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Figure 1: H3DP can not only achieve superior performance across 44 tasks on 5 simulation bench-
marks, but also handle long-horizon challenging manipulation tasks in cluttered real-world scenar-
ios.

ABSTRACT

Visuomotor policy learning has witnessed substantial progress in robotic manip-
ulation, with recent approaches predominantly relying on generative models to
model the action distribution. However, these methods often overlook the critical
coupling between visual perception and action prediction. In this work, we intro-
duce Triply-Hierarchical Diffusion Policy (H3DP), a novel visuomotor learn-
ing framework that explicitly incorporates hierarchical structures to strengthen
the integration between visual features and action generation. H3DP contains 3
levels of hierarchy: (1) depth-aware input layering that organizes RGB-D obser-
vations based on depth information; (2) multi-scale visual representations that
encode semantic features at varying levels of granularity; and (3) a hierarchically
conditioned diffusion process that aligns the generation of coarse-to-fine actions
with corresponding visual features. Extensive experiments demonstrate that H3DP
yields a +27.5% average relative improvement over baselines across 44 simula-
tion tasks and achieves superior performance in 4 challenging bimanual real-world
manipulation tasks. Project Page: https://h3-dp.github.io/.

1 INTRODUCTION

Visuomotor policy learning has emerged as a prevailing paradigm in robotic manipulation [6; 74;
5; 70; 67]. Existing approaches have increasingly adopted powerful generative methods, such as
diffusion and auto-regressive models, to model the action generation process [37; 63; 13; 49; 24].
However, these predominant methods have focused primarily on separately refining either the rep-
resentation of perception or actions, often overlooking establishing a tight correspondence between
perception and action. In contrast, human decision-making inherently involves hierarchical pro-
cessing of information from perception to action [20; 3]. The visual cortex extracts features in a
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layered fashion and performs hierarchical inference based on visual motion perception, ultimately
resulting in the generation of structured motor behaviors [25; 4]. Inspired by this, we argue that
enabling learned visuomotor agents to emulate such hierarchical behavior patterns is also critical for
enhancing their decision-making capabilities.

Prior works have primarily focused on hierarchically modeling the action generation process
alone [54; 15], without explicitly incorporating hierarchical structure throughout the whole visuo-
motor policy pipeline. In this paper, we present H3DP, a novel visuomotor policy learning frame-
work grounded in three levels of hierarchy: input, representation, and action generation. This design
reflects the hierarchical processing mechanisms that humans use the visual cortex to perceive envi-
ronmental stimuli to guide motor behavior.

At the input level, to better leverage the depth information in modern robotic benchmarks and
datasets [21; 30; 48; 14], H3DP moves beyond prior 2D approaches that primarily rely on RGB
or simple RGB-D concatenation, which has shown limited effectiveness in prior work [70; 76]. We
introduce depth-aware layering strategy that partitions the RGB-D input into distinct layers based
on depth cues. This approach not only enables the policy to explicitly distinguish between fore-
ground and background, but also suppresses distractors and occlusions [40; 1], thereby enhancing
the understanding and reasoning of spatial structure in the cluttered visual scenarios.

For visual representation, to address the limitations of flattening image features into a single vector,
which can discard some spatial structures and semantic information [17; 45; 28], H3DP employs
multi-scale visual representation, where different scales capture features at varying granularity
levels, ranging from global context to fine visual details.

In the action generation stage, H3DP incorporates a key inductive bias inherent to the diffusion
process: the tendency to progressively reconstruct features from low-frequency to high-frequency
components [44; 9; 61], by hierarchical action generation. Specifically, coarse visual features
guide initial denoising steps to shape the global structure (low-frequency components) of action,
while fine-grained visual features inform the later steps to refine precise details (high-frequency
components). This establishes a tighter coupling between action generation and visual encoding,
enabling the policy to generate actions that are semantically grounded in multi-scale perceptual
features.

We validate H3DP through extensive experiments on 44 simulation tasks across 5 diverse bench-
marks, where it surpasses state-of-the-art methods by a relative average margin of +27.5%. Further-
more, in real-world evaluations, we deploy bimanual robotic systems to tackle four challenging tasks
situated in cluttered environments, involving high disturbances and long-horizon objectives. H3DP
achieves a +72.4% relative performance improvement over baselines in real-world scenarios.

2 RELATED WORK

Visual imitation learning. Numerous studies have proposed efficient policy learning algorithms
from different aspects [6; 74; 64]. As a representative approach, to endow the learned policy multi-
modality ability, Diffusion Policy [6] incorporates the diffusion process to better represent the action
distribution. Based on DP, methods like DP3 [70; 69] and 3D-Actor [22], designed for point cloud
inputs, enhance the policy’s scene understanding by refining the visual representation. Consistency
Policy [37] and ManiCM [33] modify the inference process to achieve the inference acceleration.
However, these approaches focus solely on enhancing either the action generation or the visual fea-
ture extraction, without explicitly modeling the relationship between them. To address this issue, we
propose a hierarchical framework that couples multi-scale visual representations with the diffusion
process, enabling a more structured integration between visual features and action generation.

