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ABSTRACT

Accurate prediction of RNA branch points is critical for understanding splicing
mechanisms and identifying variants that may lead to genetic diseases. Despite
their biological importance, few computational methods have been developed for
reliably identifying branch points. In this work, we fine-tune several RNA lan-
guage models for branch point prediction. The top-performing model, ERNIE-
RNA, achieved an F1 score of 0.811, a sequence accuracy of 0.790, and an av-
erage precision score of 0.868, outperforming previous leading models. These
results showcase the potential of RNA-specific language models in capturing the
subtle sequence features relevant to splicing. Our findings suggest that extended
training and hyperparameter tuning could yield additional performance gains, po-
sitioning this study as a strong baseline for future research in RNA splicing.

1 INTRODUCTION

Branch points (BPs) are short motifs, usually a single nucleotide, within non-coding sequences (in-
trons) of pre-mRNA, which play a crucial role in the RNA splicing mechanism. During splicing, the
spliceosome removes introns and ligates coding sequences (exons), forming mature mRNA (Clancy,
2008). The key splicing motifs involved in this recognition are the 5’ splice site (donor site), the 3’
splice site (acceptor site), and the BP site (De Conti et al., 2013), as depicted in Fig. 1. The intronic
sequence is cut from the RNA and bent on itself at the BP forming a lariat. The remaining RNA of
the exonic sequences is then ready to be translated into proteins.

Figure 1: RNA splicing process and key splicing motifs.

Genetic variants that alter splicing motifs, including BPs, can prevent proper splicing (Douglas &
Wood, 2011). Incorrect splicing can result in modified mRNA sequences, affecting the final proteins
synthesized in the translation process. Even minor alterations in a protein’s amino acid sequence can
lead to genetic diseases. While most of the 5’ and 3’ splice site sequences have been experimentally
mapped, BP sites exhibit considerable variation between different species and even between introns
of the same organism (Xie et al., 2023). Due to the high variability in their positions, accurately
predicting BPs and interpreting changes in their positions remain a critical challenge for molecular
diagnosis and genetic disease research.

In this study, we fine-tuned various RNA language models on a dataset of BP positions and measured
their performance in predicting BPs. Accurate BP prediction can support a range of downstream
applications, such as assessing the impact of intronic variants that may lead to genetic diseases.

*Equal contribution.
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When integrated with existing computational tools and other databases (Saadat & Fellay, 2024;
2025), these models can contribute to a more comprehensive understanding of how genetic variants
influence disease mechanisms.

2 DATASET

This work utilizes an experimentally validated subset of the curated dataset from BPHunter (Zhang
et al., 2022), consisting of more than 170,000 intronic DNA sequences with a single BP per se-
quence, derived from regions transcribed into pre-mRNA. Each sequence consists of NTs repre-
sented as A, G, T, or C, with a median sequence length of 1,558 NTs, as seen in Fig. 2. BP annota-
tions are provided as a binary sequence, where the position corresponding to the BP is labeled with
1 and all other positions with 0.

The dataset was divided into train, validation, and test sets according to the chromosome number.
Specifically, chromosomes 9 and 10 were assigned to the validation set, chromosomes 8 and 11 to
the test set, and the remaining chromosomes to the train set, resulting in a train/validation/test split
of 83%, 8%, and 9%, respectively. This chromosome-based split prevents any overlap between the
sequences in the training and evaluation sets, a strategy also used during the training of SpliceBERT
(Chen et al., 2024).

Figure 2: Distribution of sequence lengths in the training set showing 80% of the dataset, excluding
the longest sequences.

Figure 3: Probability distribution of the distance from the BP to the 3’ splice site.

