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Abstract

Recently, SimCSE has shown the feasibility of
contrastive learning in training sentence em-
beddings and illustrates its expressiveness in
spanning an aligned and uniform embedding
space. However, prior studies have shown that
dense models could contain harmful param-
eters that affect the model performance, and
it is no wonder that SimCSE can also be in-
vented with such parameters. Driven by this,
parameter sparsification is applied, where align-
ment and uniformity scores are used to measure
the contribution of each parameter to the over-
all quality of sentence embeddings. Drawing
from a preliminary study, we consider parame-
ters with minimal contributions to be detrimen-
tal, as their sparsification results in improved
model performance. To discuss the ubiquity
of detrimental parameters and remove them,
more experiments on the standard semantic tex-
tual similarity (STS) tasks and transfer learning
tasks are conducted, and the results show that
the proposed sparsified SimCSE (SparseCSE)
has excellent performance in comparison with
SimCSE. Furthermore, through in-depth anal-
ysis, we establish the validity and stability of
our sparsification method, showcasing that the
embedding space generated by SparseCSE ex-
hibits improved alignment compared to that
produced by SimCSE. Importantly, the unifor-
mity remains uncompromised.

1 Introduction

The task of learning universal sentence embeddings
using large-scale pre-trained models has been ex-
tensively explored in prior research (Logeswaran
and Lee, 2018; Reimers and Gurevych, 2019; Li
et al., 2020a; Zhang et al., 2020a; Gao et al., 2021;
Liu et al., 2021; Yan et al., 2021; Feng et al., 2022).
More recently, contrastive learning has been pro-
posed as a method to enhance the quality of sen-
tence embeddings (Qiu et al., 2022; Zhang et al.,
2020a; Gao et al., 2021; Liu et al., 2021; Yan
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Figure 1: The average performance of SimCSE-

BERT},e on STS tasks when pruned at sparsity levels of
10%, 20%, 30%, 40% and 50% respectively. Details of
the pruning method can be found in Section 2, while the
task specifics and metrics are introduced in Section 3.

etal., 2021). By employing contrastive learning, se-
mantically similar sentences are brought closer to-
gether while dissimilar sentences are pushed apart,
thereby a semantically-driven structure is estab-
lished within the space of sentence embeddings.

Unsupervised SimCSE (unsup-SimCSE) is a no-
table framework for contrastive sentence embed-
dings (Gao et al., 2021). It utilizes dropout as a
simple data augmentation technique to create pos-
itive pairs and employs a cross-entropy objective
based on cosine similarity for contrastive learning.
Inspired by recent research on parameter sparsifi-
cation (Xia et al., 2022; Prasanna et al., 2020; Hou
et al., 2020; Michel et al., 2019), particularly the
works on the lottery ticket hypothesis (LTH) (Fran-
kle and Carbin, 2019; Bai et al., 2022; Frankle
et al., 2020; Yang et al., 2022b) showing its effec-
tiveness in improving model performance through
pruning, we hypothesize that certain parameters
in SimCSE might hinder the representation of uni-
versal sentence embeddings. By removing these
parameters, we anticipate an improvement in the
model’s performance.

To accurately estimate the contribution of each
parameter, it is essential to consider properties that



characterize contrastive representation learning. In
the literature (Wang and Isola, 2020), two such
properties have been proposed: alignment and uni-
formity. Alignment measures the proximity of fea-
tures derived from positive pairs, indicating how
well the model captures semantic similarity. On the
other hand, uniformity pertains to the distribution
of features across the hypersphere, ensuring that the
representations are spread out evenly. These prop-
erties offer valuable insights into understanding
and evaluating contrastive representation learning.
Utilizing alignment and uniformity as guiding prin-
ciples, we propose an innovative approach, named
alignment and uniformity score, to quantify param-
eter contribution during the preparation phase for
pruning.

