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ABSTRACT

Topological correctness plays a critical role in many image segmentation tasks,
yet most networks are trained using pixel-wise loss functions, such as Dice, ne-
glecting topological accuracy. Existing topology-aware methods often lack robust
topological guarantees, are limited to specific use cases, or impose high com-
putational costs. In this work, we propose a novel, graph-based framework for
topologically accurate image segmentation that is both computationally efficient
and generally applicable. Our method constructs a component graph that fully
encodes the topological information of both the prediction and ground truth, al-
lowing us to efficiently identify topologically critical regions and aggregate a loss
based on local neighborhood information. Furthermore, we introduce a strict topo-
logical metric capturing the homotopy equivalence between the union and inter-
section of prediction-label pairs. We formally prove the topological guarantees of
our approach and empirically validate its effectiveness on binary and multi-class
datasets. Our loss demonstrates state-of-the-art performance with up to fivefold
faster loss computation compared to persistent homology methods.1

1 INTRODUCTION

In segmentation and structural analysis tasks, maintaining topological integrity is often more critical
than simply improving pixel-wise accuracy. For example, in medical imaging, the topological in-
tegrity of segmented structures, such as blood vessels Todorov et al. (2020) or neural pathways, can
be crucial for accurate diagnosis and functional analysis (Briggman et al., 2009). However, topolog-
ical errors, such as loss of connectivity, are common in practice, even when pixel-wise accuracy is
high. Standard pixel-based loss functions, such as Dice-loss, do not adequately address these issues.
While they minimize pixel-level discrepancies, they do not take into account changes in topology,
which may be caused by few or even single pixels. As a result, even small pixel-wise errors can lead
to significant topological failures.

Previous works have shown how different topology-aware methods can improve the integrity of tar-
get structures without sacrificing pixel-wise accuracy. Task-specific methods, such as those designed
for tubular structure segmentation (Shit et al., 2021; Kirchhoff et al., 2024), are computationally ef-
ficient and perform well in their respective domains. However, they do not generalize effectively to
other types of topological structures or datasets. In contrast, persistent homology (PH)-based meth-
ods can provide strong theoretical guarantees and deliver state-of-the-art performance (Hu et al.,
2019; Stucki et al., 2023; Clough et al., 2020), but are computationally more demanding. Other
topology-aware methods can be more versatile and computationally efficient, but lack theoretical
guarantees for topological correctness (Mosinska et al., 2018; Funke et al., 2018; Hu et al., 2021).
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1Code is available at https://github.com/AlexanderHBerger/Topograph
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