Analysis of the data highlights clear trends in the position of the BPs. First, most BPs are located
15 to 40 NTs from the 3’ splice site, as shown in Fig. 3, aligning with previously known BP motifs.
Secondly, adenine (A) is the nitrogenous base at most BP sites (95% in the training set, with cytosine,
uracil, and guanine at 3%, 1%, and 1%, respectively). These insights allow us to implement a
baseline model to evaluate our fine-tuned models. For each NT in a given validation or test sequence,
the baseline ”model” will multiply the probabilities in Fig. 3 by the per-NT probabilities (e.g. 95%
for adenine), resulting in a set of ranking coefficients that can be used to rank the chance of any NT
being the BP.
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3 MODELS

To fine-tune several models, we used MultiMolecule (Chen & Zhu, 2024), a library that provides a
comprehensive collection of foundational RNA language models and tokenizers. Among the models
we selected from this library, all have been pre-trained on intronic sequences (except UTR-LM), and
contain only one NT per token, making them well-suited for BP detection. These models employ
a BERT-style architecture, which is particularly effective for RNA sequence modeling because it
effectively captures complex long-range dependencies and contextual relationships within NT se-
quences (Akiyama & Sakakibara, 2022). By leveraging patterns learned during pre-training, these
models can be easily adapted for downstream tasks, such as identifying BPs. An overview of the
key parameters and information for each model is provided in Table 1.

Table 1: Key parameters of the RNA language models. All datasets are not limited to human se-
quences unless otherwise specified.

Model Size Seq. Len. Dataset Information

RNABERT Akiyama & Sakakibara (2022) 0.48M 440 Human ncRNA (RNAcentral), SSL
UTR-LM (Chu et al., 2023) 1.21M 1022 5’ UTR, SSL and SL
SpliceBERT (Chen et al., 2024) 19.72M 512 Vertebrate pre-mRNA (UCSC Genome Browser)
ERNIE-RNA (Yin et al., 2024) 85.67M 1024 ncRNA (RNAcentral), SSL
RNA-MSM (Zhang et al., 2023) 95.92M 1024 ncRNA and CREs (Rfam)
RNA-FM (Shen et al., 2024) 99.52M 1024 ncRNA (RNAcentral), SSL

4 TRAINING AND EVALUATION SCHEME

The models take as input a NT sequence and output the probability of each NT being the BP. Then,
these probabilities are converted into the predicted binary labels according to a decision boundary.
We evaluated model performance using the F1 score, average precision (AP), Matthew’s correlation
coefficient (MCC), and the fraction of sequences where all tokens were correctly labeled (Seq. acc.).
All metrics are computed at the NT level, except for sequence accuracy, which is defined as the
proportion of sequences for which every NT in that sequence is correctly labeled.

All models were trained using two hyperparameter configurations, presented in Table 2. These
hyperparameters were determined through a preliminary, non-exhaustive search, with the training
objective of minimizing cross-entropy loss. Based on performance, Set 2 was selected for Splice-
BERT and ERNIE-RNA, while Set 1 was used for the remaining models. Due to the large size of
both the dataset and the models, training was computationally expensive. The models were trained
on an A100 GPU, taking approximately 3 hours for SpliceBERT and around 12 hours for larger
models like RNA-FM (over 3 epochs of the full dataset). Due to time and resource constraints, ex-
tensive hyperparameter optimization and cross-validation were not conducted, which is suboptimal
as these hyperparameters can significantly influence the models’ performance.

Table 2: Hyperparameters used for training the models.

HYPERPARAMETER SET 1 SET 2

Optimizer AdamW AdamW
Learning rate 3× 10−4 2× 10−5

Weight decay 0.001 0.01
Epochs 3 3
Batch size 16* 16

The decision boundary was optimized using the validation set during training to maximize the F1

score. Unlike other hyperparameters, optimizing the decision boundary does not require retraining
the model, making it computationally inexpensive. To monitor performance during training, metrics
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on the validation set were computed every 1000 steps. After training, the final evaluation of each
model was conducted on the test set.

5 RESULTS AND DISCUSSION

The performance metrics of the trained models on the test set are reported in Table 3 and the
precision-recall curves are shown in Fig. 4. All fine-tuned models outperform the baseline, in-
dicating that they are learning more complex relationships between the intron sequence and BP
position. The best-performing model is ERNIE-RNA, followed closely by SpliceBERT, which both
significantly outperform the others. The sequence accuracy per training step is presented in Fig. 5.
Accuracy grows rapidly during the initial part of the training, reaching a slower but steady growth
after the initial spike. These trends suggest that these models would benefit from longer training
times, with stable gains in performance over time.

Table 3: Performance metrics measured on the test set. The best performing model is showed in
bold and the models are ordered by the number of parameters.