Based on a pilot study presented in Figure 1, we
observed that model performance does not consis-
tently decrease during pruning, instead it exhibits
an upward trend when the model is less sparse.
This suggests that the parameters with the lowest
scores are detrimental to model performance, as
evidenced by the performance improvement result-
ing from their pruning. Building upon this, we
conducted a series of more extensive and detailed
experiments to explore the ubiquity of detrimental
parameters and assess the stability of our proposed
pruning method.

Specifically, our approach consists of three
stages: training, parameter sparsification, and
rewinding. First, we train an unsupervised SimCSE
model using a pre-trained language model (LM).
Then, we estimate alignment and uniformity scores
for each parameter based on the trained model’s
feedback. Parameters with low scores are pruned
and varying sparsity is attempted in formal experi-
ments than in pilot study to clearly identify harmful
parameters. Finally, the remaining parameters are
initialized, and the pruned model is fine-tuned to
regain its performance. Our model is thus named
SparseCSE.

We extensively evaluate SparseCSE on seven
STS tasks and seven transfer learning tasks. Re-
sults show that SparseCSE outperforms SimCSE,
demonstrating its superior performance. Our prun-
ing method is also shown to effectively identify
the optimal sparsity for pruning, further enhancing
performance. Further analysis reveals the stabil-
ity of our pruning method across multiple tasks.
Comparison with other works highlights the simi-
larity of SparseCSE to SimCSE in uniformity and
its competitive performance in alignment.

—1 — S
(e (@08 eso 000
(OO0 -000) (000 - @00 YY) (OO0 )
— Laye Layer.
(OO0 000) (202 8®0 B20) 000 )
(OO0~ 000) @00 -229) (eloler)
(a) training (b) pruning (c) rewinding
OQQ)] Heads O OO Heads with Score Pruned Heads
Neurons Neurons with Score Pruned Neurons

Figure 2: The process of obtaining SparseCSE

2  Our Method

Similar to the lottery ticket approach (Frankle and
Carbin, 2019), our method is illustrated in Figure
2, following a training, pruning, and rewinding
paradigm.

2.1 Training and Rewinding

To effectively train a model that captures univer-
sal sentence embeddings, we adopt a contrastive
framework similar to the previous work (Gao
et al., 2021). This framework is also utilized dur-
ing the rewinding stage. In this framework, we
employ dropout to create positive representation
pairs (h;, h;") for each sentence z; in a collection
of sentences x;;* ;. The training objective for this
contrastive framework, using a mini-batch of N
pairs, can be expressed as follows:

6sim(hi,h;’)/’r

Z?:l €

where 7 is a temperature hyperparameter and
sim(hy, he) represents the cosine similarity
" - hy
17l - (A2l
During training, an initial pretrained language
model (LM) is utilized, and all parameters are in-
volved in this phase. However, during rewinding,
only the remaining parameters after pruning are ap-
plied to the LM, with their values initialized to their
early-stage pre-training values. The objective of
rewinding is to enable the pruned model to restore
its performance prior to pruning.
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2.2 Pruning

BERT (Devlin et al., 2019) (or Roberta (Liu et al.,
2019)) is composed of multiple stacked encoder
layers known as transformers. Each transformer en-
coder consists of a multi-head self-attention block
(MHA) and a feed-forward network block (FFN).
In line with prior research (Prasanna et al., 2020;



Hou et al., 2020; Michel et al., 2019), our prun-
ing approach primarily focuses on sparsifying the
attention heads in the MHA blocks and the inter-
mediate neurons in the FFN blocks. To determine
which parameters to prune, we associate a set of
mask variables with them (Yang et al., 2022a,b)
and compare the model’s performance before and
after the operation.

