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Unveiling the specificity in T-cell-receptor and antigen recognition represents a major step to
understand the immune system response. Many supervised machine learning approaches
have been designed to build sequence-based predictive models of such specificity using
binding and non-binding examples of data. Due to the presence of few specific and many
non-specific T-cell receptors for each antigen, available datasets are heavily imbalanced and
make the goal of achieving solid predictive performances very challenging. Here, we propose
to restore data balance through data augmentation using generative unsupervised models. We
then use these augmented data to train supervised models for prediction of peptide-specific
T-cell receptors and binding pairs of peptide and T-cell receptors sequences. We show that our
pipeline yields increased performance in terms of T-cell receptors specificity prediction tasks.
More broadly, our work provides a general framework to restore balance in computational
problems involving biological sequence data.
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1. Introduction

Cytotoxicity T lymphocytes (T–cells) play a crucial role in the adaptive immune
response of organisms against pathogens and/or malfunctioning cells (1). Short
pathogen protein regions (peptide antigens) interact with the Major Histocompati-
bility Complex proteins (MHC) and form peptide-MHC epitopes (pMHC). Binding
of CD8+ T-cell receptor (TCR) with pMHC enables the killer machinery against
such pathogen. Given the high specificity of the interaction, TCRs only bind a
limited number of presented pMHC. Therefore, achieving a reliable prediction of
TCR-pMHC binding represents a major goal in the field, in particular for the
development of vaccines and the improvement of personalized immunotherapies.

Over the recent years, much progress in this direction has been made with
computational approaches (2–6), benefiting both from the strong power of machine
learning (ML) methods and the large-scale amount of experimentally tested data.
Such works typically use the sequences of the Complementarity–Determining Region-
3 beta (CDR3β) and alpha (CDR3α) chains paired with peptide sequences to reveal
the TCR-pMHC binding affinity. The CDR3 region is the most variable one in
TCRs and is recognized to be the major actor influencing TCR specificity for peptide
binding. Though recent works have shown that use of both α and β chains leads to
better predictions (7, 8), many works still focus on β chains solely, because they
primarily drive the immune response (9) and are more abundant in most databases.

Predicting TCRs specificity is a computationally challenging problem for several
reasons. First, CDR3β sequences binding different target epitopes exhibit very
strong similarities. As an illustration, we show in Figure 1a the t-distributed
Stochastic Neighbor Embedding (tSNE) visualization of CDR3β sequences known
to bind three chosen epitopes and of other, unlabelled CDR3β sequences: the
absence of well separated epitope-related clusters make specificity prediction highly
non trivial. Second, in order to produce accurate predictions, ML predictive models
are trained on labelled (experimentally tested) TCR-pMHC sequence data through
supervised learning. Public databases containing TCR specificity, such as IEDB
(10), VDJdb (11, 12), Mc-PAS TCR (13) and PIRD (14), mostly include limited
amount of TCR sequences with positive interaction, i.e. known to bind some
peptides of interest. Considerable efforts have been accomplished to build ad hoc
negative sequence datasets, for instance by mismatch pairing and/or taking bulk
(unlabelled) data from healthy donors. While the produced negative data may suffer
from potential biases affecting predictions (15), they exceed in quantity, by several
orders of magnitude, the amount of experimentally tested positive binding pairs.
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As a result, binding prediction models are trained from
datasets with strong imbalance between the positive and
negative classes. Class imbalance is a widespread problem
affecting both bio- and non bio-related sources of data and
is notably an Achilles’ heel in applying machine learning
methods to achieve reliable predictions (see, for example, (16–
19)). Informally speaking, models adapt to the most
represented class in the data and are less accurate in capturing
the features of under represented examples, degrading the
quality of predictions. The effect of class imbalance is
visible in Figure 1b, which show two metrics assessing the
capability of predicting binding of CDR3β sequences to
one fixed epitope, the unbiased balanced accuracy (ACC),
i.e. the accuracy evaluated on a balanced test set, and
the area under the receiver operating curve (AUC), an
integrated measure over varying classification thresholds.
Both ACC and AUC reach high values when the numbers
of binding and background sequences in the training set
are comparable, and drop for strongly unbalanced datasets.
The strong impact of class imbalance to the performances of
inference methods predicting TCR-peptide interactions has
been recently assessed in literature (20).

While achieving balance in the dataset could be easily
obtained by limiting the number of negative data, it is
expected that discarding data might not be optimal in general,
and better balancing strategies are needed. The present
work proposes to restore balance with a mixed strategy,
combining data removal (subsampling of the negative class)
and, crucially, data augmentation (oversampling of the
positive class), see Figure 1c. We implement this mixed
strategy for both

(i) peptide-specific models, which are trained on one or more
selected epitopes and for which the peptide sequence is
only used as a label during the training;

(ii) pan-specific models, where combinations of peptides and
TCR sequences are presented during training, together
with binary labels expressing if the peptide-TCR pairs
are binding or not.

Though pan-specific models are harder to build as they require
more data than their peptide-specific counterparts, they can,
in principle, leverage the diversity of the peptide space to
capture the underlying features of TCR-peptide interactions
and potentially recognize binding to new, unseen antigens.
We explore this last possibility by studying the out-of-sample
performances of our predictive models.

2. Learning pipeline

We hereafter propose a generative machine-learning frame-
work to mitigate the scarcity of peptide-specific CDR3β
sequences available in order to enhance TCR specificity
predictions. The approach is not only limited to the setting
examined here but can be applied to any case where one aims
at discriminating an under-represented class of sequence data
with a supervised learning algorithm.

The learning pipeline proposed in this work is fully
presented in Figure 2 for both peptide- and pan-specific
cases and consists of two steps. First, data balance is
restored by randomly subsampling the negative data class
and by augmenting the positive class of peptide CDR3β
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Fig. 1. Graphical representation of imbalanced learning on TCR
specificity predictions. a) tSNE visualization of the top three most abundant
epitopes in the aggregated full dataset (see Methods) (GLCTLVAML, LLWNGPMAV,
ELAGIGILTV), together with unlabelled CDR3β sequences (Background). The
high overlap among data points demonstrates the challenge in deriving accurate
specificity predictions. Notice that background sequences span the whole feature
space making identification of key binding properties hard. b) Accuracy and AUC
scores for a predictive model trained to distinguish YVLDHLIVV- and YLQPRTFLL-
specific CDR3β sequences from bulk CDR3βs as a function of the fraction ρN

of background data in the training set. In practice we fix the class size of peptide-
specific sequences and vary the size of the background sequences class to change
ρN . Performances (evaluated on a balanced test set) are optimal when the two class
sizes are of roughly equal sizes, i.e. when ρN ≃ 0.5. c) Graphical visualization of
the imbalanced composition of TCRs datasets, in a two-class setting where P, N

represent the class sizes. Our work proposes to restore class balance (i.e. P = N ,
straight line) by introducing generative model power to sample new sequences
compatible with the positive class, for which few data are experimentally available.

sequences through data generation. To do so, we learn
an unsupervised model over the limited number of peptide-
specific CDR3β sequences and enlarge the positive class by
generating surrogate sequences. We use two unsupervised
generative models, namely
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Fig. 2. Learning pipelines for peptide-specific (top) and pan-specific (bottom) models. Top, peptide-specific model. Column (a): Data consists of
few CDR3β sequences, known to bind some epitopes (colored symbols and segments) and of many ‘negative’ sequences (yellow). Column (b): A generative model is trained
over peptide-specific CDR3β sequences, here, corresponding to the orange epitope. After training, Gibbs sampling of the inferred probability landscape allows us to generate
putative peptide-specific sequences. Column (c): A supervised CNN architecture is trained over (natural and generated) peptide-specific CDR3βs and background CDR3βs;
after learning, the network is used as predictive model for TCR specificity over in- and out-of-sample (black sequences) test data. Bottom, Pan-specific models. Column (a):
Compared to the pipeline above, input data are joint sequences of peptides (left, lighter color) and of TCR (right). Background sequences are obtained through mismatch
pairing. Column (b): The generative models produce putative binding pairs of peptide and TCR sequences. Column (c): Supervised classifier trained to carry out TCR-epitope
binding predictions.

• Restricted Boltzmann Machines (RBMs), two-layers
architectures extracting latent features from data;

• Bidirectional Encoder Representation Transformer
(BERT)-like architectures trained over CDR3β sequences
to learn their grammatical structure.

For peptide-specific predictions we separately train a model
for each epitope, while for pan-specific predictions a collective
model encompassing all the epitopes receives as input peptide
and CDR3β data separated by a “&“ token (e.g. GILGFVLT
& CASSLDGTVQYF). The idea of using unsupervised
generative model for data augmentation to mitigate imbalance
or data scarcity has been recently proposed in a variety of
settings (19, 21–26), as well as already successfully applied
to biological-sequences related tasks, e.g. (27).

Second, we use the natural and generated data to train a
model for TCR-epitope binding predictions. Models existing
so far range from random forests (28, 29) to neural network
architectures of different complexities, e.g. convolutional
neural networks (8, 30), long-short term memory networks
and autoencoders (31, 32); unsupervised algorithms have also
been employed, such as SONIA (33) and its more precise
variant soNNia (34), diffRBM (35), which implements transfer
learning within Restricted Boltzmann Machines, and, in
the context of Large Language Models, Transformers-based
approaches (36–38).

