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Abstract
The gold-standard approach to estimating heterogeneous treatment effects (HTEs) is randomized
controlled trials (RCTs) or controlled experimental studies, where treatment randomization miti-
gates confounding biases. However, experimental data are usually small in sample size and limited
in subjects’ diversity due to expensive costs. On the other hand, large observational studies (OSs)
are becoming increasingly popular and accessible. However, OSs might be subject to hidden con-
founding whose existence is not testable. We develop an integrative R-learner for the HTE and
confounding function by leveraging experimental data for identification and observational data for
boosting efficiency. We form a regularized loss function for the HTE and confounding function
that bears the Neyman orthogonality property, allowing flexible models for the nuisance function
estimation. The key novelty of the proposed integrative R-learner is to impose different regular-
ization terms for the HTE and confounding function so that the possible smoothness or sparsity of
the confounding function can be leveraged to improve HTE estimation. Our integrative R-learner
has two benefits: first, it provides a general framework that can accommodate various HTE models
for loss minimization; second, without any prior knowledge of hidden confounding in the OS, the
proposed integrative R-learner is consistent and asymptotically at least as efficient as the estimator
using only the RCT. The experiments based on extensive simulation and a real-data application
adapted from an educational experiment show that the proposed integrative R-learner outperforms
alternative approaches.
Keywords: Causal inference; Double penalization; Empirical risk minimization; Hidden con-
founding; Series estimator

1. Introduction
Heterogeneous treatment effects (HTEs) are the causal effects of a treatment or an intervention on an
outcome of interest given the subjects’ characteristics, which is the key query in various areas, such
as precision medicine (Hamburg and Collins, 2010), offline contextual bandit evaluation (Dudı́k
et al., 2011) and personalized policy recommendations (Athey, 2017). Randomized controlled tri-
als (RCTs) are the gold-standard method for evaluating the HTEs because the randomization of
treatment allocation in an RCT ensures that treatment and control groups are comparable and bi-
ases are minimized to the extent possible. However, RCTs might be limited in sample size, due to
the possible expensive costs and substantive efforts during the data collection procedure. Besides,
RCTs might also be limited in subjects’ diversity, due to the restrictive inclusion/exclusion criteria
for enrollment. The limitations in both scale and scope of RCTs can compromise the causal effect
estimation which leads to under-powered HTE estimators.

On the other hand, due to the larger sample size, broader diversity, and more accessibility,
observational studies (OSs) have gained popularity. There is considerable interest in the literature
to use OSs to improve the generalizability of the RCT findings (Dong et al., 2020; Lee et al., 2021;
Wu and Yang, 2021). Besides, OSs have also been widely used for HTE estimation in various
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domains such as healthcare and education. For example, clinicians can use electronic health records
and disease registries to help recommend the individual-level treatment; teachers use school records
to assign kids to different classes. However, due to lack of randomization, the OS has a universal
concern of unmeasured confounders, which cannot be verified in practice with itself alone (Pearl,
2009). The no unmeasured confounding assumption requires all relevant predictors of treatment
and outcome to be measured, which is barely held in the OS. For example, physicians prescribe a
medicine based on the patient’s conditions of which some are not recorded in medical charts. With
the OS alone, the hidden confounding makes the HTE unidentifiable and can lead to a biased HTE
estimation. To mitigate confounding bias with the OS alone, classic approaches include instrumental
variables (Angrist et al., 1996) and sensitivity analysis (Robins et al., 2000). However, instrumental
variables, variables that must be related to the outcome only through the treatment, might not exist
and highly relies on domain knowledge. The sensitivity analysis is used to evaluate the robustness
of the estimators to no unmeasured confounding, but it could not identify the confounding function.
The RCT and OS have their own strengths and weaknesses, therefore, we are motivated to develop
an integrative learner by leveraging the RCT for identifying the HTE and the OS for boosting its
efficiency.

Related work. Data integration is a broad concept in computer science, medicine, and social
science. Bareinboim and Pearl (2016) investigate the identification of causal estimands in “data-
fusion” problems under the probabilistic graphical model framework. Kallus et al. (2018) propose
to use an RCT sample to correct the bias of the HTE estimated on an OS sample, assuming that
the bias can be well approximated by a function with low complexities, e.g., a linear function of
the covariates. They, however, do not study the efficiency guarantees of their integrative estimators.
Yang et al. (2020b) propose a pre-test estimator of the HTE by testing the comparability of the RCT
and OS samples and deciding whether or not to combine the RCT and OS samples for subsequent
estimation. This procedure prevents the final estimator from possibly large biases in the OS sample,
but it does not fully utilize all OS information to improve HTE estimation.

Under the no unmeasured confounding assumption in the OS, there have been many meth-
ods to estimate the HTE, ranging from the classic methods such as regression-based methods and
(augmented) inverse probability weighting methods (Robins et al., 1994; Scharfstein et al., 1999)
to some recent more flexible methods based on machine learning models such as neural network
(Shalit et al., 2017), random forest (Wager and Athey, 2018), and boosting (Powers et al., 2018).
More recently, motivated by Robinson’s transformation (Robinson, 1988), Nie and Wager (2021)
formalize a loss function to estimate the HTE which can be optimized by arbitrary loss-minimization
procedures. The resulting solution is called R-learner, which bears the Neyman orthogonality prop-
erty(Neyman, 1959) that the R-learner has a root-N rate of convergence with weaker conditions on
nuisance function approximation. Therefore, the R-learner can incorporate a much broader class of
flexible machine learning models to approximate nuisance functions. Carrying the benefits of the
R-learner, we develop an integrative R-learner of the HTE combining RCT data and OS data where
the OS might be subject to hidden confounding. The key step is to formulate a regularized loss func-
tion for the HTE and confounding function with the Neyman orthogonality. More importantly, we
impose different regularization terms for the HTE and confounding function, so that the resulting
integrative R-learner can capture the possible smoothness or sparsity of the confounding function
to improve HTE estimation. The main benefit of our proposed integrative R-learner is two-fold:
first, it can incorporate flexible models for nuisance functions as well as the HTE and confounding
function; second, without any prior knowledge of hidden confounding in the OS, the integrative R-
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learner is consistent for the true HTE and asymptotically at least as efficient as the estimator using
the RCT alone.

The rest of the paper is organized as follows. We introduce the basic setup in Section 2, the pro-
posed R-learner in Section 3, and its theoretical analysis in Section 4. We describe two alternative
methods for data integration in Section 5 and conduct extensive experiments for comparison based
on simulated and real data in Section 6. Finally, we conclude the paper with a discussion in Section
7.

2. Data sources and identification assumptions

We focus on a setting with a binary treatment variable A ∈ {0, 1}, let X ∈ X ⊂ Rp be a vector of
pre-treatment covariates, and let Y ∈ R be the outcome of interest. We use the potential outcomes
framework (Neyman, 1923; Rubin, 1974) to define causal effects and let Y (a) be the potential
outcome had the subject taken treatment a, for a = 0, 1. Then the HTE can be characterized by
τ(X) = E{Y (1)− Y (0) | X}.