For a MHA block with Nz independent heads,
the i-th head is parameterized by Wg), Wg?,

W%}) € R4*4a and Wg) € R94x4 all paral-
lel heads are further summed to produce the final
output. Then variable £() with values in {0, 1} is
defined for masking each attention head, and it can
be represented as:

) (X)a

Ny

_ i (4)
MHA(X) = ; 3 >Attnwg)7wg>vw<vi)7wo
where the input X € R'*9 represents a [-length
sequence of d-dimensional vectors and & (@) js de-
signed as a switching value, when £ equal to 1,
it means keeping the attention head retained, and
when it equal to 0 means removing that attention
head from the MHA.

On the other hand, a FFN block includes two
fully-connected layers parameterized by W; &
R¥>*Pr and Wy € RPF*4 denoting Dy as the
number of neurons in the intermediate layer of
FFN. Likewise, we define variable v to mask the
neurons in the intermediate layer of FFN:

Dp
FFN(A) = Y vYWGELUw, w,(A),

=1

where the input A € R'*¢ defines a d-dimensional
vectors with [-length sequence.

2.3 Alignment and Uniformity Score

In order to determine the parameters that have
a greater impact on the distribution of universal
sentence embeddings, we introduce a joint objec-
tive based on the alignment and uniformity proper-
ties (Wang and Isola, 2020).

Here is the formulation of the alignment loss:

2
EAIignment = log E th - hi+H y

Xi,Xi+N pos

where h;, h; T are representations of z;, z; *, which
are a pair of positive sentences in a batch of N,

sentences. It indicates that the sentences with simi-
lar semantics are expected to be closer in the em-
bedding space.

And, here is the formulation of the uniformity
loss:

£Uniformity £ 10g E e_2”hi_hj”2>
xi,x5~N

where h;, h; are representations of x;, x;, which

are different sentences in a batch of NV sentences. It

indicates that sentence embeddings with different

semantics are supposed to distribute on the hyper-

sphere by larger distances.

To balance the alignment and uniformity, we
introduce a coefficient A to quantify the tradeoff.
The joint loss Lscore for further score calculation
can be be written as below:

'CScore =A- 'CAIignment + (1 - )\> . »CUniformityy

Finally, according to the literature (Molchanov
et al., 2017), the scores of the attention heads in
MHA and the intermediate neurons in FEN can be
depicted as:
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where D is a data distribution, E represents expec-
tation.

After estimating the scores, we rank the atten-
tion heads and intermediate neurons respectively
with the scores, and prune the parameters with low
scores according to the constraint of the given spar-
sity.

3 Experiments

3.1 Baselines & Implementation

We start by training unsup-SimCSE models using
popular language models (BERTpase, BERT e,
Robertay,s) as our baselines. Both training and
rewinding process of sparseCSE follow the training
details of SimCSE (Gao et al., 2021). Pruning
process is produced with varying sparsity levels
from 1% to 50% and different value of coefficient
A. More details are shown in Appendix A.

3.2 Evaluation

Following SimCSE (Gao et al., 2021), we eval-
uate sentence embeddings on 7 semantic tex-
tual similarity (STS) tasks, which include STS



STS12 ~ STSI3  STS14  STSIS STS16  STS-B SICK-R Avg

SimCSE-BERTyye ~ 70.37 82.53 73.46 81.58 77.61 76.55 69.22 75.9
SparseCSEyq, 70.15° 022 82.25 028 74161070 82151057 78521091 78 711216 7276135 76,967 100
SparseCSEpes 7170, 834105 7416,y 7" 82.58,0" 79.10,% 78710 72.76,,°" 77.4971%

SimCSE-BERTjge  69.93 84.04 75.15 82.99 78.32 79.12 74.16 77.67
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SparseCSE; 4 67.857040  81.327004 73,090
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Table 1: Performance of sparseCSE on STS tasks. Each backbone has three rows: the baseline, the result with
optimal sparsity based on average score, and the result with optimal sparsity based on each task. The optimal
sparsity values are shown in the bottom right corner. The improvements over the baseline are highlighted in red in

the upper right corner.

