
Efficient Transfer Learning driven by Layer-wise
Features Aggregation

Chanwoo Kim
University of Seoul

kcw6621@uos.ac.kr

Jeyoon Yeom
Yonsei University

jeyoon.yeom@yonsei.ac.kr

Joowang Kim
Yonsei University

zuwang@yonsei.ac.kr

Suho Kang
Yonsei University

suhokang@yonsei.ac.kr

Kyungwoo Song
Yonsei University

kyungwoo.song@yonsei.ac.kr

Abstract

Large-scale pre-trained models capable of extracting generalized features from
huge data have become a key component on various downstream tasks. However,
it is challenging to achieve substantial performance improvement with efficiency.
There have been many works, such as prompt tuning and adapters, but both the
efficiency and the performance improvement are limited. We propose a novel
approach called Layer-wise Feature Aggregation (LFA), utilizing features from all
layers of a pre-trained model with attention mechanism. Our focus is on utilizing
existing low level features rather than generating new ones. First, LFA captures
hierarchical features from low-level to high-level, enabling the extraction of richer
and more general features; therefore, it significantly improves the performance in
domain shift and few-shot learning. Second, LFA requires optimization only on
top of large pre-trained models. Therefore, LFA optimization is efficient because
it does not require back-propagation through the model. LFA is a new efficient
transfer learning approach with improved performance and efficiency. Our methods
are implemented at: https://github.com/MLAI-Yonsei/LFA

1 Introduction

Transfer learning applies pre-trained models to new tasks, leveraging learned patterns to enhance
performance with less data and training time [Weiss et al., 2016, Neyshabur et al., 2020]. Vision
language models (VLMs), such as CLIP [Radford et al., 2021], combine vision and natural language
processing to perform tasks like image interpretation and captioning. However, fine-tuning large
models is costly and performance varies based on the method used. To address this, strategies like
prompt learning [Zhou et al., 2022a,c, Khattak et al., 2023] and adapters (e.g., CLIP-Adapter [Gao
et al., 2021b, Zhang et al., 2022] and LoRA [Hu et al., 2021]) optimize models using smaller datasets
and parameters. Although pre-trained parameters are frozen, these methods still demand considerable
computational resources as gradients pass through the entire model. Previous work focused mainly
on the final layer, overlooking useful features from earlier layers. We propose that low-level features
are robust and invariant to domain shifts, making them valuable for fine-tuning.

Building on this foundation, we introduce a novel approach termed Layer-wise Feature Aggregation
(LFA). First, this approach eliminates the need for the gradient to flow through the model during
training, thereby expediting both training time and memory usage. Second, We employ an attention
mechanism that dynamically weights and aggregates features across all layers, allowing the model
to focus on the most relevant features for a given task while leveraging the abundant information
available. This approach indicates that lower layers can effectively compensate for the feature

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/MLAI-Yonsei/LFA


a lack of representation and diminished perfor-
mance under distribution shifts, we have demon-
strated that our approach can theoretically pre-
serve feature representation more effectively, en-
hancing robustness to out-of-distribution (OOD)
scenarios. Third, our method offers notable flex-
ibility, as it can be easily applicable with existing
CLIP-based SOTA models. This user-friendly
approach enables promoting widespread adop-
tion among major users and supporting sustain-
able development. The overall model structure
and data flow are illustrated in Figure 2. We first
generate a query vector from the hidden vector of
the visual encoder’s last layer and compute key
and value vectors from all layers to calculate the
self-attention value, z(v). In the textual encoder,
we calculate self-attention (zself (t)) and cross-
attention (zcross(t)) values by reusing the query
vector from the visual encoder. The final output
vector, z(t), is derived using a hyperparameter
β. Finally, we compute the logits from the final
output vectors of both encoders, z(v) and z(t).

Figure 1: In the DomainNet real benchmark,
we analyzed the correction of errors in the 12th
layer by other layers. In the Linear-probing CLIP
study, 2∼22% of errors in the final layer were
accurately corrected by earlier layers, demon-
strating that lower layers effectively compensate
for gaps in feature extraction.

Figure 2: The Pipeline of CLIP + LFA. Our model employs the ViT [Dosovitskiy et al., 2020]
model as its visual encoder and the transformer [Vaswani et al., 2023] model as its text encoder. Our
approach leverages feature vectors from all layers, producing a richer and more stable representation.
This strategy improves generalization and limits backpropagation to feature aggregation, boosting
memory and computational efficiency.

extraction deficiencies of the final layer, as shown in Figure 1. Furthermore, while the sequential
multi-layer computation of neural network models inevitably reduces the rank of features, leading to

2 Methodology

2.1 Feature Extraction Using the CLIP backbone

In contrast to conventional CLIP-based methods that primarily depend on the output of the final
encoder layer, this paper enhances the representational capacity of the feature vector by incorporating

2



features from multiple levels across all layers. We select the hidden vector h(v)
l1

∈ Rd
(v)
h using the

CLS token. For the textual part, We use the EOS token, which is commonly employed to detect
sequence end and grasp context [Guo et al., 2023], allowing us to extract the textual hidden feature
vector h(t)

l2
∈ Rd

(t)
h By integrating early layers’ invariant information with later layers’ semantic

information, we obtain a rich set of feature vectors h(v)1, . . . ,h(v)L(v),h(t)1, . . . ,h(t)L(t) for
effective downstream tasks. For more details, refer to the Appendix B.