Two data sources are accessible: the RCT with independent and identically distributed (i.i.d.)
n subjects {(Xi, Ai, Yi, Si)}i∈In and the OS with i.i.d. m subjects {(Xi, Ai, Yi, Si)}i∈Im , where
In and Im are index sets of the RCT and the OS, respectively. Let Si be the binary indicator
of the ith subject in the RCT: Si = 1 if i ∈ In and 0 if i ∈ Im. We denote two nuisance
functions: the propensity score e(X,S) = P (A = 1 | X,S), and the conditional mean outcome
µ(X,S) = E(Y | X,S). Our goal is to estimate τ(X), where X belongs to the support of X in
the RCT. To realize the possible efficiency gains from the OS, we assume the support of X in the
RCT is nested within or overlapping with that in the OS because τ(X) is not identifiable outside
the support of X in the RCT.

One of the fundamental challenges in causal inference is the identification of the HTE because
Y (1) and Y (0) cannot be jointly observed on the same subject. Therefore, to overcome this chal-
lenge, we invoke the two common assumptions in the causal inference (e.g., Rubin, 1980; Rosen-
baum and Rubin, 1983; Tsiatis, 2006) and data integration literature (e.g., Colnet et al., 2020; Deg-
tiar and Rose, 2021).

Assumption 1 (Ignorability of treatment assignment in the RCT and causal consistency): (a)A ⊥⊥
{Y (0), Y (1)} | (X,S = 1). (b) There exist c1, c2 ∈ (0, 1) such that e(X,S) ∈ [c1, c2] for all
X ∈ X . (c) Y = Y (A).

Assumption 2 (Transportability of the HTE): E{Y (1)− Y (0) | X,S = s} = τ(X), s = 0, 1.

Assumption 1(a) is also called no unmeasured confounding, which holds in the RCT by default
due to the randomized treatment assignment. Under Assumption 1, the HTE can be identified
based on the RCT. On the contrary, we do not impose the ignorability of treatment assignment for
the OS, which may be stringent in practice. Assumption 2 is needed to extend the definition and
identification of causal effects from the RCT to the OS, which holds when X captures all treatment
effect modifiers. Its plausibility relies on experts’ domain knowledge. It is a common assumption
in the data integration literature and the weakest one among the mean exchangeability assumption
(Dahabreh et al., 2019), i.e., E{Y (a) | X,S = s} and ignorability of study participation, i.e.,
Y (a) ⊥⊥ S | X, (a = 0, 1) (Stuart et al., 2011; Buchanan et al., 2018).
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3. The proposed integrative R-learner
Before delving into technical details, we provide a road map of the proposed framework: (a) iden-
tification of the HTE and confounding function, (b) formulation of the loss function, and (c) the
proposed two-step estimation procedure that tackles two difficulties associated with loss optimiza-
tion. We will expand them in detail in the remaining of this section.

3.1. Identification of the HTE and confounding function and formulation of the loss functions

When lack of the ignorability of treatment assignment, we define the bias between the difference in
conditional mean outcomes in the OS and the HTE as the confounding function

c(X) = E(Y | X,A = 1, S = 0)− E(Y | X,A = 0, S = 0)− τ(X). (1)

By Assumption 1(c), E(Y | X,A = a, S = 0) = E{Y (a) | X,A = a, S = 0}. If all the pre-
treatment confounding variables are captured in the OS, i.e., A ⊥⊥ {Y (0), Y (1)} | (X,S = 0),
then E{Y (a) | X,A = a, S = 0} = E{Y (a) | X,S = 0}, which implies c(X) = 0 under
Assumption 2. The confounding function is not identified based on the OS alone, however, we
show that combining the RCT and OS can identify the HTE and confounding function. The key step
toward identifying and estimating the HTE and confounding function is introducing the residual

ε = Y − E(Y | X,A = 0, S)−A{τ(X) + (1− S)c(X)}. (2)

Under Assumptions 1-2, we can show the fact E(ε | X,A, S) = 0 as follows:

a) Conditioning on (X,A = 0, S): E(ε | X,A = 0, S) = 0;

b) Conditioning on (X,A = 1, S = 0): E(ε | X,A = 1, S = 0) = E(Y | X,A = 1, S =

0)− E(Y | X,A = 0, S = 0)− {τ(X) + c(X)} (1)
= 0;

c) Conditioning on (X,A = 1, S = 1): E(ε | X,A = 1, S = 1) = E(Y | X,A = 1, S =
1) − E(Y | X,A = 0, S = 1) − τ(X) = E{Y (1) | X,S = 1} − E{Y (0) | X,S =
1}− τ(X) = 0. The last second equality is implied by Assumptions 1 and the last equality is
implied by Assumption 2.

Besides, from the definition of µ(X,S), we have

µ(X,S) = E(Y | X,A = 1, S)e(X,S) + E(Y | X,A = 0, S){1− e(X,S)}
= E(Y | X,A = 0, S) + {τ(X) + (1− S)c(X)}e(X,S).

(3)

Combining (2) and (3), we have

Y − µ(X,S) = {τ(X) + (1− S)c(X)}{A− e(X,S)}+ ε, (4)

which motivates the mean squared error loss function minimization problem for identifying {τ(·), c(·)}

{τ(·), c(·)} = argmin
τ̃ ,c̃

(
E [Y − µ(X,S)− {τ̃(X) + (1− S)c̃(X)}{A− e(X,S)}]2

)
, (5)

Naturally, (5) leads to the “empirical” loss function to estimate the HTE and confounding function:

argmin
τ̃ ,c̃

(
PN [Yi − µ(Xi, Si)− {τ̃(Xi) + (1− Si)c̃(Xi)}{Ai − e(Xi, Si)}]2 + Λτ + Λc

)
, (6)
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where N = n + m,PN (Xi) = N−1
∑

i∈In
⋃
Im Xi, and Λτ and Λc are regularizers on the com-

plexity of the τ(·) and c(·) functions to avoid overfitting. The penalties could be added directly on
the coefficients of the features such as penalized regression, or indirectly on the black-box models
such as boosting (Mason et al., 1999) or random forest (Breiman, 2001) by restricting the depth of
the decision trees.

It is worth discussing the relationship of the proposed estimator with existing approaches. If
replacing the functions τ(X) + (1−S)c(X) in (4) with finite-dimensional parameters, it coincides
with the decomposition proposed in Robinson (1988) to estimate parametric components in partially
linear models. This decomposition bears Neyman orthogonality (Neyman, 1959) to obtain

√
N -rate

estimation of target parameters while the convergence rates of the nuisance functions are slower than√
N , which has recently also been called “rate double robustness” (Rotnitzky et al., 2021). This ap-

proach has gained considerable attention in the causal inference community for treatment effect
estimation such as G-estimation (Robins, 2004), double machine learning (Chernozhukov et al.,
2018), causal forest (Athey et al., 2019) and R-learner (Nie and Wager, 2021). However, the afore-
mentioned work only considers causal effect estimation in the data satisfying the no unmeasured
confounding assumption. The proposed loss function can be viewed as an extension (although not
straightforward) of the ones of Robinson (1988) and Nie and Wager (2021) to the data integration
context combining the RCT and OS. Thus, we call the proposed method “integrative R-learner”.