Hereafter we resort to a one-dimensional convolutional
neural network (CNN) architecture, trained over positive
(natural and generated) and negative sequences – once balance
has been restored between classes. The architectures for
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peptide- and pan-specific models are slightly different, see
Figure 2 and are detailed in Methods. Last of all, the
predictive power of the model is tested over its ability to
discriminate positive against negative CDR3β sequences (the
in-sample test set) or against other new peptide-specific
CDR3β (the out-of-sample test set).

3. Peptides-specific models for TCR binding predic-
tions

Sources of imbalance for peptide-specific models. We col-
lected from the IEDB database (10) the sequences of CDR3β
with specificity to a set of different epitopes, listed in
Table 1. Background bulk repertoires correspond to CDR3β
sequences sampled from cohorts of healthy donors and are
randomly sampled from the entire datasets in (39, 40). As
anticipated in the introduction, the assembled dataset suffers
from imbalance between peptide-specific CDR3βs and the
large abundance of bulk unlabelled data. In addition, some
epitopes (e.g. GLCTLVAML, LLWNGPMAV, YLQPRTFLL)
have thousands of known CDR3β binders, while others have
hundreds of positively tested CDR3βs only, which results in
further imbalance between the epitope-associated classes.

To avoid misleading predictions due to imbalance biases,
we balance the training set in such a way that all classes are
equally represented (Figure 2). To evaluate performances in
a fair way, we consider different metrics over a balanced test
set containing all classes in the same proportion in order to
factor out any source of bias. We use ACC and AUC metrics
to assess our performances (Methods).

Epitope Sequence
M158-66 from influenza A virus GILGFVFTL
peptide from Yellow Fever virus LLWNGPMAV
BMLF1280-288 from Epstein-Barr virus GLCTLVAML
peptide from Spike protein S269 of SARS-CoV-2 YLQPRTFLL
MART127-35 from Melanoma cancer ELAGIGILTV
SEC24A from Melanoma cancer FLYNLLTRV
TKT-R438W from Melanoma cancer AMFWSVPTV
pp50 from human cytomegalovirus CMV VTEHDTLLY
NS31436-1444 from Hepatitis C virus HCV ATDALMTGY

Table 1. List of the epitopes selected to collect CDR3β specific
sequences in order to form the database used in the analysis of
Section 3.

In-sample predictions benefit from data augmentation with
generative models. We present below results for a case where
the predictive model has to learn three different classes of
peptide-specific receptors (labelled with p1, p2 and p3) and
bulk receptors (referred to as b). To assess if an unsupervised
model that generates CDR3β sequences to augment the
peptide-specific classes size can yield better performances
than naive undersampling of each CDR3β class down to the
lowest available class size, we consider two different strategies
to restore balance in the dataset:

• A first protocol, in which data are unaltered and each
class size D is given by

D = min [D(p1), D(p2), D(p3)] ; [1]

i.e. data points in over-represented classes are randomly
under sampled down to the common size D.

• A second protocol, in which small-size classes are
augmented using the generative model pipeline up to a
target size G common to all classes, with G ≤ 10 D for
computational reasons.

Notice that, for both protocols, the bulk class size D(b),
which is orders of magnitude larger than any D(pi), is
randomly under sampled to match the final common size of
the positive data. We use as generative framework both a
RBM- and a BERT-based sampling strategy, to assess the
effects of balancing through data augmentation regardless of
the generative model. These data are then used to train our
classifier. Notice that the last layer of the CNN architecture,
which outputs the binding predictions, is designed to have as
much units as the number of classes, i.e. of peptide labels
plus the background label, with softmax activation function.
This allows us to carry out multi-class classification, as the
network is able to predict specificity towards more than one
target.

Figure 3 shows results for multiple experiments related
to different triplets of peptides-specific CDR3β sequences,
confirming that the quality of predictions increases with the
pipeline described in Figure 2a. In particular, the gain in
performance is larger for multiclass experiments involving
triplets of peptide-specific CDR3β where one (or more) class
contains few sequences, e.g. D(p1) ≪ D(p2), D(p3). For
example, experimental data for the epitopes AMFWSVPTV,
VTEHDTLLY and GLCTLVAML have relative sizes 1.4% −
4.1% − 94.5%, which introduces a strong bias towards
the GLCTLVAML-specific CDR3βs. Restoring balance by
generating new AMFWSVPTV-specific CDR3β sequences,
we are able to obtain a 20% performance increase compared
to restoring balance by undersampling only. This gain is
milder when pepitde-specific classes have more sequences
and are more balanced among each other, as the case of
epitopes ELAGIGILTV (9%), LLWNGPMAV (21%) and
GLCTLVAML (70%) shows. Relative abundances of the
initial dataset for the combinations reported in Figure 3
can be obtained from the absolute class sizes reported in
Table S2. Notice that the gain in performance resulting
from balancing is generally more marked for ACC than for
AUC, as already seen in the wider plateau of the latter in
Figure 1b. Being AUC an average measure of performance,
it is however less informative about the quality of prediction
of the best-threshold classifier than ACC.

Notice that, to obtain the increase of performances we
observe in Figure 3, it is crucial to balance the dataset with
generative models powerful enough to capture non-trivial
features in the distribution of the data, a task that both
RBMs and BERT-like models are able to do; for more on this
aspect, see SI Section S.4.

Performances can also be assessed in an out-of-sample
setting, in which the test set includes sequences binding
to unseen epitopes. As expected, model accuracy strongly
depends on the similarity between the out-of-sample and
training data distributions, see SI Section S.2.

4. Pan-specific models for TCR-epitope binding pre-
dictions

Pan-specific models, which take as inputs both the CDR3β
and the peptide sequences, have gained interest, as they offer

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2024. ; https://doi.org/10.1101/2024.07.10.602897doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.10.602897
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0.8

A
U

C
Baseline Undersampling

AMFWSVPTV
VTEHDTLLY
GLCTLVAML

ELAGIGILTV
GLCTLVAML
LLWNGPMAV

FLYNLLTRV
VTEHDTLLY
GLCTLVAML

AMFWSVPTV
ATDALMTGY
YLQPRTFLL

VTEHDTLLY
GLCTLVAML
LLWNGPMAV

0.0

0.2

0.4

0.6

A
C

C

BERT – based gen. model RBM – based gen. model

Fig. 3. In-sample performances of peptide-specific models. AUC and ACC
scores of the predictive models for a multiclass classification task involving three
peptides-specific sets of CDR3β and background CDR3β sequences, evaluated
over a balanced test set of sequences of the same classes (in-sample case). We
compare performances for different training dataset, whose balance is restored
through undersampling solely, or through generating new CDR3β sequences via
an RBM- or BERT-based generative architecture. The baseline scores refer to an
imbalanced training dataset, whose composition can be derived from the class sizes
of each epitope as reported in Table S2; 250,000 background CDR3βs are used.
Results confirm the benefit of both restoring balance in the training dataset and
enlarging the peptide-specific CDR3β space through generative models. Dashed
black lines indicate random performance levels.

the possibility to identify binding patterns across different
epitopes, and could potentially be used for binding predictions
with rare or even novel peptides.

Sources of imbalance for pan-specific models. The dataset
used to train and test pan-specific models is taken from (41),
and contains both positive and negative interacting pairs of
CDR3β and peptide sequences spanning 118 different epitopes.
Natural data are taken from publicly available sources, namely
IEDB, VDJdb, McPAS-TCR, MIRA (42, 43), and from 10X
Genomics assays. Among them we only retain peptides
with at least 150 positive binder CDR3β representatives
to obtain a sufficiently large dataset for training both the
generative and the classifier models. This results in a total of
122,334 experimentally tested pairs of interacting CDR3βs
and peptide sequences, and a collection of 405,176 non-
interacting sequence pairs. These negative examples consist
for a minor part of experimentally assessed ones, while a large
part of them is obtained by random mismatching of CDR3β
and peptide sequences from the positive class; we further
enlarge the negative set by pairing peptides with CDR3βs
randomly chosen from the previous bulk repertoire. The
resulting dataset is plagued with two sources of imbalance:
(i) positively interacting pairs are strongly under-

represented compared to negatively interacting pairs
– we refer to this as class-level imbalance;

(ii) within the positive class, few peptides are strongly over-
represented compared to others – we refer to this as
group-level imbalance (44, 45).

Notice that there is possibly group imbalance within the
negative class based on the different ways to assemble negative

sequence pairs through mismatches. We qualitatively observe
that this imbalance has minor effects on performances and
ignore it in the following.

Comparison of peptide- vs pan-specific generative models.
Data augmentation can be done in two ways.
(i) By analogy with the peptide-specific case studied above,

we should design a generative model that is trained on
varied peptide and CDR3β sequences and produces new
pairs. Intuitively, as the number of distinct CDR3βs
dwarfs the one of epitopes, we expect a pan-specific
generative model to first learn how to cluster groups
of TCR sequences based on their epitope labels, then
to learn the CDR3βs distribution within each group.
However, such a model could suffer from group imbalance,
and would learn effectively only the most-represented
instances of epitopes and TCRs.

(ii) An alternative approach consists in training, separately,
a generative model for each peptide-specific class of
CDR3βs, so that the group imbalance present in the
dataset is completely factored out. This second approach
is however computationally demanding, as its running
time increases linearly with the number of epitopes. In
addition, overfitting could be an issue for peptide-specific
groups with very little data.