2.2 Attention-Based Feature Aggregation

We adopted the attention method, which is task-specific by querying the last layer’s feature vector
and can activate the appropriate layers according to the training input data. Our model processes
hidden feature vectors from visual and textual encoders using an attention mechanism. This involves
generating query, key, and value matrices to focus on relevant information. Visual features are more
diverse and discriminative compared to textual features, which remain consistent within the same
class. This disparity creates a challenge in aligning the two modalities. To address this, we use
self-attention for each modality and cross-attention to enhance textual features by incorporating
visual information. The attention outputs from both modalities are merged using a hyperparameter β,
balancing the contributions of self-attention and cross-attention for better model performance.

2.3 Merge Similarities and Prediction

The attention mechanism’s value vectors for both visual and textual modalities share the same space,
enabling a contrastive learning framework. The logits are computed using a dot-product between the
output vectors of the image and the text for each class. The computed logits are used to calculate
prediction probabilities with the softmax function, facilitating learning of similarities between positive
and negative pairs. The temperature parameter τ controls the distribution scale. The LFA model
fine-tunes the pre-trained CLIP backbone by aggregating features from different layers without
backpropagation through the backbone. This makes the approach computationally efficient and
enhances representational capacity for downstream tasks. The model uses query vectors from the last
layer of the visual encoder and generates key and value vectors across all layers. Self-attention and
cross-attention operations are performed in both visual and textual encoders. The final output vectors
for both modalities are merged using a hyperparameter β and logits are calculated.

2.4 Theoretical Analysis

We theoretically show that LFA counters the reduction in rank in neural networks [Feng et al.,
2022], which leads to overfitting due to an ’Independence Deficit’—a lack of independent representa-
tions—resulting in poorer performance, particularly in out-of-distribution scenarios. By proving two
theorems, we demonstrate that LFA effectively preserves the rank within linear multi-layer networks,
mitigating this issue. Detailed proofs of the theorems are provided in the Appendix F.

Accuracy (%)

Model VLCS PACS OfficeHome Terra DomainNet Avg.
ViT-B / 16 [11] with pre-trained weights from CLIP [44]

ZS-CLIP(C) † [Radford et al., 2021] 76.4 95.7 79.9 33.9 57.8 68.7
ZS-CLIP(PC) † [Radford et al., 2021] 82.4 96.1 82.3 31.3 57.7 70.0
MIRO † [Cha et al., 2022] 82.2 95.6 82.5 54.3 54.0 73.7

ZS-CLIP(PC) + DPL [Zhang et al., 2021] 81.5 95.8 82.6 44.2 59.3 72.7
ZS-CLIP(PC) + QLoRA [Dettmers et al., 2024] 82.5 96.1 82.5 43.4 59.0 72.7

ZS-CLIP(PC) + LFA 81.0 96.1 82.7 50.3 59.2 73.9
ZS-CLIP(PC) + QLoRA + LFA 81.9 96.1 81.6 52.0 58.7 74.1

Table 1: Domain generalization accuracy with various comparison models on DomainBed benchmark.
† indicates the numbers taken from Table 2 in [Cha et al., 2022, Zhang et al., 2021]. The best scores
are bolded, and the second-best scores are underlined. CLIP + LFA demonstrates superior average
performance compared to DPLCLIP, MIRO, and QLoRA models.

3



Method Setting ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

Zero-Shot CLIP Radford et al. [2021] 0-shot 66.73 93.31 89.13 65.64 70.13 85.86 24.72 62.56 44.03 48.44 67.67 65.29
LinearProbing CLIP Radford et al. [2021] 16-shot 72.24 96.43 92.34 81.46 97.85 86.22 41.19 75.99 71.34 84.10 85.33 80.41
CLIP + LFA 16-shot 72.83 95.74 91.28 83.55 97.93 84.84 45.96 74.66 70.63 87.05 84.22 80.79
CoOp Zhou et al. [2022c] 16-shot 71.80 95.50 91.70 83.10 96.70 84.20 43.20 74.50 69.60 84.40 82.40 79.74
CoOp + LFA 16-shot 72.22 95.38 90.30 85.00 97.40 83.18 49.20 72.96 71.57 88.10 83.00 80.76
CLIP-Adapter Gao et al. [2021a] 16-shot 70.20 94.50 91.80 69.20 77.90 86.70 29.10 70.40 49.20 62.30 74.80 70.55
CLIP-Adapter + LFA 16-shot 72.87 95.42 91.20 83.25 98.21 84.91 46.32 74.54 71.28 86.63 83.88 80.77
MaPLe Khattak et al. [2023] 16-shot 70.62 95.46 93.68 73.88 93.79 87.37 37.56 74.66 66.37 87.17 80.31 78.26
MaPLe + LFA 16-shot 72.66 96.19 91.58 85.47 97.72 85.05 49.44 74.38 73.94 90.65 85.49 82.05

Table 2: Comparative classification accuracy of pre-trained models and models applying our method-
ology across 11 datasets in 16-shot. The best scores are bolded, and the second best scores are
underlined at original CLIP model. As a results, all models utilizing our methodology outperform
origin pre-trained models. Except for LinearProbing CLIP and CoOp, which show high score about
80% of the original, the remaining models demonstrate significant improvement.