In order to solve (6), however, two difficulties arise: (i) Except that the propensity score in
the RCT e(X,S = 1) might be known, other nuisance functions µ(X,S) and e(X,S = 0) are
unknown; and (ii) τ(·) and c(·) may have different complexities, but rare off-the-shelf software can
directly solve (6) with different Λτ and Λc. We will show that the possible smoothness or sparsity
of c(·) can be leveraged to improve the estimation of τ(·) over using the RCT alone (Theorem 1).
Thus, using different Λτ and Λc is critical to actualize the potential gain from the OS for HTE
estimation. In the next two subsections, we will describe how we address the two concerns.

3.2. Estimation of the nuisance functions

Cross-fitting is an increasingly popular prediction method to incorporate flexible machine learning
approaches in classical semiparametrics (Schick, 1986; Robins et al., 2008, 2017; Chernozhukov
et al., 2018; Newey and Robins, 2018; Kennedy, 2020; Nie and Wager, 2021). Not only does it help
to make theories more elegant, but also to overcome the overfitting/high-complexity phenomena
that commonly arise in highly adaptive machine learning methods (Chernozhukov et al., 2018). It
is a simple procedure by splitting data into fitting and prediction parts.

We adopt cross-fitting to estimate the nuisance functions. We randomly split the data into K
(commonly set to be 5) equal-size folds. Each subject i falls into one and only one data fold. Let
k(i) be the index set of the data fold where the subject i belongs. We use the samples that do not
belong to k(i) to fit the user-specified models (such as lasso regression and Xgboost), which results
in the estimated conditional mean outcome and propensity score models, denoted as µ̂−k(i)(·, ·)
and ê−k(i)(·, ·) respectively. Next, using the estimated nuisance functions, we predict the function
values on the subjects belonging to k(i). Repeating the procedure on each fold, we finally obtain the
nuisance function estimates of all the subjects, i.e., µ̂−k(i)(Xi, Si) and ê−k(i)(Xi, Si), i ∈ In ∪ Im.
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This step leads to the final empirical loss function for estimating the HTE and confounding
function:

{τ̂(·), ĉ(·)} = argmin
τ̃ ,c̃

(
PN
[
Yi − µ̂−k(i)(Xi, Si)−

{τ̃(Xi) + (1− Si)c̃(Xi)}{Ai − ê−k(i)(Xi, Si)}
]2

+ Λτ + Λc

)
.

(7)

3.3. Series approximations of the HTE and confounding function

For the easy exposition, we now describe the integrative R-learner adopting series estimation of the
HTE and confounding function, although the general framework can accommodate general flexi-
ble models. We will illustrate the generality of the proposed framework in the data application in
Section 6.2. Series estimation is a widely applicable nonparametric method to approximate the un-
known conditional expectation that can have a flexible functional form. The approximation consists
of D basis functions which have a broad class such as polynomial basis, wavelet basis, and spline,
where D grows with the sample size. Besides the versatility of the series estimators, their asymp-
totic properties have also been studied thoroughly in a large body of literature (see, e.g., Chen, 2007;
Belloni et al., 2015, and the references therein).

We use the series method to approximate τ(X) and c(X) as follows,

τ(X) = pᵀτ (X)βτ + rτ , c(X) = pc(X)ᵀβc + rc, (8)

where pτ (X) = {pτ,1(X), . . . , pτ,D(X)}ᵀ and pc(X) = {pc,1(X), . . . , pc,D(X)}ᵀ are two vectors
of basis functions, D can increase with sample size N , and rτ and rc are approximation errors.
Combining (4) and (8) leads to the square loss function,

L(β) = P[Y − µ(X,S)− g(X,S;β){A− e(X,S)}]2,

where g(X,S;β) = pᵀτ (X)βτ + (1 − S)pc(X)ᵀβc and β = (βᵀτ , β
ᵀ
c )ᵀ. We denote the empirical

loss function as

L̂N (β) = PN
[
Yi − µ̂−k(i)(Xi, S)− g(Xi, Si;β){A− ê−k(i)(Xi, Si)}

]2
. (9)

Since the number of basis functions controls the smoothness of series estimators, τ(X) and
c(X) may require a different number of basis functions due to their possibly different underlying
complex nature. Thus, we require different regularization parameters. We will show that the possi-
ble smoothness or sparsity of c(X) leads to the efficiency gain of the integrativeR-learner compared
to using the RCT alone. Thus, it is critical to impose different regularization parameters for τ(X)
and c(X). Specifically, let β̂ = argminb∈R2D

{
L̂N +

∑D
d=1 sλτ (|bτ,d|) +

∑D
d=1 sλc(|bc,d|)

}
, where

sλ(·) is the smoothly clipped absolute deviation (SCAD) penalty function (Fan and Li, 2001) and
the tuning parameters λτ and λc can be chosen through cross-validation by grid searching two pre-
specified ranges. One way to simplify the tuning process is to add a scale tuning parameter between
λτ and λc. For example, let sc = λτ/λc, and set the search range of the scale tuning parameter as
sc ∈ {0, 0.5, 1, 1.5}, which represents that no penalty on τ(·), the penalty on τ(·) less than, equal to,
and larger than that on c(·), respectively. For each sc, we can use cross-validation to choose λc with
the off-the-shelf software cv.ncvreg function in the R package ncvreg (Breheny and Huang,
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2011). The final fitted model corresponds to the scale tuning parameter that has the minimum mean
cross-validated error (see more details in Appendix A).

When the shrinkage parameters are complex and high-dimensional such as those in deep neural
network, random forest, and Xgboost, we propose a variant of integrative R-learner by iteratively
learning τ(·) and c(·) (see Appendix D). The variant is illustrated in the real data experiment in
Section 6.2.

4. Theoretical analysis
The main goal of our theoretical analysis is to show that our integrative R-learner is consistent and
at least as efficient as the R-learner based only on the RCT. For concreteness, we focus on the R-
learner based on series estimation. First of all, under the regularity conditions given in Fan and
Li (2001), β̂ satisfies the selection consistency and oracle properties, i.e., ‖β̂ − β‖ = Op(N

−1/2).
Thus, it suffices to focus on L̂N (β) in (9) for theoretical analysis. Replacing its estimated nuisance
functions with the true ones, we denote it as LN (β) = PN

[
Yi − µ(Xi, Si) − g(Xi, Si;β){Ai −

e(Xi, Si)}
]2. The following two assumptions are used to assure the difference between L̂N (β) and

LN (β) diminishes with a relatively fast rate with N under which the Neyman orthogonality of the
loss function renders the impact of the estimated nuisance functions negligible.

Assumption 3 ‖τ(X)‖∞, ‖c(X)‖∞ and E[{Y − µ(X,S)}2 | X,S] are bounded, for any X ∈
X , S ∈ {0, 1}.

Assumption 4 E
[
{µ(X,S)− µ̂(X,S)}2

]
= O(a2N ) and E

[
{e(X,S)− ê(X,S)}2

]
= O(a2N )

for some sequence aN such that aN = O(N−r) with r > 1/4.

