
Published as a conference paper at ICLR 2023

SYNTHETIC DATA GENERATION OF MANY-TO-MANY
DATASETS VIA RANDOM GRAPH GENERATION

Kai Xu∗

Hazy
me@xuk.ai

Georgi Ganev†
Hazy
georgi@hazy.com

Emile Joubert
Hazy
emile@hazy.com

Rees Davison
Hazy
rees@hazy.com

Olivier Van Acker
Hazy
ovanac01@mail.bbk.ac.uk

Luke Robinson
Hazy
luke@hazy.com

ABSTRACT

Synthetic data generation (SDG) has become a popular approach to release pri-
vate datasets. In SDG, a generative model is fitted on the private real data, and
samples drawn from the model are released as the protected synthetic data. While
real-world datasets usually consist of multiple tables with potential many-to-many
relationships (i.e. many-to-many datasets), recent research in SDG mostly focuses
on modeling tables independently or only considers generating datasets with spe-
cial cases of many-to-many relationships such as one-to-many. In this paper, we
first study challenges of building faithful generative models for many-to-many
datasets, identifying limitations of existing methods. We then present a novel
factorization for many-to-many generative models, which leads to a scalable gen-
eration framework by combining recent results from random graph theory and
representation learning. Finally, we extend the framework to establish the notion
of (ϵ, δ)-differential privacy. Through a real-world dataset, we demonstrate that
our method can generate synthetic datasets while preserving information within
and across tables better than its closest competitor.

1 INTRODUCTION

Private data release has gained much attention in recent years due to new regulations in privacy such
as General Data Protection Regulation (GDPR). To obey such regulations and to protect privacy, a
popular approach from the machine learning community called synthetic data generation (SDG) is
developed in various domains (Nowok et al., 2016; Montanez et al., 2018; Xu & Veeramachaneni,
2018; Xu et al., 2019; Lin et al., 2020; Tucker et al., 2020; Xu et al., 2021; Ziller et al., 2021). In SDG,
synthetic data that is statistically similar but not identical to real data is released as a replacement of
the real data to protect. On top of it, special attention has also been paid to make sure these methods
work well on tabular data as most real-world datasets are stored as tables in databases (Montanez
et al., 2018; Xu & Veeramachaneni, 2018; Xu et al., 2019; Nazabal et al., 2020; Ma et al., 2020).

At the core of most SDG methods are generative models—probabilistic models that one can drawn
samples from. Usually a generative model is firstly trained to capture the distribution of the private
real data, and then samples are drawn from the model so they can be released as protected synthetic
data. However, this procedure without extra care does not have guarantees privacy. To tackle this,
research in this direction has also been focusing on differentially private generative models (Zhang
et al., 2017; Xie et al., 2018; Jordon et al., 2018)—generative models that satisfy a notion of privacy
called differential privacy (Dwork et al., 2014), which controls the amount of information individual
datum can reveal. Appendix A provides an illustration of how generative models are used for SDG.

While real-world datasets usually consist of multiple tables with potential many-to-many relation-
ships, SDG for such type of data is not well-studied. Most of recent work focuses on modeling tables
independently (Xu & Veeramachaneni, 2018; Xu et al., 2019; Nazabal et al., 2020; Ma et al., 2020)
or considers generating many-to-many relationships but only for special cases such as one-to-many
(Getoor et al., 2007; Montanez et al., 2018). As a side effect, privacy for multi-table SDG with many-

∗Now at Amazon; work done prior to joining Amazon
†Also a Ph.D candidate at the University College London

1

Published as a conference paper at ICLR 2023

deg(n1
u) = 3

deg(n2
u) = 1

deg(n3
u) = 2

deg(n4
u) = 1

deg(n1
v) = 3

deg(n2
v) = 3

deg(n3
v) = 1

(a) Bipartite graph B with annotations
for node degrees

0 0 0 0 1 1 1
0 0 0 0 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 0
1 1 1 0 0 0 0
1 0 1 1 0 0 0
1 0 0 0 0 0 0

1 1 1
1 0 0
1 1 0
0 1 0

(b) Adjacency matrix G (left) and
biadjacency matrix B (right)

deg(nv)

1 2 3

d
eg
(n

u
) 1 0 0 2

2 0 0 2
3 1 0 2

(c) BJDD matrix PJ with supports
du = deg(nu),dv = deg(nv)

Figure 1: An illustration of bipartite graphs and their related representations and statistics.
to-many relationships is also under-studied. In fact, relationships in real data can also reveal private
information (Sala et al., 2011; Proserpio et al., 2012). For example, in a customer-merchant dataset,
the number of links to a merchant could reveal its identity because of its uncommon popularity.

This paper studies the challenge of building faithful1 generative models (Webb et al., 2018) to
synthesize data together with their many-to-many relationships, and proposes a novel factorization
for many-to-many generative models, which leads to a scalable approach by combining results from
random graph theory and representation learning. In short, our paper has the following contributions:

1. We study possible factorization of faithful generative models for many-to-many data and
identify limitations of those taken by existing approaches.

2. We propose a novel factorization for modeling distributions over many-to-many data and we
use it to develop a synthetic data generation framework using methods from random graph
generation, node representation learning and set representation learning.

3. We extend the proposed framework to establish the notion of (ϵ, δ)-differential privacy.
4. We evaluate two model instances from our framework, BayesM2M and NeuralM2M, on

the MOVIELENS dataset, demonstrating its superior performance over its closest competitor,
SDV, especially on capturing information in many-to-many relationships.

2 BACKGROUND AND NOTATIONS

Bipartite and multipartite graphs A bipartite graph B := (U,V,L) is a tuple of two disjoint node
sets U,V (called upper and lower nodes respectively) as well as a set of edges L between them. Each
node is represented by a tuple of its index and attribute, e.g. nk

u := (iku, x
k
u) ∈ U for k = 1, . . . , |U|.

Each edge is represented by a tuple of node indices, i.e. lk := (iku, i
k
v) ∈ L for k = 1, . . . , |L|. Such

edge sets can be represented as adjacency matrices G or biadjacency matrices B; see figure 1b
for an illustration. A generalised notion of bipartite graphs called multipartite graphs, denoted as
M := ({Tk1}Nk1=1, {Lk2}Mk2=1), are graphs with N disjoint node sets and M ≤

(
N
2

)
edge sets.

Modeling datasets with many-to-many relationships 2Datasets with many-to-many relationships,
such as relational databases, can be viewed as multipartite graphs. Denote the generating distribution
of a given multipartite graph Mdata as pdata(M). The goal of this paper is to build a generative
model pθ(M) with learnable parameter θ and to develop a learning algorithm A1 that takesMdata as
inputs and outputs the optimal model pθ∗ with parameter θ∗, s.t. pθ∗(M) is close to pdata(M). After
learning, a sample M̃ is drawn from the model and used as synthetic data; we denote this sampling
process/algorithm as A2.

Differential privacy In this work, we are interested in establishing the standard (ϵ, δ)-differential
privacy, a.k.a. (ϵ, δ)-DP or approximate DP. Denote A = A2 ◦ A1. We say a model pθ with A is
(ϵ, δ)-DP according to the following definition (Dwork et al., 2014):

Definition 1 ((ϵ, δ)-DP for pθ with A). A generative model pθ with the synthesis algorithm A is
(ϵ, δ)-DP if for all S ⊆ Range(A) and for all B,B′ that differ on a single element:

P(A(B) ∈ S) ≤ exp(ϵ)P(A(B′) ∈ S) + δ.

1The term “faithful” as in faithful generative models refers to the fact that the model does not introduce any
conditional independence that is not true in general (Webb et al., 2018). It is true for how our proposed model
factorizes individual tables as well as their relationships.

