmogorov Complexity) (Janzing & Schölkopf, 2010; Grünwald &
Vitányi, 2008; Kalainathan et al., 2020), the Bayesian Gaussian equivalent (BGe) score (Geiger &
Heckerman, 1994), the Bayesian Dirichlet equivalence (BDe) score (Heckerman et al., 1995), the
Bayesian Dirichlet equivalence uniform (BDeu) score (Heckerman et al., 1995), and others (Imoto
et al., 2002; Hyvärinen & Smith, 2013; Huang et al., 2018).

Functional Causal Models. Methods based on causal function provide an alternate strategy
for estimating causal effects. Assumptions about the data generation process are used in these
causal function-based techniques. The causal function-based approach fits the causal function model
among variables and then infers causal directions using causal assumptions, such as a non-Gaussian
assumption of the noise (Shimizu et al., 2006; 2011) the independence assumption between cause
variables and noise (Zhang & Hyvarinen, 2009; Peters et al., 2011; 2014) and the independence
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assumption between the distribution of cause variables and the causal function (Janzing et al., 2012).
Most LiNGAM-based approaches for the linear case (Shimizu et al., 2006) assume non-Gaussian
noise and linear causal relations between variables. This model seeks to determine a causal order
among the random observed variables.

To deal with linear latent confounders, an estimation method utilizing overcomplete ICA (Lewicki &
Sejnowski, 2000) is suggested. However, overcomplete ICA algorithms usually suffer from local
optimum and cannot be employed when the number of variables is large.

By evaluating the independence between the estimated exogenous variables and the residual, (Tashiro
et al., 2014) identify latent confounders. They discover that variables from subsets that are not
impacted by latent confounders are included, and they estimate causal orders one at a time. (Chen
& Chan, 2013) investigate linear non-Gaussian acyclic models in the presence of latent Gaussian
confounders (LiNGAM-GC), which assumes that the latent confounders are Gaussian distributed
independently.

B CAUSAL GRAPHS AND STRUCTURAL CAUSAL MODELS (SCM)

Directed acyclic graphs (DAGs) serve as a formalism for representing causal relationships. In these
graphs, arrows point from the parent node (direct cause) to the child node (direct effect) (Pearl, 2000).
Building upon this graphical representation, a structural causal model (SCM) can be constructed to
capture the causal mechanisms that underlie the data distribution.

An SCM is composed of a set of variables interconnected by functions, representing the flow
of information. This model elucidates the causal relationships among variables, offering a de-
tailed insight into the data generation process. Consider a DAG G = (V,E) defined over a set
of variables {X1, X2, · · · , Xd, Y }, with P representing their joint distribution. Let X be the set
{X1, X2, · · · , Xd}. The notation XPAG

i
refers to the direct causes of Xi, while YPAG denotes the

direct causes of Y . Disturbances or errors in the generative processes of Xi and Y are represented by
Ni and Ny , respectively. The SCM for a classification dataset can be expressed as:

Xi := fi(XPAG
i
, Ni), i = 1, ..., d; Y := fy(YPAG , Ny).

The causal factorization of the joint distribution is given by:

P (X, Y ) = P (Y |YPAG)
∏
i

P (Xi|XPAG
i
). (5)

It’s worth noting that both XPAG
i

and YPAG are allowed to be empty sets.

C UNDERSTANDING THE INDEPENDENCE BETWEEN DISTRIBUTIONS

To concretely explain what is meant by P (X) not being useful for predicting class Y , let’s consider
an illustrative example that follows the generative process of causal datasets.

• We act as the data collector. 1). we randomly sample a photo X from Instagram.

• Let Tom be the annotator. He will annotate each X we pass but without any knowledge of
P (X).

• Following the generative process, 2). we pass the photo X to Tom. Tom writes the label Y
on the back of the photo X and puts the photo in a black box.

• We repeat the process 1), and Tom repeats the process 2).