For a neural network with L layers, we define the function fl at each layer l as a product of
weight matrices: f1 = W1, f2 = W2W1, and generally, fn = WnWn−1 . . .W1 for n = 1, . . . , L.
Therefore, basic default model is W̃ =

∏n
l=1 Wl.

Theorem 1. [Rank Preservation of LFA] Let Wl be a set of independent weight matrices for
l = 1, . . . , n, and let Cl be arbitrary constant matrices. Define the simple LFA as: LFA(W ) =

C1W1 + C2W2W1 + · · · + CnWn · · ·W1 =
∑n

l=1 Cl

(∏l
k=1 Wk

)
Then, the rank of the default

model, denoted by W̃ , is given by rank(W̃ ) = min(rank(W1), rank(W2), . . . , rank(Wn)) Then, the
rank of LFA(W ) satisfies: rank(LFA(W )) ≥ rank(W̃ )

3 Experiments and Results

3.1 Domain Generalization

For domain generalization evaluation, we designed an experiment where one domain is hidden
during training and all domains are used during testing. We used 80% of the data for training and
final evaluation, with 20% for hyperparameter tuning. In each test environment (cases 1 to 4), we
conducted a random search with 5 trials over hyperparameter configurations, repeating the process
3 times. We selected the best hyperparameters from 60 cases using the training-domain validation
method [Gulrajani and Lopez-Paz, 2020]. Table 1 shows the domain generalization (DG) performance
across various backbone models. For a fair comparison, we limited the hyperparameter searches for
DPLCLIP and our model to 5 trials due to time constraints. CLIP + LFA outperforms other models
on the PACS and OfficeHome datasets and achieves the highest average performance.

3.2 Few-shot Image Classification

We evaluated LFA’s impact on pre-trained CLIP-based models, including Zero-Shot CLIP, Lin-
earProbing CLIP, CoOp, CLIP-Adapter, and MaPLe. In LinearProbing, only the last projection
weight matrix is learned, with the rest of CLIP frozen. In a 16-shot environment, we compared the
performance of these LFA-applied models with their original counterparts, as shown in Table 2.
While comparing pre-trained models is challenging due to their diverse pre-training environments, it
is evident that the average performance improves when our methodology is applied. Although it is
not a dramatic performance improvement, it is noteworthy that applying a lightweight methodology
that utilizes existing features can improve even for LinearProbing CLIP and CoOp models, which
have basic performance close to 80%.

3.3 Learning Efficiency

To evaluate the model’s computational and memory efficiency, we measured the peak memory usage
during a single epoch and recorded the number of learnable parameters on the DomainBed benchmark.
As shown in Table 3, both LFA and LinearProbing CLIP—methods where backpropagation does
not extend through the pre-trained CLIP model—demonstrate superior learning efficiency, relying
solely on the model’s frozen features. Both models were implemented by extracting and reusing
these frozen features. In contrast, the DPL method, which allows backpropagation through the pre-
trained model, exhibits lower learning efficiency. Continuing our exploration, we designed a novel
model termed "CLIP + LFA*" aimed at reducing the count of trainable parameters. The reduction is

4



Model LinearProbing CLIP CLIP + DPL CLIP + QLoRA CLIP + LFA
Accuracy Average (%) 72.0 72.7 72.7 73.9

Peak Memory (MB)
(batch-size 32)

VLCS 1707 12763 8716 1757
PACS 1707 13077 8717 1771
OfficeHome 1707 19200 9840 1870
TerraIncognita 1707 13301 8717 1770
DomainNet 1745 46074* 21579 3089

Training Time
(300 step)

VLCS 11m 40s 11m 46s 2m 4s 11m 32s
PACS 2m 32s 10m 10s 1m 46s 2m 28s
OfficeHome 5m 44s 10m 31s 1m 49s 5m 18s
TerraIncognita 2m 50s 10m 31s 1m 51s 3m 1s
DomainNet 4m 10s 10m 54s* 3m 47s 4m 7s

Inference Time

VLCS 49s 1m 9s 12s 49s
PACS 21s 46s 7s 22s
OfficeHome 1m 5s 1m 14s 16s 54s
TerraIncognita 1m 55s 2m 9s 25s 2m 3s
DomainNet 24m 22s 1h 4m 46s* 12m 4s 22m 33s