2Note here we are intended to avoid using terms such as primary/foreign keys and parents/children from the
relational database literature. This is because in order to model the joint distribution for a given dataset, parent-
child directions can be rearranged for modeling convenience in favor of some particular factorization of the joint.

2

Published as a conference paper at ICLR 2023

In our case, S is the output of the synthesis algorithm A’s training procedure, B is a many-to-many
dataset while we are interested in the most general case (with strongest privacy protection) and define
an element as a single node that could be part of either U or V. If δ = 0, we also call a model pθ with
A satisfies ϵ-differential privacy, i.e. ϵ-DP.

Learning graph distributions Consider the distribution pdata(L) for a given set of edges Ldata.
Unlike setup in work like Liao et al. (2019) in which multiple samples from pdata are given, we are
presented with a single sample from pdata. Therefore, rather than replying on the standard notion of
learning as probability divergence minimization using empirical samples, we consider learning a
model pθ(L) such that samples from it share similar graph properties as Ldata.

Graph properties We consider the dK-distributions from Mahadevan et al. (2006) with d = 2,
defined as the (joint) degree distribution of all pairs of d nodes in the graph.3 We call all graphs
with a given dK-distributions dK-graphs. For example, 0K-graphs share the same graph density,
1K-graphs share the same distribution of node degrees, 2K-graphs share the same joint distributions
of degrees of node pairs, etc. We call models that sample dK-graphs dK-generators. We consider the
same notion for bipartite graphs, defining bipartite dK-graphs, and consider learning pθ that generates
bipartite 2K-graphs of data. For a bipartite graph B, we denote its bipartite joint degree distribution
(BJDD) as the empirical distribution of samples {(deg(n(iku)),deg(n(ikv)))}

|L|
k=1, where n(i) denotes

the node with index i (similarly i(n) is the node index for node n) and deg(n) is the degree of the node
n. Such empirical distribution can be represented as a matrix PJ along with the supports du,dv for
both dimensions; see figure 1c for an illustration. One can also compute the (marginal) degree distri-
butions of the upper or lower nodes from BJDD. For example, that of upper nodes pu is a probability
vector (a vector of whose elements sum up to 1) in which its i-th element pu[i] =

∑
j PJ[i, j]/du[i].

3 RELATED WORK

Generative models for tabular data In general, there are two categories of generative models that
have been successfully applied to tabular data. One is based on classic graphical models. This includes
directed graphical models such as Bayesian networks PrivBayes (PrivBayes; Zhang et al., 2017) and
auto-regressive models (synthpop; Nowok et al., 2016) as well as undirected graphical models such
as factor graphs (MST; McKenna et al., 2019). For these models, data is usually discretized in order
to facilitate efficient learning. Another is based on recently emerged deep generative models such as
variational autoencoders (VAEs; Kingma & Welling, 2013; Rezende et al., 2014) and generative
adversarial networks (GANs; Goodfellow et al., 2014). Unlike graphical models, work on deep
generative models has been mostly focusing on developing methods to directly model heterogeneous
data, which are mixed-type data with different types of continuous (real, positive real, etc) and
discrete variables (categorical, ordinal, etc), which includes specific pre-processing steps, neural
network architecture design, improving training, etc (Xu & Veeramachaneni, 2018; Xu et al., 2019;
Nazabal et al., 2020; Ma et al., 2020); for surveys, see Fan et al. (2020); Borisov et al. (2021).

Generative models for relational data Probabilistic relational models (PRMs) (Friedman et al.,
1999; Getoor et al., 2007) is the most well-established approach to building distributions over
relational data. Getoor et al. (2007) describes two ways of dealing with structural uncertainty but
only with learning methods for structures, i.e. finding the best structures. While it is possible to
extend these methods to samplers by using Markov chain Monte Carlo for sampling, applying
them to datasets at scale would be challenging. Mostly related to our work is Synthetic Data Vault
(SDV) (Patki et al., 2016; Montanez et al., 2018), which is based on PRMs and considers the task
of synthesizing relational data with links. However, SDV only models one-to-many relationships
by recording the children count per row and generates one-to-many links by sampling the number
of children. Because SDV cannot handle many-to-one relationships, the so-called “multiple parents”
problem occurs in certain scenarios (Montanez et al., 2018). For example, consider three tables

3With d increasing, samples from the dK-distributions become more similar to the data but generating dK-
graphs is increasingly computationally complex; luckily 2K-graphs are sufficient for most practical purposes
(Mahadevan et al., 2006). Also note that with d → ∞, dK-series describe any given graph completely. In
addition, from a privacy perspective, a large d means high sensitivity in the dK-series, which requires much
more noise to be added for achieving ϵ-DP for a given ϵ (Sala et al., 2011).

3

Published as a conference paper at ICLR 2023

A−B − C forming an one-many-one relationship. At generation time, SDV has to generate A and
C first and conditionally generates B given A and C, at which stage it is unclear whether the children
counts in A or C should be used. Montanez et al. (2018) suggests to either randomly pick a table
for the conditional generation or to perform weighted averaging between parents. Another related
work based on PRMs is Ben Ishak et al. (2016), which describes a generator for many-to-many data
with links. However, the work only targets generating testing data—data used as test examples in
a software engineering setup. Thus, the generator is learnable.

Random graph generation One line of work in this direction is built on the classic degree sequence
problem, which is the problem of finding some or all graphs with a given degree sequence (Molloy
& Reed, 1995). Mahadevan et al. (2006) introduces the notion of dK-graphs and studies generating
them via classic random graph methods, such as the pseudograph or configuration approach (Molloy
& Reed, 1995; Aiello et al., 2000). As classic methods in general cannot correctly sample dK-graphs
with d ≥ 2, a few follow-up works improves the sampling for these graphs (Stanton & Pinar, 2012;
Gjoka et al., 2013; 2015). Unlike previous work that focuses on general graphs, Boroojeni et al. (2017)
specifically considers sampling bipartite graphs that preserves the 2K-distribution. Another line of
methods, unlike above-mentioned methods that can generate arbitrary-sized graphs, can only generate
graphs with the same size as the data graph, e.g. spectral-based approach in Baldesi et al. (2018), or
expands it by a whole number, e.g. method based on fractal expansions from Belletti et al. (2019).

Differentially private SDG In terms of DP generative models, a few graphical models discussed
above (PrivBayes, MST) are originally proposed in a DP context. For deep generative models, there
are two generic training algorithms that make models differentially private: differentially private
stochastic gradient descent (DP-SGD; Abadi et al., 2016) and private aggregation of teacher ensembles
(PATE; Papernot et al., 2016; 2018), leading to methods such as DP-GAN (Xie et al., 2018) and
PATE-GAN (Jordon et al., 2018). Regarding random graph generation, Sala et al. (2011); Proserpio
et al. (2012) consider the release of graphs in a differentially private manner based on dK-generators.
To the best of our knowledge, there is no work specifically targeting differentially private synthesis of
bipartite graphs, nor previous work for differentially private synthesis for many-to-many datasets.

4 MODELING MANY-TO-MANY DATASETS WITH DIFFERENTIAL PRIVACY

In this section, we first discuss the challenges of building faithful generative models (Webb et al., 2018)
for many-to-many datasets by studying possible factorization of the joint distribution (section 4.1),
during which we also identify the limitations of the factorization that existing approaches are based on.
Based on a novel factorization, we use methods from random graph generation, node representation
learning and set representation learning to develop a new type of scalable generative model for many-
to-many datasets section 4.2. Finally, we extend the model to be (ϵ, δ)-differentially private section 4.3.
Also note that in this section, for brevity, we omit the model parameter θ in pθ unless it is necessary.