As for the classifier, we closely follow the CNN architecture
used in (8), where two convolutional layers process separately
the CDR3β and the peptide sequence: the resulting feature
vectors are then concatenated to ultimately output the
positive or negative binding prediction, see Methods.

To assess the impact of group imbalance and the perfor-
mance of the two approaches above, we first build an auxiliary
dataset from the pan-specific dataset in (41) by retaining only
CDR3βs binding to five selected epitopes (AMFWSVPTV,
ELAGIGILTV, FLYNLLTRV, GLCTLVAML, LLWNGP-
MAV), for a total of 9, 000 datapoints. Figure 4a reports
AUC and ACC scores obtained over each peptide and over the
aggregate dataset comprising all five peptide-specific groups
when CDR3β sequence data have been balanced with one
global pan-specific generative model or with multiple peptide-
specific ones. In the latter case, we have enlarged the CDR3β
sequence space of the two most under represented group
epitopes – AMFWSVPTV and ELAGIGILTV. We observe
that predictive performances are comparable between the
two approaches, suggesting that the pan-specific generative
approach is not heavily impacted by group imbalance, and is
capable of adequately clustering and modeling each peptide-
associated group of TCR sequences.

This robustness stems from our sampling protocol, in
which the generative model is carefully initialized with
training sequences (Figure 2). Upon sampling, the landscape
defined by the inferred probability distribution is explored
in the proximity of peptide-specific region associated to the
initial sequence. This procedure prevents the generative
model from jumping towards other peptide-specific groups,
which can have much stronger overall weight due to group
imbalance. Gibbs sampling schemes that start from randomly
chosen sequence pairs preferably falls within such groups, e.g.
peptides with less than 250 binders in the training dataset are
on average generated four times less frequently than peptides
with more.
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TCR-peptide binding predictions benefit from data augmen-
tation with generative models. Based on the results above,
we now probe the benefit of restoring balance through the
use of a pan-specific generative model, which we train over
the full dataset (41), including abundant peptide-specific
groups of CDR3βs. We then generate new peptide-specific
sequences through Gibbs sampling initialized with natural
sequences. The model takes as input peptide and CDR3β
pairs of sequences and proposes random mutations across
the sequence pair to sample new ones. We observe that
only a small fraction (∼ 3%) of generated data shows
mutations across the peptide sequence: data augmentation
overwhelmingly consists in the production of new CDR3β
attached to the same peptides as in the training dataset.

An important hyperparameter is the size of peptide-
associated groups after generation of new TCR sequences.
In practice, we decide to set a threshold group size G for
data augmentation, above which peptide-specific classes are
deemed as sufficiently populated and are thus not enlarged
through the generative model. Groups having less than G
datapoints are all enlarged up to the threshold value. G
cannot be chosen arbitrarily large as the generation of new
data points is computationally expensive, and limited by the
quality of training data and of the unsupervised model.

Once all positive data have been generated, we restore
balance at class level by undersampling negative peptide-
CDR3β pairs. Undersampling is randomly performed within
each group, so that we are guaranteed that the dataset
contains, on average, equal numbers of positive and negative
pairs for each group, a requirement that we have observed to
be important performance-wise.

We show in Figure 4b that data generation leads to increase
of performance for a vast majority of the peptides involved
in the dataset. Even peptide-specific groups that have not
been directly enlarged (red circles) can show a gain, arguably
because the CNN architecture is leveraging the information
of generated peptide and CDR3β pairs to transfer learning
across all the different peptide groups. The scores also show
that the generative model is particularly promising for heavily
under represented groups (small triangles), with performance
gains up to 20%.

Out-of-sample TCR-peptide binding performances. We now
ask whether our pan-specific model generalizes well on unseen
epitopes, i.e. is able to capture the general properties
underlying the binding process of receptors to antigens. Out-
of-sample analysis, in which test data is sampled from an
external distribution, can be very challenging as the model
has not explicitly learnt any feature of those data. We expect
performances to drop consistently, depending on how much
the out-of-sample data are distant from seen data in feature
space. As out-of-sample test set we aggregate all the peptide-
specific CDR3β sequences excluded from the training set
during data pre-processing because they were strongly under
represented (< 150 sequences per group); yet, we retain only
group that have > 20 CDR3β sequences to have significant
statistics.

Performances for this hard out-of-sample setting are
unsurprisingly worse than in the in-sample case, in agreement
with previous studies (46). Nonetheless, we observe a clear
correlation between the scores and the similarity between
the unseen epitopes and the ones in the training data, see

Table 2. To study the dependence of performance upon this
similarity, we cluster the CDR3β sequences based on the
Levenshtein distance of their target epitope to the closest
epitope in the dataset. For large Levenshtein distance (10 -
11), our classifier behaves not better than a random one.

Improving out-of-sample classification is crucial for the
task of TCR-peptide binding predictions, as information
about the binding properties of new antigens are rarely
available. Here, we explore the possibility to predict antigen
binding towards unseen epitopes, exploiting the pan-specific
generative model (trained on the in-sample dataset) and a
partial knowledge of the out-of-sample dataset (the sequence
of the new epitope). In practice, we use the generative
architecture to sample CDR3βs binding to the target epitope;
then, we include these data in the training set and test the
performance on the natural out-of-sample binder sequence
data.

As a proof of concept, we evaluated this procedure on 8
different epitopes, whose natural CDR3β sequence have to
be distinguished from other CDR3β with a different out-of-
sample specificity (see Table 3). We observe an improvement
of performances for epitopes at small distance from their
in-sample counterparts.

Minimal model of out-of-sample classification of TCR-peptide
binding pairs. To better understand how the properties of
out-of-sample data impact binding predictions, we repeat this
analysis on controlled, synthetic data. We resort to dimeric
lattice proteins (LPs) compounds, whose native folds are
shown in Figure 5a. LPs are synthetic proteins defined as
self-avoiding paths over a 3×3×3 lattice cube, whose vertices
carry the 27 amino acids. The two LP structures in the dimer
represent, in order, the epitope and the TCR.

Following (47), we build dimeric LPs starting from single
monomers running Monte Carlo (MC) evolution, and collect
sequence data for multiple dimeric LPs. Spanning multiple
dimeric structures, by changing the conformation of the self-
avoiding paths on the lattice, allowed us to model different
group specificities; details in Methods. We collect MSAs of
binding and non-binding pairs constituting the two classes in
our dataset, and balanced both at class and group levels. A
CNN classifier similar to the one introduced for natural data
above is then trained over these data and reaches perfect
classification in discriminating binding vs non-binding pairs –
regardless of the group specificity, showing the simplicity of
this in-sample task.

To assess out-of-sample performances we produce an
additional dataset of binding pairs as follows. For each group
of dimers in the training dataset, we collect sequence data
corresponding to its closest dimer, i.e. with highest structural
similarity. This dataset is referred to as close out-of-sample,
as we expect it to be very close to the training data in
the feature space of the classifier. Similarly, we repeat the
procedure with randomly picked dimers, which will share few
similarity with the dimeric structures defining the training
data; we label such data as not close out-of-sample. The
structural similarity based on the ground truth folding scores
is reported in Figure 5b: for all in-sample binding pairs
sequences we plot scores for the native, for close and not close
dimer structures; the orange distribution is effectively closer
to the green one than the blue one, confirming a stronger
structural similarity.
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In Figure 5c we report the tSNE 2d projections of the
embeddings of the supervised architecture trained over the
binary classification task for binding (green) versus non-
binding (red) pairs of sequences, which allows us to visualize
the neat decision boundary, giving very high ACC = 0.99.
Within this feature space, on top of green and red points, we
project out-of-sample data points for the close and not-close
cases. As expected, the latter is harder to classify as they
share less features with the training data of the model (ACC
= 0.98 and ACC = 0.82, respectively). Therefore, even in the
framework of artificial data, we observe that out-of-sample
predictive performances depend on the degree of similarity
with the in-sample dataset.
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Fig. 4. Pan-specific predictive model results. a) TCR-peptide binding predictions
with multiple peptide-specific generative models trained separately and with one pan-
specific generative model trained over the entire dataset. We observe comparable
performances for the AMFWSVPTV enlarged space and slightly worse performances
with the pan-specific approach for the ELAGIGILTV one. The scores over the
aggregate dataset are slightly better with the pan-specific generative approach.
Notice that, through the peptide-specific generative architecture is equivalent to
the one in the previous section, scores over similar epitopes differ from fig. 3
as the supervised architecture is pan-specific and performs binary classification.
b) Differences in AUC and ACC scores when balance is achieved through
undersampling of data only (no generation) or with data augmentation too. In
the latter case, new CDR3β sequences were generated for under-represented
groups of peptides only (triangular dots). Dot sizes are proportional to the raw group
size of natural sequence pairs in the dataset. Here, G = 400 (for more details on
the choice of this threshold, see SI Section S.3).