Table 3: Peak memory and learnable parameters for Domain Generalization training are shown. *
indicates models with reduced parameters (Section 3.3). CLIP + LFA uses slightly more memory
than LinearProbing CLIP but less than CLIP + DPL, while outperforming CLIP + DPL.

achieved by applying LoRA [Zhang et al., 2021] methodology to our attention mechanism. First, we
initialize the weight matrices WQ,WK,WV using the pretrained projection matrices from CLIP
and freeze them. Next, we established a structure that incorporates the learnable update weight
matrices △WQ,△WK,△WV by adding them to the initialized weight matrices. Each update
weight matrix is composed of the matrix product of matrices A and B, both of which have a low rank,
with 32 being used as the rank. By adjusting the rank, the trade-off between learning performance
and the number of learned parameters can be controlled.

3.4 Qualitative Result

Figure 3 shows a successful application example. The LinearProbing CLIP model incorrectly predicts
the image of the elephant as a horse with a 39% probability, and utilizing only the last layer in the
CLIP + LFA model leads to an incorrect prediction of a giraffe with a probability of approximately
78%. When aggregating features from all layers, the model correctly predicts an elephant with a 78%
probability. Each model was trained without prior knowledge of the art painting domain in the PACS
dataset. Above experimental results for art painting demonstrate that our method, which aggregates
and utilizes features extracted from each layer, exhibits robust domain generalization performance.

Figure 3: An example of applying LFA to the pre-trained CLIP model shows an image of an elephant
from the PACS dataset misclassified as a horse by the LinearProbing CLIP model. When applying
LFA, the highest activation is seen in the last layer. However, using only the last layer’s features
results in a misclassification as a giraffe. The correct prediction as an elephant is made only when all
layers are utilized.

4 Conclusion and Limitation

Our study shows that leveraging logits from multiple layers, especially lower layers, enhances
classification performance. The LFA method, using an attention mechanism, significantly improves
Domain Generalization in the CLIP + LFA model. LFA’s compatibility with CLIP-based models and
its efficiency highlight its practical value, though its evaluation has so far been limited to CLIP-based
models. Future work should explore its application to other models and tasks and optimize it for
larger models and resource-constrained environments.

5



5 Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the
Korea government(MSIT)(RS-2024-00457216, 20221A4A3033874).

References
Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Proceedings of the

European conference on computer vision (ECCV), pages 456–473, 2018.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
information regularization with pre-trained models. In European Conference on Computer Vision,
pages 440–457. Springer, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1657–1664, 2013.

Ruili Feng, Kecheng Zheng, Yukun Huang, Deli Zhao, Michael Jordan, and Zheng-Jun Zha. Rank
diminishing in deep neural networks. Advances in Neural Information Processing Systems, 35:
33054–33065, 2022.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021a.

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021b.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization, 2020.

Zixian Guo, Bowen Dong, Zhilong Ji, Jinfeng Bai, Yiwen Guo, and Wangmeng Zuo. Texts as images
in prompt tuning for multi-label image recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2808–2817, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016.

Kenneth M. Hoffman and Ray Kunze. Linear Algebra. Prentice-Hall, Englewood Cliffs, NJ, second
edition, 1971. ISBN 0135367972 9780135367971 0135368219 9780135368213.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Maple: Multi-modal prompt learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19113–19122, 2023.

Muhammad Uzair khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz
Khan. Maple: Multi-modal prompt learning. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2023.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

6



Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pages
5542–5550, 2017.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning?
Advances in neural information processing systems, 33:512–523, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5018–5027, 2017.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of
Big data, 3(1):1–40, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12,
2014, Proceedings, Part I 13, pages 818–833. Springer, 2014.

Renrui Zhang, Wei Zhang, Rongyao Fang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and
Hongsheng Li. Tip-adapter: Training-free adaption of clip for few-shot classification. In European
Conference on Computer Vision, pages 493–510. Springer, 2022.

Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, and Yusuke Iwasawa. Domain prompt learning for
efficiently adapting clip to unseen domains. arXiv preprint arXiv:2111.12853, 2021.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16816–16825, 2022a.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision (IJCV), 2022b.

Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
language models. International Journal of Computer Vision, 130(9):2337–2348, 2022c.

7



Supplementary Material for Efficient Transfer Learning driven
by Layer-wise Features Aggregation

A Low-Level Feature Contribution

Previous research [LeCun et al., 2015, Zeiler and Fergus, 2014, He et al., 2016] primarily concentrated
on the last layer and overlooked the utilization of features of previous layers, even though there
was sufficient usable information remaining. We argue that low-level features are robust in various
situations involving domain shifts. Because the features, which are local yet penetrate the essence,
remain invariant on any changes.

Figure 4 shows the distribution of the number of correct answers on error cases, gathered by CLIP
that utilizes only the last layer. This suggests lower level features contain components that can
complement the features of the last layer.