Assumption 3 is plausible in many practical problems. Assumption 4 relaxes the usual
√
N -

consistency to a converge rate required to be only faster than N−1/4, which can occur in a broad
class of models such as single-index models, generalized additive models, partially linear mod-
els, and lasso regression (Horowitz, 2009; Belloni et al., 2014; Kennedy, 2016). Besides, we im-
pose the standard assumptions for series estimation (Belloni et al., 2015). For simplicity, let pi =
p(Xi, Ai, Si) = {Ai−e(Xi, Ai)} {pᵀτ (Xi), (1− Si)pc(Xi)

ᵀ}ᵀ, p̂i = {Ai−ê(Xi, Ai)}{pᵀτ (Xi), (1−
Si)pc(Xi)

ᵀ}ᵀ, and ξD = supx,a,s ‖p(x, a, s)‖.

Assumption 5 Uniformly over all N , eigenvalues of Γ := E(pip
ᵀ
i ) are bounded above and away

from zero.

Assumption 6 (a) For each N and D, there are finite constants cD and lD such that for each
f ∈ F , ‖rf‖F,2 :=

√∫
x∈X r

2
f (x)dF (x) ≤ cD and ‖rf‖F,∞ := supx∈X |rf (x)| ≤ lDrD.

(b)
√
ξ2D log(D/N)(1 +

√
DlDcD)→ 0. (c) lDcD → 0. (d)

√
N/DlDcD → 0.

Assumption 7 E(ε2 | X,S,A) = σ2 for some constant σ.

By the proposed method, the estimated treatment effect is τ̂(X) = p̂ᵀτ β̂τ , where β̂ := (β̂ᵀτ , β̂
ᵀ
c ) =

argminb PN
{
Yi − µ̂−k(i)(Xi, Si)− p̂ᵀi b

}2
. If only using the RCT data, then the estimated treat-

ment effect is τ̂rct = p̂ᵀτ β̂rct, where β̂rct = argminb PNSi
{
Yi − µ̂−k(i)(Xi, Si)− p̂ᵀi b

}2
. Denote

V(Z) as the asymptotic variance of the random variable Z or the asymptotic covariance matrix of
the random vector Z.
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Theorem 1 Under Assumptions 1-7, τ̂(x) − τ(x) = Op(N
−1/2) for any x ∈ X , and V(τ̂) ≤

V(τ̂rct). Moreover, the equality holds if and only if pτ (X) = Mpc(X), for some constant matrix
M .

Theorem 1 shows that the integrative R-learner is consistent and at least as efficient as the HTE
estimator with only the RCT. More interestingly, when the underlying HTE τ(·) is less restrictive
than c(·), the integrative R-learner has strictly larger efficiency than the estimator with the RCT
alone. Intuitively, we can start with one extreme example where there is no unmeasured confound-
ing, which means that the c(x) = 0 (the simplest function). If we knew this fact, then we could
combine the RCT and OS directly for HTE estimation, and the integrative estimator improves the
efficiency of the RCT-only estimator obviously due to the larger sample size. Our proposed estima-
tion method uses basis functions to approximate the confounding function and uses penalization to
leverage the possible smoothness or sparsity of the confounding function to achieve the same result
as the oracle one. We present a proof sketch here (the details are presented in Appendix B):

a) Under Assumptions 3-4, we can show: L̂N (β) = LN (β) + OP (a2N ), where aN = O(N−r)

with r > 1/4, which implies β̂ = argminb PN {Yi − µ(Xi, Si)− pᵀi b}
2

+OP (a2N ).

b) By Pointwise Normality of series (see Theorem 4.2 in Belloni et al., 2015)

√
N(β̂ − β) = E(pip

ᵀ
i )
−1√N(PN − P)

(
pτ ε
pcε

)
+ oP (1) +OP

(√
Na2N

)
.

c) By algebra, we can show V−1(β̂τ )− V−1(β̂rct) is non-negative definitive.

5. Other methods
We describe two alternative integrative HTE estimators. They both start with constructing an ad-
justed outcome Ỹ such that E(Ỹ | X,S = 1) = τ(X) under Assumptions 1-2. A common choice
of the adjusted outcome is

Ỹ =
A{Y −QS(X, 1)}

e(X,S)
+QS(X, 1)− (1−A){Y −QS(X, 0)}

1− e(X,S)
−QS(X, 0), (10)

where QS(X, a) = E(Y | X,A = a, S) (Huang and Yang, 2022). Then, one can fit Ỹ on X to
obtain the HTE estimator. This approach is also a variant of the U -learner (Nie and Wager, 2021).
In the following, the first integrative estimator constructs the similar outcome-adjusted equality for
c(X) in the OS, while the second one proposed by Kallus et al. (2018) estimates c(X) based on
imposing the linear model assumption and using the Ỹi in the RCT as the unbiased estimates of
τ(Xi).

5.1. Outcome-adjusted method

We show that the adjusted outcome for the OS can be used to identify c(X) once τ(X) is identified
from the RCT as stated in Proposition 2 (see the proof in Appendix C).

Proposition 2 Under Assumptions 1-2, we have

E(Ỹ | X,S = 0) = τ(X) + c(X), (11)

where Ỹ is (10).
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Here is one way to get the integrative estimator for the HTE by combining the facts E(Ỹ |
X,S = 1) = τ(X) and (11). We first fit Ỹ on X using the RCT to find important features, and then
fit Ỹ on X again but using all the RCT and the OS samples with incorporating the selected features
in τ(X) and all the features in c(X). The procedure is summarized below.

a) Estimate the adjusted outcomes, denoted as Ỹi , i ∈ In ∪ Im;

b) Fit the adjusted outcomes on basis functions bKn(X) with lasso regression using the RCT
samples: Ỹi ∼ αᵀbKn(Xi), i ∈ In; obtain the selected basis functions denoted as b∗Kn(Xi);

c) Lasso regression with the RCT and the OS samples on the selected basis functions b∗Kn(Xi)
and basis functions bLm(Xi) of the OS: Yi ∼ αᵀb∗Kn(Xi)+β

ᵀbLm(Xi). Note that bLm(Xi) =
0, i ∈ In, and the penalty is only added on β;

d) Obtain the estimated HTE τ̂(X) = α̂ᵀb∗Kn(X) , where α̂ is got from step c).

However, this approach relies on the estimation of the adjusted outcomes and can be highly unstable
since the inverse of the estimated propensity scores might result in extreme values. When there is
only the RCT or OS data, one only requires Steps a) and b) for HTE estimation by fitting Ỹ on X .
This procedure provides unbiased estimates in the RCT due to E(Ỹ | X,S = 1) = τ(X) but biased
estimates in the OS due to the possible unmeasured confounders.