Model Loss F1 Seq. Acc. AP MCC

Baseline 0.694 0.420 0.177 0.308 0.428
RNABERT 0.0066 0.555 0.412 0.556 0.558
UTR-LM 0.0042 0.585 0.414 0.541 0.597
SpliceBERT 0.0025 0.803 0.761 0.869 0.802
ERNIE-RNA 0.0014 0.811 0.790 0.868 0.811
RNA-MSM 0.0043 0.580 0.420 0.548 0.594
RNA-FM 0.0043 0.602 0.434 0.551 0.615

Figure 4: Precision-recall curves of all models, evaluated on the test set.

The fine-tuned models demonstrated strong performance, with ERNIE-RNA being the top per-
former, achieving an F1 score of 0.811 and a sequence accuracy of 0.790. Moreover, the fine-tuned
ERNIE-RNA and SpliceBERT models achieved an AP score of 0.868 and 0.869 respectively, outper-
forming the original SpliceBERT and SpliceBERT-human (Chen et al., 2024) by around 12.5% and
14.6%, respectively. This improvement could be due to a higher quality and more diverse dataset.
However, it should be noted that the test set used for SpliceBERT and SpliceBERT-human, while
similar, is not identical. For resource-constrained environments, it is possible to use smaller mod-
els like RNABERT, which, despite being 200 times smaller than RNAFM and RNA-SM, achieved
comparable performance. This may be due to the pre-training data: RNABERT’s dataset is more
focused on human intronic sequences, while RNAFM and RNA-SM are more diverse, which could
be detrimental to their performance.

The fixed 3’ splice site in our dataset simplifies BP detection, as reflected in the baseline model’s
performance. However, these models rely on prior knowledge of the exon-intron boundaries in a

*A batch size of 12 was used for RNA-FM due to VRAM limitations.
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Figure 5: Sequence accuracy during training, evaluated on the validation set.

given sequence. Generalizing BP detection to sequences without known splice sites can benefit
biological applications. In such cases, models must be trained on arbitrary sequences that contain
both exons and introns, with the BPs at varying positions. While it is unclear how our models
would perform on such data, their substantial improvement over the baseline suggests that they have
learned complex patterns beyond the average BP positions. Future work should explore why certain
models outperform others by performing a deeper analysis of learned representations. This may
provide insights into the specific features or sequence motifs leveraged by high-performing models
like ERNIE-RNA and SpliceBERT. Additionally, further investigation is required to analyze whether
the improved performance could be due to data leakage from pre-training, or sequence homology
between the pre-training and training datasets, as these factors can contribute to overfitting.

6 CONCLUSION

Some of our fine-tuned RNA language models demonstrate a notable improvement in branch point
prediction over previous state-of-the-art models. In particular, Ernie-RNA and SpliceBERT achieved
AP scores of 0.868 and 0.869 respectively, outperforming the fine-tuned model from the original
SpliceBERT paper. This improvement is likely due to the size and diversity of our dataset, which
allowed for more effective fine-tuning. Moreover, our results suggested that longer training times
and further hyperparameter tuning could yield additional improvements.

These models have practical applications for disease-causing variant detection through in-silico mu-
tagenesis by identifying how changes in intronic sequences alter BP position. Integrating this frame-
work with other computational tools and databases may better link variant effects to broader molec-
ular and functional contexts. In addition, our study shows the potential of using smaller models in
resource-constrained settings without substantially sacrificing performance.

Overall, this work establishes a new benchmark for branch point prediction and suggests several
directions for further research. Potential avenues include more extensive hyperparameter tuning and
exploring alternative data augmentation strategies. Additionally, a deeper study of learned repre-
sentations could provide insights into why some models outperform others, and examining potential
data leakage or sequence homology from the pre-training datasets may help clarify whether these
performance differences are due to overfitting. These efforts will deepen our understanding of RNA
splicing mechanisms and support the development of more robust diagnostic tools for genetic disor-
ders.

DATA AND CODE AVAILABILITY

The data used in this project, along with the weights and biases of the fine-tuned models, are ac-
cessible on Hugging Face. The code for fine-tuning, testing of models, and generating the plots,
is available on GitHub. Model training and experimentation were conducted using NVIDIA A100
GPUs through Google Colab.
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