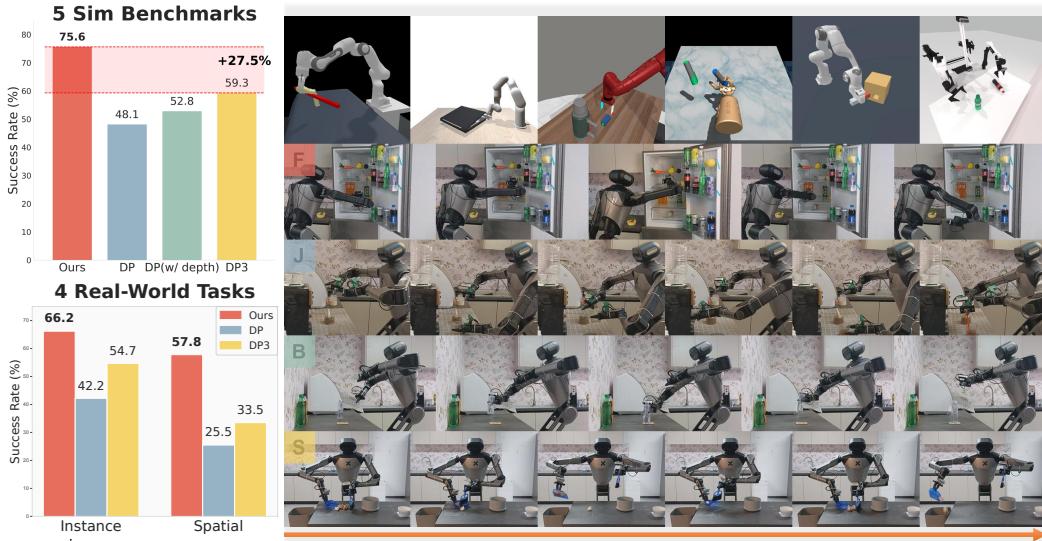


000 001 002 003 004 005 **H³DP: TRIPLY-HIERARCHICAL DIFFUSION POLICY 006 FOR VISUOMOTOR LEARNING**

007
008 **Anonymous authors**
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

Paper under double-blind review



025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Figure 1: **H³DP** can not only achieve superior performance across 44 tasks on 5 simulation benchmarks, but also handle long-horizon challenging manipulation tasks in cluttered real-world scenarios.

ABSTRACT

Visuomotor policy learning has witnessed substantial progress in robotic manipulation, with recent approaches predominantly relying on generative models to model the action distribution. However, these methods often overlook the critical coupling between visual perception and action prediction. In this work, we introduce **Triply-Hierarchical Diffusion Policy (H³DP)**, a novel visuomotor learning framework that explicitly incorporates hierarchical structures to strengthen the integration between visual features and action generation. H³DP contains 3 levels of hierarchy: (1) depth-aware input layering that organizes RGB-D observations based on depth information; (2) multi-scale visual representations that encode semantic features at varying levels of granularity; and (3) a hierarchically conditioned diffusion process that aligns the generation of coarse-to-fine actions with corresponding visual features. Extensive experiments demonstrate that H³DP yields a **+27.5%** average relative improvement over baselines across 44 simulation tasks and achieves superior performance in 4 challenging bimanual real-world manipulation tasks. Project Page: <https://h3-dp.github.io/>.

1 INTRODUCTION

Visuomotor policy learning has emerged as a prevailing paradigm in robotic manipulation [6; 74; 5; 70; 67]. Existing approaches have increasingly adopted powerful generative methods, such as diffusion and auto-regressive models, to model the action generation process [37; 63; 13; 49; 24]. However, these predominant methods have focused primarily on separately refining either the representation of perception or actions, often overlooking establishing a tight correspondence between perception and action. In contrast, human decision-making inherently involves hierarchical processing of information from perception to action [20; 3]. The visual cortex extracts features in a

layered fashion and performs hierarchical inference based on visual motion perception, ultimately resulting in the generation of structured motor behaviors [25; 4]. Inspired by this, we argue that enabling learned visuomotor agents to emulate such hierarchical behavior patterns is also critical for enhancing their decision-making capabilities.

Prior works have primarily focused on hierarchically modeling the action generation process alone [54; 15], without explicitly incorporating hierarchical structure throughout the whole visuomotor policy pipeline. In this paper, we present **H³DP**, a novel visuomotor policy learning framework grounded in three levels of hierarchy: input, representation, and action generation. This design reflects the hierarchical processing mechanisms that humans use the visual cortex to perceive environmental stimuli to guide motor behavior.

At the input level, to better leverage the depth information in modern robotic benchmarks and datasets [21; 30; 48; 14], H³DP moves beyond prior 2D approaches that primarily rely on RGB or simple RGB-D concatenation, which has shown limited effectiveness in prior work [70; 76]. We introduce **depth-aware layering** strategy that partitions the RGB-D input into distinct layers based on depth cues. This approach not only enables the policy to explicitly distinguish between foreground and background, but also suppresses distractors and occlusions [40; 1], thereby enhancing the understanding and reasoning of spatial structure in the cluttered visual scenarios.

For visual representation, to address the limitations of flattening image features into a single vector, which can discard some spatial structures and semantic information [17; 45; 28], H³DP employs **multi-scale visual representation**, where different scales capture features at varying granularity levels, ranging from global context to fine visual details.

In the action generation stage, H³DP incorporates a key inductive bias inherent to the diffusion process: the tendency to progressively reconstruct features from low-frequency to high-frequency components [44; 9; 61], by **hierarchical action generation**. Specifically, coarse visual features guide initial denoising steps to shape the global structure (low-frequency components) of action, while fine-grained visual features inform the later steps to refine precise details (high-frequency components). This establishes a tighter coupling between action generation and visual encoding, enabling the policy to generate actions that are semantically grounded in multi-scale perceptual features.

We validate H³DP through extensive experiments on **44** simulation tasks across **5** diverse benchmarks, where it surpasses state-of-the-art methods by a relative average margin of **+27.5%**. Furthermore, in real-world evaluations, we deploy bimanual robotic systems to tackle four challenging tasks situated in cluttered environments, involving high disturbances and long-horizon objectives. H³DP achieves a **+72.4%** relative performance improvement over baselines in real-world scenarios.

2 RELATED WORK

Visual imitation learning. Numerous studies have proposed efficient policy learning algorithms from different aspects [6; 74; 64]. As a representative approach, to endow the learned policy multi-modality ability, Diffusion Policy [6] incorporates the diffusion process to better represent the action distribution. Based on DP, methods like DP3 [70; 69] and 3D-Actor [22], designed for point cloud inputs, enhance the policy’s scene understanding by refining the visual representation. Consistency Policy [37] and ManiCM [33] modify the inference process to achieve the inference acceleration. However, these approaches focus solely on enhancing either the action generation or the visual feature extraction, without explicitly modeling the relationship between them. To address this issue, we propose a hierarchical framework that couples multi-scale visual representations with the diffusion process, enabling a more structured integration between visual features and action generation.

Leveraging hierarchical information for policy learning. In the computer vision community, numerous studies have leveraged hierarchical information to address a variety of downstream tasks [58; 62; 26; 41; 32; 46]. For example, standard diffusion models [52; 19; 51; 53] and flow matching [29; 31; 12] adopt the U-Net framework [45; 75], which exploits multi-scale feature representations to retain rich contextual information throughout the denoising process. VAR [56] innovatively employs multi-scale visual representations with quantization to perform image generation in an auto-regressive manner. In robot learning, recent works [15; 36; 73] have also begun to adopt hierarchical paradigms for policy learning. Dense Policy [54] leverages a bidirectional extension

strategy to enable hierarchical action prediction. ARP [73] predicts a sequence of actions at different levels of abstraction in a hierarchical way. CARP [15] draws inspiration from VAR by employing a multi-scale VQ-VAE [58; 41] to construct action sequences and subsequently generating residual actions autoregressively using a GPT-style architecture [38]. However, these algorithms model only the hierarchical structure of the action generation process, without explicitly addressing the crucial linkage between visual representation and action in visuomotor policy learning. In contrast, H³DP not only incorporates multi-scale visual representations but also leverages the inherent strengths of diffusion models to seamlessly integrate coarse-to-fine action generation into the diffusion process itself. Furthermore, by adopting a depth-aware layering strategy, H³DP maximizes the utilization of hierarchical feature information across the input, latent, and output stages, thereby enriching the policy learning pipeline in a structured and semantically aligned manner.

3 METHOD

We employ three hierarchical structures to enhance the policy’s understanding of visual input and predict more accurate action distributions as shown in Figure 3. At the input level, the RGB-D image is discretized into multiple layers to improve the policy’s ability to distinguish and interpret foreground-background variations. Upon this, we adopt a multi-scale visual representation, wherein coarse-grained features capture global contextual information, while fine-grained features encode detailed scene attributes. On the action side, correspondingly, the representations at different scales are utilized to generate actions in a coarse-to-fine manner, thus strengthening the correlation between action and visual representations. Details of each component are presented in the following sections.

3.1 DEPTH-AWARE LAYERING

Effective robotic manipulation requires a strong grasp of 3D structure. RGB data provides texture and color, while depth encodes geometry such as object positions and distances. Combining them is powerful, but naive concatenation of RGB and depth often fails to improve performance [70; 76]. To better exploit depth, we partition the RGB-D image into N non-overlapping layers based on depth values, as illustrated in Figure 2. Specifically, define $\{d_0 = d_{\min}, d_1, \dots, d_N = d_{\max}\}$ as the depth boundaries for each layer. Image layer I_m is formed by selecting pixels with depth in $[d_{m-1}, d_m]$, i.e.,

$$M_m^{(i,j)} = \mathbb{I}_{[d_{m-1} \leq D^{(i,j)} < d_m]}, \quad I_m = I \odot M_m, \quad (1)$$

where I and D are the RGB-D image and depth map, respectively, \mathbb{I} is the indicator function. This representation separates the scene into meaningful foreground and background regions while preserving all visual details. It allows the policy to selectively attend to different depth planes, thereby improving both spatial perception and planning. We emphasize its effectiveness in Section 4.3.2 and further compare against alternative discretization schemes in Section 4.4. Details for setting depth boundaries $\{d_m\}_{m=0}^N$ are provided in Appendix A.

3.2 MULTI-SCALE VISUAL REPRESENTATION

In visuomotor policy learning, visual representation plays a crucial role in embedding input images and mapping them to actions. An effective visual encoder should capture various granularity features of the visual scenarios and guide the policy to predict the action distribution. However, existing methods typically extract features at a single spatial scale or compress them into a fixed-resolution representation, limiting the expressiveness of learned features [17; 45; 28]. To address this problem, we hierarchically partition the feature map into multiple scales, enabling the capture of both coarse structural information and detailed fine-grained local cues.

Interpolation and Quantization. After applying depth-aware layering to the input image I , each layer I_m is *independently encoded* into multi-scale feature maps $\{f_{m,k} | f_{m,k} \in \mathbb{R}^{h_k \times w_k \times C}\}_{k=1}^K$

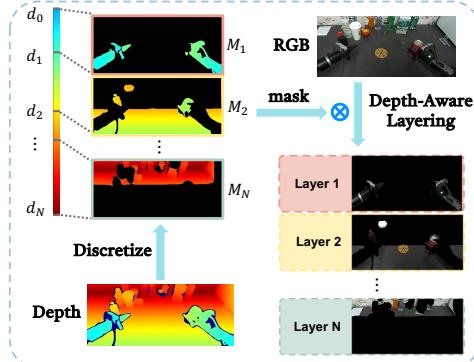


Figure 2: **Depth-aware layering.** We decompose the RGB-D image into N non-overlapping layers based on depth, and encode each layer *independently* for better spatial understanding.