5.2. 2-step procedure proposed by Kallus et al. (2018)

Assuming a linear model for the confounding function c(X) = θᵀX , Kallus et al. (2018) propose
an integrative 2-step HTE estimation procedure summarized below.

a) Use any regression methods, e.g., random forest or causal forest (Athey et al., 2019), to
estimate Q0(X, 1) and Q0(X, 0) with the OS samples, then take its difference, denoted as
ω̂(·) = Q̂0(·, 1)− Q̂0(·, 0);

b) Apply the definition in (1) to learn c(X): θ̂ = argminθ
∑

i∈In

{
Ỹi − ω̂(Xi) + θᵀXi

}2
,

which gives the estimated HTE immediately τ̂(x) = ω̂(x)− θ̂ᵀx.

This approach has a different loss function from ours and it shows the consistency of τ̂(·) at a rate
that is governed by the rate of ŵ(·), but it has restrictions on the form of c(X).

6. Experiments
We evaluate the finite-sample performances of our proposed method through simulated data and a
real data application of the Tennessee STAR study which aims to measure the effect of class size on
test scores (Word et al., 1990; Krueger, 1999). To illustrate the generality of our proposed frame-
work, we use SCAD regression with polynomial basis functions with degree 2 for the simulated
data and machine learning approaches including Xgboost (Chen and Guestrin, 2016) and random
forest (Breiman, 2001) for the application.

We evaluate four categories of methods:

• Outcome adjusted methods as introduced in Section 5.1 based on either the RCT, OS or
integrated data, denoted as “rct oa”, “os oa” or “int oa”, respectively.
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• R-learner methods based on either the RCT, OS or integrated data, denoted as “rct rlearner”,
“os rlearner”, “naive rlearner” (standard R-learner assuming no hidden confounding) or
“int rlearner” (our method), respectively.

• Learning two regression functions with causal forest for the treated and control and taking
their difference using either the RCT or OS, denoted as “rct rf ” or “os rf ”, respectively.

• The method proposed in Kallus et al. (2018) where the confounding function is estimated by
linear regression or lasso regression with polynomial basis functions, denoted as “KPS linear”
or “KPS lasso”, respectively.

The performances are measured by the square root of the mean square errors (RMSE) between
the estimated condition treatment effect and the ground truth over the test data, i.e. RMSE(τ̂) =√
T−1

∑T
t=1{τ̂(X

(t)
test)− τ(X

(t)
test)}2, where T is the sample size of the test data.

6.1. Simulation study

We modify two simulation settings considered in the literature. For the first set of simulation studies,
we consider the simulation setting with scalar covariates as in Kallus et al. (2018), where the RCT
and the OS have only partial overlap and the true confounding function is linear. For the second
set of simulation studies, we follow the simulation setting with multiple covariates in Yang et al.
(2020c) where the true confounding function is non-linear and the strength of confounding bias can
be adjusted.

6.1.1. SIMULATION STUDY I

We generate the RCT data with sample size n as follows:

Xrct ∼ Uniform[−1, 1], Urct ∼ N (0, 1), Arct ∼ Bernoulli(0.5).

Next we generate the OS data with sample size m = 2000 as follows: Aos ∼ Bernoulli(0.5), and
the observed covariate Xos and the unobserved covariate Uos are sampled from a bivariate Normal
distribution with sample size m(

Xos
Uos

)
| Aos ∼ N

{(
0
0

)
,

(
1 Aos − 0.5

Aos − 0.5 1

)}
.

For both datasets, we generate the outcomes Y = 1 + X + 0.5X2 + U + Aτ(X) + 0.5ε, where
τ(X) = 1 + 2X + 0.75X2 and ε ∼ N (0, 1). Then by the definition of the confounding function,
we can get c(X) = E(U | X,A = 1, S = 0) − E(U | X,A = 0, S = 0) = X . The test data
Xtest is sampled from Uniform[−1, 1] with size T = 105. The experiment results of RMSE(τ̂ )
for different methods with the increasing sample sizes of the RCT n are presented in Table 1. The
results of the methods with only using the OS are unchanged across the rows due to m unchanged
and thus are left blank, and the RMSEs of the other methods are decreasing with n increasing, which
empirically verifies their consistency. Among all the methods, our proposed method has the low-
est or at least competitively lowest RMSEs. “KPS linear” gains the improvement compared with
“rct rf” and “os rf” due to the correctly specified confounding function, but since its consistency
at a relatively slow rate based on random forest, it is hard to defeat the outcome-adjusted method
and the integrative R-learner. Besides, “naive rlearner” performs badly due to ignoring the un-
measured confounding bias of the OS. Finally, “int oa” has pretty decent performance in such a
low dimensional setting.

10
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Table 1: The averaged RMSE(τ̂ ) over 100 experiment replicates (standard error in parentheses).

n rct oa os oa int oa rct rlearner os rlearner int rlearner rct rf os rf KPS lasso KPS linear naive rlearner

200
0.28 0.29 0.26 0.23 0.38 0.43 0.32 0.56

(0.01) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

500
0.16 0.57 0.13 0.15 0.58 0.11 0.25 0.62 0.29 0.25 0.53

(0.01) (0.00) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01) (0.01) (0.01) (0.00)

1000
0.11 0.08 0.11 0.09 0.23 0.25 0.22 0.50

(0.00) (0.00) (0.00) (0.01) (0.00) (0.01) (0.00) (0.00)

6.1.2. SIMULATION STUDY II

We first generate a population of size T = 105 with independent p-dimensional covariates Xj ∼
N (0, 1), j = 1, . . . , p. Let the treatment effect modifier be W = (X1, X2, . . . , Xp−1), where p =
10. Then we generate the potential outcomes Y (a) by Y (a) | X = X1+Xp+aτ(W )+ε(a), where
ε(a) ∼ N (0, 1), for a = 0, 1. Now we generate the RCT: the RCT selection indicator is generated
by S | X ∼ Bernoulli{πS(X)}, where logit{πS(X)} = −7−X1+X2, which results in around 200
RCT samples (S = 1). Then an OS sample is simply randomly selected from the population with
size m = 500. The treatments are assigned as follows: A | X,S = 1 ∼ Bernoulli{e(X,S = 1)},
where logit{e(X,S = 1)} = −1 − X1 + X2, and A | X,S = 0 ∼ Bernoulli{e(X,S = 0)},
where logit{e(X,S = 0)} = −1 − X1 + X2 + bXp. We let Xp is unobserved in both the RCT
and the OS, thus b indicates the strength of unmeasured confounding: the larger absolute value of
b induces the larger confounding bias. We vary b ∈ {0, 2.5}, and the confounding function equals
to zero when b = 0. The observed outcomes Y = AY (1) + (1 − A)Y (0). We also consider
different dimensions of the treatment modifiers by letting τ(W ) = 1 +

∑J
j=1Xj , J ∈ {1, 9}. The

test data Xtest is all the first p − 1 dimensional covariates in the initially generated population of
size T = 105. The results of RMSEs for the different scenarios are presented in Table 2. For the
same J , the results of the methods with only using the RCT are unchanged and thus are left blank.
As shown in Table 2, when b increasing, the RMSEs of methods with the OS alone will increase.
The proposed integrative R-learner performs the best among all the methods. “KPS linear” suffers
high loss due to its incorrectly specified model for the non-linear c(X) and “int oa” also perform
badly due to the instability induced from the inverse of the propensity scores estimated by the high
dimensional covariates.