4.1 FAITHFUL GENERATIVE MODELS FOR MANY-TO-MANY DATASETS

To simplify the discussion, we first focus on modeling bipartite graph and will later extend it to
multipartite graphs. For the joint distribution p(U,V,L), where U,V are two tables with rows
linked by edges in L, that we are interested in, considering the fact that the roles of U and V are
exchangeable, there are only three possible factorization of the joint p(U,V,L) := pjoint:

FACTORIZATION S FACTORIZATION E FACTORIZATION A
pjoint p(U)p(L | U)p(V | U,L) p(U)p(V | U)p(L | U,V) p(L)p(U | L)p(V | U,L)

Within all factorization, there are a 6 sub-models in total to consider.

• p(U) (the single-table model) can be any generative model for single table generation.
• p(L | U) (the semi-conditional edge model) requires to generate edges based on one of the

table—the row count generation used in Montanez et al. (2018) is in fact an example of
such. However, a general case of this model can be computational challenging: For any
subset of U, it requires checking if they together link to an existing or new node in V.

• p(V | U,L) (the conditional table model) requires to generate each node in V based on the
first table and all connections. As per node in V is connected to a subset of nodes in U via L,

4

Published as a conference paper at ICLR 2023

L U V

p(L) (BJDD matrix PJ)

node embedding

node encoder β

p(U | L)

set embedding

aggregator γ

p(V | L,U)

(a) Learning (models can be fitted in parallel)

L U V

node embedding

node encoder β

p(U | L)

p(L) set embedding

aggregator γ

p(V | L,U)

(b) Sampling (generation is sequential)

Figure 2: Illustrations of how the proposed framework works during learning and sampling phases.
it requires to condition on a set of varied number of nodes for modelling, which can be done
using a aggregation function or a aggregator (Getoor et al., 2007; Montanez et al., 2018).

• p(V | U) (the table-conditional table model) requires to generate one table conditioned on
another (while marginalizing all edges). This model can be computational challenge to
implement. A potential work-around is to model the two-table joint p(U,V) directly by
joining two tables and apply a generative model on the joined table. However, this could
easily lead to table with an intractable scale. And perhaps more importantly, it is hard to
undo this join operation from the synthetic data to recover individual tables in general.4.

• p(L | U,V) (the edge prediction model) predicts the existences of edges between node pairs
and is essential probabilistic models used in many recommender systems.

• p(L) (the edge model) requires to model the edges (i.e. the graph) unconditionally—this is
the type of random graph models that usually studied in random graph theory.

• p(U | L) (the edge-conditional table model) requires to generate one of the table given the
topology of edges. One way to achieve such conditioning is by using a node embedding to
condition on. This is also related to node attributes generation/prediction in graph models.

As discussed, approaches from Getoor et al. (2007); Montanez et al. (2018) correspond to FACTORIZA-
TION S and there is no easy way to extend p(L | U) to a general many-to-many case. FACTORIZATION

E also has the scalability issue in p(V | U) (or similarly in p(U,V)) as discussed. Our approach will
then be based on FACTORIZATION A that does not have such concerns/limitations.

Considering edges attributes So far our discussion assumes there are no edge attributes, which is
not true in general, e.g. ratings in MOVIELENS. The way to deal with this is by adding an extra edge
attribute model that is similar to p(L | U,V) but generates edge attributes instead. One can use any
edge prediction model for this purpose—rather than predicting the existence of edges it generates the
edge attributes—and the corresponding generation step is performed after all other data is generated.

Extending to multipartite graphs For a given datasets with multiple tables, we assume the links at
table level are given. Thus we can impose an arbitrary order on the tables and generate the edges and
tables in order; this is similar to how an arbitrary order is imposed on random variables as in Bayesian
networks. Extra care needs to be taken for graph generation when generating graphs involving tables
with more than one connection, which will be explained in section 4.2.1.

4.2 RANDOM GRAPH GENERATION BASED MANY-TO-MANY SYNTHESIS

We now describe how to model the three distributions in our proposed factorization pjoint = p(L)p(U |
L)p(V | U,L): p(L) in section 4.2.1, p(U | L) in section 4.2.2 and p(V | L,U) in section 4.2.3.
Figure 2 also provides an illustration of the learning and sampling process for the proposed method.

4.2.1 GRAPH MODELING VIA RANDOM GRAPH GENERATION

We consider using bipartite dK-generators to model p(L) that take in a target BJD J and generate
random graph satisfying this J. Boroojeni et al. (2017) proves the existence of an algorithm for

4As a concrete example, suppose U has a single column C1 with a continuous variable, V has another column
C2 (with either a continuous or discrete variable) and L indicates every row in U is linked with two rows in V.
After joining two tables, we will arrive with a table in which two columns C1, C2 in which there are duplicated
elements in C1 due to the one-to-many relationship; it is also possible to undo the join operation on this real
dataset. However, for any generative model that treats C1 as continuous variable, the probability of having
duplicated elements in C1 is exactly 0, which means any synthetic dataset would effectively giving a dataset
with one-to-one relationship between U and V, after undoing the join operation.

5

Published as a conference paper at ICLR 2023

sampling bipartite graphs with a target BJD J, giving rise to bipartite 2K-generators. The idea is
to first generate a bipartite graph based on random pairing, after which the graph matches the 2K
distribution but has potentially repeated edges. Then, a rewiring process is performed to make the
graph simple—a graph is called simple if there is no loop or multiple edges (West et al., 2001).
Boroojeni et al. (2017) shows that such rewiring process exists and can always produce a graph with
the target BJD. Since the prescribed algorithm of rewiring in Boroojeni et al. (2017) contains a few
mistakes/typos, we present a corrected version in algorithm 1 in appendix B.

To complete the description of pθ(L), we also need to define how to obtain J that bipartite algorithm 1
take in. For this, we draw samples from PJ with a prescribed number of edges. However, as this might
invalidate the input to algorithm 15, which may cause infinite loops in rewiring, we stop the rewiring
process after a predefined maximum number of iterations. To this end, sampling from J together
with algorithm 1 define pθ(L) through its generative process, where θ is the BJDD matrix PJ.

“Backward compatibility” of the graph generator One consideration taken into account while
selecting the model for p(L) was “backward compatibility” to one-to-many and many-to-one prob-
lems. This refers to the cases where if the data graph contains only one-to-many relationships, the
generated graphs shall do so. The 2K-generator indeed satisfies this property while, in contrast,
spectral-based graph generation methods such as Baldesi et al. (2018) usually fail to hold it.

Learning and sampling Learning of this model only involves computing the BJDD matrix from
the data graph; if a table is involved in multiple edges, the joint distribution of all degrees per node is
learned. Sampling from the model is defined by sampling from PJ followed by algorithm 1.

4.2.2 CONDITIONAL MODELING VIA NODE EMBEDDING

We now discuss how to model upper nodes U conditioned on edges L. This distribution essentially
models a set of nodes given topology, which can be dealt with the use of node embedding as:

p(U | L) =
∏|U|

k=1
p(ni

u | β(L, i)), (1)

where the node encoder β computes node embedding of node i in graph L; its range is ran(β) =
RHβ , where Hβ is the dimension of the node embedding. Intuitively speaking, β computes the
representation of the local topology of node i in L; if the representation is rich enough, ni

u and nj
u are

conditional independent given the representation, for any i, j. As such, once given β, this distribution
can be modeled by any existing conditional generative model. A few candidates of such β are:

1. Node statistics: d-step neighbour count (number of neighbours of distance d) can be used. As
an simple example, d = 1 means using node degrees as 1d embeddings. It can be generalised
to use a collection of counts with Hβ different d, giving to an embedding of size Hβ .

2. Node embedding: Methods to learn node embedding such as DeepWalk (Perozzi et al.,
2014) and node2vec (Grover & Leskovec, 2016) can also be used as β.

Addition discussion on independence assumptions behind equation 1 can be found in appendix C.