The question then arises: can we act like a clustering algorithm by looking at P (X) to understand
how photos in the box are labeled? Generally, the answer is no. Intuitively, there are too many
possible ways to annotate the photo. Tom could label the photos based on whether the image contains
a human, the number of humans, night vs. day, and other characteristics. We have no idea about his
mechanism by only looking at P (X). In this case, P (X) does not inform P (Y |X).
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D MORE EXPERIMENTS

D.1 INTRODUCTION OF REAL-WORLD CAUSAL DATASETS

1. KrKp dataset contains 3196 instances with 36 attributes. Each instance is a board description
for the chess endgame, where the feature attributes describe the board and the label determines
whether it is ”win” or ”nowin”. It is considered a causal dataset since the board description
causally influences whether white will win.

2. Splice dataset contains 3190 instances with 60 attributes, where attributes describe sequential
DNA nucleotide positions and the label is the type of splice sites. It is considered a causal dataset
since the DNA sequence causes the splice sites.

3. SecStr dataset contains 83680 instances with 15 attributes, where attributes describe the amino
acid and the label is the corresponding secondary chemical structure. It is considered a causal
dataset since the secondary structure is determined by its amino acid features.

4. Pair0070 dataset contains 4499 instances. It is a bi-variate dataset, where the feature describes
parameters and the label contains the corresponding answers.It is considered as a causal dataset
since parameters determine the answers.

5. Pair0071 dataset contains 120 instances. It is a bi-variate dataset, where the feature describes
symptoms and the label contains the corresponding classification of diseases. It is considered as a
causal dataset since symptoms determine the type of diseases.

D.2 INTRODUCTION OF REAL-WORLD ANTICAUSAL DATASETS

1. WDBC dataset contains 569 instances with 32 attributes. It is an anticausal dataset, where the
class causes some of the tumor features.

2. Letter dataset contains 20000 instances with 16 attributes. It is an anticausal daset, where the class
(letter) causes the produced image of the letter.

3. Breastcancer dataset contains 286 instances with 9 attributes. It is an anticausal dataset, where the
class causes some of the tumor features.

4. Coil dataset contains 1500 instances with 241 attributes. It is considered an anticausal/confounded
dataset because the six-state class and the features are confounded by the 24-state variable of all
objects.

5. G241C dataset contains 1500 instances with 241 attributes. It is considered an anticausal dataset
since the class determines the features.

6. Iris dataset contains 150 instances with 4 attributes. It is an anticausal dataset, where the size of
the plant is an effect of the category.

7. Mushroom dataset contains 8124 instances with 22 attributes. It is an anticausal dataset, where the
attributes of the mushroom and the class are confounded by the mushroom taxonomy.

8. Segment dataset contains 2310 instances with 19 attributes. It is an anticausal dataset, where the
class causes the features of the image.

9. Usps dataset contains 1500 instances with 240 attributes. It is an anticausal dataset, where the
class and the features are confounded by the 10-state variable of all digits.

10. Waveform dataset contains 5000 instances with 21 attributes attributes and 1 label. Each class is
generated from a combination of 2 or 3 ”base” waves. It is considered an anticausal dataset since
the class of the wave causes its attributes.

11. Pair0047 dataset contains 255 instances. It is a bi-variate dataset, where the feature describes the
number of cars and the label contains the type of day. It is considered as a causal dataset since
number of cars determine the type of day.

12. CIFAR10 dataset contains 60000 32× 32 color images (attributes) in 10 classes (label), with 6000
images per class. It is considered an anticausal dataset since the images are collected according to
the predefined 10 different labels.

13. CIFAR10N has the same number of instances and attributes as those of CIFAR10 while there are 5
different types of human-annotated real-world noisy labels from Amazon Mechanical Turk.
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14. Clothing1M contains 1M clothing images in 14 classes. It is a causal dataset with noisy labels since
the image determines its class and the data is collected from several online shopping websites.

15. Digit1 dataset contains 1500 instances with 241 attributes. It is considered an anticausal dataset
because the positive or negative angle and the features are confounded by the variable of continuous
angle.