Figure 4: DomainNet real bench, Left: Error Cases When Using Only Each Layer, Right:
Correct Case Count in Other Layers for Error Cases in the 12th Layer. In the Linear-probing
CLIP study focusing on the last layer, 2∼22% error cases were accurately predicted by the early
layer. It suggests that lower layers effectively compensate for feature extraction deficiencies of the
last layer.

B Enhancing Feature Representational Power Through Multi-Layer
Integration

Let’s denote the visual and textual encoder as f and g, with their respective inner layers as fl1 and
gl2 , where l1 ∈ {1, . . . , L(v)}, l2 ∈ {1, . . . , L(t)}. L(v) and L(t) are the numbers of layers in each
encoder. In the visual domain, for given an input image I ∈ RH×W×3, we can transform it into patch
embedding E(v) ∈ RP×d

(v)
h [Dosovitskiy et al., 2020]. Next, we obtain the hidden representation

H
(v)
l1

∈ RP×d
(v)
h from each layer, where P denotes the image patch’s length and d

(v)
h means the

dimension of image hidden vectors. Among these hidden representations, the class token at index 0
encapsulates information that represents the entire image with each dimension dh [Dosovitskiy et al.,
2020]. Consequently, we select the hidden vector h(v)

l1
∈ Rd

(v)
h using the CLS token, as shown in

Equation 1. For the textual part, the text input consists of a prompt template “A photo of a label.”,
as utilized in CLIP [Radford et al., 2021]. Similar to the visual processing, we obtain a sequence
embedding E(t) ∈ RS×d

(v)
h by transforming the tokenized input text T ∈ ZS and extract the hidden

representation H
(t)
l2

∈ RS×d
(t)
h from each layer, where S denotes the fixed sequence’s length. We use

the information from the EOS (End Of Sentence) token, as it is typically utilized to accurately detect
the end of a sequence and comprehend the context [Guo et al., 2023]. This enables us to derive the
textual hidden feature vector h(t)

l2
∈ Rd

(t)
h , as shown in Equation 1.

8



H
(v)
1 = f1(E

(v)), H
(v)
l1+1 = fl1+1(H

(v)
l1

)

H
(t)
1 = g1(E

(t)), H
(t)
l2+1 = gl2+1(H

(t)
l2
) (1)

h
(v)
l1

= H
(v)
l1,[CLS], h

(t)
l2

= H
(t)
l2,[EOS]

By incorporating diverse information from early layers’ invariant information to later layers’ semantic
information, we can obtain a set of abundant feature vectors {h(v)

1 , . . . ,h
(v)

L(v) ,h
(t)
1 , . . . ,h

(t)

L(t)} for
effective downstream task solving.

C Detailed Process of Feature Extraction Using an Attention Mechanism

In this paper, an attention mechanism has been applied to effectively leverage the complementary
characteristics of these hidden feature vectors.

First, to perform attention operations on hidden feature vectors for each modality, we define query,
key, and value components. The query identifies the attention focus, the key measures alignment with
input elements, and the value contains the information to be integrated into the output.

Secondly, in the visual encoder, we derive the query matrix Q(v) ∈ Rdq×L(v)

, key matrix K(v) ∈
Rdk×L(v)

and value matrix V(v) ∈ Rdv×L(v)

from feature vector matrix X(v) = [h
(v)
1 , . . . ,h

(v)

L(v) ] ∈
Rdh×L(v)

. Each transformation is achieved through a linear operation using learnable weight matrices
W

(v)
Q ∈ Rdq×dh , W(v)

K ∈ Rdk×dh and W
(v)
V ∈ Rdv×dh where dq is the dimension of the query

vector space, dk is the dimension of the key vector space, and dv is the dimension of the value vector
space, as shown in Equation 2. This procedure is then repeated in the textual encoder.

Q(v) = [q
(v)
1 , . . . ,q

(v)

L(v) ] = W
(v)
Q ×X(v)

K(v) = [k
(v)
1 , . . . ,k

(v)

L(v) ] = W
(v)
K ×X(v) (2)

V(v) = [v
(v)
1 , . . . ,v

(v)

L(v) ] = W
(v)
V ×X(v)

In the original CLIP model, a projection weight was used to map data from both modalities into a
shared space, enabling interpretable similarity measurements. To achieve the same goal during the
use of attention operations, we initialized WQ,WK,WV with well pre-trained visual and textual
projection weights of CLIP model as a guideline to the shared space.