Learning Learning of this model only involves learning the conditional generative model. There is
no learning for either node statistics or node embedding (for the two approaches mentioned above).

4.2.3 CONDITIONAL MODELING VIA SET EMBEDDING

Consider a node nv ∈ V with neighbors ne(nv) ⊆ U. It is easy to see that, given ne(nv), nv is
conditionally independent with any other n′

v ∈ V. Thus, we have p(V | L,U) =
∏

nv∈V p(nv |
ne(nv)), where p(nv | ne(nv)) is a conditional distribution whose condition is a multiset—a set
that allows repeated elements. Without imposing any order on ne(nv), one way to condition on this
through a fixed-size set embedding computed by an aggregator γ, which leads to our model

p(V | L,U) =
∏

nv∈V
p(nv | γ(ne(nv))). (2)

5Algorithm 1 assumes two conditions for the input J: (i) J[i, j] ≤ (
∑

j J[i, j]/du[i])(
∑

i J[i, j]/dv[j]) and
(ii) the degree sums for upper and lower nodes are the same (which would be true as long as

∑
j J[i, j]/du[i])

is integer for all i and
∑

i J[i, j]/du[j] is integer for all j) (Boroojeni et al., 2017).

6

Published as a conference paper at ICLR 2023

Equation 2 requires an aggregator γ : pow(U) 7→ RHγ where pow(U) is the power set of U and Hγ

is the dimension of the set embedding. If the set embedding of neighbours from γ is rich enough, any
two nodes nv and n′

v are conditionally independent given the corresponding set embeddings. A few
candidates of such γ are:

1. Summary statistics: count, sum, n-th order moments, q-percent quantiles, etc. can be used. If
both count and sum are used and d different moments and quantiles are used, the total dimen-
sion of the embedding is D+D+ d×D+ d×D for nodes with D-dimensional attributes.

2. Distribution parameters: One can also fit a distribution on the set and use the distribution
parameters as the embedding. Montanez et al. (2018) suggests using a Gaussian copula;
for nodes with D-dimensional attributes, the dimension of the embedding is D +D2.

3. Set embedding: The deep sets architecture (Zaheer et al., 2017) is specifically proposed to
produce a set embedding. It contains two neural networks, one to compute an embedding for
each element in the set and one to aggregate the element embeddings into a set embedding.

Addition discussion on independence assumptions behind equation 2 can be found in appendix C.

Learning Learning of this model involves learning the set embedding (if it is option 3) and learning
the conditional generative model. Learning of the deep sets models can be difficult depends on the
choice of the conditional generative model. However, if this model is also implemented by neural
networks, one can learn γ in an end-to-end fashion using the learning objective of the conditional
generative model. As there is no existing method to train deep sets in an unsupervised manner, it
cannot be used with classic models like Bayesian networks. We leave that to future work.

4.3 ESTABLISHING DIFFERENTIAL PRIVACY

We now describe how to extend the learning of each sub-model in pθ(U,V,L) = pθ1(L)pθ2(U |
L)pθ3(V | L,U) such that the learned parameter θ = (θ1, θ2, θ3) with corresponding privacy budgets
ϵ1, ϵ2, and ϵ3 (ϵ1 + ϵ2 + ϵ3 = ϵ) is (ϵ, δ)-DP, becomes (ϵ, δ)-DP by Theorem. 1 (defined below).
Note that we assume the required privacy budgets for each component in each sub-model are given;
how to optimally spend the budget is a question for future work that is out of the scope of this paper.

pθ1(L) with ϵ1 For pθ1 , θ1 is the BJDD matrix PJ. As per the definition in section 2, we are
interested in masking the presence of absence of a single node of either U or V, which is a stronger
privacy notion than edge protection. To do so we follow the strategy in Sala et al. (2011); Proserpio
et al. (2012) that uses the Laplace mechanism to make PJ ϵ-DP. The main difference here is that we are
operating on bipartite graphs instead of general graphs. Specifically, after measuring the BJD matrix
J from data graphs, to achieve ϵ-DP, we add noise following Lap(Sij

ϵ) where Sij = 4max(di, dj)
to the i-th row, j-th column entry of J (Sala et al., 2011; Proserpio et al., 2012).

pθ2(U | L) with ϵ2 For pθ2 , θ2 consists the parameter of the underlying generative model for the
conditional, for which we choose some existing DP ones and follow their learning algorithms.

pθ3(V | L,U) with ϵ3 For pθ3 , θ3 consists both the parameter of the set embedding model as well
as that of the underlying generative model for the conditional. For the former, if such embedding
is pre-fixed (referred as “statistics” in section 4.2.3) or from Gaussian copula (the second option in
section 4.2.3), there is no learnable parameter for the node embedding model; if such embedding is
based on the deep sets architecture, which is only defined when it can be trained end-to-end with the
generative model, we use DP-SGD (Abadi et al., 2016) for training. For the underlying generative
model not trained jointly, we choose some existing DP ones and follow their learning algorithms.

Theorem 1 ((ϵ, δ)-DP for pθ with A). Given the factorization, pθ(U,V,L) = pθ1(L)pθ2(U |
L)pθ3(V | L,U), as well as pθ1(L) being (ϵ1, δ)-DP, pθ2(U | L) being (ϵ2, δ)-DP, and pθ3(V | L,U)
being (ϵ3, δ)-DP, by sequential composition it follows that pθ(U,V,L) is (ϵ1 + ϵ2 + ϵ3, δ)-DP.

It should be noted that the proposed formulation is flexible enough to allow for the privacy protection
of the nodes from only one of U and V but not the other. For instance, if we choose to protect only U,
we can set ϵ3 =∞ when learning pθ3(V | L,U) and dj = 0 for all j when learning pθ1(L), making
the overall synthetic data generation process (ϵ, δ)-DP (ϵ1 + ϵ2 = ϵ).

7

Published as a conference paper at ICLR 2023

5 EVALUATION

Dataset We consider the MOVIELENS in our evaluation. MOVIELENS is a dataset that contains
users’ ratings to different movies (Harper & Konstan, 2015). The user and movie tables have their
own attributes such as user ages and movie genres and have a many-to-many relationship through
existing ratings. We choose MOVIELENS as it is a commonly used datasets to study graph properties
(Harper & Konstan, 2015; Baldesi et al., 2018; Belletti et al., 2019).

Pre-processing We discretize all features into maximally 30 bins. Note this discretization step is
optional: for our study, it is meant to make modeling and evaluation easier, which is an orthogonal
consideration to the main point of the study which is to assess the performance of many-to-many
modelling. Also note we do not use any privacy budget during pre-processing by assuming all
information needed are public, which is again a separate concern that is out of the scope of this paper.

5.1 QUALITY OF MANY-TO-MANY MODELING

In this section, we evaluate the quality of the proposed model in terms of synthetic data similarity. We
consider a set of baselines as well as two realizations of the proposed method, which we explain next.

Baseline We consider SDV (Montanez et al., 2018) as the baseline method in our evaluation.6
SDV decomposes many-to-many relationships into multiple one-to-many ones and has the “multiple
parents” (discussed in section 3). To handle this, instead of randomly picking one table as the parent as
suggested by Montanez et al. (2018), we experiment both options and report the one with better results.