2012-2016 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017) and
SICK-Relatedness (Marelli et al., 2014). STS tasks
can reveal the ability of clustering semantically
similar sentences, which is one of the main goals
for sentence embeddings. Furthermore, we also
introduce 7 transfer learning tasks into evaluation
as a supplementary prove, and the details of the
tasks are shown in Appendix B.

3.3 Main Results

Table 1 shows the results on STS tasks. The best
results based on each task are all improved, and
the model on BERT},s improves the average re-
sult from 75.9% to 77.49%. We also determine
an optimal sparsity corresponding to the best av-
erage score of all tasks. We observe that pruning
the models with this specific sparsity level leads to
improvements in almost every task. The results of
transfer task are shown in Table 2 in Appendix B,
where the same trend prove the ubiquity of the
phenomenon found in Table 1.

Considering the results comprehensively, we ob-
serve that the pruned models tend to exhibit optimal
performance at lower sparsity levels. In order to
carry out an in-depth analysis of this phenomenon,
a detailed discussion on varying sparsity and trade-
off of alignment and uniformity are produced in
Appendix C and D.

Evaluation on Alignment and Uniformity Fig-
ure 3 illustrates the uniformity and alignment
scores of various methods along with their per-
formance on the STS task. The methods include
BERT (Devlin et al., 2019), SimCSE (Gao et al.,
2021), SBERT (Reimers and Gurevych, 2019),
BERT-flow (Li et al., 2020b), BERT-whitening (Su
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BERT-flow (66.6)
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Figure 3: Analysis on alignment and uniformity (the
smaller, the better). Points represent average STS perfor-
mance using BERT ., with "sup" marked of supervised
methods.

et al., 2021) and sparseCSE. As a sparse version of
Unsupervised SimCSE, sparseCSE inherits its ad-
vantages in alignment compared to post-processing
methods (like BERT-flow and BERT-whitening)
and uniformity compared to pre-trained embed-
dings (like BERT). Benefited from sparsity based
on both alignment and uniformity properties, spar-
seCSE demonstrates significant improvements in
alignment compared to the state-of-the-art models
including the original model and some supervised
models (like SBERT and supervised SimCSE),
while achieving comparable uniformity scores.

4 Conclusions

In conclusion, this paper introduces a parameter
sparsification technique based on alignment and
uniformity scores, resulting in the development
of SparseCSE, which exhibits impressive perfor-
mance. Through extensive evaluation on STS tasks,
transfer learning tasks, and comparison in terms
of alignment and uniformity, SparseCSE demon-
strates its competitive edge in sentence embedding.



5 Limitations

We can’t extend the application of our pruning
methods to a wider range of sentence embedding
models beyond SimCSE. Consequently, our focus
in the main results revolves around assessing the
performance of SimCSE and SparseCSE, without
delving into the applicability of other models.
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A Implementation Details

We follow the training details of SimCSE (Gao
etal., 2021) for both training and rewinding process
of sparseCSE, including hyperparameter settings
and a dataset of one million randomly selected
sentences from English Wikipedia.

We prune the baseline models on the dataset
STS Benchmark (Cer et al., 2017). The dataset was
originally used to evaluate the alignment and uni-
formity of sentence embeddings in SimCSE (Gao
et al., 2021), and we ascertain that it can signif-
icantly contribute to the computation of pruning
scores and serve as a guiding factor in the pruning
process. The objective is to enhance the model with
valuable information from alignment and unifor-
mity. It is noteworthy that opting for a pruning pro-
cess, as opposed to training, is a judicious decision.
This is particularly relevant due to the limitation
of the small dataset for calculating alignment and
uniformity objectives, making model training im-
practical. During the pruning process, we explore
different sparsity levels from a predefined set (1%,
2%, 3%, 4%, 5%, 6%, 1%, 8%, 9%, 10%, 20%,
30%, 40%, 50%), and use a A value of 0.5 for the
main experiment. Additionally, we examine the im-
pact of different \ values (0.25 and 0.75) in further
analysis.