5. Discussion

In this work we have introduced a framework that combines
the use of unsupervised and supervised computational ap-
proaches to achieve reliable predictions of TCR specificities
and TCR-epitope binding properties. Our pipeline relies on
a two-step procedure, where we first leverage unsupervised
network architectures to learn the probability distribution
of peptide-specific CDR3β sequences and then use them
to generate new informative sequence data. Second, the
generated data allow us to train supervised model for the
final predictive task over balanced datasets, avoiding biases
induced by class imbalance. We emphasize that restoring
balance within the dataset by augmenting the size of the

Dist. AUC σ(AUC) ACC σ(ACC)
1-3 0.68 0.05 0.65 0.05
4-6 0.63 0.10 0.61 0.06
7-9 0.62 0.09 0.60 0.07

10-11 0.49 0.20 0.52 0.11

Table 2. Pan-specific prediction scores for out-of-sample tasks.
The AUC (second column) and ACC (fourth column) scores are
averaged across many out-of-sample epitopes, with balance restored
through pan-specific generation. Out-of-sample CDR3β are grouped
according to the Levenshtein distance of their associated epitope
to the closest one in the training dataset (first column). Predictions
worsen as peptides get further away from the ones in the training
dataset. The third and fifth columns show the standard deviations of
the scores.

Peptide d [in] AUC [u] AUC ACC [u] ACC
LPRWYFYYL 1 0.61 0.72 0.58 0.64
KRWIIMGLNK 1 0.48 0.54 0.50 0.52
QYIKWPWYI 2 0.53 0.59 0.52 0.57
GTSGSPIIDK 2 0.56 0.60 0.53 0.57
KLSALGINAV 4 0.34 0.45 0.39 0.48
IMDQVPFSV 4 0.56 0.49 0.55 0.50

Table 3. Out-of-sample performances evaluated with AUC and ACC
metrics across a test set composed of wild type binders to the
target epitope and CDR3β sequences sampled from other unseen
epitopes. For each prediction, we separately train a model with an
enlarged training set containing also the synthetic binder of the
target out-of-sample epitope. The columns labeled with [u] refer to
scores obtained balancing the training set by only undersampling
the negative class, for comparison. The column d[in] represents the
Levenshtein distance from the closest in-sample epitope, showing
that scores degrade when moving away from in-sample data.
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Fig. 5. Out-of-sample predictions on synthetic LP dimers for pan-specific case.
a) The two structures of the proteins making the dimer, with amino acids defining a
strong binding interaction, represented by the dotted lines. b) Histogram of single
structure folding scores (the lower the better), computed according to the ground
truth of the model (see Methods, Equation (3)). In practice we take MSA of binding
sequences used for training and compute the folding scores in their native structure
or as if they are in an out-of-sample close structure or not close structure. The three
distributions confirm the vicinity of the sequence data orange structures to the green
ones, compared to blue ones. c) tSNE visualization of in-sample training data (binder
and non binders, green and red respectively) and out-of-sample hold-out data (close
and not close structures binders) over the embeddings of our CNN architecture.
In this layer the classification is linear and we can see a clear decision boundary
separating green and red data points. Accuracy on in-sample data is ACC = 0.99.
The close out-of-sample data are similar to training data, hence the model performs
well on these ones (ACC = 0.98); conversely, it gives poorer performances on the
not close out-of-sample (blue data points, ACC = 0.82).

under-represented positive data class through generation
yields better performances than by simply undersampling the
negative, over-represented class. The gain in performance is
found not only for in-sample data, but also for out-of-sample
tests. In this latter situation, the quality of predictions
however decreases with the dissimilarity between the tested
epitope and the ones present in the test set. This effect, and
more generally the reasons why restoring balance improves
classification performances, can be geometrically interpreted
in the feature space of the classifier – see SI Section S.5.

The proposed pipeline resorts to unsupervised learning
to balance the training set of a supervised classifier. A
natural benchmark for performance is the direct use of the
unsupervised model alone to classify the data. By fixing a
threshold on the score that the model assigns to test sequences,
measuring how likely they are sampled from the distribution
of the positive data used for training, we may obtain
predictions for class membership from the unsupervised
model alone. This ‘unsupervised classification’ procedure
generally yields worse generalization results than the full

pipeline proposed here, as reported in SI Section S.1. The
decision boundary obtained by fixing a threshold on the score
of the unsupervised model, which is trained on positive data
only, does not coincides with the surface separating positive
and negative features in sequence space, see Section S.5.

Restoring balance in the data is crucial to improve
predictive power not only when one designs peptide-specific
models, a case in which the imbalance is present at class level
only, but also for pan-specific models, for which the amount
of data associated to each epitope may largely vary, and some
peptide are heavily under–represented. Restoring balance
between the different epitope groups via generative models
can be done with peptide- and pan-specific generative models.
Though we have shown that performances are comparable
with the two approaches, we believe that our conclusion
is dependent on the number and sizes of epitope groups
involved in the analysis, as it is clearly harder to learn
probability distributions of peptide-specific classes with few
known CDR3β binders. An alternative approach could be
that of combining peptide- and pan-specific models not only
for the supervised predictive task – as already proposed in
(48) – but also for data generation; in this way, a limited
number of generative models would be trained separately over
the most abundant peptide-specific classes, while a single
generative model would be trained over peptide and CDR3β
pairs of sequences. Depending on the peptide, one of the
two generative models could then be adopted. Furthermore,
the effect of group imbalance could be reduced introducing a
re-weighting factor for each group in the loss function of the
generative model during training – inversely proportional to
the group size.

The training data used in this study for peptide- and pan-
specific models have been collected from publicly available
databases, which curate and provide T-cell receptor sequences
and their cognate targets published in literature. Despite
recent advantages and efforts to make available also negative
assays of TCR-epitope bindings, such resources remains
biased towards positive interactions, as negative interactions
are rarely reported in experiments. To obtain negatively/non–
interacting pairs of sequences practitioners resort to various
strategies, including the reshuffling of pairs of epitopes
and CDR3β. However, recent works have shown that the
production of negative data may induce biases and impact
the predictive power of models (15, 49). An alternative
approach for obtaining negative data could be the use
of antigen complexes with low binding affinity generated
by computational frameworks intended to design synthetic
lattice-based receptor (50, 51). Together with the increasing
amount of available negative assays, we believe that these
studies will contribute to better understand and limit the
sources of biases stemming from negative samples within the
context of TCR-epitope binding analysis.

In conclusion, our results demonstrate the benefit of
reducing imbalance for both peptide– and pan–specific models,
while suggesting to be more important when there is an
heavy imbalance in the initial dataset of natural sequences.
Preprocessing the dataset to restore balance is effective
across multiple strategies, ranging from simple undersampling
of abundant sequences to the generation of new peptide-
specific CDR3β sequences with unsupervised architectures,
including energy-based models and Transformers. The
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robustness of these gains suggest that even better TCR
specificity predictions could be achieved with more powerful
generative models and/or hyperparameter optimization. For
instance, our learning pipeline could be easily extended by
including the possibility to feed CDR3α chains, CDR1 and
CDR2 sequences or MHC class information, likely leading to
performance improvement as shown in (8, 30). Similarly,
better performances could be reached by simultaneously
training the generative and the classifier models, rather than
one after the other. In addition, to study the impact of the
training set composition on the performances alone, we did
not fine-tune hyperparameters and trained all our models
with the same number of total iterations over the batch, i.e.
by rescaling the epochs according to the training set size.

To end with, let us emphasize that our generative models
allow for the possibility of producing new, putative CDR3β
sequences with desired binding specificity that could be tested
experimentally. Due to its methodological simplicity and
flexibility, our learning framework is not limited to the context
of T-cell receptors specificity predictions, and could be applied
to other sequence–based computational problems, where
heavy imbalance impedes the proper training of predictive
models (e.g. (52–55)).

Materials and Methods

Datasets collection. Supervised and unsupervised models developed
in this work have been scored using multiple type of synthetic and
real data. In all cases – after preprocessing – positive and negative
data were merged together in a final dataset with a proportion
ρP :ρN that can be tuned. The dataset was then split into three
parts for training, validation and test. Subsampling from the
previous test set, we also construct a balanced test set having
the same numbers of positive and negative examples. We refer to
performance on the latter set as in-sample performance. We then
assess model predictions on unseen (balanced) examples to define
out-of-sample performance.

We provide below details on data collection and preparation
for synthetic and real data.

Synthetic Lattice Protein dimer data. In this work we consider
Lattice Proteins (LPs) as a fully controlled setting, where the
ground truth distribution of data is known and its properties
are tunable ad hoc. LPs consist of a computationally tractable
model introduced to study the folding and binding properties of
proteins (56, 57). A LP monomer is defined as a self-avoiding
path over a 3 × 3 × 3 lattice cube, whose conformation defines a
structure S. There are N = 103, 406 distinct structures (up to
global symmetries) on the cube. The probability that a sequence
v of L = 27 amino acids folds into structure S is

Pnat(S|v) =
e−E(v|S)∑
S′ e−E(v|S′) , [2]

where the sum runs over a representative subset of all distinct
structures. The energy of the sequence in a structure, E(v|S), is
given by

E(v|S) =
∑
i<j

cS
ij EMJ(vi, vj), [3]

where cS is the contact map of the structure (cS
ij = 1 if i, j are

in contact, cS
ij = 0 otherwise) and EMJ is the Miyazawa-Jernigan

energy matrix, a proxy for the effective interaction energy between
pairs of amino acids.