Leveraging hierarchical information for policy learning. In the computer vision community,
numerous studies have leveraged hierarchical information to address a variety of downstream
tasks [58; 62; 26; 41; 32; 46]. For example, standard diffusion models [52; 19; 51; 53] and flow
matching [29; 31; 12] adopt the U-Net framework [45; 75], which exploits multi-scale feature rep-
resentations to retain rich contextual information throughout the denoising process. VAR [56] inno-
vatively employs multi-scale visual representations with quantization to perform image generation
in an auto-regressive manner. In robot learning, recent works [15; 36; 73] have also begun to adopt
hierarchical paradigms for policy learning. Dense Policy [54] leverages a bidirectional extension
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strategy to enable hierarchical action prediction. ARP [73] predicts a sequence of actions at differ-
ent levels of abstraction in a hierarchical way. CARP [15] draws inspiration from VAR by employing
a multi-scale VQ-VAE [58; 41] to construct action sequences and subsequently generating residual
actions autoregressively using a GPT-style architecture [38]. However, these algorithms model only
the hierarchical structure of the action generation process, without explicitly addressing the crucial
linkage between visual representation and action in visuomotor policy learning. In contrast, H3DP
not only incorporates multi-scale visual representations but also leverages the inherent strengths of
diffusion models to seamlessly integrate coarse-to-fine action generation into the diffusion process
itself. Furthermore, by adopting a depth-aware layering strategy, H3DP maximizes the utilization
of hierarchical feature information across the input, latent, and output stages, thereby enriching the
policy learning pipeline in a structured and semantically aligned manner.

3 METHOD

We employ three hierarchical structures to enhance the policy’s understanding of visual input and
predict more accurate action distributions as shown in Figure 3. At the input level, the RGB-D
image is discretized into multiple layers to improve the policy’s ability to distinguish and interpret
foreground-background variations. Upon this, we adopt a multi-scale visual representation, wherein
coarse-grained features capture global contextual information, while fine-grained features encode
detailed scene attributes. On the action side, correspondingly, the representations at different scales
are utilized to generate actions in a coarse-to-fine manner, thus strengthening the correlation between
action and visual representations. Details of each component are presented in the following sections.

3.1 DEPTH-AWARE LAYERING

Layer 1

⋯

𝑀!

𝑀"

𝑀#

Layer 2

Layer N

𝑑$

𝑑!

𝑑#

mask

⋯

Discretize

Depth-Aware
Layering

⋯

𝑑"

RGB

Depth

Figure 2: Depth-aware layering. We de-
compose the RGB-D image into N non-
overlapping layers based on depth, and en-
code each layer independently for better spa-
tial understanding.

Effective robotic manipulation requires a strong
grasp of 3D structure. RGB data provides texture
and color, while depth encodes geometry such as
object positions and distances. Combining them is
powerful, but naive concatenation of RGB and depth
often fails to improve performance [70; 76]. To
better exploit depth, we partition the RGB-D im-
age into N non-overlapping layers based on depth
values, as illustrated in Figure 2. Specifically, de-
fine {d0 = dmin, d1, . . . , dN = dmax} as the depth
boundaries for each layer. Image layer Im is formed
by selecting pixels with depth in [dm−1, dm), i.e.,

M (i,j)
m = I[dm−1≤D(i,j)<dm], Im = I⊙Mm, (1)

where I and D are the RGB-D image and depth map,
respectively, I is the indicator function. This repre-
sentation separates the scene into meaningful fore-
ground and background regions while preserving all visual details. It allows the policy to selectively
attend to different depth planes, thereby improving both spatial perception and planning. We empha-
size its effectiveness in Section 4.3.2 and further compare against alternative discretization schemes
in Section 4.4. Details for setting depth boundaries {dm}Nm=0 are provided in Appendix A.

3.2 MULTI-SCALE VISUAL REPRESENTATION

In visuomotor policy learning, visual representation plays a crucial role in embedding input images
and mapping them to actions. An effective visual encoder should capture various granularity features
of the visual scenarios and guide the policy to predict the action distribution. However, existing
methods typically extract features at a single spatial scale or compress them into a fixed-resolution
representation, limiting the expressiveness of learned features [17; 45; 28]. To address this problem,
we hierarchically partition the feature map into multiple scales, enabling the capture of both coarse
structural information and detailed fine-grained local cues.

Interpolation and Quantization. After applying depth-aware layering to the input image I , each
layer Im is independently encoded into multi-scale feature maps {fm,k|fm,k ∈ Rhk×wk×C}Kk=1

3
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3. Hierarchical 
Action Generation

Diffusion Process

Output Action

Encoder

2. Multi-Scale Visual 
Representation

1. Depth-Aware Layering

Layer 1

Layer 2

Layer N

⋯

0. Visual Input

Codebook

Figure 3: Overview of H3DP. H3DP integrates three hierarchical design principles across the per-
ception and action generation pipeline. At the input level, RGB-D images are partitioned into multi-
ple layers based on their depth values. Then, we employ multi-scale visual representations to capture
features at varying levels of granularity. During the action generation, denoising process is divided
into several stages guided by multi-scale visual representations.