D.3 INTRODUCTION OF BASELINE CAUSAL DISCOVERY METHODS

The baseline causal discovery methods we employed are as follows.

1. GES (Chickering, 2002): The Greedy Equivalence Search algorithm is a score-based Bayesian
approach that heuristically searches for a graph that minimizes a likelihood score on the given
data.

2. GIES (Hauser & Bühlmann, 2012): The Greedy Interventional Equivalence Search algorithm is
similar to GES, but it incorporates interventional data for inference.

3. PC (Spirtes et al., 2000b): The Peter-Clark algorithm is one of the renowned score-based methods
for causal discovery. It efficiently employs conditional tests on variables and variable sets.

4. ICD (Rohekar et al., 2021): Iterative Causal Discovery recovers causal graphs in the presence
of latent confounders and selection bias. ICD relies on the causal Markov and faithfulness
assumptions and identifies the equivalence class of the underlying causal graph.

5. RAI (Yehezkel & Lerner, 2009): Recursive Autonomy Identification learns the structure by
sequentially applying conditional independence tests, edge direction, and structure decomposition
into autonomous sub-structures.

6. FCI (Spirtes et al., 2000a): Fast Causal Inference stands out among constraint-based methods for
its ability to detect latent confounders.

7. LiNGAM (Shimizu et al., 2006): Linear Non-Gaussian Acyclic Model assumes that there are no
hidden confounders and all of the error terms are non-gaussian and detects causal relationships
from observed data accordingly.

8. CCDR (Aragam & Zhou, 2015): Concave Penalized Coordinate Descent with Reparametrization
is a fast, score-based method for learning Bayesian networks, utilizing sparse regularization and
block-cyclic coordinate descent.

D.4 MORE EXPERIMENTS ON REAL-WORLD DATASETS

In Table 5 and 6, we present the results of causal discovery obtained using our RoCA estimator
compared to other baseline methods. Our RoCA estimator outperforms the baseline methods in
accurately identifying the causal relationships. Among the 14 of 16 datasets, our RoCA estimator
correctly identified the causal relationship between X and Y in the majority of cases. This holds
even when the datasets contained different types of label noise, such as instance-dependent, pair, and
symmetric noise, with noise rates ranging from 0% to 30%. On the other hand, the performance of
the baseline methods was generally satisfactory for anticausal datasets but lacked accuracy when
dealing with causal datasets. This is because a causal dataset requires no features in X to cause Y ,
which presents a challenge for these baseline methods. They need to ensure that there is no edge
from any vertex representing features in X pointing to the vertex representing Y when recovering the
causal diagram. Although these baseline methods tend to perform well in general tasks, they may not
be suitable for this particular task, leading to misclassification of datasets as anticausal.

Furthermore, the time complexity of some baseline methods hinders their application to datasets with
a large number of features, such as image datasets or datasets with hundreds of features (e.g., G241C,
Coil, etc.). Completing the algorithm within a reasonable time frame becomes challenging for these
methods. In this case, we classify the results as unknown.
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Table 5: Comparing with baselines on synthetic and real-world datasets (cont.).

Method Original Instance Pair Sym

0% 10% 20% 30% 10% 20% 30% 10% 20% 30%
GES unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
GIES unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
ICD unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Pair0070
(causal) RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

CCDR unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Our method p=0.0463
anticausal

p=0.9966
causal

p=0.8995
causal

p=0.1843
causal

p=0.1791
causal

p=0.0000
anticausal

p=0.0158
anticausal

p=0.1791
causal

p=0.0000
anticausal

p=0.0158
anticausal

GES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
GIES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD anticausal anticausal anticausal anticausal anticausal anticausal unknown anticausal anticausal unknown

Pair0071
(causal) RAI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
CCDR anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Our method p=0.0007
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0001
anticausal

p=0.0197
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
GIES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
PC anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