Table 2: The averaged RMSE(τ̂ ) over 100 experiment replicates (standard error in parentheses).

J b rct oa os oa int oa rct rlearner os rlearner int rlearner rct rf os rf KPS lasso KPS linear naive rlearner

1
0

0.55 0.86 0.49 0.28 0.75 0.99 1.45 0.41
1.12 (0.02) (0.06) 0.88 (0.02) (0.03) 1.19 (0.01) (0.03) (0.12) (0.01)

2.5
(0.14) 1.40 1.35 (0.04) 1.33 0.48 (0.02) 1.31 0.83 1.44 1.01

(0.01) (0.05) 1.33(0.01) (0.04) (0.01) (0.02) (0.11) (0.01)

9
0

1.08 1.45 0.97 0.55 2.33 2.22 1.75 0.77
1.87 (0.03) (0.08) 1.64 (0.02) (0.03) 2.54 (0.01) (0.03) (0.13) (0.01)

2.5
(0.13) 1.55 1.95 (0.03) 1.54 1.12 (0.01) 2.63 2.18 1.70 1.31

(0.02) (0.08) (0.01) (0.05) (0.01) (0.03) (0.12) (0.01)

6.2. Real data application

The STAR (Tennessee Student/Teacher Achievement Ratio) experiment is a randomized controlled
experiment aiming to study the effect of class size on students’ standardized test scores. The treat-
ments are two types of class (A = 1 for small classes containing 13-17 pupils andA = 0 for regular
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classes containing 22-25 pupils). The outcome Y is the sum of the math, reading, and listening stan-
dardized test scores. The vector of covariates X includes gender, race, birth month, birthday, birth
year, an indicator of giving free lunch or not, and teacher id. Among 4218 students, 2413 were
randomly assigned to regular-size classes (A = 0) and 1805 to small classes (A = 1).

Following Kallus et al. (2018), we create synthetic RCT, OS, and test data from the original
data. Split all samples over a binary variable U : rural or inner-city (U = 1; 2811 students) vs.
urban or suburban (U = 0; 1407 students), which is known to strongly affect outcome (Krueger,
1999). The RCT is formed by randomly sampling half students with U = 1. The OS consists of two
parts. (a) From samples with U = 1, take samples with A = 0 but not in the RCT and samples with
A = 1 whose outcomes are in the lower half of outcomes among samples with A = 1 & U = 1; (b)
From samples with U = 0, take all samples with A = 0 and samples with A = 1 whose outcomes
are in the lower half of outcomes among samples with A = 1 & U = 0. This procedure results
in the RCT and the OS not fully overlapping since the RCT only has rural or inner-city students,
and it also biases the treatment effect estimates in the OS downward since only the lower half of
scores among samples with A = 1 are selected into the OS. Let U be the unmeasured confounder,
the outcome and treatment in the OS are confounded significantly. Since the ground truth, τi is
inaccessible in practice, it is replaced with an unbiased estimate from all samples, which is defined
as Ai{Yi −E(Yi)}/P (Ai = 1)− (1−Ai){Yi −E(Yi)}/{1− P (Ai = 1)}, i ∈ all samples, where
E(Yi) is estimated by the average of the outcomes and P (Ai = 1) is estimated by the proportion
of treated samples among all samples. The test data is the held-out sample of all samples excluding
the RCT.

To demonstrate the generality of the proposed framework, we implement the integrative R-
learner with start-of-art machine learning methods (Xgboost and random forest (Breiman, 2001))
for approximating the nuisance functions. An iterative learning procedure is provided in Appendix
D to realize different penalties on τ(·) and c(·). We initialize the values of the confounding function
as the ones estimated from the method in Kallus et al. (2018), iterate the algorithm for 20 times,
and calculate the RMSE. Figure 1 displays the results over iterations. As the number of iterations
increases, the RMSE of our integrative R-learner reaches a steady value. The estimators with only
the RCT or the OS give the RMSE around 80 (not shown in Figure 1), the method in Kallus et al.
(2018) has a significant improvement (RMSE = 71.01), and the proposed method has the best
performance (RMSE ≈ 70).

7. Discussion

We propose the integrative R-learner which can identify both the HTE and confounding function,
and improve the efficiency of the RCT estimator of the HTE. It is a general framework that has a
broad class of choices for employing flexible models in either nuisance function approximation or
loss-minimization procedures. The proposed method is motivated in the settings where the sample
size of the RCT (n) is small but the sample size of the OS (m) is much larger. To address the
practical concern, we can allow n/m to go to 0 with n and m going to infinity in our asymptotic
regime. However, the non-asymptotic risk bounds for a fixed n and a growing m are also of great
interest in practice, whose derivations will be presented elsewhere. Moreover, in practice, both
RCT and OS data are likely to present missing values, requiring proper assumptions and statistical
analysis methods for handling missing data (Yang et al., 2019). Multiple imputation is a popular and
intuitive approach that fills missing values by plausible values multiple times and applies complete-
sample analysis methods to each imputed data set. Following Guan and Yang (2019), one can
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Figure 1: The plot of RMSE for the integrativeR-learner at each iteration vs. RMSE of the estimator
proposed in Kallus et al. (2018)

incorporate the idea of multiple imputation in the proposed framework to handle missing values in
the RCT and OS.

There are interesting directions for future work. Besides the continuous outcomes discussed
in the paper, the proposed framework can be readily extended to other types of outcomes, e.g., a
binary outcome (Vansteelandt and Joffe, 2014) or a survival outcome (Yang et al., 2020a; Yang,
2021). Another interesting direction is to extend the integrative R-learner to multiple treatments
which commonly arise in reality. It can be constructed similarly based on the multivariate version
of Robinson’s transformation and the corresponding R-learner (Nie and Wager, 2021). Besides, it
would also be interesting to extend the integrativeR-learner to off-policy evaluation under covariate
shifts (Uehara et al., 2020) or generalizable individualized decision rules learning (Zhao et al., 2019;
Wu and Yang, 2021; Chu et al., 2022) to improve the efficiency of the estimated policy values or the
estimated optimal decision rules.
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Supplementary Material for “Integrative R-learner of heterogeneous
treatment effects combining experimental and observational studies”

by Wu and Yang

Outline of the appendices
• Appendix A: a pseudocode of the penalty scale searching for the integrative R-learner.

• Appendix B: a proof of Theorem 1.

• Appendix C: a proof of Proposition 2.

• Appendix D: a pseudocode of iterative learning algorithm used in the real data experiment.