B Transfer Tasks for Evaluation

The transfer learning tasks contain MR (Pang
and Lee, 2005), CR (Amplayo et al., 2022),
SUBJ (Pang and Lee, 2004), MPQA (Wiebe

et al.,, 2005), SST-2 (Socher et al., 2013),
TREC (Voorhees and Tice, 2000) and
MRPC (Dolan and Brockett, 2005), which

are different sentence classification tasks and can
give an impression on the quality of sentence
embeddings.

The results on transfer learning tasks are shown
in table 2. And the average improvement on
BERTpase, BERT)yqe and Robertap,s achieves
1.79%, 0.99% and 0.78%, respectively. For in-
stance, when applying 2% sparsity to the BERT e
model, we achieve the best average improvement
of 1.53 on transfer tasks shown in Table 2. All
tasks benefit from this pruning sparsity, with im-
provements of 2.04, 1.94, 0.46, 0.53, 1.20, 2.00,
and 2.55.
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Figure 4: Transitions with varying sparsity on STS
tasks.

C Searching within Varying Sparsity

The transition of the BERTy,se model’s perfor-
mance, as measured by the average score across
the seven STS tasks, as well as the discrete scores
of these tasks, is illustrated in Figure 4. It is evi-
dent from the figure that for each task, the model’s
performance initially improves and then declines
as the sparsity level increases, showing a peak. In
every task, this peak appears steadily around a fixed
sparsity corresponding to the optimal sparsity value
in the main results. This indicates that the best per-
formance observed in the main results for each task
is not an isolated occurrence but rather a continuous
trend.

D Tradeoff of Alignment and Uniformity

In our approach, the alignment loss and unifor-
mity loss work together to guide parameter scoring,
with the coefficient ) regulating their relative in-
fluence. To further investigate the contributions of
alignment and uniformity strategies to model ef-



MR CR SUBJ MPQA SST2 TREC ~ MRPC Avg
SimCSE-BERTyqe 7884 84.21 93.83 88.87 83.75 86.40 72.99 84.13
SparseCSEyq,  80.88 %% 86.15719% 94297046 89,4075 8495120 8840720 75547255 85661
SparseCSEpet 809055, 86.15,,7"  94.58.07°  89.43,,°°  85.83,, "% 88.40,," 76.124,"" 85.92717
SimCSE-BERTjze  84.02 88.11 94.8 89.59 89.9 90.20 75.48 87.44
SparseCSEyq, 8426707 89.437192 95277047 89.837024 8957 033 9240722 764670 88.1707
SparseCSEpes  84.65,5 " 89.43,57  95.27,0%7  90.075, "  89.57,y " 93.80,5,°" 76.52,,"" 88.4470%
SimCSE-Robertayze ~ 81.39 86.94 93.20 87.11 87.10 84.20 74.09 84.86
SparseCSEjq, 821807 88.057111 93537053 87.597048 8748703 84,00 0% 74781090 g5.37 05!
SparseCSEpe. 8218,y 88.21,,7  93.53 0 87.59/, "  87.48/y7 86.00,,% 7478, 85.647078

Table 2: The result of transfer learning tasks. Data annotation method is the same as the previous table.
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Figure 5: Average STS performance of SparseCSE us-
ing BERTyqs. with different \.

fectiveness, we conducted additional experiments
using different A values (0.25, 0.5, 0.75) as shown
in Figure 5. We observed that the coefficient does
not have a significant impact on the peak value of
each task. However, it does influence the pattern of
how model performance varies with sparsity. When
A = 0.5, the pruned model’s performance exhibits
a rapid increase and decrease at lower sparsity lev-
els, resulting in a distinct peak. On the other hand,
with A = 0.25, the performance trend shows a rela-
tively flatter increase and decrease, with the peak
occurring at slightly higher sparsity levels. These
findings suggest that alignment and uniformity play
similar roles in guiding contrastive representation
learning, but they have different effects on parame-
ter filtering.
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