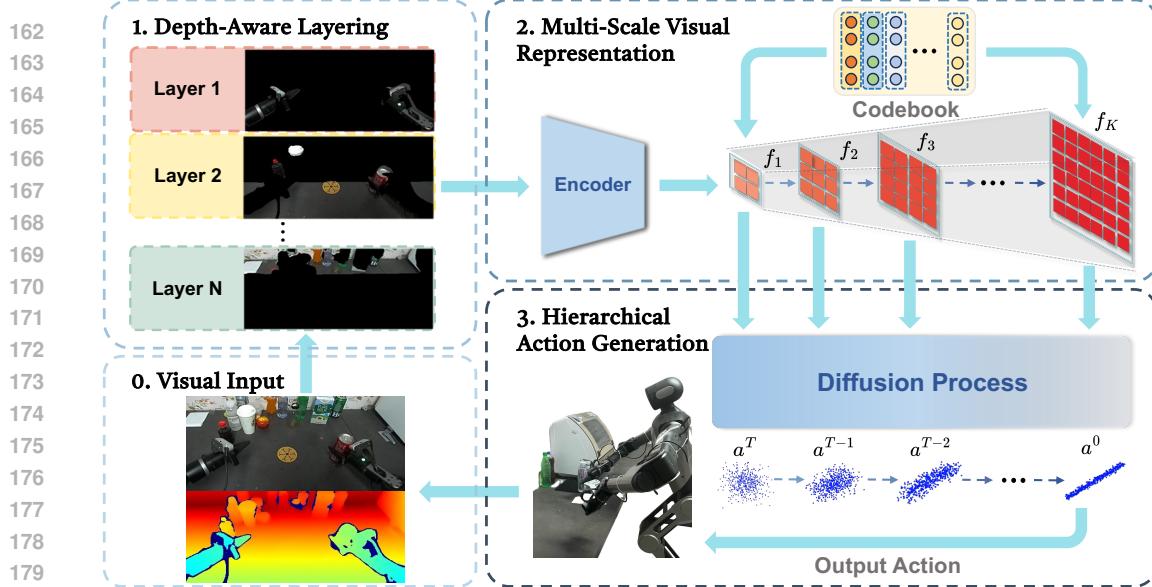


Figure 3: **Overview of H³DP.** H³DP integrates three hierarchical design principles across the perception and action generation pipeline. At the input level, RGB-D images are partitioned into multiple layers based on their depth values. Then, we employ multi-scale visual representations to capture features at varying levels of granularity. During the action generation, denoising process is divided into several stages guided by multi-scale visual representations.

via encoder \mathcal{E}_m , where $\{(h_k, w_k)\}_{k=1}^K$ denotes the spatial resolutions across scales. Adopting the quantization design in VQ-VAE [58; 41], these feature maps $\{f_{m,k}\}_{k=1}^K$ are quantized into discrete vectors drawn from a learnable codebook \mathcal{Z}_m . Specifically, each feature vector $f_{m,k}^{(i,j)}$ is mapped to its nearest neighbor in Euclidean distance, i.e., $f_{m,k}^{(i,j)} \leftarrow \arg \min_{z \in \mathcal{Z}_m} \|z - f_{m,k}^{(i,j)}\|_2$. By applying differentiable interpolation and lightweight convolution to the quantized features $f_{m,k}$, we then obtain the multi-scale visual representations $\{\hat{f}_{m,k}\}_{k=1}^K$ for each layer I_m . The pseudocode of full encoding procedure is detailed in Algorithm 1, Appendix B.

Training. To ensure consistent representations across scales, we aim to minimize the consistency loss between the original feature $f_m = \mathcal{E}_m(I_m)$ and the representation $\hat{f}_{m,k}$ at different scales:

$$\mathcal{L}_{\text{consistency}} = \sum_{m=1}^N \sum_{k=1}^K \left(\left\| \hat{f}_{m,k} - \text{sg}(f_m) \right\|_2^2 + \beta \left\| f_m - \text{sg}(\hat{f}_{m,k}) \right\|_2^2 \right), \quad (2)$$

where $\text{sg}(\cdot)$ is the stop gradient operator and β balances the gradient flow between two terms. The visual encoder $\{\mathcal{E}_m\}_{m=1}^N$ and codebook $\{\mathcal{Z}_m\}_{m=1}^N$ are trained end-to-end, as described in detail in Appendix B. Notice that although the theoretical minimizer of the consistency loss leads to identical features across scales, in practice, due to the limited capacity of the codebook and downsampling operations, each scale captures distinct information. Coarse scales tend to retain global context, while finer scales preserve local details, serving as a strong inductive bias for the subsequent section.

3.3 HIERARCHICAL ACTION GENERATION

To match the inherent inductive biases of denoising process [44; 9; 61], we leverage multi-scale visual representations to model action generation in a coarse-to-fine manner. The early stage actions are derived from representations that capture global scene information, while fine-grained representations are responsible for generating detailed action components. This approach couples the visual representation and the action generation process via reinforcing their correspondence at the same hierarchical levels.

Inference. Our action generation module is a denoising diffusion model conditioned on multi-scale features $F = \{\hat{f}_k = \{\hat{f}_{m,k}\}_{m=1}^N\}_{k=1}^K$ and robot poses q . The denoising process unfolds over T

216 steps partitioned into K stages $\cup_{k=1}^K (\tau_{k-1}, \tau_k]$. When $t \in (\tau_{k-1}, \tau_k]$, the denoising network $\epsilon_\theta^{(t)}$
 217 conditioning on the corresponding feature map \hat{f}_k and robot poses q , predicts the noise component
 218 $\epsilon^t = \epsilon_\theta^{(t)}(a^t | \hat{f}_k, q)$, then generates a^{t-1} from a^t via:
 219

$$a^{t-1} = \alpha_t a^t + \beta_t \epsilon^t + \sigma_t \tilde{\epsilon}^t, \quad (3)$$

220 gradually transforming the Gaussian noise a^T into the noise-free action a^0 , where $\alpha_t, \beta_t, \sigma_t$ are fixed
 221 parameters depending on the noise scheduler, and $\tilde{\epsilon}^t \sim \mathcal{N}(0, \mathbf{I})$ is a Gaussian noise, see Appendix A
 222 for more details.
 223

224 **Training.** To train the denoising network $\epsilon_\theta^{(t)}$, we randomly sample an observation-action pair
 225 $((I, q), a^0) \in \mathcal{D}$ and noise $\epsilon \sim \mathcal{N}(0, \mathbf{I})$. The network is optimized to predict ϵ given a noisy action
 226 $a^t = \sqrt{\gamma_t} a^0 + \sqrt{1 - \gamma_t} \epsilon$, via the objective:
 227

$$\mathcal{L}_{\text{diffusion}} = \mathbb{E}_{a^0, \epsilon, t} \left[\|\epsilon_\theta^{(t)}(a^t | \hat{f}_K, q) - \epsilon\|^2 \right]. \quad (4)$$

230 More implementation details can be found in Appendix A. By conditioning on the final feature \hat{f}_K
 231 during training, gradients from the loss propagate through the entire hierarchical encoder, implicitly
 232 optimizing all $\{\hat{f}_k\}_{k=1}^K$. This design promotes consistency of representations at each scale for action
 233 generation while enhancing training efficiency.
 234

235 **Discussions.** Diffusion models inherently aim to predict the posterior average of the target distri-
 236 bution conditioned on the provided features [8; 55], i.e., the optimal denoising network $\epsilon_{\theta^*}^{(t)}$ follows
 237 $\epsilon_{\theta^*}^{(t)}(a^t | f, q) = \mathbb{E}_{t, \epsilon, a^0; \sqrt{\gamma_t} a^0 + \sqrt{1 - \gamma_t} \epsilon = a^t} [\epsilon | a^t, f, q]$. Earlier stages of the denoising process, char-
 238 acterized by higher noise levels, tend to have a posterior average with lower frequency, while later
 239 stages, with reduced noise, correspond to higher frequency components.
 240

241 Our design of hierarchically conditioned diffusion aligns well with this property. Features at varying
 242 resolutions retain information across distinct frequency domains. Consequently, they provide robust
 243 guidance for generating specific frequency components of the action during relevant stages of the
 244 denoising process. Related experiments are shown in Section 4.1.3. By using lower-resolution
 245 features for earlier stages and gradually refining the predictions with higher-resolution features, the
 246 model benefits from both the stability of coarse representations and the precision of fine details.
 247

4 EXPERIMENTS

248 In this section, we present extensive experiments across simulated and real-world settings to demon-
 249 strate the efficacy of H³DP. In addition, we perform thorough ablation analyses to evaluate the con-
 250 tribution of each hierarchical design, and further investigate the efficiency and effectiveness of our
 251 method in extracting visual representations.
 252

4.1 SIMULATION EXPERIMENTS

4.1.1 EXPERIMENT SETUP

253 **Simulation benchmarks and baselines:** To sufficiently verify the effectiveness of H³DP, we eval-
 254 uate H³DP on 5 simulation benchmarks, encompassing a total of 44 tasks. These tasks span a variety
 255 of manipulation challenges, including articulated object manipulation [2; 39; 66], deformable object
 256 manipulation [16], bimanual manipulation [34], and dexterous manipulation [2; 39]. The details of
 257 the expert demonstrations can be found in Appendix C. To comprehensively assess the performance
 258 of H³DP, we compare it against three baselines: *Diffusion Policy* [6], one of the most widely used
 259 visuomotor policy learning algorithms; *Diffusion Policy (w/ depth)*, which extends Diffusion Policy
 260 to incorporate RGB-D input to bridge the information gap; and *DP3* [70], an enhanced version of
 261 Diffusion Policy that leverages an efficient encoder for point cloud input. Comparison results with
 262 more baselines can be found in Appendix E.8.
 263

264 **Evaluation metric:** Each experiment is conducted with 3 different seeds to mitigate performance
 265 variance. For each seed, we evaluate 20 episodes every 200 training epochs. In simpler MetaWorld,
 266 Adroit and DexArt tasks, we compute the average of the highest five success rates as its success rate,
 267 while in other environments, only the highest success rate is recorded.
 268

Table 1: **Simulation task results.** Across 5 simulation benchmarks with various difficult levels, H^3DP obtains **+27.5%** relative performance gains on average over 44 tasks.

Method \ Tasks	MetaWorld (Medium 11)	MetaWorld (Hard 5)	MetaWorld (Hard++ 5)	ManiSkill (Deformable 4)	ManiSkill (Rigid 4)	Adroit (3)	DexArt (4)	RoboTwin (8)	Average (44)
H^3DP	98.3	87.8	95.8	59.3	65.3	87.3	53.3	57.4	75.6 ± 18.6
DP	78.2	52.6	58.0	22.3	27.5	79.0	44.3	22.8	48.1 ± 23.1
DP (w/ depth)	77.7	57.2	71.2	44.5	40.8	76.0	42.0	12.6	52.8 ± 22.2
DP3	89.1	52.6	88.4	26.5	33.5	84.0	54.8	45.9	59.3 ± 24.9

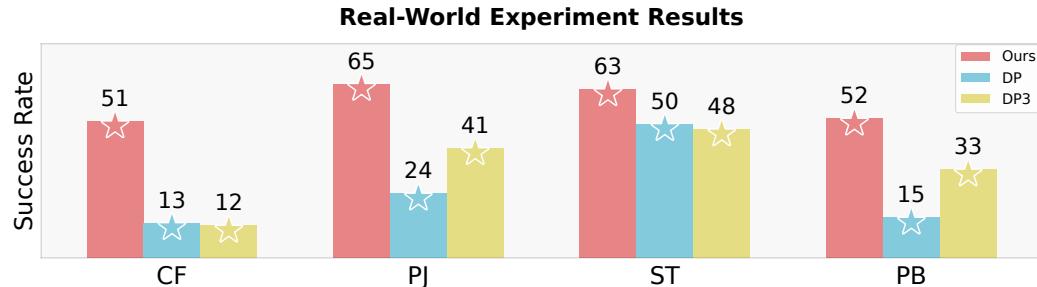


Figure 5: **Success rate in real-world.** We evaluate the success rate of H^3DP , DP and DP3 across 4 challenging real-world tasks. H^3DP outperforms DP and DP3 in all 4 tasks.

4.1.2 SIMULATION PERFORMANCE

As shown in Table 1, the simulation experiment results exhibit that H^3DP outperforms or achieves comparable performance among the whole simulation benchmarks. Our method outperforms DP3 by a relative average margin of **+27.5%**. Notably, DP3 requires manual segmentation of the point cloud to remove background and task-irrelevant elements. This process introduces additional human effort and renders performance susceptible to segmentation quality. Relevant experimental results are provided in Appendix E.9.

In contrast, benefiting from our design, H^3DP obtains superior performance using only raw RGB-D input, **without the need for any pre-processing or segmentation**. Furthermore, on the Adroit and DexArt benchmark, while DP3 leverages multi-view cameras to restore the complete point clouds, H^3DP attains comparable performance using only one **single-camera** RGB-D image. The whole simulation results in each task can be found in Appendix E.1. Notably, the hierarchical design in H^3DP introduces **negligible overhead** relative to DP3, while being significantly more efficient than DP as detailed in Appendix E.11.

4.1.3 SPECTRAL ANALYSIS OF ACTIONS

To gain a more comprehensive understanding of the action generation, we apply Discrete Fourier Transform (DFT) to examine how the frequency composition of actions evolves throughout the denoising process. Specifically, we conduct the analysis across 4 benchmarks and visualize the spectral characteristics of action chunks during generation. As shown in Figure 4, the results consistently indicate that the denoising process begins with the synthesis of low-frequency features, which are incrementally complemented by higher-frequency features in later stages. This observation not only shows that action, akin to image, exhibits an intrinsic inductive bias in the diffusion process, but also elucidates the action generation mechanism of H^3DP , wherein actions are hierarchically composed to captured features across varying levels of granularity.