Appendix A. The algorithm of the penalty scale searching for the integrative
R-learner introduced in Section 3.3

Algorithm 1 Penalty scale searching for the integrative R-learner
Data: The RCT and the OS data {(Xi, Ai, Yi, Si)}i∈In∪Im ; the estimated nuisance functions

µ̂−k(i)(Xi, Si) and ê−k(i)(Xi, Si), i ∈ In ∪ Im
Initialize cmv =∞
Result: βτ and the HTE τ(·) = pτ (·)ᵀβτ
for sc = 0, 0.5, 1, 1.5 do

Fit Yi − µ̂−k(i)(Xi, Si) on {pτ (Xi), (1 − Si)pc(Xi)}{Ai − ê−k(i)(Xi, Si)} with penalized re-
gression where the corresponding shrinkage parameters are (scλc, λc) and λc is chosen by
cross-validation;

Record the above mean cross-validated error cvmsc and the fitted coefficients βsc,τ ;
if cvmsc < cvm then

βτ ← βsc,τ
cvm← cvmsc

end
end

Appendix B. Proof of Theorem 1
To prove Theorem 1, we show a useful lemma first.

Lemma 3 Under Assumptions 3-4, L̂N (β) = LN (β) +OP (a2N ).

Proof For the simplicity of the notations, we denote

Aµ,i = µ(Xi, Si)− µ̂−k(i)(Xi, Si), Bµ,i = Yi − µ(Xi, Si),

Ae,i = e(Xi, Si)− ê−k(i)(Xi, Si), Be,i = Ai − e(Xi, Si).

By algebra, we have

L̂N (β) =PN{Bµ,i +Aµ,i − g(Xi, Si;β)Be,i − g(Xi, Si;β)Ae,i}2
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=PN{Bµ,i − g(Xi, Si;β)Be,i}2 + PN{Aµ,i − g(Xi, Si;β)Ae,i}2+
2PN{Bµ,i − g(Xi, Si;β)Be,i}PN{Aµ,i − g(Xi, Si;β)Ae,i}

=LN (β) + PNA2
µ,i + PNA2

e,ig
2(Xi, Si)− 2PNAµ,iAe,ig(Xi, Si;β)+

2PNBµ,iAµ,i − 2PNBµ,iAe,ig(Xi, Si;β)− 2PNBe,iAµ,ig(Xi, Si;β) + 2PNBe,iAe,ig2(Xi, Si).

By Markov’s inequality and Assumption 4, we have the second term above PNA2
µ,i is OP (a2N ).

Plus Assumption 3, we have the third term PNA2
e,i is OP (a2N ). As for the fourth term,

PNAµ,iAe,ig(Xi, Si;β) ≤ C1PNAµ,iAe,i ≤ C1

√
PNA2

µ,iPNA2
e,i = OP (a2N ),

for some positive constant C1, and the last inequality is by Cauchy-Schwarz inequality.
Next, to deal with the last four terms, we tackle PNBµ,iAµ,i first. Let

Bk
µµ =

∑
i:k(i)=k Bµ,iAµ,i

|{i : k(i) = k}|
,

and note that |PNBµ,iAe,i| ≤
∑K

k=1 |Bk
µµ|, where K is finite, thus it is suffice to show Bk

µµ =

OP (a2N ). Let I−k = {Xi, Ai, Yi, Si : k(i) 6= k}. Then we have

E(Bk
µµ) = E(Bµ,iAe,i) = E{E(Bµ,iAe,i | I−k, Xi, Si)}

= E{Ae,iE(Bµ,i | I−k, Xi, Si)} = 0.

Then we have its variance

var(Bk
µµ) = E{(Bk

µµ)2} =
E{
∑

i:k(i)=k B
2
µ,iA

2
µ,i +

∑
i 6=j:k(i)=k,k(j)=k Bµ,iBµ,jAµ,iAµ,j}

|{i : k(i) = k}|2

=
E(B2

µ,iA
2
µ,i)

|{i : k(i) = k}|
+

∑
i 6=j:k(i)=k,k(j)=k E(Bµ,iBµ,jAµ,iAµ,j)

|{i : k(i) = k}|2
.

By Assumption 3-4 we have E(B2
µ,iA

2
e,i) = E{E(B2

µ,iA
2
e,i | I−k, Xi, Si)} = E{A2

e,iE(B2
µ,i |

I−k, Xi, Si)} ≤ C2EA2
e,i = O(a2N ), for some positive constantC2. As for the interaction terms, we

have E(Bµ,iBµ,jAµ,iAµ,j) = E
{
Aµ,iAµ,jE(Bµ,iBµ,j | I−k, Xi, Si)

}
= E

{
Aµ,iAµ,jE(Bµ,j)E(Bµ,i |

I−k, Xi, Si)
}

= 0. The second last equality is implied by Bµ,i and Bµ,j are independent for
i 6= j, and the last equality comes from the definition of Bµ,i. Therefore, we have var(Bk

µµ) =
(K/N)O(a2N ) = O(a2N/N), which is negligible with a faster diminishing rate than O(a2N ). Then,
by Chebyshev’ inequality, we have Bk

µµ = OP (a2N/N), i.e., PNBµ,iAµ,i = OP (a2N/N). Similarly,
under the Assumption 3 that g(Xi, Si;β) is uniformly bounded, we can get the same results for the
left three terms equal toOP (a2N/N). Therefore, L̂N (β)−LN (β) is dominated by theOP (a2N )-term
PNA2

µ,i + PNA2
e,ig

2(Xi, Si) − 2PNAµ,iAe,ig(Xi, Si;β), which finally leads to the conclusion in
the lemma L̂N (β)− LN (β) = OP (a2N ).

Next, we are showing the proof of Theorem 1 with the help of Lemma 3.
Proof of Theorem 1:
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First, we let GN =
√
N(PN − P), pτ = {A− e(X,A)}pτ (X), and pc = {A− e(X,A)}(1−

S)pc(X). Recall pᵀi = {(pτ )ᵀ, (pc)ᵀ}, and then

Γ = P(pip
ᵀ
i ) =

{
pτ (pτ )ᵀ pτ (pc)ᵀ

pc(pτ )ᵀ pc(pc)ᵀ

}
denoted as

=

(
Γττ Γτc
Γcτ Γcc

)
.

By the definition of β̂ and Lemma 3, we have

β̂ = argmin
b

PN {Yi − µ(Xi, Si)− pᵀi b}
2

+OP (a2N ).

By the Pointwise Linearizaiton of the series method (see Lemma 4.1 in Belloni et al., 2015), under
Assumptions 5-7 and the fact E(ε | X,A, S) = 0 which is shown under Assumptions 1-2 in Section
3, we have for any α := (αᵀ

τ , α
ᵀ
c )ᵀ ∈ R2D,

√
Nαᵀ(β̂ − β) = αᵀ

(
Γττ Γτc
Γcτ Γcc

)−1
GN

(
pτ ε
pcε

)
+ oP (1) +OP

(√
Na2N

)
. (S1)

Let

Σ =

(
Σττ Στc

Σcτ Σcc

)
:=

(
Γττ Γτc
Γcτ Γcc

)−1
.