Two model instances from the proposed framework The proposed framework enables a range
of new generative models with different options in each submodel detailed in section 4.2. In this
evaluation, we focus on two typical ones built on different single table models: a Bayesian network
with the network building method from Zhang et al. (2017), referred as BN, and an autoregressive
model in which each conditional is modelled by a neural network, referred as NeuralAR. The two
realizations are then (i) a classic non-parametric approach in which the single table models used
are BN, referred as Bayesian many-to-many (BayesM2M) and (ii) a neural-based approach in which
the single table models used are NeuralAR, referred as neural many-to-many (NeuralM2M). In
both realizations, for p(L), we use the 2K-generator. In BayesM2M, for p(U | L), we use node
statistics with d-step counts for d = 1, 2; for p(V | L,U), we use summary statistics with count, sum,
n-th order moments for n = 1, 2, 3 and q-percent quantiles for q = 0.25, 0.5, 0.75. In NeuralM2M,
for p(U | L), we use node2vec to extract node embeddings; for p(V | L,U), we use the deep sets
architecture (Zaheer et al., 2017) to consume a set of node (equivalently a set of rows).

Metrics As the primary goal of SDG is to mimic the distribution of the real data, we consider three
sets of metrics based on distributional similarity to evaluate the generation quality. The first set con-
sists metrics that specifically evaluate the quality of relationship generation, which are one minus the
total variation distances between the dK-distributions of real and synthetic data for d = 1, 2 (bounded
between 0 and 1). The second set consists the pairwise mutual information (MI) similarity for each ta-
ble to evaluate the quality of individual tables. For a pair of real and synthetic tables, we first compute
the normalized MI7 between each pair of columns in each table; for tables with m features, this gives a
pair of m×m matrices. The MI similarity is then defined as the average Jaccard indices between each
pair of entries. Compared to alternative metrics such as f -divergences, this metric is bounded between
0 and 1 thus is easy to interpret. The third set consists the metrics to capture correlations between
table pairs rooted in their many-to-many relationships, i.e. cross-table similarity. For each pair, we
join the tables by their links into a single table and compute the pairwise MI similarity for each pair
between two tables; for a pair of two tables with m and n features, this gives a pair of m×n matrices.
The MI similarity is then defined as the average Jaccard indices between each pair of entries. To help
understand our metrics, we provide detailed definitions with step-by-step examples in appendix D.

Table 1 summarizes the main results from experiments with the above setups. Compared to SDV, both

6We use the official implementation of SDV at github.com/sdv-dev/SDV in our experiments.
7For discrete X,Y , we have I(X;Y) ≤ min(H(X), H(Y)). Thus normalized MI is defined as

I(X;Y)/min(H(X), H(Y)), which is bounded between 0 and 1.

8

github.com/sdv-dev/SDV

Published as a conference paper at ICLR 2023

Table 1: Quality of many-to-many modelling on MOVIELENS. All metrics are bounded between
0 and 1 with 1 being the theoretical maximal value, i.e. higher the better. Numbers are mean and
standard deviation based on 5 runs with different random seeds.

Method Degree Similarity Mutual Information Similarity
Marginal Joint U V Cross-Table

SDV 0.867± 0.003 0.614± 0.012 0.547± 0.033 0.334± 0.017 0.440± 0.035
BayesM2M

0.955± 0.016 0.634± 0.028
0.756± 0.041 0.345± 0.016 0.561± 0.031

NeuralM2M 0.846± 0.045 0.562± 0.031 0.613± 0.016

realizations of the proposed method obtains better scores in terms of graph similarity (marginal and
joint degree similarity). This supports our choice of using random graph generation as the starting
point of the whole generative process. Among two realizations, NeuralM2M has a better score in MI
similarity for U, indicating that the node representation from node2vec contains more information
than a simple-minded node statistics. On top of this, NeuralM2M also has a larger the gain/different
between MI similarity for U and V than BayesM2M, indicating that deep sets architecture learn better
set representation than fixed summary statistics. As a result of using random graph generation and
learnable neural-based representations, NeuralM2M has the best cross-table similarity. We present
more results on further metrics in appendix D.

5.2 PERFORMANCE UNDER DIFFERENTIAL PRIVACY CONSTRAINTS

For the two typical realizations of the proposed framework, we now evaluate how the generation qual-
ity of their differentially private variants changes with different privacy budgets. We focus on the cross-
table similarity in this section as it is the most comprehensive metric for many-to-many modelling.

Privacy budgets For both realizations, we vary ϵ in {0.1, 10.0, 1, 000.0,∞}. For NeuralM2M, we
in addition set δ = 1× 10−5 and use a sensitivity (gradient clipping norm) of 5.0 in DP-SGD.

Figure 3 summarizes the main results from experiments with the above setups. As it can be seen,

Figure 3: Cross-table similarity with pri-
vacy budgets ϵ on MOVIELENS

even though NeuralM2M performs well in a non-DP setup,
its performance drops quickly with even a slightly smaller
privacy budget. In comparison, BayesM2M has a better
privacy-similarity trade-off. The main reason behind this
is that the components in NeuralM2M rely on iterative
training in which noise is added per iteration in order to
establish differential privacy, making it hard to optimally
spend the privacy budget or to obtain a tight DP bound. On
the other side, most of the component in BayesM2M are
pre-fixed and BNs can achieve DP by only adding noises
to the measurement (i.e. counting for discreized data) of each table column.

6 DISCUSSION AND CONCLUSION

Limitation The overall quality of the proposed framework depends on the choice of random
graph generation methods. In this paper, we mostly focus on the 2K-generator that can generate
arbitary-sized graphs but it at its best matches the 2K-distributions of the real data. Some other graph
generation methods such as Baldesi et al. (2018); Belletti et al. (2019) can capture more graph statistics
but can only generate graphs with the same size as the data graph or expands it by a whole number.

Societal impacts On the positive side, the proposed method improve SDG for many-to-many
data and can be used to release such data with DP guarantees, protecting the privacy of relevant
individuals. However, as all generative model-based SDG methods, the synthetic data may be
different from the real one in certain ways, causing potential disparity issues.

To conclude, this paper studies the challenge of building faithful generative models for many-to-many
datasets and present a novel generation framework based on random graph generation, node and set
representation learning. The proposed framework is demonstrated to be better than its closest competi-
tor SDV in terms of the generation quality on the widely-studied MOVIELENS dataset. We also study
the behaviour of proposed model under different DP constraints, highlighting potential future works.

9

Published as a conference paper at ICLR 2023

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

William Aiello, Fan Chung, and Linyuan Lu. A random graph model for massive graphs. In
Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 171–180,
2000.

Luca Baldesi, Carter T Butts, and Athina Markopoulou. Spectral graph forge: Graph generation
targeting modularity. In IEEE INFOCOM 2018-IEEE Conference on Computer Communications,
pp. 1727–1735. IEEE, 2018.

Francois Belletti, Karthik Lakshmanan, Walid Krichene, Yi-Fan Chen, and John Anderson. Scalable
realistic recommendation datasets through fractal expansions. arXiv preprint arXiv:1901.08910,
2019.

Mouna Ben Ishak, Philippe Leray, and Nahla Ben Amor. Probabilistic relational model benchmark
generation: Principle and application. Intelligent Data Analysis, 20(3):615–635, 2016.

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. arXiv preprint arXiv:2110.01889,
2021.

Asma Azizi Boroojeni, Jeremy Dewar, Tong Wu, and James M Hyman. Generating bipartite networks
with a prescribed joint degree distribution. Journal of complex networks, 5(6):839–857, 2017.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Ju Fan, Junyou Chen, Tongyu Liu, Yuwei Shen, Guoliang Li, and Xiaoyong Du. Relational data
synthesis using generative adversarial networks: A design space exploration. Proc. VLDB Endow.,
13(12):1962–1975, jul 2020. ISSN 2150-8097. doi: 10.14778/3407790.3407802. URL https:
//doi.org/10.14778/3407790.3407802.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning probabilistic relational models.
In IJCAI, volume 99, pp. 1300–1309, 1999.

Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Probabilistic relational models.
Introduction to statistical relational learning, 8, 2007.

Minas Gjoka, Maciej Kurant, and Athina Markopoulou. 2.5 k-graphs: from sampling to generation.
IEEE, 2013.