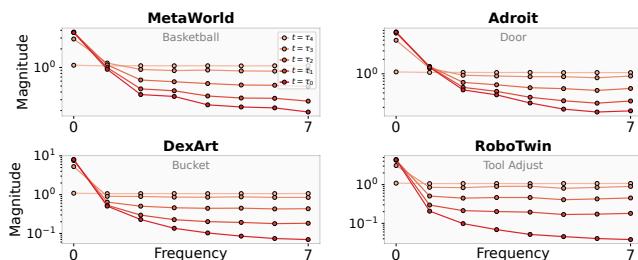


Figure 4: **Action DFT results.** As the denoising process progresses, the Gaussian noise ($t = \tau_4$) is gradually transformed into the predicted action ($t = \tau_0$). Timesteps τ_i is arranged in descending order of noise levels. The results reveal a consistent frequency evolution pattern: low-frequency components predominantly emerge during the early stages of denoising, whereas high-frequency features are progressively introduced in the latter phases of the process.

Table 2: **Instance generalization results.** H^3DP achieves +21.0% relative performance gain on average.

Method \ Tasks	Place			Sweep			Average
	coke bottle	bottle sprite	can	8 cm ³	64 cm ³	216 cm ³	
H^3DP	67	49	53	75	86	67	66.2
DP	25	16	28	52	72	60	42.2
DP3	43	30	37	72	79	67	54.7

4.2 REAL-WORLD EXPERIMENTS

In terms of real-world experiments, we choose Galaxea R1 robot as our platform. We design four diverse challenging real-world tasks to evaluate the effectiveness of our method:

Clean Fridge (CF): In a cluttered refrigerator environment, the robot is required to relocate a transparent bottle from the upper compartment to the lower one. The bottle is randomized within a 30 cm × 5 cm region on both the upper and lower shelves of the refrigerator.

Pour Juice (PJ): This is a long-horizon task. The robot is required to place a cup in front of a water dispenser, scoop a spoonful of juice powder, then fill the cup with water, and finally put a straw in the cup. The cup is placed within a 7 cm × 7 cm area, and both the color of the juice powder and the position of the water dispenser are subject to variation across trials.

Sweep Trash (ST): This long-horizon task entails picking up a broom, sweeping scattered debris on a table into a dustpan, and subsequently emptying the contents into a trash bin. The trash is randomly distributed across the entire table surface, approximately within a 40 cm × 40 cm area.

Place Bottle (PB): The robot must place a bottle, initially located at a random position, onto a designated coaster. The bottle is placed within a 15 cm × 15 cm region, while the coaster is positioned within an around 25 cm × 25 cm area.

4.2.1 EXPERIMENT SETUP

We use the ZED camera to acquire the RGBD image. The demonstrations are collected by Meta Quest3. Each task is evaluated at 20 randomly sampled positions within the defined randomization range. We record the success trials and calculate the corresponding success rate. We compare H^3DP with 2 baselines: *Diffusion Policy* [6] and *DP3* [70].

In addition, during policy deployment, we adopt an *asynchronous* design to obtain an approximately double inference speed compared to baseline. We also introduce *temporal ensembling* and *p-masking* to improve temporal consistency and alleviate overfitting to the proprioception state. More details can be found in Appendix D.

4.2.2 EXPERIMENT RESULTS

Spatial generalization: As shown in Figure 5, H^3DP significantly outperforms the baselines across all four real-world tasks, achieving an average relative improvement of +72.4%. It should be noted that in **CF** and **PJ** tasks, the policy is required to not only identify target objects in cluttered visual environments but also perform long-horizon reasoning to accomplish the tasks. While DP and DP3 struggle to complete either task, H^3DP achieves substantial improvements. Therefore, H^3DP demonstrates superior perceptual and decision-making capabilities compared to alternative algorithms. Furthermore, H^3DP surpasses DP and DP3 even when trained with only 20% of the expert data, as detailed in Appendix E.12. This finding highlights the efficiency of H^3DP in learning from limited data.

Meanwhile, it should be noted that in terms of the point cloud based method DP3, it requires precise segmentation and high-fidelity depth sensing, resulting in it being less effective in handling our four cluttered real-world scenes that we designed.

Instance generalization: Regarding instance generalization, we evaluate the model on **ST** and **PB** by varying the size and shape of bottles or trash items. As shown in Table 2, after replacing the objects with variants of differing sizes and shapes, H^3DP maintains strong generalization capabilities attributable to its ability to hierarchically model features at multiple levels of granularity, and consistently outperforms baseline approaches across all settings.

Figure 6: **Experiment Setup.**

378
 379 **Table 5: Comparison with DP with pre-trained visual encoder.** While DP-DINOv2 yields small
 380 improvement after paying additional cost, H^3DP demonstrates superior performance.

Method \ Tasks	MetaWorld						Average
	Hand Insert	Pick Out of Hole	Disassemble	Stick Pull	Soccer	Sweep Into	
H^3DP	100	40	96	83	85	100	84.0
DP	73	13	81	64	43	74	58.0
DP-DINOv2	91	24	77	72	41	78	63.8

384 4.3 ABLATION STUDY

385
 386 In this section, we ablate each key component of our framework and conduct experiments on three
 387 benchmarks to further exhibit the effectiveness of H^3DP . Furthermore, to fully demonstrate the
 388 advantages of H^3DP , we also conduct additional experiments to analyze the efficiency and effec-
 389 tiveness of our method, especially in extracting task-relevant visual representations. We provide
 390 the complete results of the ablation study in Appendix E.2. [We use MW, MS, and RT to denote](#)
 391 [MetaWorld, ManiSkill, and RoboTwin for brevity.](#)

392 4.3.1 HIERARCHICAL DESIGNS

393
 394 **Hierarchical design.** We ablate the
 395 three hierarchical components intro-
 396 duced in our framework and compare
 397 them against DP with RGB-D input.
 398 As shown in Table 3, each hierarchi-
 399 cal component independently contrib-
 400 utes to performance improvement, con-
 401 sistently outperforming the DP (w/ depth).
 402 Furthermore, Table 3 also demon-
 403 strates that the integration of all three
 404 hierarchical designs leads to a substan-
 405 tial enhancement in overall perfor-
 406 mance. Furthermore, we conduct
 407 experiments to analyze the impact of the
 408 hierarchical scales K on performance in
 409 Appendix E.3.

410 **Impact of N in depth-aware layering.** For
 411 the depth-aware layering component, we inves-
 412 tigate whether the policy’s performance is sen-
 413 sitive to the choice of the number of layers N .
 414 As presented in Table 4, our policy achieves
 415 optimal and comparable performance when N
 416 is set to 3 or 4, a trend consistently observed
 417 across all evaluated benchmarks. When N be-
 418 comes excessively large, the image is over-partitioned, thus reducing the representation capacity of
 419 the policy. Nevertheless, in such cases, the performance remains better than non-layered baseline.
 420 The results highlight the critical role of depth-aware layering in enhancing the policy’s performance.

421 4.3.2 VISUAL REPRESENTATIONS

422 **Efficiency and Effectiveness of H^3DP Encoder.** Prior work suggests that pre-trained visual
 423 representation may enhance spatial generalization of policy [64]. Hence, we investigate the impact of in-
 424 tegrating a pre-trained visual encoder with the original DP. We specifically replace the standard ResNet
 425 encoder [18] in DP with DINOv2 [35] and evaluate on randomly selected tasks from the MetaWorld
 426 benchmark. The comparative results are presented in Table 5. Although DP-DINOv2 shows a
 427 marginal improvement on some tasks compared to the original DP baseline, this comes with longer
 428 training time, inference latency and larger number of parameters due to the DINOv2. In contrast,
 429 H^3DP utilizes an efficient visual encoder with less than **0.7M** parameters, which achieves strong
 430 performance improvements over the original DP without incurring the aforementioned overheads.
 431 We show the effectiveness of adopting separate encoders for each depth layer in Appendix E.5.

432 **Effectiveness in Significant Depth-variant Tasks.** As introduced in Section 3.1, our depth-aware
 433 layering mechanism partitions the image into distinct layers. This layering offers a crucial advantage
 434 in scenarios with significant depth variations by providing a structured representation that preserves
 435 visual detail while emphasizing foreground-background separation. As seen in Table 6, our obser-
 436 vations reveal a consistent pattern: in tasks involving significant depth variations, point cloud-based
 437 policy initially demonstrated superior performance compared to standard RGB-D processing, rep-
 438 resented by DP (w/ depth). However, upon integrating the depth-aware layering mechanism, H^3DP
 439 consistently outperforms the baseline on these tasks, which strongly supports our claim.

Table 6: **Performance comparison demonstrating the effectiveness of depth-aware layering.** Tasks with significant depth variations show great improvement only with depth layering compared to DP (w/ depth), surpassing the point cloud baseline (DP3).

Method \ Tasks	Push	Shelf Place	Disassemble	Soccer	Pick Place Wall	Peg Insert Side	Average
H³DP (only w/ depth layering)	100	95	98	55	100	86	89.0
DP (w/ depth)	79	29	76	37	80	53	59.0
DP3	96	86	98	57	97	92	87.7

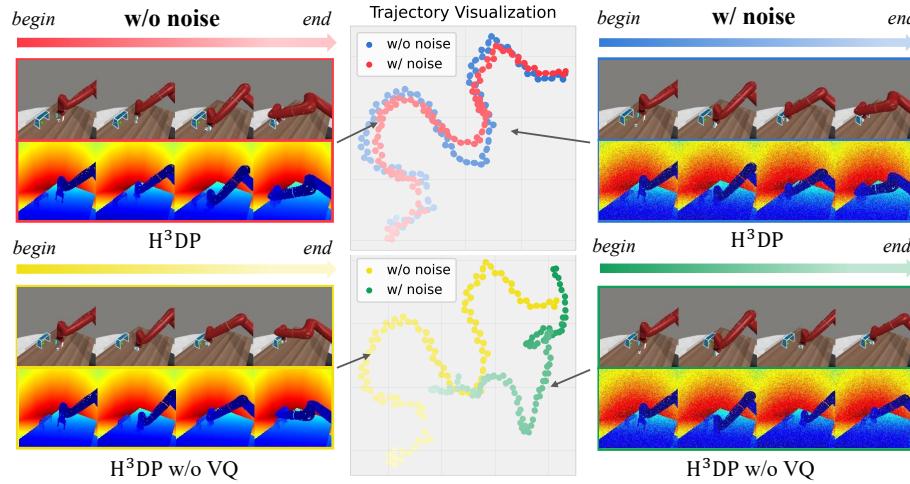


Figure 7: **Visualization of H³DP’s robustness to noisy depth.** Under the noisy depth input, H³DP (blue) successfully finish the soccer while keeping the similar action trajectory as w/o noise (red). In contrast, H³DP w/o VQ (yellow) produces a deviated trajectory compared to the original (green).

Robustness to Noisy Depth. To simulate low-quality depth input, we add Gaussian noise with a standard deviation of 0.1 to the normalized depth images (w/ noise in Table 7) **during training and evaluation.** As shown in Table 7, H³DP demonstrates strong robustness to degraded depth quality, maintaining high performance. In contrast, DP3 is highly sensitive to depth noise, exhibiting a significant drop in performance.

To further understand the source of H³DP’s robustness to noisy depth, we compare it with a variant of H³DP that does not use the feature vector quantization module (H³DP w/o VQ). As shown in Table 7, this ablated version suffers from a substantial performance drop under the same noisy depth input. This indicates that the robustness of H³DP can be largely attributed to the design of the feature vector quantization module. As shown in Figure 7, by mapping visual features to the nearest neighbor in a learned codebook, the codebook effectively projects representations back to the in-distribution space, thereby enhancing robustness to noise.

Efficiency of depth-aware layering. To strengthen our understanding of the effectiveness of depth-aware layering, we compare it with segmentation-based layering methods, which segment the image into layers based on semantic information. We conduct experiments by replacing our depth-aware layering with Gaussian Mixture Models (GMM) [43] and Ground SAM [42], respectively. As shown in Table 8, our depth-aware layering outperforms these segmentation-based methods across all evaluated tasks, demonstrating purely depth-based layering can guide the policy effectively. We provide more analysis in Appendix E.2.

4.4 COMPARISON WITH MORE BASELINES

Comparison with extensions of diffusion policy. Previous discussions have primarily focused on comparing H³DP with original diffusion formulation, i.e., DDPM-based DP [19]. Recently, flow-

Table 8: **Comparison with segmentation-based layering variant.** H^3DP with depth-aware layering achieves superior performance compared to using segmentation-based layering.

Method \ Tasks	MetaWorld			ManiSkill		RoboTwin	Average
	Soccer	Stick Pull	Pick Out of Hole	Fill	Excavate	Tool Adjust	
H^3DP	85	83	40	98	38	45	64.8
w/ GMM	45	67	32	75	27	37	47.2
w/ Grounded SAM	63	65	35	79	30	42	52.3
w/o layering	59	72	34	78	27	32	50.3

Table 9: **Performance comparison with extensions of diffusion policy.** We compare H^3DP with flow-based, equivariance-based, and 3D representation-based approaches, respectively. H^3DP consistently outperforms these baselines across all evaluated tasks, highlighting its superior capability over various diffusion-based policy learning approaches.