Sequence data for LP dimers are obtained from (47), where
two monomer sequences v1, v2 – folded in, respectively, structures
S1, S2 – form a dimeric complex via the interaction energy

I(v1, v2|S1 + S2, π) =
∑
i<j

c
(S1+S2,π)
ij EMJ(vi, vj), [4]

where the sum runs over all sites of both structures. The index
π in Equation (4) labels a specific orientation of the interaction,
see (47). In analogy with Equation (2), the probability that the
sequences v1, v2 fold into the dimer S1 + S2 is

Pint(π, S1 + S2|v1, v2) =
e−I(v1,v2|S1+S2,π)∑
π′ e−I(v1,v2|S1+S2,π′) , [5]

where the sum runs over all possible orientations.
Given two structures S1, S2, the authors collect sequences

through MCMC dynamic by accepting or rejecting a mutation at
each evolution step based on the total probability

P ∝ Pnat(S1|v1)Pnat(S2|v2)Pint(π = 0, S1 + S2|v1, v2). [6]

The MSAs are collected at steps t = 0, t = 100, t = 500 and
represent non binder, weak and strong binder dimers used in
this work. We refer the interested reader to (47) for an extensive
presentation of the LP model and details on how to obtain
sequence data. In particular to generate the synthetic dataset
used for the pan–specific model we select 12 pairs of structures
and for each of them collect an MSA of binding and non binding
sequences with the same length to ensure balance. The pairs
of structures compose the dataset used in this work have the
following ids 1100 + 1701, 249 + 7801, 2789 + 7511, 333 + 794, 3412 +
9422, 456 + 259, 514 + 3894, 5809 + 6682, 9432 + 8754.

The out-of-sample data for close structures is collected by first
finding the closest structures to those used in the in-sample dataset
by minimizing the mean energy in Equation (3) over the in-sample
binder MSA across all the structures available in (47, 58). We then
generate the MSA for the selected close structure pair (2237+304),
and this constitutes the close out-of-sample dataset. Next we pick
a random pair of structures and collect a MSA that will be our
not close out-of-sample dataset.

TCR-peptide binding data. Sequence data for TCR-peptide predic-
tions were retrieved from the Immune Epitope Database (IEDB)
as of June 2023, filtering the Database entries as follows. We focus
our attention on human host immune response and set the pMHC
restriction to the HLA-A*02:01 complex, limiting the peptide
length to 8 − 11 amino acids. Paired CDR3β-epitope sequences
were thus identified as those for which a T-cell assay was reported
‘Positive’ or ‘Positive-High’ and never ‘Negative’. Background
sequences of CDR3β considered as those non-self reactive are taken
from the database assembled by (34), which merges together (i)
unique clones from the 743 donors of the cohort in (39) and (ii) the
dataset of CDR3β sequences from healthy donors in (40). The full
dataset is then sub-sampled at random for computational purpose
and we retain 106 background sequences. Whenever sequence are
fed into the RBM learning, they are required to have the same
input length. Therefore, CDR3β sequences are aligned with an
Hidden Markov Model (HMM) using as alignment profile the one
built in (59). Aligned CDR3β sequences have fixed length of 20
amino acids. To train the supervised model with RBM-generated
sequences we drop all the gaps inserted by the alignment procedure,
as our deep classifier can handle sequences of different lengths.

Unsupervised generative models. Generally speaking, unsupervised
machine learning aims to learn an energy landscape by inferring
parameters of a user-defined probabilistic model Pmodel over the
data presented (in our case, the peptide specific CDR3β sequences).
The model is trained (or fine-tuned) separately over each class
of peptide specific receptors and is then asked to generate new
sequences compatible with real ones by sampling from the learnt
probability landscape.
To generate new CDR3β sequences we make use of Restricted
Boltzmann Machines (RBMs) (35, 60) and of Large Language
Models (LLMs), specifically we use architectures based on Bidirec-
tional Encoder Representations from Transformer (BERT) adapted
to handle CDR3β sequences (37).

Restricted Boltzmann Machines. RBMs are bipartite graphical
models including a set of L visible units v = (v1, · · · , vL) and
M hidden (or latent) units z = (z1, · · · , zM ). Only connections
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between visible and latent units are allowed through the interaction
weights wiµ. RBMs define a joint probability distribution over v
and z as the Gibbs distribution

P (v, z) =
1
Z

exp

{
L∑

i=1

gi(vi) −
M∑

µ=1

Uµ(zµ) +
M,L∑
µ,i

zµwiµ(vi)

}
,

[7]
The joint probability above is specified by a set of parameters whose
values are inferred from the data (here the CDR3β sequences).
They consist of i) the set of single-site biases gi’s acting on visible
units that capture the amino acid usage at each sequence position;
ii) the potentials Uµ’s acting on hidden units, here assumed to
have dReLU shape (60), and iii) the set of weights wiµ coupling
the hidden and visible layers.
The probability of data P (v) is defined as the marginal of the joint
probability over the data itself

P (v) =
∫ M∏

µ

dzµP (v, z). [8]

All the parameters in the model are learnt by maximizing the
marginal log-likelihood

1
∥D∥

∑
v∈D

log P (v) = ⟨log P (v)⟩D, [9]

where D is our dataset and ∥D∥ its size. Due to the nature of
RBMs, all data needs to have the same dimension to be accepted:
in practice, we align the CDR3β receptors before feeding them
into the model.
Let us define the RBM energy as minus the exponential term
present in the joint probability in Equation (7)

H(v) = −

(
L∑
i

gi(vi) +
M∑
µ

Γµ(Iµ(v))

)
, [10]

where we introduced the shorthand notation Iµ(v) =
∑

i
wiµ(vi)

and Γµ(I(v)) = log
∫

dz e−Uµ(z)+hI(v). For a generic parameter
θ = {gi(vi), wiµ(vi), Uµ(z)} the rule to infer its value is given
by the gradient-ascent equations stemming from log-likelihood
maximization,

∂

∂θ
⟨log P (v)⟩D =

〈
∂

∂θ
H(v)

〉
D

−
〈

∂

∂θ
H(v)

〉
m

, [11]

where ⟨·⟩m stands for the average over the model, ⟨u(v)⟩m =∑
v P (v)u(v). In addition, regularization terms can be added to

control the values of inferred parameters, by enforcing sparsity
on the weights through L1-penalty to avoid overfitting and by
controlling their norm through L2-penalty to prevent divergences.
In practice we resort to a L2

1 regularization scheme that consists
in adding to the log-likelihood of data the following penalty term

−λ

M∑
µ

(
L∑
i

∑
vi

|wiµ(vi)|

)2

, [12]

where λ sets the regularization strength. It has suggested that
such regularization also helps to improve the generative properties
of RBMs. The parameters used for learning of peptide-specific
CDR3β distributions are:

L = 20 number of visible units,
M = 20 number of hidden units,
Q = 21 size of the alphabet,
λ = 0.01 regularization strength.

[13]

Generative protocol for RBMs. Once the full set of parameters has
been inferred from the training data, we can sample from the
probability distribution P (v) to obtain new data (in our case,
new peptide specific CDR3β receptors). Here we sample using
Alternate Gibbs Sampling (AGS), which consists in alternatively

sampling from the RBM’s visible layer while keeping the hidden
layer fixed from P (v|z) and viceversa from P (z|v). The Monte
Carlo Markov Chain is initialized starting from sequence data in
the dataset and new sequences are collected after some steps of
thermalization to avoid sampling correlated data with real ones.

BERT-based architectures. Our generative model of peptide-
specific CDR3β sequences is based on the Bidirectional Encoder
Representations from Transformer model architecture (61).
Transformers models are build through a series of attention blocks
and feed-forward layers, whose aim is to capture interactions
across the input sequence through learning how strongly the
embedding of each token in the input is affected by the other
tokens (the context). Stacking multiple attention blocks allow the
model to learn complex structures within the embedding of the
input data, such semantic, causal and grammatical properties of
the data.
The model takes as input for training CDR3β sequences for the
peptide-specific case and pairs of peptide and CDR3β sequences
for the pan-specific case; the sequences are formatted via the
tokenizer retrieved from (37), which contains a total of 26 tokens
spanning the 20 amino acids and some special tokens, such as
the prefix and suffix token and the masking one. An additional
token & is included for the pan-specific case to model the peptide
– CDR3β separation in input data. Sequences do not need to be
aligned, and the inputs are padded with an attention mask. The
input tokens are thus padded through the embedding layer to get
a continuous representation vector of the data: such embedded
vector (together with a positional encoding vector that retains the
positional information of amino acids in the input sequence) goes
through the model attention blocks. The output feature vector
leaves in a L × 768 dimensional space, where L is the input length,
and is fed to a task-specific head for masked language modelling.

The training over our dataset is carried out performing masked
language modelling (MLM) objective, where we mask a fraction
of input token in the dataset and train the architecture to predict
the correct ones. This allows the model to learn the grammar
underlying the CDR3β and peptide sequence patterns. For the
peptide-specific case, the generative model is obtained by fine-
tuning the TCR-BERT model from (37) through few epochs
of MLM objective over the peptide-specific CDR3β data; this
leverages the transfer-learning ability of the model that has trained
over unlabelled TCR sequences to capture distinctive features of the
peptide-specific CDR3β sequences. For the pan-specific model, we
train the model from BERT weights over the full training dataset;
at variance with BERT model, we set the maximal positional
embbeding length allowed to 64, due to the shortness of sequence
data compared to text data.