Since under Assumption 4, aN = O(N−r), r > 1/4, thus OP
(√

Na2N

)
is negligible compared to

op(1). Therefore, we have
√
Nαᵀ

τ (β̂τ − βτ ) = αᵀ
τGN (Σττp

τ ε+ Στcp
cε) + oP (1). (S2)

Under Assumptions 5-7 and the fact E(ε | X,A, S) = 0, by the Pointwise Normality of the series
method (see Theorem 4.2 in Belloni et al., 2015), we have

√
N
αᵀ
τ (β̂τ − βτ )

‖αᵀ
τΩ1/2‖

d−→ N (0, 1) + oP (1),

where Ω = E {(Σττp
τ ε+ Στcp

cε) (Σττp
τ ε+ Στcp

cε)ᵀ}. Then, we take ατ = pτ , for any x ∈ X ,

√
N

(pτ )ᵀ(β̂τ − βτ )

‖(pτ )ᵀΩ1/2‖
d−→ N (0, 1) + oP (1).

Under Assumption 6(d), the approximation error is negligible relative to the estimation error, then

√
N
τ̂(x)− τ(x)

‖(pτ )ᵀΩ1/2‖
d−→ N (0, 1) + oP (1),

which immediately arrives at the first part conclusion in Theorem 1, τ̂(x)− τ(x) = O(N−1/2), for
any x ∈ X . Besides, it also gives the asymptotic variance of τ̂(x),

V{τ̂(x)} = N−1(pτ )ᵀΩpτ . (S3)

Expanding Ω, under Assumption 7, we have

Ω =ΣττE
{
pτ (pτ )ᵀε2

}
Σττ + ΣτcE

{
pτ (pc)ᵀε2

}
Στc+
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ΣτcE
{
pc(pc)ᵀε2

}
Στc + ΣττE

{
pτ (pc)ᵀε2

}
Στc

= (ΣττΓττ + ΣτcΓ
ᵀ
τc) Σττσ

2 + (ΣτcΓcc + ΣττΓτc) Σᵀ
τcσ

2

=Σττσ
2 + 0D×D

=
(
Γττ − ΓτcΓ

−1
cc Γᵀ

τc

)−1
σ2

=
[
E{Spτ (pτ )ᵀ}+ E{(1− S)pτ (pτ )ᵀ} − ΓτcΓ

−1
cc Γᵀ

τc

]−1
σ2. (S4)

Next, we aim to obtain the asymptotic variance of the HTE estimator τ̂rct = (pτ )ᵀβ̂rct with only
the RCT, where β̂rct = argminb∈RD PNSi

[
Yi − µ̂−k(i)(Xi, Si)− {Ai − ê−k(i)(Xi, Si)}pᵀτ (Xi)b

]2
.

Similarly, we can replace the estimated nuisance functions with the true ones based on Lemma 3,
and following the same strategy as the integrativeR-learner above to obtain the asymptotic variance,
V(τ̂rct) = N−1(pτ )ᵀΩrctp

τ , where

Ωrct = [E {Spτ (pτ )ᵀ}]−1 σ2. (S5)

By Hölder’s inequality, E{(1−S)pτ (pτ )ᵀ}−ΓτcΓ
−1
cc Γᵀ

τc is non-negative definitive; i.e., for any
v ∈ RD,

vᵀ(Ω−1 − Ω−1rct )v ≥ 0, (S6)

where the inequality becomes an equality if and only if pτ (X) = Mpc(X) for some constant matrix
M . From (S3), we have

pτV{τ̂(x)}(pτ )ᵀ = N−1pτ (pτ )ᵀΩpτ (pτ )ᵀ

=⇒ IDV{τ̂(x)} = N−1pτ (pτ )ᵀΩ

=⇒ IDV−1{τ̂(x)} = NΩ−1 {pτ (pτ )ᵀ}−1

=⇒ (pτ )ᵀ {pτ (pτ )ᵀ}−1V−1{τ̂(x)}pτ = N(pτ )ᵀ {pτ (pτ )ᵀ}−1 Ω−1 {pτ (pτ )ᵀ}−1 pτ

by (S6)
=⇒ (pτ )ᵀ {pτ (pτ )ᵀ}−1

[
V−1{τ̂(x)} − V−1{τ̂rct(x)}

]
pτ ≥ 0

(Multiply a positive number (pτ )ᵀpτ on the both sides and get the below formula)

=⇒ (pτ )ᵀpτ (pτ )ᵀ {pτ (pτ )ᵀ}−1 pτ
[
V−1{τ̂(x)} − V−1{τ̂rct(x)}

]
≥ 0

=⇒ (pτ )ᵀpτ
[
V−1{τ̂(x)} − V−1{τ̂rct(x)}

]
≥ 0

=⇒ V−1{τ̂(x)} − V−1{τ̂rct(x)} ≥ 0

=⇒ V{τ̂(x)} ≤ V{τ̂rct(x)},

with the equality holding when pτ (X) = Mpc(X) for some constant matrix M .

Appendix C. Proof of Proposition 2
Proof The proof of (10) is mainly based on the inverse probability weights (IPW) component, thus
we tackle it first.

a) IPW-adjusted outcomes: We have

E
{

AY

e(X,S)
| X,S = 0

}
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=
1

e(X, 0)
[E{AY | X,A = 1, S = 0}e(X, 0) + E{AY | X,A = 0, S = 0}{1− e(X, 0)}]

=E{Y | X,A = 1, S = 0}.

Similarly, we have

E
{

(1−A)Y

1− e(X,S)
| X,S = 0

}
= E{Y | X,A = 0, S = 0}.

b) Augmented IPW-adjusted outcomes: Then we have

E
[
A{Y −QS(X, 1)}

e(X,S)
+QS(X, 1) | X,S = 0

]
=E

{
AY

e(X,S)
| X,S = 0

}
+Q0(X, 1)E

[{
1− A

e(X,S)

}
| X,S = 0

]
=E(Y | X,A = 1, S = 0).

Similarly, we have

E
[

(1−A){Y −QS(X, 0)}
1− e(X,S)

+QS(X, 0) | X,S = 0

]
= E(Y | X,A = 0, S = 0).

Finally, by taking the difference of the above two formulas and based on the definition of c(X)
in (1), we arrive at the conclusion E(Ỹ | X,S = 0) = τ(X) + c(X)

Appendix D. Iterative learning for the integrative R-learner in the real data
experiment

Algorithm 2 Iterative learning for the integrative R-learner
Data: The RCT and the OS data {(Xi, Ai, Yi, Si)}i∈In∪Im ; the number of iterations B
Result: τ(·)
Initialize confounding function c(Xi).
Estimate the nuisance functions with cross-fitting based on Xgboost, denoted as µ̂(Xi, Si) and
ê(Xi.Si), resulting in ε̂Yi = Yi − µ̂(Xi, Si) and ε̂Ai = Ai − ê(Xi, Si).

for b = 1, . . . , B do
Calculate the pseudo outcomes Ỹi ← ε̂Yi/ε̂Ai − (1− Si)c(Xi), i ∈ In ∪ Im;
Obtain τ(·) by fitting Ỹi on Xi using weighted random forest with weights equal to ε̂2Ai , i ∈
In ∪ Im;

Update the pseudo outcomes Ỹi ← ε̂Yi/ε̂Ai − τ(Xi), i ∈ Im;
Update c(Xi) by fitting Ỹi on Xi using weighted random forest with weights equal to ε̂2Ai , i ∈
Im.

end
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