Method \ Tasks	MetaWorld						Average
	Assembly	Pick Place	Shelf Place	Hand Insert	Pick Out of Hole	Push	
H^3DP	100	99	100	100	40	100	89.8
FlowPolicy [71]	100	12	83	42	29	100	61.0
ET-SEED [57]	100	23	79	89	37	96	70.7
3D Diffuser Actor [22]	100	0	65	33	26	100	54.0

Table 10: **Performance comparison with other policy with hierarchical structures.** We compare H^3DP with policies that utilize hierarchical designs. Our method outperforms these baselines across all evaluated tasks, demonstrating the effectiveness of our hierarchical designs.

Method \ Tasks	MetaWorld						Adroit		Average
	Bin Picking	Box Close	Hammer	Peg Insert Side	Disassemble	Shelf Place	Door	Pen	
H^3DP	100	98	100	98	96	100	79	83	81
2D Dense Policy	25	51	86	60	71	59	59	65	28
3D Dense Policy	47	69	100	82	98	77	72	61	85

based [71; 7; 10], equivariance-based [60; 57; 65], and other 3D representation-based [70; 22] policy have been proposed to enhance the efficiency and effectiveness of diffusion-based policy learning. To provide a more comprehensive evaluation, we extend our comparisons to include additional state-of-the-art baselines. Specifically, we compare H^3DP with FlowPolicy [71] (flow-based), ET-SEED [57] (equivariance-based), and 3D Diffuser Actor [22] (3D representation-based) on selected tasks. As shown in Table 9, H^3DP consistently outperforms these baselines across all evaluated tasks, demonstrating its superior capability over various diffusion-based policy learning approaches.

Comparison with other hierarchical methods. To further validate the effectiveness of our hierarchical design, we compare H^3DP with Dense Policy [54], which predict action chunks coarse to fine via autoregressive modeling. As shown in Table 10, H^3DP outperforms Dense Policy by a relative average margin of +21.0% across the evaluated tasks, demonstrating the superiority of our hierarchical designs over simple coarse-to-fine action modeling. We compare H^3DP with more hierarchical baselines in Appendix E.8.

5 CONCLUSION

In this paper, we introduce H^3DP , an efficient generalizable visuomotor policy learning framework that can obtain superior performance in a wide range of simulations and challenging real-world tasks. Extensive empirical evidence suggests that establishing a more cohesive integration between visual representations and the action generation process can enhance the generalization capacity and learning efficiency of policies. The proposed three hierarchical designs not only facilitate the effective fusion of RGB and depth modalities, but also strengthen the correspondence between visual features and the generated actions at different granularity levels. In the future, we expect to extend the applicability of H^3DP to more intricate and fine-grained dexterous real-world tasks.

6 LIMITATIONS

Although H^3DP has demonstrated effectiveness in a variety of tasks, there exist several limitations. First, despite our use of asynchronous execution to improve inference speed in real-world settings, the overall inference time of diffusion-based models remains relatively slow. We could explore distilling the policy into a consistency model, to enhance real-time performance. Second, our method relies on depth information for effective scene decomposition; in scenarios where depth data is unavailable or unreliable, the performance of H^3DP may be compromised. Future work could investigate alternative strategies for scene understanding that do not depend on depth data explicitly.

540 **7 ETHICS STATEMENT**
 541

542 The proposed method in this paper is intended to enhance the capabilities of robotic systems in per-
 543 forming manipulation tasks. While the advancements in robotic manipulation can lead to significant
 544 benefits in various fields, including manufacturing, healthcare, and service industries, it is crucial
 545 to consider the ethical implications associated with the deployment of such technologies. Potential
 546 concerns include job displacement due to automation, privacy issues related to data collection, and
 547 the safety of human-robot interactions. It is imperative that researchers and practitioners in this field
 548 adhere to ethical guidelines and regulations to ensure that the development and application of robotic
 549 technologies are conducted responsibly and with consideration for societal impacts.

550 This paper has also benefited from the use of large language models (LLMs) to aid in refining and
 551 polishing the writing. LLMs were employed to enhance the clarity and coherence of the manuscript,
 552 ensuring that the ideas and contributions are communicated effectively. However, all technical con-
 553 tent, experimental results, and conclusions were developed independently by the authors without
 554 reliance on LLMs.

555
 556 **8 REPRODUCIBILITY STATEMENT**
 557

558 To facilitate reproducibility, we will release the complete codebase, including the implementation of
 559 H^3DP , training scripts, and pre-trained models upon publication. The code will be well-documented
 560 to assist researchers in understanding and utilizing the framework effectively. Additionally, we will
 561 provide detailed instructions for setting up the environment and running experiments, along with the
 562 specific configurations used in our evaluations. All datasets and simulation environments referenced
 563 in this work are publicly available, and we will include links to these resources in the released code.
 564 Furthermore, we will share the hyperparameters and training protocols employed in our experiments
 565 to enable others to replicate our results accurately.

566
 567 **REFERENCES**
 568

- 569 [1] Stefan Ainetter, Christoph Böhm, Rohit Dhakate, Stephan Weiss, and Friedrich Fraundorfer.
 570 Depth-aware object segmentation and grasp detection for robotic picking tasks. *arXiv preprint*
arXiv:2111.11114, 2021.
- 572 [2] Chen Bao, Helin Xu, Yuzhe Qin, and Xiaolong Wang. Dexart: Benchmarking generalizable
 573 dexterous manipulation with articulated objects. In *Proceedings of the IEEE/CVF Conference*
574 on Computer Vision and Pattern Recognition, pp. 21190–21200, 2023.
- 576 [3] Johannes Bill, Hrag Pailian, Samuel J Gershman, and Jan Drugowitsch. Hierarchical structure
 577 is employed by humans during visual motion perception. *Proceedings of the National Academy*
578 of Sciences, 117(39):24581–24589, 2020.
- 589 [4] Johannes Bill, Samuel J Gershman, and Jan Drugowitsch. Visual motion perception as online
 590 hierarchical inference. *Nature communications*, 13(1):7403, 2022.
- 592 [5] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Nic-
 593 colo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones,
 594 Liyiming Ke, Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch,
 595 Lucy Xiaoyang Shi, James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury
 596 Zhilinsky. π_0 : A vision-language-action flow model for general robot control. *arXiv preprint*
arXiv:2410.24164, 2024.
- 598 [6] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ
 599 Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
The International Journal of Robotics Research, pp. 02783649241273668, 2023.
- 601 [7] Eugenio Chisari, Nick Heppert, Max Argus, Tim Welschehold, Thomas Brox, and Abhinav
 602 Valada. Learning robotic manipulation policies from point clouds with conditional flow match-
 603 ing. *arXiv preprint arXiv:2409.07343*, 2024.

594 [8] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
 595 *Advances in neural information processing systems*, 34:8780–8794, 2021.
 596

597 [9] Sander Dieleman. Diffusion is spectral autoregression, 2024. URL <https://sander.ai/2024/09/02/spectral-autoregression.html>.
 598

599 [10] Haoran Ding, Noémie Jaquier, Jan Peters, and Leonel Rozo. Fast and robust visuomotor rie-
 600 mannian flow matching policy. *IEEE Transactions on robotics*, 2025.
 601

602 [11] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
 603 image synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 604 *recognition*, pp. 12873–12883, 2021.
 605

606 [12] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini,
 607 Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow trans-
 608 formers for high-resolution image synthesis. In *Forty-first international conference on machine*
 609 *learning*, 2024.
 610

611 [13] Kevin Frans, Danijar Hafner, Sergey Levine, and Pieter Abbeel. One step diffusion via shortcut
 612 models. *arXiv preprint arXiv:2410.12557*, 2024.
 613

614 [14] Haoran Geng, Feishi Wang, Songlin Wei, Yuyang Li, Bangjun Wang, Boshi An, Char-
 615 lie Tianyue Cheng, Haozhe Lou, Peihao Li, Yen-Jen Wang, Yutong Liang, Dylan Goetting,
 616 Chaoyi Xu, Haozhe Chen, Yuxi Qian, Yiran Geng, Jiageng Mao, Weikang Wan, Mingtong
 617 Zhang, Jiangran Lyu, Siheng Zhao, Jiazhao Zhang, Jialiang Zhang, Chengyang Zhao, Hao-
 618 ran Lu, Yufei Ding, Ran Gong, Yuran Wang, Yuxuan Kuang, Ruihai Wu, Baoxiong Jia, Carlo
 619 Sferrazza, Hao Dong, Siyuan Huang, Koushil Sreenath, Yue Wang, Jitendra Malik, and Pieter
 620 Abbeel. Roboverse: Towards a unified platform, dataset and benchmark for scalable and gen-
 621 eralizable robot learning, April 2025. URL <https://github.com/RoboVerseOrg/RoboVerse>.
 622

623 [15] Zhefei Gong, Pengxiang Ding, Shangke Lyu, Siteng Huang, Mingyang Sun, Wei Zhao,
 624 Zhaoxin Fan, and Donglin Wang. Carp: Visuomotor policy learning via coarse-to-fine au-
 625 toregressive prediction. *arXiv preprint arXiv:2412.06782*, 2024.
 626

627 [16] Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang,
 628 Stone Tao, Xinyue Wei, Yunchao Yao, et al. Maniskill2: A unified benchmark for generalizable
 629 manipulation skills. *arXiv preprint arXiv:2302.04659*, 2023.
 630

631 [17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep
 632 convolutional networks for visual recognition. *IEEE transactions on pattern analysis and*
 633 *machine intelligence*, 37(9):1904–1916, 2015.
 634

635 [18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 636 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recogni-
 637 tion*, pp. 770–778, 2016.
 638

639 [19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Ad-
 640 vances in neural information processing systems*, 33:6840–6851, 2020.
 641

642 [20] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional
 643 architecture in the cat’s visual cortex. *The Journal of physiology*, 160(1):106, 1962.
 644

645 [21] Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
 646 learning benchmark & learning environment. *IEEE Robotics and Automation Letters*, 2020.
 647

648 [22] Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy
 649 diffusion with 3d scene representations. *arXiv preprint arXiv:2402.10885*, 2024.
 650

651 [23] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. *arXiv*
 652 *preprint arXiv:1412.6980*, 2014.
 653

648 [24] Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah,
 649 and Lerrel Pinto. Behavior generation with latent actions. *arXiv preprint arXiv:2403.03181*,
 650 2024.

651
 652 [25] Tai Sing Lee and David Mumford. Hierarchical bayesian inference in the visual cortex. *Journal*
 653 *of the Optical Society of America A*, 20(7):1434–1448, 2003.

654 [26] Siyuan Li, Rui Wang, Minxue Tang, and Chongjie Zhang. Hierarchical reinforcement learning
 655 with advantage-based auxiliary rewards. *Advances in Neural Information Processing Systems*,
 656 32, 2019.

657
 658 [27] Haotong Lin, Sili Chen, Jun Hao Liew, Donny Y. Chen, Zhenyu Li, Guang Shi, Jiashi Feng,
 659 and Bingyi Kang. Depth anything 3: Recovering the visual space from any views. *arXiv*
 660 *preprint arXiv:2511.10647*, 2025.

661 [28] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Be-
 662 longie. Feature pyramid networks for object detection. In *Proceedings of the IEEE conference*
 663 *on computer vision and pattern recognition*, pp. 2117–2125, 2017.

664
 665 [29] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
 666 matching for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

667
 668 [30] Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone.
 669 Libero: Benchmarking knowledge transfer for lifelong robot learning. *arXiv preprint*
 670 *arXiv:2306.03310*, 2023.

671
 672 [31] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
 673 and transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

674
 675 [32] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
 676 Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceed-
 677 ings of the IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

678
 679 [33] Guanxing Lu, Zifeng Gao, Tianxing Chen, Wenxun Dai, Ziwei Wang, and Yansong Tang.
 680 Manicm: Real-time 3d diffusion policy via consistency model for robotic manipulation. *arXiv*
 681 *preprint arXiv:2406.01586*, 2024.

682
 683 [34] Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin,
 684 Zhiqiang Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital
 685 twins (early version). *arXiv preprint arXiv:2409.02920*, 2024.

686
 687 [35] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khali-
 688 dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2:
 689 Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

690
 691 [36] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical rein-
 692 force learning: A comprehensive survey. *ACM Computing Surveys (CSUR)*, 54(5):1–35, 2021.

693
 694 [37] Aaditya Prasad, Kevin Lin, Jimmy Wu, Linqi Zhou, and Jeannette Bohg. Consistency policy:
 695 Accelerated visuomotor policies via consistency distillation. *arXiv preprint arXiv:2405.07503*,
 696 2024.

697
 698 [38] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 699 understanding by generative pre-training. 2018.

700
 701 [39] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman,
 702 Emanuel Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep
 703 reinforcement learning and demonstrations. *arXiv preprint arXiv:1709.10087*, 2017.

704
 705 [40] Deepak Rao, Quoc V Le, Thanathorn Phoka, Morgan Quigley, Attawith Sudsang, and An-
 706 drew Y Ng. Grasping novel objects with depth segmentation. In *2010 IEEE/RSJ international*
 707 *conference on intelligent robots and systems*, pp. 2578–2585. IEEE, 2010.