For the (fine-)tuning procedure, given a TCR dataset M and a
masking pattern q̂, we minimize the following training loss

LMLM(M, q̂; θ) = −
∑

(i,r)∈q̂

log p(ai,r|q̂; θ), [14]

where θ is the set of all parameters in the model and (i, r) run over
the residue position and sequences, respectively. The conditional
probabilities p for each (i, r) are computed using the softmax-
normalized model output values - the logits - for each symbol in
the alphabet. For each input sequence, we mask 15% of amino
acids as done in the original training (61). All hyperparameters
during fine-tuning are the same as the ones used for training in (61).

Generative protocol for BERT-like models. Once the model has
been (fine-)tuned on the MLM downstream task, we leverage its
generative power following the iterative masking scheme proposed
in (62, 63) for protein sequences. In practice, each step of this
procedure works as follows:

(i) we randomly mask with probability q each entry of the
CDR3β sequence or we leave it unchanged with probability
1 − q. This defines a masking pattern q̂;
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(ii) we feed the masked sequence to the model and replace
masked entries sampling from the softmax (normalized)
distribution of the model logits at inverse temperature β;

(iii) we repeat steps (i) and (ii) for T times and then we store a
new sample sequence.

In practice, we set q = 0.2, β = 1 and T = 20 and we repeat this
scheme many times starting from the last configuration to obtain
the desired number of TCR sequences. At the end we merge all the
generated CDR3β and eventually drop duplicates: the remaining
samples constitute the new set of sequences that will augment
peptide specific sets.
Note that our protocol does not allow insertion or deletions across
the sequence, as only residues tokens can be masked: in this way,
the length distribution of training and generated data remains the
same.

Model architecture for TCRs supervised predictions. Generally
speaking, supervised machine learning model aims at finding the
best feature map that connects data properties to their label, based
on the observation data points (in our case, CDR3β sequences) in
the training data. Once the model has been trained on labelled
data, it can apply the feature map on unseen examples and classify
them as belonging to a specific class. A pletora of models – ranging
from simple to higher complexity architectures – can accurately
solve this task and many of them are widely implemented for TCR
specificity predictions. Here we use a specific architecture, but
we the results on restoring balance through generative models
of CDR3β are general and hold beyond the particular network
architecture.

We implemented a 1-D Convolutional Neural Network (CNN)
to make binary and multiclass predictions on TCRs specificity.
Our architecture takes as input raw CDR3β sequences and returns
a single value corresponding to the target class label assigned by
the model (i.e. if the shown CDR3β binds one of the epitopes or
it belongs to the bulk repertoires).
CDR3β sequences are first padded to a max length L = 30, then
translated into score matrices using the BLOSUM50 encoding
matrix with no gaps or special amino acids included, see (64).
Hence each sequence is mapped into a score matrix of size L × 20.
The encoded input is then fed into the network architecture,
consisting of five convolutional layers having 16 filters and different
kernel sizes {1, 3, 5, 7, 9}. The resulting feature vectors go through
a batch-normalization layer to reduce overfitting and are then
concatenated to pass through a dense layer with 16 hidden neurons.
An additional batch-normalization layer is applied and the resulting
16 dimensional feature vector is used to visualize the embeddings
constructed by the model starting from raw data. The final
classification is performed over such embeddings by feeding the
feature vector to a layer with a number of neurons equal to the
number of classes in the dataset and having softmax activation
function (for binary classification tasks, we actually use one neuron
and sigmoid activation function). We use the ReLU activation
function throughout the network.
Adam optimizer with learning rate η = 0.001 and categorical (or
binary) cross-entropy loss function are used for learning with a
batch size of 128 samples.

Performances are evaluated using accuracy (ACC) and Area
Under the receiver operating characteristic Curve (AUC) metrics
on balanced test sets, unless otherwise specified. The former is
defined as

ACC =
number of correctly classified test data

number of test data
. [15]

In the case of binary classification, the receiver operating char-
acteristic (ROC) curve is defined as the parametric curve in the
space False Positive Rate–True Positive Rate as a function of the
threshold γ used to assign the binary label to the output of the
sigmoid activation function of the readout layer. In the case of
multiclass classification, AUC is defined as a uniform average of the
binary AUCs of all possible combinations of classes (one-vs-one):

AUC =
1

c(c − 1)

c∑
j=1

c∑
k>j

[AUC(j|k) + AUC(k|j)], [16]

c being the number of classes.

Code and data availability. Code to reproduce the analysis in this pa-
per will be available at https://github.com/Eloffredo/TCRbalance.
Sequence data for TCR-peptide predictions are public
and were retrieved from the Immune Epitope Database
(IEDB) (10) as of June 2023 and from TChard (41), available
at https://zenodo.org/records/6962043; utilities to collect them
can be found in the above GitHub repository.

ACKNOWLEDGMENTS. We acknowledge funding from the
CNRS - University of Tokyo “80 Prime” Joint Research Program
and from the Agence Nationale de la Recherche (ANR-19 De-
crypted CE30-0021-01 to S.C. and R.M.). E.L. thanks Andrea Di
Gioacchino for interesting suggestions during the early stages of this
work and his help with the use of the alignment software of receptor
sequences. M.P. thanks Riccardo Capelli for discussions. The
authors thank Victor Greiff, Eugen Ursu and Aygul Minnegalieva
for comments and for the careful reading of the manuscript.

References
1. N Zhang, MJ Bevan, CD8+ T cells: foot soldiers of the immune system. Immunity 35,

161–168 (2011).
2. MJ Sim, TCRs and AI: the future is now. Nat. Rev. Immunol. 24, 3–3 (2024).
3. P Meysman, et al., Benchmarking solutions to the T-cell receptor epitope prediction

problem: IMMREP22 workshop report. ImmunoInformatics 9, 100024 (2023).
4. ZS Ghoreyshi, JT George, Quantitative approaches for decoding the specificity of the

human T cell repertoire. Front. Immunol. 14, 1228873 (2023).
5. A Weber, A Pélissier, MR Martínez, T cell receptor binding prediction: A machine learning

revolution. arXiv (2023).
6. Y Nagano, et al., Contrastive learning of T cell receptor representations. arXiv (2024).
7. P Dash, et al., Quantifiable predictive features define epitope-specific T cell receptor

repertoires. Nature 547, 89–93 (2017).
8. A Montemurro, et al., NetTCR-2.0 enables accurate prediction of TCR-peptide binding by

using paired TCRα and β sequence data. Commun. biology 4, 1060 (2021).
9. I Springer, N Tickotsky, Y Louzoun, Contribution of T cell receptor alpha and beta CDR3,

MHC typing, V and J genes to peptide binding prediction. Front. immunology 12, 664514
(2021).

10. R Vita, et al., The immune epitope database (IEDB): 2018 update. Nucleic acids research
47, D339–D343 (2019).

11. M Shugay, et al., VDJdb: a curated database of T-cell receptor sequences with known
antigen specificity. Nucleic acids research 46, D419–D427 (2018).

12. DV Bagaev, et al., VDJdb in 2019: database extension, new analysis infrastructure and a
T-cell receptor motif compendium. Nucleic Acids Res. 48, D1057–D1062 (2020).

13. N Tickotsky, T Sagiv, J Prilusky, E Shifrut, N Friedman, McPAS-TCR: a manually curated
catalogue of pathology-associated T cell receptor sequences. Bioinformatics 33,
2924–2929 (2017).

14. W Zhang, et al., PIRD: pan immune repertoire database. Bioinformatics 36, 897–903
(2020).

15. E Ursu, et al., Training data composition determines machine learning generalization and
biological rule discovery. bioRxiv (2024).

16. A Fernández, et al., Learning from Imbalanced Data Sets. (Springer Cham), (2018).
17. E Francazi, M Baity-Jesi, A Lucchi, A theoretical analysis of the learning dynamics under

class imbalance in Proceedings of the 40th International Conference on Machine Learning,
Proceedings of Machine Learning Research, eds. A Krause, et al. (PMLR), Vol. 202, pp.
10285–10322 (2023).

18. SS Mannelli, F Gerace, N Rostamzadeh, L Saglietti, Bias-inducing geometries: an exactly
solvable data model with fairness implications. arXiv (2023).

19. E Loffredo, M Pastore, S Cocco, R Monasson, Restoring balance: principled
under/oversampling of data for optimal classification in Forty-first International Conference
on Machine Learning. (2024).

20. L Deng, et al., Performance comparison of TCR-pMHC prediction tools reveals a strong
data dependency. Front. Immunol. 14 (2023).
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6. Supplementary Material

S.1. Unsupervised classification. The pipeline explained in Section 2 relies on the generative power of an unsupervised ML model trained
on the positive examples and used to augment and balance the dataset, successively passed to a supervised classifier for training. To better
understand how performances depend on the unsupervised and supervised steps, we report below predictions made by the unsupervised
model alone. For simplicity, we consider hereafter the case of binary classification. By fixing a threshold on the scores, we can discriminate
between positive and negative examples. This simple procedure is expected to be sub-optimal, as the unsupervised model is trained
on the positive class alone and has no knowledge about the distribution of negative examples, which is used only to fix the threshold
maximizing the accuracy on the two classes. Thus, a decision boundary based on the score of this model does not necessarily aligns with
the separating surface of the two classes (see Section S.5 for more details on the geometry of the classification problem).