SynAnticausal RAI causal causal causal causal causal causal causal causal causal causal
(anticausal) FCI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
CCDR anticausal anticausal anticausal causal anticausal anticausal causal anticausal anticausal causal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal causal causal causal causal causal causal causal anticausal causal
GIES anticausal causal causal causal causal causal causal causal anticausal causal
PC anticausal anticausal anticausal unknown anticausal unknown unknown anticausal unknown unknown
ICD anticausal anticausal anticausal unknown anticausal anticausal anticausal anticausal anticausal anticausal

WDBC RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal unknown unknown anticausal unknown unknown anticausal unknown unknown

LINGAM anticausal unknown unknown unknown unknown unknown unknown anticausal unknown unknown
CCDR causal causal causal causal causal causal causal causal causal causal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
GIES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
PC anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Letter RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
CCDR unkown unkown causal causal anticausal anticausal causal anticausal unknown anticausal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal unknown anticausal unknown unknown anticausal unknown unknown anticausal unknown
GIES anticausal unknown anticausal unknown unknown anticausal unknown unknown anticausal unknown
PC anticausal unknown anticausal unknown unknown anticausal unknown unknown anticausal unknown
ICD anticausal anticausal anticausal unknown anticausal anticausal unknown anticausal anticausal unknown

Breastcancer RAI anticausal anticausal anticausal anticausal anticausal unknown unknown anticausal unknown unknown
(anticausal) FCI anticausal anticausal anticausal unknown anticausal anticausal unknown anticausal anticausal unknown

LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
CCDR causal causal causal anticausal causal causal anticausal causal causal anticausal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal causal anticausal anticausal anticausal causal anticausal anticausal anticausal anticausal
GIES anticausal causal anticausal anticausal anticausal causal anticausal anticausal anticausal anticausal
PC causal unknown causal unknown unknown anticausal causal causal unknown unknown
ICD unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Coil RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal unknown anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
CCDR causal causal unknown unknown causal causal causal causal causal causal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal anticausal anticausal anticausal anticausal anticausal anticausal causal causal causal
GIES anticausal anticausal anticausal anticausal anticausal anticausal anticausal causal causal causal
PC anticausal anticausal unknown anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

G241C RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM anticausal unknown causal unknown anticausal causal anticausal unknown anticausal anticausal
CCDR anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal causal anticausal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal
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Table 6: Comparing with baselines on synthetic and real-world datasets.

Method Original Instance Pair Sym

0% 10% 20% 30% 10% 20% 30% 10% 20% 30%
GES anticausal unknown unknown unknown unknown unknown unknown unknown unknown unknown
GIES anticausal unknown unknown unknown unknown unknown unknown unknown unknown unknown
PC anticausal unknown anticausal unknown anticausal unknown unknown anticausal causal unknown
ICD anticausal unknown anticausal unknown anticausal unknown unknown anticausal anticausal unknown

Iris RAI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
(anticausal) FCI anticausal unknown anticausal unknown anticausal unknown unknown anticausal anticausal unknown

LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
CCDR anticausal anticausal anticausal causal anticausal causal causal anticausal anticausal anticausal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
GIES anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
PC causal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Mushroom RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

CCDR unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Our method p=0.0000
anticausal

p=0.2127
causal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0865
causal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0865
causal

GES unknown anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
GIES unknown anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
PC unknown anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Segment RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
CCDR causal causal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal anticausal causal anticausal causal anticausal causal causal anticausal causal
GIES anticausal anticausal causal anticausal causal anticausal causal causal anticausal causal
PC causal unknown unknown unknown causal anticausal unknown causal anticausal unknown
ICD unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Usps RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal unknown anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
CCDR causal causal causal causal causal causal causal causal causal causal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal causal causal causal causal causal causal causal anticausal causal
GIES anticausal causal causal causal causal causal causal causal anticausal causal
PC anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
ICD anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Waveform RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
CCDR causal causal causal causal causal anticausal causal causal anticausal causal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal causal causal anticausal causal causal causal causal causal causal
GIES anticausal causal causal anticausal causal causal causal causal causal causal
PC causal anticausal anticausal causal anticausal unknown unknown anticausal unknown unknown
ICD unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