[41] Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. *Advances in neural information processing systems*, 32, 2019.

[42] Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng Yan, Zhaoyang Zeng, Hao Zhang, Feng Li, Jie Yang, Hongyang Li, Qing Jiang, and Lei Zhang. Grounded sam: Assembling open-world models for diverse visual tasks, 2024.

[43] Douglas A Reynolds et al. Gaussian mixture models. *Encyclopedia of biometrics*, 741(659-663):3, 2009.

[44] Severi Rissanen, Markus Heinonen, and Arno Solin. Generative modelling with inverse heat dissipation. *arXiv preprint arXiv:2206.13397*, 2022.

[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In *Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III* 18, pp. 234–241. Springer, 2015.

[46] Chaitanya Ryali, Yuan-Ting Hu, Daniel Bolya, Chen Wei, Haoqi Fan, Po-Yao Huang, Vaibhav Aggarwal, Arkabandhu Chowdhury, Omid Poursaeed, Judy Hoffman, et al. Hiera: A hierarchical vision transformer without the bells-and-whistles. In *International conference on machine learning*, pp. 29441–29454. PMLR, 2023.

[47] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

[48] Carmelo Sferrazza, Dun-Ming Huang, Xingyu Lin, Youngwoon Lee, and Pieter Abbeel. Humanoidbench: Simulated humanoid benchmark for whole-body locomotion and manipulation. *arXiv Preprint arxiv:2403.10506*, 2024.

[49] Nur Muhammad Shafiuallah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior transformers: Cloning k modes with one stone. *Advances in neural information processing systems*, 35:22955–22968, 2022.

[50] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using large learning rates. In *Artificial intelligence and machine learning for multi-domain operations applications*, volume 11006, pp. 369–386. SPIE, 2019.

[51] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv preprint arXiv:2010.02502*, 2020.

[52] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In *Advances in Neural Information Processing Systems*, pp. 11895–11907, 2019.

[53] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint arXiv:2011.13456*, 2020.

[54] Yue Su, Xinyu Zhan, Hongjie Fang, Han Xue, Hao-Shu Fang, Yong-Lu Li, Cewu Lu, and Lixin Yang. Dense policy: Bidirectional autoregressive learning of actions. *arXiv preprint arXiv:2503.13217*, 2025.

[55] Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for denoising generative models? *arXiv preprint arXiv:2502.13129*, 2025.

[56] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. *Advances in neural information processing systems*, 37:84839–84865, 2024.

[57] Chenrui Tie, Yue Chen, Ruihai Wu, Boxuan Dong, Zeyi Li, Chongkai Gao, and Hao Dong. Et-seed: Efficient trajectory-level se (3) equivariant diffusion policy. *arXiv preprint arXiv:2411.03990*, 2024.

756 [58] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. *Advances*
 757 *in neural information processing systems*, 30, 2017.

758

759 [59] Che Wang, Xufang Luo, Keith Ross, and Dongsheng Li. Vrl3: A data-driven framework for
 760 visual deep reinforcement learning. *Advances in Neural Information Processing Systems*, 35:
 761 32974–32988, 2022.

762

763 [60] Dian Wang, Stephen Hart, David Surovik, Tarik Kelestemur, Haojie Huang, Haibo Zhao, Mark
 764 Yeatman, Jiuguang Wang, Robin Walters, and Robert Platt. Equivariant diffusion policy. *arXiv*
 765 *preprint arXiv:2407.01812*, 2024.

766

767 [61] Shuai Wang, Zhi Tian, Weilin Huang, and Limin Wang. Ddt: Decoupled diffusion transformer.
 768 *arXiv preprint arXiv:2504.05741*, 2025.

769

770 [62] Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang Wang. Multimodal transfer: A hier-
 771 archical deep convolutional neural network for fast artistic style transfer. In *Proceedings of the*
 772 *IEEE conference on computer vision and pattern recognition*, pp. 5239–5247, 2017.

773

774 [63] Zhendong Wang, Zhaoshuo Li, Ajay Mandlekar, Zhenjia Xu, Jiaojiao Fan, Yashraj Narang,
 775 Linxi Fan, Yuke Zhu, Yogesh Balaji, Mingyuan Zhou, et al. One-step diffusion policy: Fast
 776 visuomotor policies via diffusion distillation. *arXiv preprint arXiv:2410.21257*, 2024.

777

778 [64] Zhengrong Xue, Shuying Deng, Zhenyang Chen, Yixuan Wang, Zhecheng Yuan, and Huazhe
 779 Xu. Demogen: Synthetic demonstration generation for data-efficient visuomotor policy learn-
 780 ing. *arXiv preprint arXiv:2502.16932*, 2025.

781

782 [65] Jingyun Yang, Zi-ang Cao, Congyue Deng, Rika Antonova, Shuran Song, and Jeannette Bohg.
 783 Equibot: Sim (3)-equivariant diffusion policy for generalizable and data efficient learning.
 784 *arXiv preprint arXiv:2407.01479*, 2024.

785

786 [66] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
 787 Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforce-
 788 ment learning. In *Conference on robot learning*, pp. 1094–1100. PMLR, 2020.

789

790 [67] Zhecheng Yuan, Tianming Wei, Shuiqi Cheng, Gu Zhang, Yuanpei Chen, and Huazhe Xu.
 791 Learning to manipulate anywhere: A visual generalizable framework for reinforcement learn-
 792 ing. *arXiv preprint arXiv:2407.15815*, 2024.

793

794 [68] Zhecheng Yuan, Tianming Wei, Langzhe Gu, Pu Hua, Tianhai Liang, Yuanpei Chen, and
 795 Huazhe Xu. Hermes: Human-to-robot embodied learning from multi-source motion data for
 796 mobile dexterous manipulation. *arXiv preprint arXiv:2508.20085*, 2025.

797

798 [69] Yanjie Ze, Zixuan Chen, Wenhao Wang, Tianyi Chen, Xialin He, Ying Yuan, Xue Bin Peng,
 799 and Jiajun Wu. Generalizable humanoid manipulation with 3d diffusion policies. *arXiv*
 800 *preprint arXiv:2410.10803*, 2024.

801

802 [70] Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d
 803 diffusion policy: Generalizable visuomotor policy learning via simple 3d representations. In
 804 *Proceedings of Robotics: Science and Systems (RSS)*, 2024.

805

806 [71] Qinglun Zhang, Zhen Liu, Haoqiang Fan, Guanghui Liu, Bing Zeng, and Shuaicheng Liu.
 807 Flowpolicy: Enabling fast and robust 3d flow-based policy via consistency flow matching for
 808 robot manipulation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 809 ume 39, pp. 14754–14762, 2025.

810

811 [72] Renrui Zhang, Han Qiu, Tai Wang, Ziyu Guo, Ziteng Cui, Yu Qiao, Hongsheng Li, and Peng
 812 Gao. Monodetr: Depth-guided transformer for monocular 3d object detection. In *Proceedings*
 813 *of the IEEE/CVF International Conference on Computer Vision*, pp. 9155–9166, 2023.

814

815 [73] Xinyu Zhang, Yuhang Liu, Haonan Chang, Liam Schramm, and Abdeslam Boularias. Autore-
 816 gressive action sequence learning for robotic manipulation. *IEEE Robotics and Automation*
 817 *Letters*, 2025.

810 [74] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
811 manipulation with low-cost hardware. *arXiv preprint arXiv:2304.13705*, 2023.

812

813 [75] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
814 *Unet++: A nested u-net architecture for medical image segmentation*. In *Deep learning in med-
815 ical image analysis and multimodal learning for clinical decision support: 4th international
816 workshop, DLMIA 2018, and 8th international workshop, ML-CDS 2018, held in conjunc-
817 tion with MICCAI 2018, Granada, Spain, September 20, 2018, proceedings 4*, pp. 3–11. Springer,
818 2018.

819 [76] Haoyi Zhu, Yating Wang, Di Huang, Weicai Ye, Wanli Ouyang, and Tong He. Point cloud mat-
820 ters: Rethinking the impact of different observation spaces on robot learning. *arXiv preprint
821 arXiv:2402.02500*, 2024.

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Table 11: **Hyperparameters used for MetaWorld, DexArt.**

Hyperparameter	Value
Observation Horizon (T_o)	2
Action Horizon (T_a)	2
Prediction Action Horizon (T_p)	4
Optimizer	AdamW [23]
Betas (β_1, β_2)	[0.95, 0.999]
Learning Rate	1.0e-4
Weight Decay	1.0e-6
Learning Rate Scheduler	Cosine
Training Timesteps (T)	50
Inference Timesteps	20
Prediction Type	ϵ -prediction
Image Resolution	128×128
Scale Number (K)	4
Multi-Scale Representation Resolutions ($\{(h_k, w_k)\}_{k=1}^K$)	{(1,1),(3,3),(5,5),(7,7)}
Stage Boundaries ($\{\tau_k/T\}_{k=0}^K$)	{0,0.4,0.6,0.8,1.0}
Codebook Size	64

Table 12: **Hyperparameters used for Adroit.**

Hyperparameter	Value
Observation Horizon (T_o)	2
Action Horizon (T_a)	2
Prediction Action Horizon (T_p)	4
Optimizer	AdamW
Betas (β_1, β_2)	[0.95, 0.999]
Learning Rate	1.0e-4
Weight Decay	1.0e-6
Learning Rate Scheduler	Cosine
Training Timesteps (T)	50
Inference Timesteps	20
Prediction Type	ϵ -prediction
Image Resolution	84×84
Scale Number (K)	4
Multi-Scale Representation Resolutions ($\{(h_k, w_k)\}_{k=1}^K$)	{(1,1),(3,3),(5,5),(6,6)}
Stage Boundaries ($\{\tau_k/T\}_{k=0}^K$)	{0,0.4,0.6,0.8,1.0}
Codebook Size	64

APPENDIX

A HYPERPARAMETERS

To effectively address the varying levels of difficulty and distinct properties inherent to different benchmarks, we adapt our hyperparameter settings for each specific dataset. The chosen configurations, detailed in Table 11, 12, 13, 14, are selected based on previous works [6; 70; 76; 34].

In addition to the hyperparameters reported in the table, the choice of the number of layers N demonstrates great importance, as shown in Table 4. Empirically, we choose $N = 4$ in Adroit, MetaWorld Hard and Hard++, and $N = 3$ in other benchmarks.

For the reverse process, we employ different formulations depending on the environment. The noise scheduler for diffusion process is determined by α_t , defined using function $f(t)$

$$\alpha_t = \frac{f(t-1)}{f(t)}, \quad \text{where} \quad f(t) = \cos\left(\frac{\pi}{2} \frac{t}{T}\right), \quad (5)$$

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 13: **Hyperparameters used for ManiSkill.**

Hyperparameter	Value
Observation Horizon (T_o)	2
Action Horizon (T_a)	8
Prediction Action Horizon (T_p)	16
Optimizer	AdamW
Betas (β_1, β_2)	[0.9, 0.95]
Learning Rate	1.0e-4
Weight Decay	1.0e-4
Learning Rate Scheduler	One Cycle LR [50]
Training Timesteps (T)	100
Inference Timesteps	100
Prediction Type	ϵ -prediction
Image Resolution	128 \times 128
Scale Number (K)	4
Multi-Scale Representation Resolutions ($\{(h_k, w_k)\}_{k=1}^K$)	{(1,1),(3,3),(5,5),(7,7)}
Stage Boundaries ($\{\tau_k\}_{k=0}^K / T$)	{0,0.4,0.6,0.8,1.0}
Codebook Size	64

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 14: **Hyperparameters used for RoboTwin.**

Hyperparameter	Value
Observation Horizon (T_o)	3
Action Horizon (T_a)	2
Prediction Action Horizon (T_p)	8
Optimizer	AdamW
Betas (β_1, β_2)	[0.95, 0.999]
Learning Rate	1.0e-4
Weight Decay	1.0e-6
Learning Rate Scheduler	Cosine
Training Timesteps (T)	100
Inference Timesteps	100
Prediction Type	ϵ -prediction
Image Resolution	180 \times 320
Scale Number (K)	4
Multi-Scale Representation Resolutions ($\{(h_k, w_k)\}_{k=1}^K$)	{(1,3),(3,5),(5,7),(5,9)}
Stage Boundaries ($\{\tau_k\}_{k=0}^K / T$)	{0,0.4,0.6,0.8,1.0}
Codebook Size	64

958 where T is the total number of diffusion timesteps. In MetaWorld, Adroit and DexArt, we follow
959 the DDIM [51] approach, formulating the reverse process as an ODE, which corresponds to setting
960 $\sigma_t = 0$ for all t . In ManiSkill and RoboTwin, we follow the design of DDPM [19] and formulate
961 the reverse process as a Variance Preserving (VP) SDE [53]. Correspondingly,

$$\gamma_t = \prod_{i=1}^t \alpha_i^2, \quad \beta_t = \sqrt{1 - \gamma_{t-1} - \sigma_t^2} - \sqrt{1 - \gamma_t} \sqrt{\frac{\gamma_{t-1}}{\gamma_t}} \quad (6)$$

965 The boundary in Equation 1 is set following linear-increasing discretization [72], which is
966

$$d_i = \frac{i(i+1)}{N(N+1)} (d_{\max} - d_{\min}) + d_{\min}, \quad i = 0, \dots, N, \quad (7)$$

970 where d_{\min} and d_{\max} are the minimum and maximum depth values in the input depth image, re-
971 spectively. This discretization strategy allocates finer depth resolution to closer objects, which are
972 typically more relevant for manipulation tasks, while providing coarser resolution for distant objects.