In Figure S1, we report the histograms of the scores assigned by the unsupervised model trained on positive examples of different
peptide-CDR3β pairs, randomly chosen among the ones in Figure 4b. The threshold (gray dashed line) is fixed by maximizing the accuracy
on a validation set composed of positive and negative examples of the given peptide. Performances are consistently lower than the ones
obtained using both the unsupervised model (to augment the data) and the CNN (to classify).
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Fig. S1. Unsupervised vs. supervised classification. (Left) Histograms of the scores assigned by the unsupervised model to balanced test sets of in-sample epitopes; lower
perplexity corresponds to better score. The gray dashed line locates the threshold obtained by maximizing the accuracy of prediction on positive and negative data. Epitopes
in the top row are frequent ones and do not get enlarged during training of the supervised classifier. (Right) Comparison of the accuracy scores between unsupervised
classification only ([BERT]) and the full pipeline ([BERT+CNN]) in Figure 2 for the same peptides as in the left panel. Values in the column [BERT+CNN] can be obtained
from Figure 4b.

S.2. Out-of-sample TCR specificity predictions. Similarly to what done for the pan-specific framework in Section 4, we study out-of-sample
performances for single-epitope TCR specificity. Our peptide-specific model has learnt the key properties of CDR3β binding to a selected
epitope as reported in Section 3 and it remains to be seen to what extent such features can be transferred to predict binding towards other
target epitopes against bulk repertoires. We start by considering synthetic data.

Benchmarking on synthetic data reveals strong dependence of performance upon out-of-sample data distribution. We take data from (47),
where the authors built dimeric LPs starting from single monomers running Monte Carlo (MC) evolution at variable intra-dimer interaction
strengths (see Methods). We collect sequence data in the form of Multiple Sequence Alignments (MSA) at three steps during MC evolution,
namely at beginning, intermediate and endpoint of evolution: the MSAs will constitute non binder, weak binder and strong binder data,
respectively. We train a supervised model over strong and weak binder classes and use non binders as out-of-sample data, which are thus
closer to weak binders than to strong ones. We plot in Figure S2a the binding probability distributions for these three classes of binders.

The trained classifier achieve great performances on the in-sample test set for strong-vs-weak binders classification (AUC = 0.95) and
do even better for the out-of-sample strong-vs-non binder classification (AUC = 0.98). Performance are much poorer for the out-of-sample
weak-vs-non-binder classification (AUC = 0.69), as shown in Figure S2b; note that for this task we switched labels, i.e. weak binders are
presented as strong ones and non-binders are deemed as weak, otherwise we would get AUC = 0.31).

We display in Figure S2c the 2d projections of the embedded sequences in the last layer of our architecture (before linear classification)
using tSNE. The tSNE visualization shows that the predictive power of the model depends on the location of the out-of-sample cluster in
the feature space compared to the in-sample data. The out-of-sample sequence distribution has a large overlap with the one of weak
binders, which makes discrimination hard. Conversely, in this feature space, strong binders are well separated from the rest and hence the
decision boundary learnt over strong-vs-weak is efficient even against out-of-sample data.

Similar behaviour is observed on out-of-sample natural CDR3β. To assess if the results derived in the controlled framework of synthetic data
also holds for natural TCRs, we consider the epitope ELAGIGILTV, which is 2 mutations away from the primary epitope AAGIGILTV
expressed on the surface of Melanoma-cancer responsible cells (65). Our dataset includes 2,082 sequences of CDR3β experimentally
labelled as binders to this epitope. We train the CNN model to distinguish peptide-specific sequences from bulk ones. We then
select as out-of-sample sequences (i) CDR3βs that positively bind the epitope EAAGIGILTV, one mutation away from the wildtype
(WT) ELAGIGILTV; (ii) we also select CDR3β binding a very different peptide having Levenshtein distance 8 from our WT, namely
VQELYSPIFLIV. We expect that our model be predictive for out-of-sample specificity predictions for the first epitope and not for the
second one. Results confirm this guess with values of AUC equal to, respectively, 0.79 and 0.54. Similarly to the case of synthetic data in
Figure S2d, this difference in performance is visualized in Figure S3 by the distinct locations of the corresponding sequence distributions
in the feature space of the last embedding layer of our classifier.

S.3. Hyperparameter tuning in pan-specific models. In Figure 4b we show results for a specific value of the threshold size G, above which
peptide-specific classes are not augmented. The choice of the threshold value can affect the performances and it is task-dependent. Here,
we report in Figure S4 results of AUC scores before and after data augmentation through the pan-specific model has been applied.
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Fig. S2. Out-of-sample analysis on synthetic Lattice-Protein dimers. a) Densities of binding scores Pbind for strong, weak and non-binding compounds.
The y-axis is cut for visualization purpose, as "Non binder" compounds concentrates around zero score. b) Receiver Operating Characteristic (ROC) curves for in-sample
(Strong - Weak) and out-of-sample (Strong - Non binder and Weak - Non binder) test sets. The classification weak-vs-non binders has worst performances. c) tSNE
visualization of the embeddings (last feature layer) produced by our CNN architecture for in-sample test data (strong and weak binders) and out-of-sample hold-out data (non
binders). Classification is carried out from linear combinations of the embeddings of the input data points; better separation of clusters reflects higher model performances.

Epitopes AUC ACC
AMFWSVPTV – VTEHDTLLY – GLCTLVAML 0.57 0.55
ELAGIGILTV – GLCTLVAML – LLWNGPMAV 0.58 0.58
FLYNLLTRV – VTEHDTLLY – GLCTLVAML 0.57 0.55

AMFWSVPTV – ATDALMTGY – YLQPRTFLL 0.57 0.55
VTEHDTLLY – GLCTLVAML – LLWNGPMAV 0.58 0.58

Table S1. Performances scores for peptide-specific models with PM generative model. The supervised architecture is the same and it is
trained as in Figure 3 on the same datasets with balance restored via generation of new CDR3β samples.

Undersampling the populated classes is done down to size 5000 CDR3β sequences. As we can see, despite quantitative values depend on
G, the picture confirms the overall concept that generative methods of peptide-specific CDR3β sequences help specificity predictions,
particularly for under represented classes (small triangles).

S.4. On the choice of the generative model. Our learning framework is based on the idea that restoring balance through a combination of
undersampling the strongly over-represented classes and augmenting under-represented classes via generative models. We believe such
approach can yield better performances as the supervised network is provided with new informative peptide-specific CDR3β sequences;
yet, the quality of generated sequences is crucial to prevent a loss of information. To discuss this point, we benchmark our specificity
prediction performances with a simple model that requires zero training: a profile model (PM) that generates new CDR3β sequences by
independently sampling each site of the sequence based on the peptide-specific class sequence profile (see Figure S5). Since this model
captures only first-order statistics of the sequences we expect it to generate less informative CDR3βs and thus we end with poor specificity
predictions (see Table S1 for the scores obtained using this method for the cases reported in Figure 3 of the main text).
The quality of data generation is also based on the stringency of the Gibbs sampling procedure, i.e. how easily we allow the generative
process to accept random mutations. The degree of randomness in the sampling scheme is set by the temperature value β in the softmax
outputs of the model: rescaling the model logits by β, low values of β flatten the softmax output distribution so that amino acids mutations
are randomly accepted regardless from the underlying CDR3β distribution learnt. To visualize this effect, we take a peptide-specific
classification task and restore balance by generating random CDR3β sequences (see Figure S6); at some point (ρrand. > 50%) the random
sequences completely take over the CDR3β natural sequences and make the specificity prediction problem impossible to solve, yielding
random predictions.

S.5. Geometrical interpretation of restoring balance. Supervised architectures solve the classification problem through the learning of a
decision boundary in the high dimensional embedded feature space of input data. In this regard, achieving good performances means
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Table S2. List of peptide-specific classes in the dataset. We report sizes and imbalance ratio details on the peptide-specific classes defined
by peptide sequences in the TCR dataset of pan-specific models. Only few peptide-specific classes have more than 1% of CDR3β binding
sequences, causing heavily imbalance. Details refer to the dataset before training/test splitting.