Digit1 RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
(anticausal) FCI anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

LINGAM anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal
CCDR anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal anticausal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

GES anticausal anticausal anticausal anticausal unknown unknown unknown unknown unknown unknown
GIES anticausal anticausal anticausal anticausal unknown unknown unknown unknown unknown unknown
ICD anticausal anticausal anticausal anticausal unknown unknown unknown unknown unknown unknown

Pair0047
(anticausal) RAI unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown

LINGAM unknown unknown unknown unknown unknown unknown unknown unknown unknown unknown
CCDR causal causal causal causal causal causal causal causal causal causal

Our method p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal

p=0.0000
anticausal
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D.5 INFLUENCE OF NORM CHOICE TO ROCA

SynCausal

0% Ins-10% Ins-20% Ins-30% Sym-10% Sym-20% Sym-30%

l0 causal (p = 0.109) causal (p = 0.100) causal (p = 0.106) causal (p = 0.105) causal (p = 0.688) causal (p = 0.607) causal (p = 0.135)
l2 causal (p = 0.198) causal (p = 0.414) causal (p = 0.136) causal (p = 0.277) causal (p = 0.965) causal (p = 0.874) causal (p = 0.111)
l∞ causal (p = 0.399) causal (p = 0.258) causal (p = 0.154) causal (p = 0.104) causal (p = 0.901) causal (p = 0.946) causal (p = 0.164)

SynAnticausal

0% Ins-10% Ins-20% Ins-30% Sym-10% Sym-20% Sym-30%

l0 anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000)
l2 anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000)
l∞ anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000) anticausal (p = 0.000)

Table 7: Performance of RoCA when using different norms to generate instance-dependent label
noise for our noise injection on synthetic causal and anticausal datasets.

E PSEDUOCODE OF OUR INSTANCE-DEPENDENT NOISE GENERATION

Algorithm 1 Generation of Instance-dependent Noisy Labels

Require: An average noise level ρ; A sample S = {(Xi, Ỹi)}mi=0, where contains C number of
classes, and X ∈ Rd.

1: Initialize an empty list A with length m.
2: for each ith example (xi, ỹ) ∈ S: do
3: Let ai = ||Xi||1 and add ai into A.
4: end for
5: Sort the values in A in ascending order.
6: Sample a vector P ∈ Rm from a m-dimensional truncated normal distribution with mean ρ,

upper limit 1, and lower limit 0.
7: Sort the values in P in ascending order.
8: for i in range (0,m): do
9: Let the individual flip rate of the ith example ρxi

= (the ith element in P ).
10: end for
11: Generate the instance-dependent noisy label of the ith example Ỹ ρxi using the flip rate ρxi

.

F PROOFS

In this section, we show all the proofs. We remind some notations first.

• Let X be the instance space and C the set of all possible classes.

• Let S = {(xi, ỹi)}mt=0 be an sample set.

• Let h : X → {1, . . . , C}, be a hypothesis that predicts pseudo labels of instances. Con-
cretely, it can be a K-means algorithm together with the Hungarian algorithm which matches
the cluster ID to the corresponding pseudo labels. Let H be the hypothesis space, where
h ∈ H.

• Let R̃ρ(h) = E(x,ỹρ)∼P (X,Ỹ ρ)[1{h(x)̸=ỹρ}]be the expected disagreement R̃(h) between
pseudo labels and generated labels ỹρ with ρ-level noise injection.

• Let ˆ̃Rρ
S(h) be the average disagreement (or empirical risk) of h on the set S after ρ-level

noise injection.

Firstly, we illustrate the Rademacher complexity bound.