Minas Gjoka, Bálint Tillman, and Athina Markopoulou. Construction of simple graphs with a
target joint degree matrix and beyond. In 2015 IEEE Conference on Computer Communications
(INFOCOM), pp. 1553–1561. IEEE, 2015.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
855–864, 2016.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM
Trans. Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL
https://doi.org/10.1145/2827872.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with
differential privacy guarantees. In International conference on learning representations, 2018.

10

https://doi.org/10.14778/3407790.3407802
https://doi.org/10.14778/3407790.3407802
https://doi.org/10.1145/2827872

Published as a conference paper at ICLR 2023

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in Neural Information Processing Systems, 32, 2019.

Zinan Lin, Alankar Jain, Chen Wang, Giulia Fanti, and Vyas Sekar. Using gans for sharing networked
time series data: Challenges, initial promise, and open questions. In Proceedings of the ACM
Internet Measurement Conference, IMC ’20, pp. 464–483, New York, NY, USA, 2020. Association
for Computing Machinery. ISBN 9781450381383. doi: 10.1145/3419394.3423643. URL
https://doi.org/10.1145/3419394.3423643.

Chao Ma, Sebastian Tschiatschek, Richard Turner, José Miguel Hernández-Lobato, and Cheng
Zhang. VAEM: a deep generative model for heterogeneous mixed type data. Advances in Neural
Information Processing Systems, 33:11237–11247, 2020.

Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. Systematic topology analysis and
generation using degree correlations. ACM SIGCOMM Computer Communication Review, 36(4):
135–146, 2006.

Ryan McKenna, Daniel Sheldon, and Gerome Miklau. Graphical-model based estimation and
inference for differential privacy. In International Conference on Machine Learning, pp. 4435–
4444. PMLR, 2019.

Michael Molloy and Bruce Reed. A critical point for random graphs with a given degree sequence.
Random structures & algorithms, 6(2-3):161–180, 1995.

Andrew Montanez et al. SDV: an open source library for synthetic data generation. PhD thesis,
Massachusetts Institute of Technology, 2018.

Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera. Handling incomplete
heterogeneous data using VAEs. Pattern Recognition, 107:107501, 2020.

Beata Nowok, Gillian M. Raab, and Chris Dibben. synthpop: Bespoke creation of synthetic data
in r. Journal of Statistical Software, 74(11):1–26, 2016. doi: 10.18637/jss.v074.i11. URL
https://www.jstatsoft.org/index.php/jss/article/view/v074i11.

Nicolas Papernot, Martín Abadi, Ulfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar
Erlingsson. Scalable private learning with PATE. arXiv preprint arXiv:1802.08908, 2018.

N. Patki, R. Wedge, and K. Veeramachaneni. The synthetic data vault. In 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 399–410, Oct 2016. doi:
10.1109/DSAA.2016.49.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 701–710, 2014.

Davide Proserpio, Sharon Goldberg, and Frank McSherry. A workflow for differentially-private graph
synthesis. In Proceedings of the 2012 ACM workshop on Workshop on online social networks, pp.
13–18, 2012.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

11

https://doi.org/10.1145/3419394.3423643
https://www.jstatsoft.org/index.php/jss/article/view/v074i11

Published as a conference paper at ICLR 2023

Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y Zhao. Sharing graphs
using differentially private graph models. In Proceedings of the 2011 ACM SIGCOMM conference
on Internet measurement conference, pp. 81–98, 2011.

Isabelle Stanton and Ali Pinar. Constructing and sampling graphs with a prescribed joint degree
distribution. Journal of Experimental Algorithmics (JEA), 17:3–1, 2012.

Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Gerome Miklau.
Benchmarking differentially private synthetic data generation algorithms. arXiv preprint
arXiv:2112.09238, 2021.

Allan Tucker, Zhenchen Wang, Ylenia Rotalinti, and Puja Myles. Generating high-fidelity synthetic
patient data for assessing machine learning healthcare software. NPJ digital medicine, 3(1):1–13,
2020.

Edward Wagstaff, Fabian Fuchs, Martin Engelcke, Ingmar Posner, and Michael A Osborne. On the
limitations of representing functions on sets. In International Conference on Machine Learning,
pp. 6487–6494. PMLR, 2019.

Stefan Webb, Adam Golinski, Rob Zinkov, Tom Rainforth, Yee Whye Teh, Frank Wood, et al.
Faithful inversion of generative models for effective amortized inference. Advances in Neural
Information Processing Systems, 31, 2018.

Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle River,
2001.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739, 2018.

Kai Xu, Rajkarn Singh, Marco Fiore, Mahesh K. Marina, Hakan Bilen, Muhammad Usama, Howard
Benn, and Cezary Ziemlicki. Spectragan: Spectrum based generation of city scale spatiotemporal
mobile network traffic data. In Proceedings of the 17th International Conference on Emerging
Networking EXperiments and Technologies, CoNEXT ’21, pp. 243–258, New York, NY, USA, 2021.
Association for Computing Machinery. ISBN 9781450390989. doi: 10.1145/3485983.3494844.
URL https://doi.org/10.1145/3485983.3494844.

Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using generative adversarial networks.
arXiv preprint arXiv:1811.11264, 2018.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
data using conditional GAN. Advances in Neural Information Processing Systems, 32, 2019.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and
Alexander J Smola. Deep sets. Advances in neural information processing systems, 30, 2017.

Jun Zhang, Graham Cormode, Cecilia M Procopiuc, Divesh Srivastava, and Xiaokui Xiao. Privbayes:
Private data release via bayesian networks. ACM Transactions on Database Systems (TODS), 42
(4):1–41, 2017.

Alexander Ziller, Dmitrii Usynin, Rickmer Braren, Marcus Makowski, Daniel Rueckert, and Georgios
Kaissis. Medical imaging deep learning with differential privacy. Scientific Reports, 11(1):1–8,
2021.

A HOW GENERATIVE MODELS ARE USED FOR SYNTHETIC DATA
GENERATION

Figure 4 provides a flow chart to demonstrate the high-level workflow of generative models as applied
to synthetic data generation in practice. As a more concrete example, suppose the real data is a
many-to-many dataset that contains user reviews of various movies: It contains a table of users, a
table of movies and a table describes how each user rates a movie (in a many-to-many fashion as a
user could rate multiple movies and a movie can be reviewed by multiple users). Such a dataset may

12

https://doi.org/10.1145/3485983.3494844

Published as a conference paper at ICLR 2023

real data synthetic data
generative

model

private environment

downstream tasks
- data analysis
- model training

DP synthetic data
DP generative

model

Figure 4: How generative models are used for synthetic data generation. To begin with, the real data
stays in a private environment and cannot be shared with a third party due to privacy compliance.
Depending on whether or not the synthetic data needs to be DP (according to compliance), the use
of the generative model goes through a different route. If no DP is required, we can fit a generative
model on the real data, both of which needs to stay in the private environment. Then synthetic data
is sampled from the model, leaves the private environment and can be shared with a third-party
to perform any downstream tasks of interest. If DP is needed for the synthetic data, we fit a DP
generative model on the real data and the model can leave the private environment as the model is
also DP. The rest of the process follows similarly to that of the non-DP route.

contain sensitive information such as user information (which may contain personally identifiable
information) and how users rate movies (a user may be identified by how many movies he or she
rated). The two routes of how generative models can be used to provide a synthetic copy of the data
resolves this problem, especially the DP route. Downstream tasks such as data analysis (e.g. analysis
of user behaviour) or model training (e.g. to train recommender systems) can then be performed on
the synthetic data that is shared publicly by any third-party.