Following that, we choose task-specific query vectors q
(v)

L(v) , q
(t)

L(t) ∈ Rdq that utilize the final

layer hidden vectors h(v)

L(v) , h
(t)

L(t) and then we employ them in our attention operations. The point
is, during the attention process, a disparity in representational power emerges between the final
layer outputs obtained from the two modalities. In the case of images, even when inputs belong
to the same class, they can exhibit diverse forms, resulting in final layer outputs with sufficient
discriminative capability. Conversely, for text, both the template and the class name remain consistent
for objects within the same class, leading to a lack of discriminative power among in-class data.
Consequently, the representational ability of h(t)

L(t) becomes relatively weaker compared to h
(v)

L(v) . As

a result, we conduct separate self-attention operations using q
(v)

L(v) and q
(t)

L(t) for each component and

we conduct a cross-attention operation employing both q
(t)

L(t) and q
(v)

L(v) for the textual component,
compensating for the weak representation ability of the textual component. Furthermore, in the
textual encoder, we generate two types of independent key and value matrices, namely K

(t)
self ,K

(t)
cross,

and V
(t)
self ,V

(t)
cross. By utilizing these matrices separately, we create one textual component, z(t)cross,

that considers meaningful layers related to the visual features and another one, z(t)self , that considers
only from textual features itself. These two types of attention operations, computed in this manner,
are ultimately merged in Section 2.3.

In visual encoder, using the obtained key and query, we compute the attention score vector e(v) =
{e(v)l1

} ∈ RL(v)

. By ensuring that both vector spaces dk and dq have the same dimension denoted

9



as D, we utilize the scaled dot product as the score function. These scores, falling within the range
of [−∞,+∞], are appropriately scaled using the softmax function σ(·) to serve as coefficients for
a weighted sum. Finally, by using σ(e(v)) as coefficients for V(v), we acquire the self-attention
output vector z(v) ∈ RD. Repeating this step twice in the textual encoder yields self-attention and
cross-attention output vectors z(t)self , z

(t)
cross ∈ RD as shown in Equation 3.

e(v) =
(q

(v)

L(v))
TK(v)

√
dh

, z(v) = V(v)σ(e(v))

e
(t)
self =

(q
(t)

L(t))
TK

(t)
self√

dh
, z

(t)
self = V

(t)
selfσ(e

(t)
self ) (3)

e(t)cross =
(q

(t)

L(t))
TK

(t)
cross√

dh
, z(t)cross = V(t)

crossσ(e
(t)
cross)

Due to the presence of two types of textual output vectors, it is necessary to merge them using an
appropriate hyperparameter β ∈ [0, 1]. As a result, we obtain the final textual output vectors, as
illustrated in Equation 4.

z(t) = β ∗ z(t)cross + (1− β) ∗ z(t)self (4)

D Merging Similarities and Predictions: A Detailed Approach

In each modality, the value vectors of the attention mechanism share the same space. Therefore, the
output vectors z(v) and z(t) for each modality also share the same dimensional space, as explained in
Section 2.2. This allows the computation of the output logits z between the two output vectors using
dot-product, enabling a contrastive learning framework. We supposed that the input data consists
of one image I ∈ RH×W×3 and tokenized template prompts Ti ∈ ZS for C classes, as shown in
Equation 5.

z = {zi}, zi = z
(v)
I · z(t)Ti

, i = 1, . . . , C (5)

Using the logits obtained in this way, prediction probabilities can be computed through the softmax
function, enabling the learning of similarities between positive and negative pairs, as shown in
Equation 6.

P (y = j|x) = exp(zj/τ)∑C
i=1 exp(zi/τ)

(6)

where zi represents the final similarity value between the given input image and the text input
representing the i-th class, and τ is the temperature controlling the scale of the distribution.

The LFA model conducts its learning using features extracted from the pre-trained CLIP backbone,
with all the required learnable parameters located exclusively at the rear end of CLIP. This fine-tuning
approach is computationally efficient, as it bypasses the need for the backpropagation process to
pass through the CLIP backbone pipeline. Additionally, by aggregating features at different levels, it
enhances its representational capacity, making it effective for various downstream tasks.

E Layer-wise Features of Text Encoder

We conducted experiments on dog images from the PACS dataset of the DomainBed benchmark.
Figure 5 shows that we can extract local relational features using the lower layer of the text encoder.
As a result, text encoders also can extract features from various perspectives for each layer. Therefore,
when utilizing the encoder, activating the appropriate layer based on the specific task can be beneficial.

F Theoretical Analysis Proofs

For a neural network with L layers, we define the function fi at each layer i as a product of weight
matrices: f1 = W1, f2 = W2W1, and generally, fn = WnWn−1 . . .W1 for n = 1, . . . , L.

10



Figure 5: Top-5 most similar images with the text ‘a photo of a dog playing on a ground.’,
shown in the n-th layer of the text encoder. The number above the image represents the similarity
score between the last layer’s image features and the n-th layer’s text features. From the initial layer
to 7th layer extracts basic features of ‘a dog’, whereas a more relational image, such as ‘a dog on
a ground’, emerges at the 10th layer. At the last layers, top similar images include more complex
relationships, exemplified by ‘a photo of a dog playing on a ground’.

Theorem 2. [Principle of Rank Diminishing] Let F be a neural network with L layers defined by
fl = WlWl−1 . . .W1 where l = 1, . . . , L. If each layer function is continuous and almost everywhere
smooth, the rank of the sub-networks and the intrinsic dimension of feature manifolds monotonically
decrease with depth:

rank(W1) ≥ rank(W2W1) ≥ . . . ≥ rank(fn).
rank(W1x) ≥ rank(W2W1x) ≥ . . . ≥ rank(fnx).