Definition 3 (The Rademacher Complexity Bound (Mohri et al., 2018)). Let H be a family of
functions taking values in {−1,+1}, and let D be the distribution over the input space X . Then,
for any δ > 0, with probability at least 1− δ/2 over a sample S = (x1, . . . , xm) of size m drawn
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according to D, for any function h ∈ H,

R̂S(h)−R(h) ≤ 2R̂S(H) + 3

√
log 4

δ

2n
, (6)

where R(h) is the expected risk of the function h, and R̂S(h) is the empirical risk of the function h
on the sample S (Mohri et al., 2018). Specifically, let c be a target concept, then,

R(h) = Ex∼D[1{h(xi )̸=c(xi)}], R̂S(h) =
1

m

m∑
i=1

1{h(xi) ̸=c(xi)}.

F.1 PROOF OF THEOREM 1

Proof. Under causal setting, h random guess the clean labels, i.e., ∀i, j ∈ C ∧ i ̸= j ∧ ∀t ∈
{0, 1, . . . ,m}, P (Y ′ = y′|Y = y,X = x) = 1

C . Then we will prove that if h can only random
guess the clean labels, then h can only random guess the observed labels that contain the label error,
i.e., R̃(h, x) = C−1

C .

By the assumption that for every instance and clean class pair (x, y), its observed label ỹ is obtained
by a noise rate ρx such that P (Ỹ = ỹ|Y = y,X = x) = ρx

C−1 for all ỹ ̸= y ∧ ỹ ∈ C, the risk
R̃(h, x) of h on x and its observed labels comes from two parts:

• When h misclassifies the clean label, h also misclassifies the observed label, i.e., (y ̸= y′

and y′ ̸= ỹ).

• When h successfully classifies the clean label, hmisclassifies the observed label, i.e., (y = y′

and y′ ̸= ỹ).

Specifically, the expected risk of each example is as follows.

R̃(h, x) = R(h, x)(1− ρx
C − 1

) + (1−R(h, x))ρx

=
C − 1

C

C − 1− ρx
C − 1

+
ρx
C

=
C − 1− ρx

C
+
ρx
C

=
C − 1

C
. (7)

Because our noise is designed to also satisfy the assumption, after injecting our designed instance-
dependent noise, the risk ˆ̃Rρ1

S (h) and ˆ̃Rρ2

S (h) under two different (expected) noise levels ρ1 = Ex[ρ
1
x]

and ρ2 = Ex[ρ
2
x] does not change under the anticausal setting.

R̃ρ1

(h, x) = R̃(h, x)(1− ρ1x
C − 1

) + (1− R̃(h, x))ρ1x =
C − 1

C
. (8)

R̃ρ2

(h, x) = R̃(h, x)(1− ρ2x
C − 1

) + (1− R̃(h, x))ρ2x =
C − 1

C
. (9)

The above equations show that after injecting two different levels of instance-dependent label noise,
the risks do not change. For completeness, we also illustrate the convergence rate of the difference
between two empirical risks with respect to sample size. By employing the Rademacher complexity
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bound, with a probability 1− δ/2,

ˆ̃Rρ1

S (h) ≤ Ex[R̃
ρ1

(h, x)] + 2R̂S(H) + 3

√
log 4

δ

2m

=R̃ρ1

(h) + 2R̂S(H) + 3

√
log 4

δ

2m
,

similarly,

ˆ̃Rρ2

S (h) ≤ Ex[R̃
ρ2

(h, x)] + 2R̂S(H) + 3

√
log 4

δ

2m

=R̃(h, ρ2) + 2R̂S(H) + 3

√
log 4

δ

2m
.

By applying the symmetric property of the Rademacher complexity bound to the above two inequali-
ties, with a probability 1− 2δ,

| ˆ̃Rρ1

S (h)− R̃ρ1

(h)| ≤ 2R̂S(H) + 3

√
log 4

δ

2m
and

| ˆ̃Rρ2

S (h)− R̃(h, ρ2)| ≤ 2R̂S(H) + 3

√
log 4

δ

2m
.

Combining the above two inequalities, we get

| ˆ̃Rρ1

S (h)− R̃ρ1

(h)− ˆ̃Rρ2

S (h) + R̃(h, ρ2)| ≤ 4R̂S(H) + 6

√
log 4

δ

2m
.