B BIPARTITE 2K-GENERATORS

The complete algorithm of the bipartite 2K-generators from Boroojeni et al. (2017) with corrections
is given in algorithm 1. The algorithm consists two parts. The first part (Line 4 to Line 18) is called
random pairing. It works by first creating stubs for each node based on its degree; the stubs for
a node with index i and degree d is a list [i, . . . , i︸ ︷︷ ︸

d

]. After stubs for all nodes are created, they are

randomly paired based on the joint degree distribution/counts. This is simply done by enumerating
the joint degree count: At each iteration for a pair of degree d1, d2, we randomly sample d1 stubs
with degree d1 and d2 stubs with degree d2 and pair them accordingly. This step ensures the joint
degree distribution matches while with potential repeated edges. The second part (Line 20 to Line
52) resolves repeated edges while preserving the joint degree counts. Boroojeni et al. (2017) shows
that there are only two cases how such repeated edges could appear and how to resolve each of them
accordingly with the joint degree counts unchanged. Note that the algorithm presented in Boroojeni
et al. (2017) contains several mistakes even though their proof is correct; algorithm 1 is based on our
own realization of situations in the proof but essentially the same algorithm.

C INDEPENDENCE ASSUMPTIONS

Node embedding models As mentioned in section 4.2.2, equation 1 only holds if the representation
from β is rich enough such that any two nodes nu and n′

u are conditional independent given the
representations. This is more likely to be true if node embedding (option 2 above) is used. However,
node statistics (option 1) is still appealing due to its simplicity and computational efficiency thus
there exists an inherent fidelity-computation trade-off between these two modeling choices.

Set embedding models As mentioned in section 4.2.3, equation 2 only holds if the embedding
from γ is rich enough such that any two nodes nv and n′

v are conditionally independent given the
corresponding set embeddings. This can be made true if set embedding (option 3 above) is used with
a large enough dimension (Wagstaff et al., 2019) This could be potentially made true if distribution
parameters (option 2 above) is used, if the distribution family is flexible enough. However, summary

13

Published as a conference paper at ICLR 2023

statistics (option 1) is still appealing due to its simplicity and computational efficiency thus there
exists an inherent fidelity-computation trade-off between these three modeling choices.

D DETAILED EEXPLANATION OF METRICS USED IN SECTION 5

In section 5 we used a set of metrics that are not commonly used for evaluation. To repeat, the two
reasons we prefer these metrics are (i) they are bounded between 0 and 1 and (ii) they are easy to
compute once the data is discretized, e.g. not requirement for training a classifier for density ratio
estimation in computing f -divergences. We now provide a more formal description of these metrics.

D.1 DEGREE SIMILARITY

Let p,q be the probability vectors representing the 1K-distribution (with the same support) of the
real and synthetic graphs. The marginal degree similarity is defined as

1− 1

2
TV(p,q) = 1− 1

2

∑
i

|pi − qi|

where TV is the total variation distance and pi, qi are the i-th element of p,q.

Let P,Q be the probability matrices representing the corresponding 2K-distribution (with the same
support). Similarly, the joint degree similarity is defined as

1− 1

2
TV(P,Q) = 1− 1

2

∑
i,j

|Pij −Qij |

where Pij , Qij are the i-th row, j-th column entry of P,Q.

As TV(·, ·) ∈ [0, 2], it can be easily shown that the two above degree similarity metrics are bounded
by 0 and 1 with 1 being the maximal and best value.

D.2 MUTUAL INFORMATION SIMILARITY

Let X,Y be two datasets with the same number of discrete columns/features (m). For each dataset,
we compute the normalized mutual information between each pair of columns, giving the pairwise
MI matrix.

The normalized mutual information between two random variables X,Y is defined as

nMI(X,Y) :=
MI(X,Y)

min{H(X),H(Y)}
=

H(X) + H(Y)−H(X,Y)

min{H(X),H(Y)}
where MI refers to the mutual information and H refers to the Shannon entropy. This quantity is
bounded by 0 and 1 due to (i) the positivity of entropy and (ii) the inequality below

H(X,Y) ≥ max{H(X),H(Y)} property of joint entropy
−H(X,Y) ≤ min{−H(X),−H(Y)} multiply by − 1

H(X) + H(Y)−H(X,Y) ≤ H(X) + H(Y) + min{−H(X),−H(Y)} add marginal entropies
MI(X,Y) ≤ min{H(X),H(Y)} simplification

.

Then the pairwise MI matrix, e.g. M for X can be defined by its i-th row, j-th column entries Mij

Mij := nMI(Xi, Xj)

where Xi, Xj are the random variables for the i-th and j-th columns of the dataset X. As the dataset is
assumed to be given in discrete, the entropy of each column and the joint entropy of a pair of columns
can be easily estimated by first estimating the empirical probabilities followed by the definition of
Shannon entropy.

Let M,N be the pairwise MI matrices for X,Y respectively, the MI similarity is then defined as
1

m2

∑
i,j

J(Mij , Nij)

14

Published as a conference paper at ICLR 2023

Table 2: Quality of many-to-many modelling on MOVIELENS. All metrics are bounded between
0 and 1 with 1 being the theoretical maximal value, i.e. higher the better. Numbers are mean and
standard deviation based on 5 runs with different random seeds.

Method Total Variation Similarity
U V Cross-Table

SDV 0.855± 0.032 0.937± 0.001 0.624± 0.004
BayesM2M 0.758± 0.037 0.951± 0.027 0.742± 0.038
NeuralM2M 0.800± 0.061 0.926± 0.012 0.745± 0.046

Table 3: Quality of many-to-many modelling on MOVIELENS. All metrics are bounded between 0
and 1 with 1 being the theoretical maximal value, i.e. higher the better.

Recommender System SDV BayesM2M NeuralM2M Real Data

F1 score 0.522 0.507 0.591 0.591

where Mij , Nij the i-th row, j-th column entries accordingly and J is the Jaccard index defined as

J(A,B) =
min{A,B}
max{A,B}

.

It is easy to see this metric is bounded by 0 and 1 with 1 being the maximal and best value.

Cross-table MI similarity To compute the cross-table MI similarity score, for a pair of real tables
X1,X2 and synthetic tables Y1,Y2, we first join (join as in relational algebra or databases) the two
table pairs (X1,X2 and Y1,Y2) into X and Y by the graph/links between them. Then, we simply
follow the MI similarity described above to compute the score.

D.3 TOTAL VARIATION SIMILARITY

Tao et al. (2021) uses a similar metric as in appendix D.2 where the pairwise mutual information
between marginals is replaced by pairwise total variation distance (which is between 0 and 1, as
defined by TV(P,Q) =

∑
x∈X |P (X = x)−Q(X = x)|/2 for two discrete distributions P,Q over

domain X). We also report this metric with the only modification being that we use 1− TV(P,Q)
instead, which makes the number higher the better for consistent interpretability as the mutual
information similarity (while still being bounded between 0 and 1). We refer this metric as total
variation similarity. Table 2 shows the results. Note that even the single-table performance, which is
mainly dependent on the choice of single-table models, of ours is slightly worse than that of SDV
(column U) or similar (column V), the cross-table performance of ours is still better with a noticeable
margin (column Cross-Table). This is a strong indication of the benefit of our proposed many-to-many
modeling approach.

D.4 RECOMMENDER SYSTEM

Finally, we train a recommender systems on both real and synthetic datasets and compare their
performance on a set aside test data. We report the results in Table 3. We see that both SDV and
BayesM2M experience similar drop in performance compared to the recommender trained on the real
data. For BayesM2M, we conjecture that the drop is because that the maximum number of parents is
limited to 2, meaning no higher-level correlation is captured. Similar explanation can be made to the
drop for SDV, where the single-table model (Gaussian copula) can only capture pairwise correlations.
On the other hand, NeuralM2M achieves the same score as than the real due to the more powerful
single-table model as well as our many-to-many modeling framework. This is perhaps surprising, as
the the recommender system trained on the real data observes (almost) the same movies in the fitting
and predicting steps while the NeuralM2M one was trained entirely on synthetic movies.