Peptide sequence Class size IR (%) Peptide sequence Class size IR (%)
AELAKNVSLDNVL 1794 1.41 ALRKVPTDNYITTY 346 0.27
ALSKGVHFV 170 0.13 AMFWSVPTV 182 0.14
APHGVVFLHVTYV 244 0.19 APKEIIFLEGETL 1783 1.41
ATDALMTGY 218 0.17 AVFDRKSDAK 1967 1.55
AYKTFPPTEPK 337 0.27 CINGVCWTV 186 0.15
CRVLCCYVL 435 0.34 CTFEYVSQPFLM 196 0.15
EAAGIGILTV 505 0.4 EIYKRWII 180 0.14
ELAGIGILTV 2074 1.63 FGEVFNATRFASVY 418 0.33
FIAGLIAIV 204 0.16 FLCLFLLPSLATV 244 0.19
FLKEKGGL 159 0.13 FLNGSCGSV 2568 2.02
FLPFFSNVTWFHAI 299 0.24 FLPRVFSAV 867 0.68
FLRGRAYGL 138 0.11 FPPTSFGPL 681 0.54
FRCPRRFCF 266 0.21 FTISVTTEIL 198 0.16
FVDGVPFVV 2705 2.13 GDAALALLLLDRLNQL 609 0.48
GILGFVFTL 7419 5.85 GLCTLVAML 7422 5.85
GMEVTPSGTWLTY 995 0.78 GNYTVSCLPFTI 176 0.14
GTSGSPIINR 173 0.14 GTSGSPIVNR 176 0.14
GYQPYRVVVLSF 193 0.15 HTTDPSFLGRY 5787 4.56
ILGLPTQTV 236 0.19 ILHCANFNV 199 0.16
IMLIIFWFSL 1278 1.01 IQYIDIGNY 169 0.13
ITEEVGHTDLMAAY 180 0.14 IVTDFSVIK 621 0.49
KAFSPEVIPMF 253 0.2 KAYNVTQAF 807 0.64
KLGGALQAK 14589 11.5 KLNVGDYFV 169 0.13
KLPDDFTGCV 1319 1.04 KLSYGIATV 2458 1.94
KLWAQCVQL 312 0.25 KPLEFGATSAAL 362 0.29
KRWIILGLNK 401 0.32 KTAYSHLSTSK 474 0.37
LEPLVDLPI 417 0.33 LITGRLQSLQTYV 261 0.21
LITLATCELYHYQECV 251 0.2 LLLDDFVEII 968 0.76
LLLGIGILV 232 0.18 LLQTGIHVRVSQPSL 309 0.24
LLWNGPMAV 2559 2.02 LPRRSGAAGA 2138 1.69
LSPRWYFYYL 1751 1.38 LVVDFSQFSR 1871 1.47
MGYINVFAFPFTIYSL 2918 2.3 MPASWVMRI 777 0.61
MVMCGGSLYV 437 0.34 NLVPMVATV 9278 7.31
NPLLYDANYFLCW 548 0.43 NRDVDTDFVNEFYAY 285 0.22
PKYVKQNTLKLAT 412 0.32 QECVRGTTVL 151 0.12
QLMCQPILLL 980 0.77 RAKFKQLL 996 0.78
RFYKTLRAEQASQ 282 0.22 RLRAEAQVK 464 0.37
RNPANNAAIVL 311 0.25 RPHERNGFTVL 207 0.16
RQLLFVVEV 892 0.7 RSVASQSIIAYTMSL 469 0.37
SEHDYQIGGYTEKW 3424 2.7 SELVIGAVIL 900 0.71
SEVGPEHSLAEY 270 0.21 SFHSLHLLF 186 0.15
SMWSFNPETNIL 199 0.16 SNEKQEILGTVSWNL 451 0.36
SPFHPLADNKFAL 248 0.2 SPRWYFYYL 214 0.17
STDTGVEHVTFFIYNK 243 0.19 STLPETAVVRR 924 0.73
SYFIASFRLFA 219 0.17 TLIGDCATV 568 0.45
TLVPQEHYV 164 0.13 TPINLVRDL 266 0.21
TPRVTGGGAM 2557 2.02 TTDPSFLGRY 244 0.19
TVATSRTLSYYK 152 0.12 TVLSFCAFAV 613 0.48
VEAEVQIDRLITGR 163 0.13 VLHSYFTSDYYQLY 483 0.38
VLPFNDGVYFASTEK 1297 1.02 VLPPLLTDEMIAQYT 674 0.53
VLWAHGFEL 731 0.58 VPHVGEIPVAYRKVLL 528 0.42
VQELYSPIFLIV 1063 0.84 VTEHDTLLY 275 0.22
VYSTGSNVFQTR 286 0.23 WICLLQFAY 590 0.46
YEDFLEYHDVRVVL 874 0.69 YEQYIKWPWYI 537 0.42
YFPLQSYGF 398 0.31 YIFFASFYY 353 0.28
YLDAYNMMI 221 0.17 YLNTLTLAV 432 0.34
YLQPRTFLL 687 0.54 YSEHPTFTSQY 131 0.1
YTMADLVYAL 216 0.17 YVLDHLIVV 8184 6.45
YVVDDPCPIHFY 248 0.2 YYVGYLQPRTFLL 365 0.29
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Background

ELAGIGILTV

VQELYSPIFLIV

Fig. S3. Out-of-sample performances are related to the distribution of features. tSNE visualization of the feature vectors (in the second-last layer of
the classifier architecture) of out-of-sample data for a model trained over the WT epitope ELAGIGILTV, with a balanced dataset containing 1500 CDR3β per class. Top: As the
WT epitope, EAAGIGILTV is responsible for the Melanoma cancer and thus is targeted by TCRs sharing similar features. Bottom: the VQELYSPIFLIV peptide is 8 mutations
away from the WT and is involved in SARS-CoV-2 infections. Our model predictions are reliable in the first epitope (AUC = 0.79), and are not for the second peptide (AUC =
0.54). The tSNE plots support the claim that out-of-sample specificity predictions drop when the feature vectors of the test data are far away from the training ones.

finding a good feature map where the input data points are well clustered based on their class identities. How does our restoring balance
procedure via generative models of sequences affect the supervised learning process? We aim to visualize such effect to seek for a
geometrical interpretation of re-balancing data points among different classes.

In particular, our supervised architectures used for both peptide- and pan-specific analyses employ a fully connected read out layer at
the end of multiple convolutional layers. Thus, the model applies a series of transformations to map the input dataset into an higher
dimensional space, which is passed to a fully connected layer where an hyperplane or a set of intersecting hyperplanes are found to
perform binary or multi-class classification, respectively. Thanks to their simplicity, models with a single dense layer like Support Vector
Machines (SVMs) allow for a mathematical formulation and some predictions on the model performance can be derived at theoretical
level; within this framework, also the issue of learning under imbalanced datasets can be studied. For example, in (66) the authors showed
on common imbalanced benchmark datasets that undersampling helps classification as opposed to imbalanced learning; also, in (19) we
characterized the performances of an SVM under imbalance and studied the benefit of restoring data balance via under- and oversampling
on synthetic data, showing that augmenting the under represented classes yields best performances. The key finding of such studies – that
focus on binary classification – proves that learning under imbalance shifts the optimal decision boundary towards the under represented
class and tilts it away from the optimal direction (see Figure S7).

To visualize this effect, we consider a simple 1-hidden-layer network with linear activation and sigmoidal output, which we refer to as
1-Dense Network (1DN), and the CNN model considered above. In the two cases, the input-output map is given by

y = σ (W · H) , [17]

where W are the weights of the fully connected readout layer and the feature vector H is given by H = W (0)X (1DN) or H = fCNN(X)
(CNN). We train both our supervised CNN model and the 1DN model with a binary classification task (LLWNGPMAV-specific and bulk
CDR3βs) using hinge loss. After training on the same dataset, we feedforward the test datapoints in the two models: we call H± the two
class centers of the test set,

H± = ⟨H⟩± , [18]
where the mean is performed over the two test set classes. The weight vector represents the direction of the decision boundary and should
be aligned to the distance vector connecting the classes, H+ − H−; we quantify this alignment computing the normalized dot product

φ =
W · (H+ − H−)
∥W ∥∥H+ − H−∥

, [19]

for both models, φCNN and φ1DN. Our hypotheses on the geometrical effect of learning with imbalance implies that we should find a
value of φ closer to 1 when the model is trained over balanced datasets. Thus we run experiments on different training set compositions,
tuning the fraction of negative examples (bulk CDR3βs) in the range [50%, 75%], averaging the quantity φ over 50 trials. Results on the
simple 1DN and the deep CNN are in agreement, with the dot product dropping from φ1DN = 0.87 (ACC = 0.62) to φ1DN = 0.78 (ACC
= 0.5) for the 1DN and from φCNN = 0.73 (ACC = 0.66) to φCNN = 0.62 (ACC = 0.5) for the CNN.
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Fig. S4. AUC scores dependencies on the hyperparameter choice MS . We report results of numerical experiments for the TCR-peptide binding prediction task, comparing
AUC performances before and after the generative model has been used (x and y axis, respectively). The data point size is proportional to the size of natural peptide-specific
sequences in the dataset. All the training parameters are fixed for all experiments; we rescale the number of training epochs with the training dataset size so that for each
experiment we minimize the loss function exactly the same number of times: this factors out all elements, but the dependence of performances on the threshold value G.
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Fig. S5. Sequence logos of peptide-specific CDR3β classes. We report the sequence logos profile for peptide-specific classes of CDR3β sequences, after alignment to
maximal length L = 20. The PM is learnt over such profiles for each class. Sequence logos show high conservation of the CASS motif and of the last amino acid, while there
is more variability in the central region which is indeed responsible for the binding affinity.
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Fig. S6. Performance drop due to randomness effect. Here we report AUC and ACC scores for a VTEHDTLLY-specific model that has been trained over a dataset
containing a fraction of random sequences ρrand.. When the generative model is not good enough and is adding noise to the under represented class of data, we can observe
the performances drop down to a random classifier.
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Fig. S7. Geometrical interpretation of learning under imbalance. Graphical visualization of a strongly imbalanced training set, in a binary classification setting. The optimal
decision boundary (dark red line) sits perpendicularly at the middle of the two clusters, but learning the model under such imbalance yields a sub-optimal decision boundary
(light red), that is tilted and shifted towards the under represented class (blue one). Restoring balance increases performances as it pushes the decision boundary to the
optimal one. In the case of deep networks, datapoints should be regarded as the mapped inputs in the feature space before the linear layer.
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