Proof. Let F be a neural network with L layers defined by fi = WiWi−1 . . .W1 where i = 1, . . . , L.
If each layer function is continuous and almost everywhere smooth, the rank of the sub-networks and
the intrinsic dimension of feature manifolds monotonically decrease with depth:

rank(W1) ≥ rank(W2W1) ≥ . . . ≥ rank(fn).
rank(W1x) ≥ rank(W2W1x) ≥ . . . ≥ rank(fnx).

Proof. The proof relies on the rank theorem [Hoffman and Kunze, 1971] for matrices:
rank(AB) = rank(B)− dim(ker(A) ∩ Im(B)).

Given rank(AB) = rank(BTAT ) and rank(AT ) = rank(A):

rank(AB) = rank(BTAT )

= rank(AT )− dim(ker(BT ) ∩ Im(AT )).

Thus, rank(AB) ≤ rank(B) and rank(AB) ≤ rank(A).

Theorem 3. F.1 Theorem 1. [Rank Preservation of LFA]

Let Wl be a set of independent weight matrices for l = 1, . . . , n, and let Cl be arbitrary constant
matrices. Define the simple LFA as:

LFA(W ) = C1W1 + C2W2W1 + · · ·+ CnWn · · ·W1

=

n∑
l=1

Cl

(
l∏

k=1

Wk

)
.

11



Then, the rank of the default model, denoted by W̃ , is given by

rank(W̃ ) = min(rank(W1), rank(W2), . . . , rank(Wn))

Then, the rank of LFA(W ) satisfies:

rank(LFA(W )) ≥ rank(W̃ ).

Proof. Let rk = rank(Wk) for k = 1, . . . , n and Rk = rank(Wk · · ·W1) for k = 1, . . . , n.

1. First, we establish a relationship between Rk and rk:

Rk = rank(Wk · · ·W1) = min(rank(Wk), . . . , rank(W1)) = min(rk, rk−1, . . . , r1).

This follows from the property that the rank of the product of matrices cannot exceed the
smallest rank among the multiplied matrices.

2. Next, we consider the rank of the LFA model, LFA(W ):

rank(LFA(W )) = rank

(
n∑

l=1

Cl

l∏
k=1

Wk

)
.

= rank(C1

1∏
k=1

Wk + C2

2∏
k=1

Wk + ...+ Cn

n∏
k=1

Wk)

Also, the summation of the matrices is the union of the column spaces of each matrix [Hoff-
man and Kunze, 1971]. Then,

rank(LFA(W )) = rank(C1

1∏
k=1

Wk + C2

2∏
k=1

Wk + . . .+ Cn

n∏
k=1

Wk)

= rank(
1∏

k=1

Wk +

2∏
k=1

Wk + . . .+

n∏
k=1

Wk)

≥ max(R1, R2, . . . , Rn)

3. We now focus on W̃ and its rank:

rank(W̃ ) = min(R1, R2, . . . , Rn) = Rn.

This follows from the theorem’s definition of the rank of W̃ as the minimum rank among
W1,W2, . . . ,Wn.

4. We combine these observations to conclude that:

rank(LFA(W )) ≥ max(R1, R2, ..., Rn)

≥ Rn

= rank(W̃ ).

Therefore, we have shown that rank(LFA(W )) ≥ rank(W̃ ), which concludes the proof.

G Experimental Settings

CLIP Backbone

We applied our methodology to the pre-trained CLIP model, utilizing the ViT-B/16 as the CLIP
backbone.

12



Figure 6: Ablation study of hyperparameter β. Table shows the performance of CLIP + LFA on
Eurosat dataset, ranging from β values of 0.0 to 1.0 in increments of 0.1. The peak performance was
observed at 0.9, followed closely by 0.3.

Domain Generalization

In the context of domain generalization experiments, we employed a set of benchmark datasets
from DomainBed, which includes VLCS [Fang et al., 2013], PACS [Li et al., 2017], Office-
Home [Venkateswara et al., 2017], and TerraIncognita [Beery et al., 2018]. VLCS comprises
four photo datasets: Caltech101, LabelMe, SUN09, and VOC2007. PACS consists of four domains:
Arts, Cartoons, Photos, and Sketches. OfficeHome encompasses four domains: Art, Clipart, Product,
and Real. Finally, TerraIncognita, which records wild animals, is divided into four datasets based on
filming locations: L100, L38, L43, and L46. As a prompt template for these datasets, we equally
used ‘a photo of a {class name}’.

We used the SGD optimizer, and the types of hyperparameters include batch size, learning rate, and
momentum. The batch size is uniformly distributed between 22 and 25, the learning rate is uniformly
distributed between 10−4.5 and 10−2.5, and the momentum is randomly sampled from 0.0, 0.1, and
0.2.