972 **B METHOD DETAILS**
973

974 This section outlines the implementation details of our multi-scale encoding. The encoder \mathcal{E}_m for
975 each depth layer m adopts the architecture from VQGAN [11], ensuring strong representational
976 capacity while preserving spatial information. We use `interpolate` to denote a differentiable resizing
977 operation (e.g. bilinear or nearest-neighbor interpolation), which is crucial for enabling gradient
978 flow during training. The function \mathcal{Q} represents the quantization process detailed in Section 3.2.
979 Finally, after interpolating a feature map $f_{m,k}$ to the highest resolution, we apply a lightweight con-
980 volutional network $\phi_{m,k}$ designed to help restore fine details from the potentially lower-resolution
981 source features.

982 The pseudocode for this process is outlined in Algorithm 1.
983

984 **Algorithm 1:** Multi-scale Encoding
985

986 1 **Inputs:** raw image I
987 2 **Hyperparameters:** depth layer number N , scale number K , resolutions $\{(h_k, w_k)\}_{k=1}^K$
988 3 Partition image I into N images $\{I_m\}_{m=1}^N$ according to Equation 1
989 4 **for** $m = 1, \dots, N - 1$ **do**
990 5 $f_m \leftarrow \mathcal{E}_m(I_m) \in \mathbb{R}^{h_K \times w_K \times C}$
991 6 **for** $k = 1, \dots, K$ **do**
992 7 $f_{m,k} \leftarrow \text{interpolate}(f_m, h_k, w_k) \in \mathbb{R}^{h_k \times w_k \times C}$
993 8 $f_{m,k} \leftarrow \mathcal{Q}(f_{m,k})$
994 9 $f_{m,k} \leftarrow \phi_{m,k}(\text{interpolate}(f_{m,k}, h_K, w_K)) \in \mathbb{R}^{h_K \times w_K \times C}$
995 10 $\hat{f}_{m,k} \leftarrow \sum_{k' \leq k} f_{m,k'}$
996 11 $f_m \leftarrow f_m - \hat{f}_{m,k}$
997 12 **Return:** multi-scale features $F = \{\hat{f}_k = \{\hat{f}_{m,k}\}_{m=1}^{N-1}\}_{k=1}^K$

999
1000
1001 All trainable parameters, including the visual encoders $\{\mathcal{E}_m\}_{m=1}^{N-1}$, the codebooks $\{\mathcal{Z}_m\}_{m=1}^{N-1}$, the
1002 CNN parameters $\{\phi_{m,k}\}_{m=1}^{N-1}\}_{k=1}^K$, and the denoising network ϵ_θ , are trained jointly in an end-to-
1003 end manner. The optimization minimizes the combined objective function \mathcal{L} , defined as a weighted
1004 sum of consistency loss (Equation 2) and the diffusion loss (Equation 4):
1005

$$\mathcal{L} = \mathcal{L}_{\text{diffusion}} + \alpha \mathcal{L}_{\text{consistency}}, \quad (8)$$

1006 where α is a hyperparameter balancing the two loss terms.
1007

1009 **C EXPERT DEMONSTRATIONS**
1010

1011 Regarding the MetaWorld [66] and the RoboTwin [34] benchmarks, we utilize scripted policies
1012 to generate expert demonstrations. In the case of ManiSkill [16] tasks, we employ the officially
1013 provided demonstrations. Trajectories for other simulation benchmarks are collected with agents
1014 trained by RL algorithms [70; 47; 59]. The expert policies are evaluated over 200 episodes, and
1015 their success rates are detailed in Table 34.
1016

1017 Given the varying difficulty levels across benchmarks, we provide a different number of demon-
1018 strations for each. Specifically, we provide 50 trajectories per task for MetaWorld, Adroit, and
1019 RoboTwin. For DexArt, we follow the setup in [70] and provide 100 trajectories per task. For
1020 ManiSkill, we use all official demonstrations: 1000 for rigid tasks and 200 for deformable tasks.
1021

1022 In real-world experiments, we collect demonstrations of varying quantity, depending on the com-
1023 plexity and horizon length of the tasks. For short-horizon tasks, the number of collected trajectories
1024 is relatively limited — 100 for Clean Fridge and 200 for Place Bottle. In contrast, long-horizon tasks
1025 demand more comprehensive data coverage. We collect more demonstrations: 270 for Pour Juice
especially in scenarios where exploration is challenging or unsafe.

1026 **Table 15: Comparison of real-world inference speeds for different methods.** The asynchronous
 1027 version of our method demonstrates a significant speed-up by decoupling inference from action
 1028 execution.

Method	DP	DP3	H ³ DP	H ³ DP (asynchronous)
Inference Speed (FPS)	12.4	12.7	12.1	24.2

D REAL-WORLD TRAINING DETAILS

As mentioned in [15], DP-based methods often suffer from low inference speed, which can cause the inference process to stall. Prior approaches, including DP3 [70], attempt to address this by increasing action horizon (e.g. $T_a = 4$ or $T_a = 8$) or reducing the number of model parameters (e.g. Simple DP3). However, these strategies often compromise manipulation accuracy and dexterity. A further complication is that increasing T_a widens the temporal gap between consecutive inference steps, leading to greater discrepancies in observed information, and consequently, divergence in predicted actions. This often results in noticeable jitter and discontinuities in manipulation.

In general, DP-based methods are hindered by low inference speed, temporal inconsistency and overfitting to proprioceptive information. To address these challenges and improve real-world performance, we employ several empirical techniques.

D.1 HIGHER INFERENCE SPEED

To mitigate slow inference rooted in DP, we adopt an *asynchronous* design, achieving a final inference frequency of 10-15 Hz. Instead of waiting for the execution of all predicted actions before initiating the next inference cycle, our method performs inference concurrently with action execution. The predicted action is stored in a queue to be executed at a fixed inference speed (10-15 Hz in practice, 12 Hz as average).

The inference speeds achieved in real-world scenarios are presented in Table 15. H³DP (asynchronous) demonstrates a superior inference speed compared to standard DP [6] and DP3 [70], as well as our synchronous H³DP implementation. In addition to this speed advantage, H³DP features a shorter action sequence length ($T_a = 2$), which contributes to more dexterous manipulation capabilities.

D.2 TEMPORAL CONSISTENCY

Having adopted the *asynchronous* design, we have obtained action sequences with overlapping time intervals. To ensure temporal smoothness and reduce discontinuities, we incorporate *temporal ensembling mechanism* from ACT [74]. As in ACT, H³DP performs a weighted average of actions with the same timestep across multiple overlapping sequences. This ensembling mitigates the gap between actions inferred from slightly different observations and effectively reduces jitter.

D.3 ALLEViate OVERFITTING

Similar to other real-world robotic systems, H³DP is susceptible to overfitting on proprioceptive inputs, often neglecting the RGB-D information. This is evidenced by that the model generates similar actions regardless of variations in object positions. We hypothesize that this occurs because the simple, low-parameter MLP used to encode proprioception is easier to optimize than the more complex CNN used for RGB-D input, leading to reliance on the former.

To mitigate this, we introduce a *p*-masking strategy during training. This mechanism stochastically masks all proprioceptive inputs with probability p , which decays linearly over the training process. Specifically, for training timestep t in a total horizon T , $p(t) = 1 - t/T$. This schedule encourages the model to rely more on RGB-D features early in training, helping it avoid early-stage overfitting and develop stronger visual grounding.

Table 17: Results of ablation study on hierarchical design.

Method \ Tasks	MetaWorld			ManiSkill		RoboTwin	Average
	Soccer	Stick Pull	Pick Out of Hole	Fill	Excavate	Tool Adjust	
H³DP	85	75	37	98	38	45	59.6
w/o depth layering	59	72	34	78	27	32	46.5
w/o hierarchical action	64	67	40	82	18	40	49.0
w/o multi-scale representation	55	72	34	73	32	40	48.7
DP (w/ depth)	37	71	32	72	23	32	42.1

E ADDITIONAL EXPERIMENT RESULTS

E.1 SIMULATION RESULTS FOR EACH TASK

We present the simulation results for each task in Table 33, which serves as a supplement to Table 1. For each experiment, we report the average success rate over three different random seeds. The final average result is obtained by averaging across all benchmarks.

We also provide the training progress of 4 algorithms on 12 various tasks across 3 different benchmarks in Figure 9. The selected tasks span a range of difficulties and are included without cherry picking to provide an unbiased view of each algorithm.

To further reducing the variance caused by different random seeds, we increase the number of training seeds from 3 to 5 for each method and report the mean and standard deviation of success rates in Table 35. The results further confirm the effectiveness and robustness of H³DP.

E.2 THE WHOLE RESULTS OF ABLATION STUDY

We present the entire results of our ablation study on each hierarchical design and number of layers N in Table 17 and Table 18, as a supplement to Table 3 and Table 4. For each experiment, the success rate is reported by averaging over 3 different random seeds. The final average result is obtained by averaging across benchmarks.

Table 16: Comparison of inference speeds for DP, DP3 and H³DP in simulation tasks. The result indicates that additional operations introduced in H³DP are lightweight compared to the diffusion process.

Method	H ³ DP	w/ Grounded-SAM
Inference Speed (FPS)	12.0	2.6

Notably, in Table 8, we compare H³DP with a variant that replaces depth-aware layering with semantic segmentation. While policies using Grounded-SAM or GMM learn visual representations through semantics-driven layering, our method relies on a fundamentally different principle. The depth-based layering adopted in H³DP does not assume semantic segmentation. Instead, it leverages the intuition that grouping pixels within the same depth interval provides more coherent information, making it easier for the policy to learn robust visual representations. This operation is therefore distinct from semantic partitioning. Our experiments support this argument: when applied appropriately, purely depth-based layering guides visuomotor policy learning even better. Moreover, we provide inference speed comparisons in Table 16. Grounded-SAM introduces significant latency, greatly limiting its practicality for real-world deployment.

E.3 IMPACT OF HIERARCHICAL SCALE K

To analyze the impact of hierarchical scale K , we conduct experiments with different K values, as shown in Table 19. The performance remains largely stable when K is large, indicating limited sensitivity to this hyperparameter. We choose $K = 4$ by default.

E.4 OBTAINING DEPTH FROM NEURAL NETWORK

In scenarios where depth sensors are unavailable, we explore the use of depth estimation networks to generate depth maps from RGB images. We adopt Depth Anything [27], a state-of-the-art depth

Table 18: Results of ablation study on number of layers N .

Method \ Tasks	MetaWorld			ManiSkill		RoboTwin	Average
	Soccer	Stick Pull	Pick Out of Hole	Fill	Excavate	Tool Adjust	
$H^3DP (N = 1)$	59	72	34	78	27	32	46.5
$H^3DP (N = 2)$	64	70	33	85	35	35	50.2
$H^3DP (N = 3)$	85	75	37	98	38	45	59.6
$H^3DP (N = 4)$	78	83	40	90	33	50	59.5
$H^3DP (N = 5)$	62	75	39	87	23	50	54.6
$H^3DP (N = 6)$	61	73	34	77	25	40	49.0

Table 19: Results of ablation study on number of hierarchical scales K .

Tasks \ Method	$K = 1$	$K = 2$	$K = 3$	$K = 4$	$K = 5$
	(w/o hierarchical gen.)			(Default)	
Box Close	90	93	95	98	98
Soccer	64	64	70	85	83

Table 20: Performance comparison using depth estimated from neural networks. We compare H^3DP with depth layering using depth maps predicted by Depth Anything [27].

Method \ Tasks	MetaWorld					Average
	Assembly	Shelf Place	Hand Insert	Pick Out of Hole	Push	
H^3DP	100	100	100	40	100	88.0
w/ Depth Anything (Small)	100	88	88	35	55	73.2
w/ Depth Anything (Base)	100	93	96	32	68	77.8
DP (w/ Depth)	100	29	75	32	79	63.0

estimation model, to predict depth maps from RGB inputs. Specifically, we choose "Small" and "Base" models to balance accuracy and efficiency. In Table 20, we compare H^3DP using estimated depth maps with our default H^3DP that utilizes ground-truth depth.

The results indicate that H^3DP with estimated depth still outperforms DP (w/ depth) by a significant margin, demonstrating the robustness of our depth-aware layering mechanism even when using predicted depth. This suggests that while depth estimation networks can be a viable alternative in the absence of depth sensors, further improvements in depth prediction accuracy could enhance overall performance.