By Eq. 8 and Eq. 9, the expected risk R̃ρ1

(h) = EX

[
R̃ρ1

(h, x)
]
= EX

[
C−1
C

]
and R̃(h, ρ2) =

EX

[
R̃ρ2

(h, x)
]
= EX

[
C−1
C

]
both equals to C−1

C , then the above inequality becomes

| ˆ̃Rρ1

S (h)− ˆ̃Rρ2

S (h)| ≤ 4R̂S(H) + 6

√
log 4

δ

2m
, (10)

with a probability 1-2δ, which completes the proof.

F.2 PROOF OF THEOREM 2

Proof. The expected risk on the observed label for each instance x is that:

R̃ρ(h, x) = R̃(h, x)(
ρx

C − 1
) + (1− R̃(h, x))(1− ρx)

= ρx + R̃(h, x)− ρxR̃(h, x)−
ρxR̃(h, x)

C − 1
.
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Then the expected risk of the distribution of observed data is that:

R̃ρ(h) = EX

[
R̃ρ(h, x)

]
= EX

[
ρx + R̃(h, x)− ρxR̃(h, x)−

ρxR̃(h, x)

C − 1

]

= EX

[
R̃(h, x)

]
+ EX

[
ρx − ρxR̃(h, x)−

ρxR̃(h, x)

C − 1

]

= R̃(h) + EX

[(
1− R̃(h, x)− R̃(h, x)

C − 1

)
ρx

]

= R̃(h) + EX

[(
1− CR̃(h, x)

C − 1

)
ρx

]
. (11)

Moving R̃(h) to the LHS of the above equation completes the proof.

Note that the convergence rate of E
[(

1− CR̃(h,x)
C−1

)
ρx

]
can also be directly derived by replacing

the expected risks with the empirical risks in Eq. 11. This process employs Inequality 6 and shares a
similar conceptual foundation as the proof for the coverage rate presented in Theorem 1.

G DISCUSSION ON ASSUMPTIONS

Firstly, our method is based on some common assumptions in causal discovery: causal minimality,
absence of latent confounders, and independent causal mechanisms (Peters et al., 2014).

To ensure that the disagreements under different noise levels remain constant in a causal setting when
employing RoCA, we need an additional assumption to constrain the types of label errors in datasets.
Specifically, it assumes that for every instance and clean class pair (x, y), the observed label ỹ is
derived with a noise rate ρx such that P (Ỹ = ỹ|Y = y,X = x) = ρx

C−1 for all ỹ ̸= y ∧ ỹ ∈ C. Note
that most types of label errors defined in previous work satisfy this conditional, including random
classification label errors (Wang et al., 2019), asymmetric label errors (Scott et al., 2013), manifold
label errors (Cheng et al., 2022), and part-dependent label errors (Xia et al., 2020). Note that, pairflip
label errors (Han et al., 2018) do not satisfy this condition. In this case, our method can not be directly
applied. To utilize our method, existing techniques for learning with label errors can be applied first
to estimate clean labels. Specifically, methods such as those proposed by Liu & Tao (2016) and
Patrini et al. (2017) can be used initially. These methods are statistically consistent, ensuring that the
clean labels can be uniquely identifiable under pairflip label noise. Once we have the estimated clean
labels, our method can then be applied to instances X and their estimated clean labels to determine
the causal direction.

Additionally, the choice of a backbone clustering method can influence the effectiveness of our
approach. Specifically, when dealing with an anticausal dataset, our method relies on a clustering
algorithm capable of extracting useful information from P (X) to predict P (Y |X), rather than
making completely random guesses. Thanks to the recent successes of unsupervised and self-
supervised methods, some techniques based on contrastive learning (Niu et al., 2021) have achieved
competitive performance, with over 90% accuracy, compared to supervised methods on benchmark
image datasets such as CIFAR10 and MNIST. We also anticipate that more advanced unsupervised
methods will be developed in the future, further enhancing the utility of our approach.
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