Few-show Image Classification

For few-shot experiments, we applied our methodology to CLIP [Radford et al., 2021], CoOp [Zhou
et al., 2022b], CLIP-Adapter [Gao et al., 2021b], and MaPLe [khattak et al., 2023] models. Datasets
employed were same to the ones used for existing models; ImageNet, Caltech101, OxfordPets,
StanfordCars, Flowers102, Food101, FGVCAircraft, Sun397, DTD, Eurosat, and UCF101. When we
apply LFA methodology to CLIP and CLIP-Adapter, we use the hand-crafted prompts [Radford et al.,
2021] as the prompt templates (see H). Specifically, we utilized ‘X X ... X {class name}.’ for LFA +
CoOp and ‘a photo of a {class name}.’ for LFA + MaPLe, which are identical to each prompt prefix
used in original models. ‘X’ means the context word learning the appropriate prompt for a given data
set.

We employed SGD optimizer with 0.1 momentum and 2e-3 learning rate. Additionally, we employed
40 epochs, 256 batch size for ImageNet, and employed 100 epochs, 32 batch size for other datasets,
excluding Eurosat. The number of epochs for Eurosat was set to 200.

Ablation study on β

β is a hyperparameter that balances the weighting between the self-attention and cross-attention
values of the text encoder. We set the value of beta to 0.9, where CLIP + LFA demonstrated the
highest performance on the Eurosat dataset as depicted in Figure 6. We selected Eurosat dataset due
to its lighter complexity compared to the other datasets in our study.

13



Learning Efficiency

In this experiment, we used a batch size of 32, selected the first domain to be masked during learning,
and set the learning rate to 0.001.

H Hand-crafted Prompts

The pre-trained CLIP model was trained based on large-scale image-caption pairs obtained from the
web. During this training, the accompanying text was presented in the form of natural sentences,
including contextual information rather than isolated target words. This approach allowed the model
to learn not only the target words but also the relationships between surrounding words. Similarly,
when transfer learning on pre-trained models, utilizing natural sentences that align with the dataset
context yields superior performance compared to using individual words from a single class. While
the standard prompt template ‘a photo of a class name.’ is commonly employed, modifying it
appropriately to match the dataset characteristics can enhance learning performance.

Following [Radford et al., 2021], We utilized appropriate hand-crafted prompts specific to each
dataset as prompt templates for pre-trained CLIP, CLIP-Adapter, and MaPLe models; OxfordPets: ‘a
photo of a {class name}, a type of pet.’, Flowers102: ‘a photo of a {class name}, a type of flower.’,
FGVCAircraft: ‘a photo of a {class name}, a type of aircraft.’, DescribableTextures: ‘{class name}
texture.’, EuroSAT: ‘a centered satellite photo of {class name}.’, StanfordCars: ‘a photo of a {class
name}.’, Food101: ‘a photo of {class name}, a type of food.’, SUN397: ‘a photo of a {class name}.’,
Caltech101: ‘a photo of a {class name}.’, UCF101: ‘a photo of a person doing {class name}.’, and
ImageNet: ‘a photo of a {class name}.’.

14



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims in the abstract and introduction accurately reflect the
paper’s contributions and scope in Section 1: Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

15



Justification: Yes, the paper discusses the limitations of the authors’ work in Section 5:
Limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, the paper includes all assumptions and complete proofs for each theoretical
result in Sectionn 3: Methodology.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, Section 3: Experiments and Results fully discloses all information needed
to reproduce the main experimental results.

16



Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Yes, the paper provides open access to the data and code in the Supplementary
Material section, with sufficient instructions for reproduction.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, all training and test details are clarified in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: N/A, this question is not applicable to this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, all necessary information on computer resources is clarified in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.

18



• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, this paper fully adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This question is N/A, as the paper does not address societal impacts within its
scope.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

19

https://neurips.cc/public/EthicsGuidelines


Justification: This question is N/A, as the paper does not involve the release of data or
models with a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the creators of all assets used in the paper are properly credited, and the
license and terms of use are respected in reference section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, all new assets are well documented, and the code access is provided in
the abstract section.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

20

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A, this paper does not involve crowdsourcing experiments or research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A, this paper does not involve study participants or require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21


	Introduction
	Methodology
	Feature Extraction Using the CLIP backbone
	Attention-Based Feature Aggregation
	Merge Similarities and Prediction
	Theoretical Analysis

	Experiments and Results
	Domain Generalization 
	Few-shot Image Classification
	Learning Efficiency
	Qualitative Result

	Conclusion and Limitation
	Acknowledgements
	Low-Level Feature Contribution
	Enhancing Feature Representational Power Through Multi-Layer Integration
	Detailed Process of Feature Extraction Using an Attention Mechanism
	Merging Similarities and Predictions: A Detailed Approach
	Layer-wise Features of Text Encoder
	Theoretical Analysis Proofs
	Theorem 1. [Rank Preservation of LFA]

	Experimental Settings
	Hand-crafted Prompts