However, there is a performance gap compared to using ground-truth depth, which may be attributed to inaccuracies and inconsistencies in the estimated depth maps. In particular, models such as Depth Anything do not take temporal information as input. Therefore, the predicted depth of the same pixel can vary significantly across consecutive frames. Although such variations may be subtle to human eyes, they can have a substantial negative effect on model training, aligning with observations in [68].

E.5 EFFECTIVENESS OF SEPARATE ENCODERS

As mentioned in Section 3.2, we adopt separate encoders for each depth layer to allow specialization across spatial regions. While this may appear redundant, our whole encoder is still lightweight ($< 0.7M$ parameters), and the overall model remains smaller than DP. We found that sharing a single encoder across layers led to performance degradation, as shown in Table 21. This suggests that separate encoders help capture the distinct characteristics of each depth layer more effectively, while the negligible increase in model size does not impact efficiency.

1188 Table 21: **Effectiveness of separate encoders for each depth layer.** Using separate encoders for
 1189 each depth layer yields better performance compared to sharing a single encoder across layers with
 1190 negligible increase in model size.

Tasks \ Method	MetaWorld			Average
	Box Close	Pick Place	Stick Pull	
H ³ DP	98	99	83	93.3
H ³ DP (shared encoder)	92	89	76	85.7

1197 Table 22: **Effectiveness of our codebook design.** Using separate codebooks for each depth layer
 1198 yields better performance than sharing a single codebook across layers.

Tasks \ Method	MetaWorld						Average
	Box Close	Pick Place	Hand Insert	Pick Out of Hole	Stick Pull	Shelf Place	
H ³ DP	98	99	100	40	83	97	86.2
H ³ DP (visual frequency sharing)	97	89	81	36	76	97	79.3

1205 E.6 EFFECTIVENESS OF CODEBOOK DESIGN

1207 We evaluate the impact of our proposed codebook design in Table 22. Specifically, we compare
 1208 our default design of sharing codebooks across depth layers against a variant that shares codebooks
 1209 across visual frequency. Empirical results demonstrate that using separate codebooks across depth
 1210 layers yields better performance. We hypothesize that features within the same depth segment often
 1211 share more semantic similarities (e.g., foreground objects vs. background) compared to features at
 1212 the same scale but different depths. Therefore, separate codebooks can better capture these distinc-
 1213 tions.

1215 E.7 COMPARISON WITH SAME CAPACITY ENCODERS

1217 To ensure a fair comparison between H³DP and the without depth layering variant, we conduct an
 1218 experiment where the without depth layering model is equipped with encoders of equivalent total
 1219 capacity. Specifically, we increase the number of channels in the single encoder to match the total
 1220 number of parameters used in H³DP’s multiple encoders. As shown in Table 23, H³DP still out-
 1221 performs the same capacity variant by a significant margin. This result highlights the performance
 1222 benefits of our depth-aware layering mechanism doesn’t merely stem from increased model capacity,
 1223 but rather from its ability to effectively leverage depth information.

1225 E.8 COMPARISON WITH MORE BASELINES

1227 Except diffusion-based algorithms, we also compare H³DP with the recent state-of-the-art method
 1228 CARP [15], which uses multi-scale action VQ-VAE to build hierarchical action structures. Table 24
 1229 shows that H³DP outperforms CARP with an average improvement of 18.9%, indicating the impor-
 1230 tance of adopting hierarchical designs throughout visual features and action generation.

1232 E.9 IMPORTANCE OF SEGMENTATION IN DP3

1234 As highlighted in Section 4.1.2, DP3 relies on manual segmentation of point cloud for optimal
 1235 performance. To demonstrate this dependency, we evaluate DP3’s performance under two distinct
 1236 segmentation conditions using randomly selected tasks from the MetaWorld benchmark.

1237 We compare the following two scenarios: *DP3 with ideal segmentation*, which utilizes clean seg-
 1238 mented point clouds containing only the robot and task-relevant objects, as implemented in the
 1239 original DP3 algorithm; *DP3 without ideal segmentation*, which utilizes point clouds that are inten-
 1240 tionally processed to include desk surface upon which objects rest, while other background elements
 1241 are still removed. This configuration simulates common real-world scenarios where simple or auto-
 1242 mated segmentation rules might fail to perfectly isolate the task-relevant objects.

1242 Table 23: **Results of ablation study on depth-aware layering capacity.** We compare H³DP with
 1243 and without depth layering, ensuring both variants have the same model capacity by adjusting the
 1244 number of layers and hidden dimensions.

Method \ Tasks	MetaWorld			ManiSkill		RoboTwin	Average
	Soccer	Stick Pull	Pick Out of Hole	Fill	Excavate	Tool Adjust	
H³DP	85	75	37	98	38	45	63.0
w/o depth layering	59	72	34	78	27	32	50.3
w/o depth layering & same capacity	61	69	35	80	30	31	51.0

1251 Table 24: **Comparison with CARP.** H³DP outperforms CARP with an average improvement of
 1252 18.9%.

Method \ Tasks	MetaWorld							Average
	Box Close	Soccer	Stick Pull	Pick Out of Hole	Peg Insert Side	Hammer	Sweep	
H³DP	98	85	83	40	98	100	100	86.3
CARP	82	53	71	15	69	82	100	67.4
DP	83	43	64	13	62	64	96	60.7

1260 Table 25: **Comparison of DP3 under different segmentation qualities.** We compare DP3 success
 1261 rates on selected tasks when provided with different segmentation qualities, highlighting significant
 1262 performance degradation.

Method \ Tasks	MetaWorld						Average
	Push	Shelf Place	Stick Pull	Soccer	Bin Picking	Pick Place Wall	
H ³ DP	100	100	83	85	100	100	94.7
DP3	96	86	61	57	100	97	82.8
DP3 (w/o ideal segmentation)	89	26	48	29	50	84	54.3

1269
 1270 As shown in Table 25, DP3’s performance degrades substantially when operating on point clouds
 1271 without ideal segmentation. This result confirms that DP3 is highly sensitive to the quality of the
 1272 input point cloud segmentation.

1273 In contrast, H³DP operates directly on raw image without requiring such pre-processing, thereby
 1274 avoiding such failure mode and the associated need for careful, potentially manual, segmentation
 1275 tuning, especially common in real-world scenarios.

1277 In our setup, the head-mounted camera is a ZED, which produces relatively low-quality visual in-
 1278 puts. This hinders the direct application of DP3 in our experimental setting. To ensure a fair com-
 1279 parison, we evaluate both H³DP and DP3 on four real-world tasks with same visual inputs.

E.10 SCALING BEHAVIOR OF H³DP

1283 To investigate the scaling behavior of H³DP, we conduct experiments by varying the model size and
 1284 training data volume. Specifically, we adjust the number of layers and hidden dimensions in the
 1285 denoising network and the size of the visual encoders to create models of different capacities. As
 1286 shown in Table 26, we observe that increasing the model size leads to consistent performance im-
 1287 provements across various tasks. This indicates that H³DP effectively leverages additional capacity
 1288 to learn more complex representations and policies.

1289 Furthermore, we explore the impact of training data volume by training H³DP on different numbers
 1290 of expert demonstrations. Results in Table 27 demonstrate that H³DP benefits from more training
 1291 data, with success rates improving as the amount of expert data increases. This scaling behavior
 1292 suggests that H³DP can effectively utilize larger datasets to enhance its performance, making it a
 1293 promising approach for scenarios where abundant expert demonstrations are available.

E.11 INFERENCE SPEED AND MODEL SIZE

1296 Table 26: **Ablation study on model scaling.** H^3DP (Base) demonstrates significant performance
 1297 improvements over the smaller variant H^3DP (Small) across various tasks and benchmarks.
 1298

Method \ Tasks	MetaWorld			Adroit		DexArt	Average
	Soccer	Pick Out of Hole	Stick Pull	Door	Pen	Laptop	
H^3DP (Small)	73	31	72	69	72	78	65.8
H^3DP (Base)	85	40	83	83	75	79	75.2

1304 Table 27: **Ablation study on training data scale.** H^3DP benefits from increased training data,
 1305 achieving significant performance gains when trained with 200% of the original data.
 1306

Method \ Tasks	MetaWorld			Adroit		DexArt	Average
	Soccer	Pick Out of Hole	Stick Pull	Door	Pen	Laptop	
H^3DP (20% data)	73	31	72	69	72	78	65.8
H^3DP	85	40	83	83	75	79	75.2
H^3DP (200% data)	93	57	88	84	86	86	82.3

1314 As shown in Table 28, we evaluate the inference
 1315 speed of different methods within
 1316 simulated environments. The results indicate
 1317 that the primary bottleneck of the inference
 1318 speed of H^3DP lies in the diffusion
 1319 process itself, whereas the additional
 1320 operations introduced for processing visual
 1321 inputs and managing multi-scale representations
 1322 incur only minimal computational
 1323 overhead. A corresponding analysis of inference
 1324 speed in real-world scenarios is
 1325 available in Appendix D.1.

1326 As shown in Table 29, although H^3DP in-
 1327 troduces multi-scale representation learning,
 1328 it remains lightweight with negligible
 1329 overhead in size compared to DP3, and is
 1330 even smaller than the DP baseline.

E.12 RESULTS IN LOW-DATA REGIME

1331 To further demonstrate the sample effi-
 1332 ciency of our approach, we eval-
 1333 uate the performance of H^3DP under
 1334 limited expert demonstrations in real-
 1335 world settings. In particular, we train
 1336 H^3DP using only 20% of the avail-
 1337 able training data. As shown in Table
 1338 30, H^3DP consistently achieves su-
 1339 perior results even in such low-data sce-
 1340 narios, highlighting its strong sample
 1341 efficiency.

E.13 VALIDATION ON SPECIAL TASKS

1342 To fully validate the effectiveness of H^3DP , we conduct additional experiments on two special tasks:
 1343 *occclusion-heavy cluttered* task (tool adjust), where several objects are stacked together, to show the
 1344 advantage of depth-aware layering in handling complex spatial arrangements; *dimmed lighting* task
 1345 (place bottle), where the ambient light is significantly reduced during inference, to demonstrate the
 1346 robustness of our hierarchical visual representation.

1313 Table 28: **Comparison of inference speeds for DP,**
DP3 and H^3DP in simulation tasks. The result indicates that additional operations introduced in H^3DP are lightweight compared to the diffusion process.

Method	DP	DP3	H^3DP
Inference Speed (FPS)	11.1	12.2	12.0

1314 Table 29: **Comparison of model sizes for DP, DP3**
and H^3DP . H^3DP introduces negligible overhead compared to DP3 while being smaller than DP.

Method	DP	DP3	H^3DP
Model Size (M)	389	255	261

1315 Table 30: **H^3DP in low-data regime.** H^3DP demonstrates strong performance with only 20% expert data compared to DP and DP3.

Method \ Tasks	CF	PJ	ST	PB	Average
H^3DP	51	65	63	52	57.8
H^3DP (w/ 20% expert data)	37	44	58	33	43.0
DP3	12	41	48	33	33.5
DP	13	24	50	15	22.5

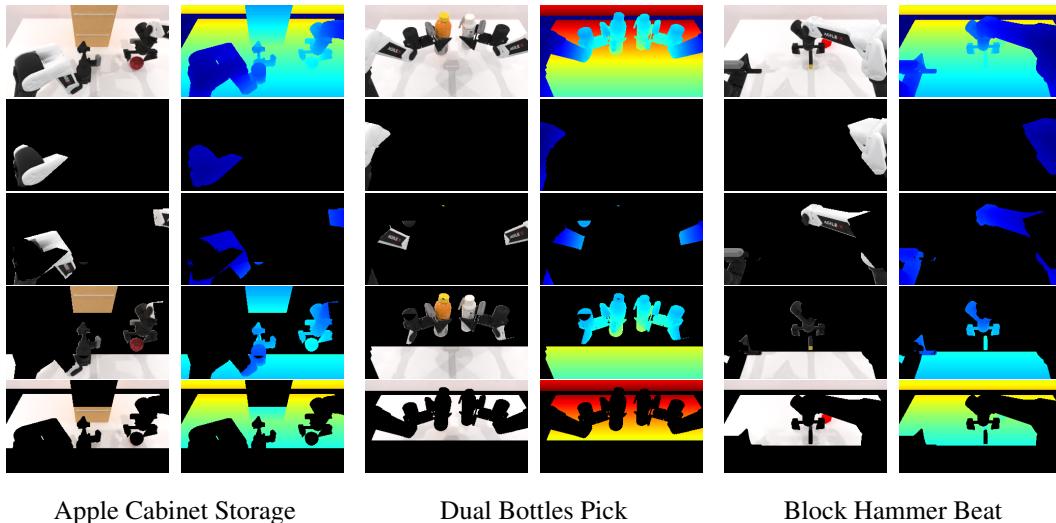
1350 Table 31: **Validation on Special Tasks.** Success rates of different dimmed light levels *dimmed*
 1351 *lighting* (place bottle).