15

Published as a conference paper at ICLR 2023

E REPRODUCIBILITY

E.1 CODE

Our implementations of BayesM2M and NeuralM2M are available at github.com/hazy/m2m.

E.2 EXPERIMENT DETAILS

In this section we provide some experimental details that are missing in section 5.

Bayesian networks For BNs, we set the number of parents to be 2. The network building algorithm
follows (Zhang et al., 2017) exactly.

Neural autoregressive models For NeuralARs, the architecture for each classifier is as follows:8

1. Each discrete variable is passed to an embedding layer with an embedding size of 20, after
which all embeddings are concatenated, giving a input embedding of size de

2. (Optional) When the deep sets architecture is used, each node is passed to a linear layer with
output size 10 (i.e. node embedding size), then summed (i.e. summation as the aggregation
function) and passed to a linear layer with output size 50 (i.e. set embedding size). We also
overload the notation de by this set embedding size if this step is performed.

3. The input embedding is passed to a multi-layer perceptron of de
ReLU−→ 50

ReLU−→ 50
Softmax−→ do

where ReLU refers to the rectified linear unit activation function, Softmax refers to the he
softmax function and do is the output dimension, equal to the number of unique values of
the output features.

Data is split by 80/20 into training and validation sets. All training is done using the ADAM
optimizer (Kingma & Ba, 2014) for maximally 1, 000 steps with a learning rate of 1 × 10−3 and
a batch size of 500. We also use a learning rate scheduler with the sine function with exponential
amplitude decay with a minimal learning rate of 2× 10−4 and a 5-epoch periodicity.9 Finally, early
training is used based on the loss computed on the validation set: if there is no loss drop for 5 epochs,
the training is early stopped.

node2vec We use the Julia implementation of node2vec.10 We keep all default parameters except set-
ting the number of walks to be 10, the walk length to be 100, p = q = 2 and an embedding size of 20.

Privacy accountant We apply a simple-minded way to spread the privacy budget. First, the privacy
budget is evenly split among three sub-models. Second, within each sub-model, the budget is further
evenly split to each component. For BNs, it means the network building and counting. For NeuralARs,
we simply record the number of iterations used for training per classifier in the non-private version
and evenly spread the privacy across all iterations. Note this (assuming the number of iterations per
classifier is known) is for evaluation purpose only and by no means this strategy is an optimal way to
spend the privacy budgets.

E.3 TOTAL COMPUTATION RESOURCES

All experiments are conducted on an Amazon EC2 instance of type c5.4xlarge with CPUs only.

8All neural networks are implemented using Flux.jl (https://github.com/FluxML/Flux.jl.)
9This is done using the SinExp from ParameterSchedulers.jl (https://github.com/darsnack/

ParameterSchedulers.jl).
10The code is available at https://github.com/ollin18/Node2Vec.jl.

16

github.com/hazy/m2m
https://github.com/FluxML/Flux.jl
https://github.com/darsnack/ParameterSchedulers.jl
https://github.com/darsnack/ParameterSchedulers.jl
https://github.com/ollin18/Node2Vec.jl

Published as a conference paper at ICLR 2023

Algorithm 1 Bipartite 2K-generator (Boroojeni et al., 2017, corrected)

1: Input: BJD J with supports du,dv

2: Output: Edges L
3: Initialise L = ∅ ▷ Initialise edges as empty set
4: # Part 1: random pairing
5: su ← [], sv ← [] ▷ Initialise stubs as empty lists
6: Compute degree sequences u,v from J
7: for iu ∈ 1, . . . , |u|, k ∈ 1, . . . ,u[iu] do
8: Append iu to su
9: end for

10: for iv ∈ 1, . . . , |v|, k ∈ 1, . . . ,v[iv] do
11: Append iv to sv
12: end for
13: for i ∈ 1, . . . , |du|, j ∈ 1, . . . , |dv| do
14: k ← J[i, j]
15: Randomly pop k node indices {ilu}kl=1 from su s.t. the corresponding nodes n(ilu) has degree

du[i]
16: Randomly pop k node indices {ilv}kl=1 from sv s.t. the corresponding nodes n(ilv) has degree

dv[j]
17: Add edges {(ilu, ilv)}kl=1 to L
18: end for
19: # Part 2: rewiring process (corrected version)
20: Lr ← repeated edges in L ▷ Repeated edges to resolve
21: while Lr is not empty do
22: Randomly pop edge (iu, iv) from Lr

23: nu ← n(iu), nv ← n(iv), n′
u ← nu, n′

v ← nv

24: U′ ← {nu : deg(nu) = deg(nu)} \ {nu}
25: V′ ← {nv : deg(nv) = deg(nu)} \ {nu}
26: if |U′| = 0 then
27: n′

v ← uniform sample from {n′
v ∈ V′ \ ne(n′

u) : ne(n
′
v) \ ne(nv) ̸= ∅}

28: else if |V′| = 0 then
29: n′

u ← uniform sample from {n′
u ∈ U′ \ ne(n′

v) : ne(n
′
u) \ ne(nu) ̸= ∅}

30: else if L′
n := {(n′

u, n
′
v) ∈ V′ × U′ : ne(n′

v)) \ ne(nv) ̸= ∅ and ne(n′
u) \ ne(nu) ̸= ∅} ̸= ∅

then
31: (n′

u, n
′
v)← uniform sample from L′

n
32: else if V′′ := {n′

v ∈ V′ \ ne(n′
u)} ≠ ∅ then

33: n′
v ← uniform sample from V′′

34: else▷ Boroojeni et al. (2017) proves that in this branch the set to draw samples is non-empty.
35: n′

u ← uniform sample from {n′
u ∈ U′ \ ne(n′

v)}
36: end if
37: if n′

u = nu then ▷ Case 2
38: n′

w ← uniform sample from ne(n′
v) \ ne(nv)

39: Remove edge (i(n′
w), i(n

′
v)) from L

40: Add edges {(i(nu), i(n
′
v)), (i(n

′
w), i(n

′
v))} to L

41: else if n′
v = nv then ▷ Case 2

42: nw ← uniform sample from ne(n′
u) \ ne(nu)

43: Remove edge (i(n′
u), i(nw)) from L

44: Add edges {(i(n′
u), i(nv)), (i(nu), i(nw))} to L

45: else ▷ Case 1
46: nw ← uniform sample from ne(n′

u) \ ne(nu)
47: n′

w ← uniform sample from ne(n′
v) \ ne(nv)

48: Remove edges {(i(n′
u), i(nw)), (i(n

′
w), i(n

′
v))} from L

49: Add edges {(i(nu), i(nw)), (i(n
′
w), i(nv)), (i(n

′
u), i(n

′
v))} to L

50: end if
51: Lr ← repeated edges in L
52: end while
53: return L

17

	Introduction
	Background and Notations
	Related Work
	Modeling Many-to-Many Datasets with Differential Privacy
	Faithful generative models for many-to-many datasets
	Random graph generation based many-to-many synthesis
	Graph modeling via random graph generation
	Conditional modeling via node embedding
	Conditional modeling via set embedding

	Establishing differential privacy

	Evaluation
	Quality of many-to-many modeling
	Performance under differential privacy constraints

	Discussion and Conclusion
	How Generative Models are Used for Synthetic Data Generation
	Bipartite 2K-Generators
	Independence assumptions
	Detailed Eexplanation of Metrics Used in section 5
	Degree similarity
	Mutual information similarity
	Total variation similarity
	Recommender system

	Reproducibility
	Code
	Experiment details
	Total Computation Resources