Dimmed light level	0%	10%	20%	30%	40%	50%
Success rates	52	55	50	40	45	40

1352
 1353 The results are summarized in Table 31
 1354 and Table 32. In the *occlusion-heavy cluttered* task, H^3DP outperforms both DP
 1355 and DP (w/ depth) by a significant margin,
 1356 highlighting its ability to effectively utilize
 1357 depth information in complex scenes. In the
 1358 *dimmed lighting* task, H^3DP maintains
 1359 robust performance even as lighting con-
 1360 ditions deteriorate, demonstrating the re-
 1361 silience of its hierarchical visual representation.

1362 E.14 VISUALIZATION

1363 We provide more visualization of our depth-aware layering results in Figure 8.



1364 Figure 8: **Visualization of depth-aware layering on different tasks.** From top to bottom: RGB image,
 1365 depth image, and four layers obtained via depth-aware layering. Each layer captures different depth
 1366 ranges, effectively segmenting the scene based on distance from the camera.

1404
1405
1406
1407
1408
1409
1410

1411 Table 33: **Success rates on 44 simulation tasks.** Results of four different methods for each task are
1412 provided in this table. The summary across domains is shown in Table 1.
1413

Method \ Tasks		MetaWorld [66] (Medium)							
		Basketball	Bin Picking	Box Close	Coffee Pull	Coffee Push	Hammer	Soccer	Push Wall
H³DP		100	100	98	100	100	100	85	100
DP		100	96	83	82	84	64	43	76
DP (w/ depth)		100	98	77	79	79	64	37	70
DP3		100	100	78	100	100	97	57	95
Method \ Tasks		MetaWorld (Medium)			MetaWorld (Hard)				
		Peg Insert Side	Sweep	Sweep Into	Assembly	Hand Insert	Pick Out of Hole	Pick Place	Push
H³DP		98	100	100	100	100	40	99	100
DP		62	96	74	100	73	13	0	77
DP (w/ depth)		53	98	100	100	75	32	0	79
DP3		92	100	61	100	37	30	0	96
Method \ Tasks		MetaWorld (Hard++)					DexArt [2]		
		Shelf Place	Diassemble	Stick Pull	Stick Push	Pick Place Wall	Laptop	Faucet	Toilet
H³DP		100	96	83	100	100	81	34	70
DP		20	81	64	70	55	69	23	58
DP (w/ depth)		29	76	71	100	80	63	20	62
DP3		86	98	61	100	97	80	33	79
Method \ Tasks		Adroit [39]			ManiSkill [16] (Rigid)				
		Hammer	Door	Pen	Peg Insertion Side (Grasp)	Peg Insertion Side (Align)	Pick Cube	Turn Faucet	
H³DP		100	79	83	88	15	85	73	
DP		95	69	73	78	7	17	8	
DP (w/ depth)		100	66	62	93	12	33	23	
DP3		100	71	81	63	12	10	48	
Method \ Tasks		ManiSkill (Deformable)			RoboTwin [34]				
		Excavate	Hang	Pour	Apple Cabinet Storage	Dual Bottles Pick (Easy)	Dual Bottles Pick (Hard)		
H³DP		38	93	8	98	98	48	53	
DP		2	52	0	36	73	53	28	
DP (w/ depth)		23	78	7	72	2	33	25	
DP3		15	80	0	12	55	55	42	
Method \ Tasks		RoboTwin					Average		
		Block Handover	Block Hammer Beat	Diverse Bottles Pick	Pick Apple Messy	Tool Adjust	75.6 ± 18.6		
H³DP		70	85	25	35	45	48.1 ± 23.1		
DP		28	0	0	0	0	52.8 ± 22.2		
DP (w/ depth)		0	0	2	7	32	59.3 ± 24.9		
DP3		85	47	30	8	45			

1451
1452
1453
1454
1455
1456
1457

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472

1473 **Table 34: Success rates of experts on 44 simulation tasks.** We evaluate 200 episodes for each task.
 1474 For ManiSkill tasks, the demonstrations are provided officially, and we record the success rates as
 1475 100%. The final average result is obtained by averaging across all benchmarks.

1476

Method \ Tasks		MetaWorld [66] (Medium)							
		Basketball	Bin Picking	Box Close	Coffee Pull	Coffee Push	Hammer	Soccer	Push Wall
Expert		100.0	97.0	90.0	100.0	100.0	100.0	90.5	100.0
Method \ Tasks		MetaWorld (Medium)				MetaWorld (Hard)			
		Peg Insert Side	Sweep	Sweep Into	Assembly	Hand Insert	Pick Out of Hole	Pick Place	Push
Expert		92.0	100.0	90.0	100.0	100.0	100.0	100.0	100.0
Method \ Tasks		MetaWorld (Hard++)				DexArt [2]			
		Shelf Place	Diassemble	Stick Pull	Stick Push	Pick Place Wall	Laptop	Faucet	Toilet
Expert		99.5	92.5	95.0	100.0	99.5	86.5	58.0	66.5
Method \ Tasks		Adroit [39]			ManiSkill [16] (Rigid)				
		Hammer	Door	Pen	Peg Insertion Side (Grasp)	Peg Insertion Side (Align)	Pick Cube	Turn Faucet	
Expert		99.0	100.0	97.0	100.0	100.0	100.0	100.0	100.0
Method \ Tasks		ManiSkill (Deformable)				RoboTwin [34]			
		Excavate	Hang	Pour	Fill	Apple Cabinet Storage	Dual Bottles Pick (Easy)	Dual Bottles Pick (Hard)	
Expert		100.0	100.0	100.0	100.0	96.0	97.0	55.5	
Method \ Tasks		RoboTwin							
		Block Handover	Block Hammer Beat	Diverse Bottles Pick	Pick Apple Messy	Tool Adjust	Average		
Expert		98.0	97.0	72.0	88.5	86.5	93.9		

1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

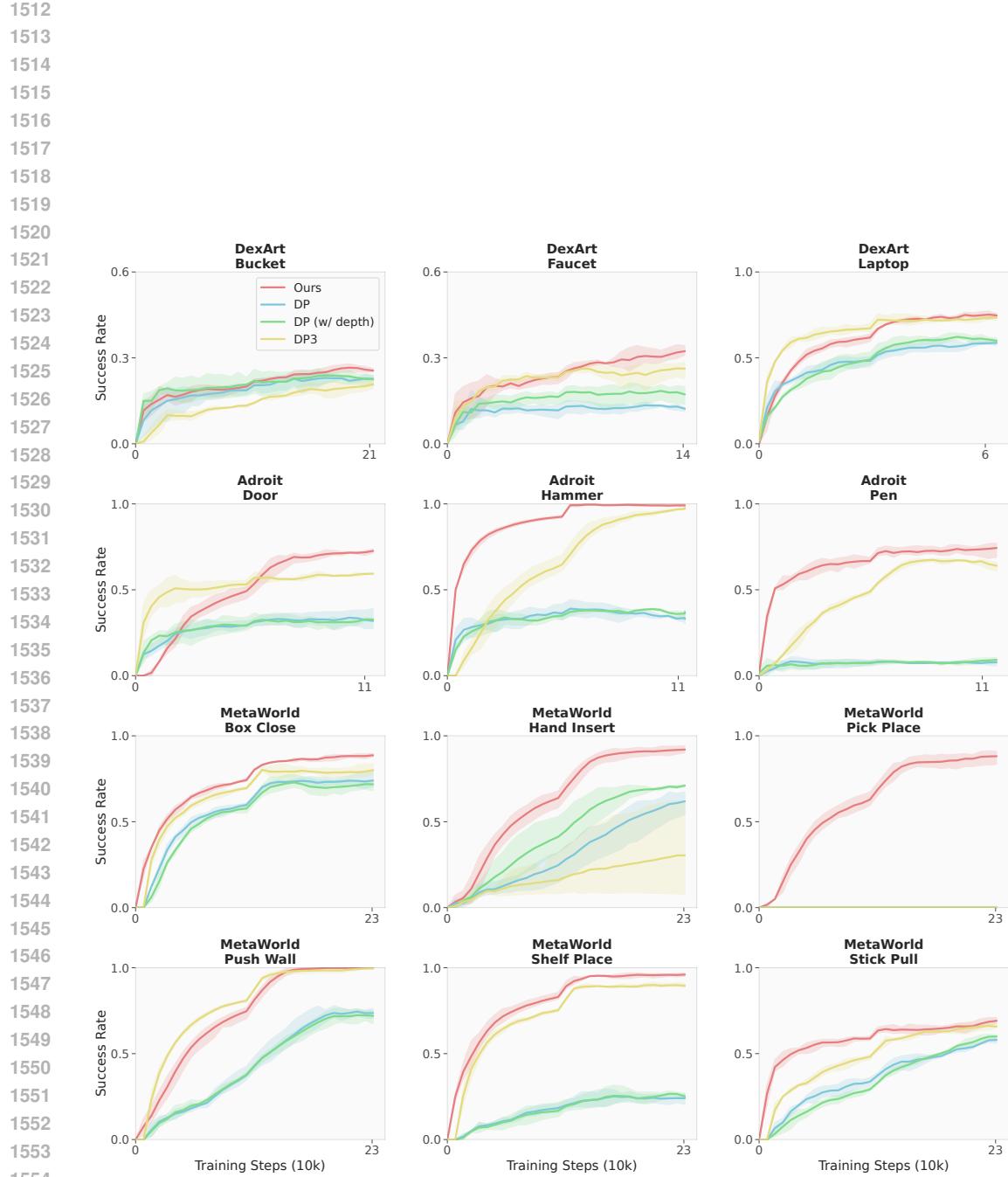


Figure 9: **Learning curves of the four methods on 12 randomly sampled diverse simulation tasks.** In most tasks, H³DP demonstrates faster convergence, higher final success rates, and lower variance compared to other three methods.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577 Table 35: **Success rates on part of the simulation tasks with 5 different random seeds.** Results
 1578 of four different methods for each task are provided in this table. Here, we report the mean and
 1579 standard deviation of success rates over 5 different random seeds.

1580

Method \ Tasks		MetaWorld [66] (Medium)							
		Basketball	Bin Picking	Box Close	Coffee Pull	Coffee Push	Hammer	Soccer	
H³DP		100 ± 0	99 ± 1	97 ± 2	100 ± 0	100 ± 0	100 ± 0	79 ± 8	
DP		100 ± 0	95 ± 1	82 ± 1	81 ± 1	84 ± 0	64 ± 2	42 ± 6	
DP (w/ depth)		99 ± 0	98 ± 1	77 ± 2	79 ± 3	78 ± 2	63 ± 3	34 ± 4	
DP3		100 ± 0	100 ± 0	82 ± 8	100 ± 0	100 ± 0	96 ± 2	52 ± 14	
Method \ Tasks		MetaWorld (Medium)				MetaWorld (Hard)			
		Push Wall	Peg Insert Side	Sweep	Sweep Into	Assembly	Hand Insert	Pick Out of Hole	
H³DP		100 ± 0	97 ± 1	100 ± 0	100 ± 0	100 ± 0	100 ± 0	37 ± 4	
DP		75 ± 1	61 ± 1	95 ± 1	73 ± 1	99 ± 0	73 ± 5	12 ± 2	
DP (w/ depth)		68 ± 3	52 ± 3	98 ± 1	99 ± 0	100 ± 0	74 ± 3	33 ± 2	
DP3		96 ± 3	90 ± 6	100 ± 0	62 ± 4	99 ± 1	34 ± 15	31 ± 6	
Method \ Tasks		MetaWorld (Hard)		MetaWorld (Hard++)					
		Pick Place	Push	Shelf Place	Diassemble	Stick Pull	Stick Push	Pick Place Wall	
H³DP		97 ± 2	100 ± 0	100 ± 0	95 ± 1	80 ± 4	100 ± 0	100 ± 0	
DP		0 ± 0	77 ± 7	20 ± 2	80 ± 2	63 ± 1	69 ± 2	53 ± 1	
DP (w/ depth)		0 ± 0	79 ± 1	30 ± 1	77 ± 3	71 ± 2	99 ± 1	80 ± 1	
DP3		0 ± 0	96 ± 2	85 ± 2	97 ± 2	59 ± 2	99 ± 0	96 ± 2	
Method \ Tasks		DexArt [2]				Adroit [39]		Average	
		Laptop	Faucet	Toilet	Bucket	Hammer	Door	Pen	
H³DP		83 ± 4	32 ± 3	73 ± 4	27 ± 2	100 ± 0	83 ± 1	78 ± 3	84.3 ± 1.4
DP		67 ± 4	21 ± 4	56 ± 5	26 ± 3	94 ± 2	67 ± 2	71 ± 2	64.3 ± 2.1
DP (w/ depth)		61 ± 5	19 ± 2	59 ± 6	26 ± 6	99 ± 1	65 ± 3	64 ± 5	67.2 ± 2.3
DP3		82 ± 4	32 ± 1	76 ± 3	28 ± 2	100 ± 0	72 ± 3	80 ± 4	77.6 ± 2.9

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619