via encoder Em, where {(hk, wk)}Kk=1 denotes the spatial resolutions across scales. Adopting the
quantization design in VQ-VAE [58; 41], these feature maps {fm,k}Kk=1 are quantized into discrete
vectors drawn from a learnable codebook Zm. Specifically, each feature vector f (i,j)

m,k is mapped

to its nearest neighbor in Euclidean distance, i.e., f (i,j)
m,k ← argmin

z∈Zm

∥z − f
(i,j)
m,k ∥2. By applying

differentiable interpolation and lightweight convolution to the quantized features fm,k, we then
obtain the multi-scale visual representations {f̂m,k}Kk=1 for each layer Im. The pseudocode of full
encoding procedure is detailed in Algorithm 1, Appendix B.

Training. To ensure consistent representations across scales, we aim to minimize the consistency
loss between the original feature fm = Em(Im) and the representation f̂m,k at different scales:

Lconsistency =

N∑
m=1

K∑
k=1

(∥∥∥f̂m,k − sg(fm)
∥∥∥2
2
+ β

∥∥∥fm − sg(f̂m,k)
∥∥∥2
2

)
, (2)

where sg(·) is the stop gradient operator and β balances the gradient flow between two terms. The
visual encoder {Em}Nm=1 and codebook {Zm}Nm=1 are trained end-to-end, as described in detail in
Appendix B. Notice that although the theoretical minmizer of the consistency loss leads to identical
features across scales, in practice, due to the limited capacity of the codebook and downsampling
operations, each scale captures distinct information. Coarse scales tend to retain global context,
while finer scales preserve local details, serving as a strong inductive bias for the subsequent section.

3.3 HIERARCHICAL ACTION GENERATION

To match the inherent inductive biases of denoising process [44; 9; 61], we leverage multi-scale
visual representations to model action generation in a coarse-to-fine manner. The early stage actions
are derived from representations that capture global scene information, while fine-grained represen-
tations are responsible for generating detailed action components. This approach couples the visual
representation and the action generation process via reinforcing their correspondence at the same
hierarchical levels.

Inference. Our action generation module is a denoising diffusion model conditioned on multi-scale
features F = {f̂k = {f̂m,k}Nm=1}Kk=1 and robot poses q. The denoising process unfolds over T
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steps partitioned into K stages ∪Kk=1(τk−1, τk]. When t ∈ (τk−1, τk], the denoising network ϵ
(t)
θ

conditioning on the corresponding feature map f̂k and robot poses q, predicts the noise component
ϵt = ϵ

(t)
θ (at|f̂k, q), then generates at−1 from at via:

at−1 = αta
t + βtϵ

t + σtϵ̃
t, (3)

gradually transforming the Gaussian noise aT into the noise-free action a0, where αt, βt, σt are fixed
parameters depending on the noise scheduler, and ϵ̃t ∼ N (0, I) is a Gaussian noise, see Appendix A
for more details.

Training. To train the denoising network ϵ
(t)
θ , we randomly sample an observation-action pair

((I, q), a0) ∈ D and noise ϵ ∼ N (0, I). The network is optimized to predict ϵ given a noisy action
at =

√
γta

0 +
√
1− γtϵ, via the objective:

Ldiffusion = Ea0,ϵ,t

[
∥ϵ(t)θ (at|f̂K , q)− ϵ∥2

]
. (4)

More implementation details can be found in Appendix A. By conditioning on the final feature f̂K
during training, gradients from the loss propagate through the entire hierarchical encoder, implicitly
optimizing all {f̂k}Kk=1. This design promotes consistency of representations at each scale for action
generation while enhancing training efficiency.

Discussions. Diffusion models inherently aim to predict the posterior average of the target distri-
bution conditioned on the provided features [8; 55], i.e., the optimal denoising network ϵ

(t)
θ∗ follows

ϵ
(t)
θ∗ (at|f, q) = Et,ϵ,a0,

√
γta0+

√
1−γtϵ=at [ϵ|at, f, q]. Earlier stages of the denoising process, char-

acterized by higher noise levels, tend to have a posterior average with lower frequency, while later
stages, with reduced noise, correspond to higher frequency components.

Our design of hierarchically conditioned diffusion aligns well with this property. Features at varying
resolutions retain information across distinct frequency domains. Consequently, they provide robust
guidance for generating specific frequency components of the action during relevant stages of the
denoising process. Related experiments are shown in Section 4.1.3. By using lower-resolution
features for earlier stages and gradually refining the predictions with higher-resolution features, the
model benefits from both the stability of coarse representations and the precision of fine details.

4 EXPERIMENTS

In this section, we present extensive experiments across simulated and real-world settings to demon-
strate the efficacy of H3DP. In addition, we perform thorough ablation analyses to evaluate the con-
tribution of each hierarchical design, and further investigate the efficiency and effectiveness of our
method in extracting visual representations.

4.1 SIMULATION EXPERIMENTS

4.1.1 EXPERIMENT SETUP

Simulation benchmarks and baselines: To sufficiently verify the effectiveness of H3DP, we evalu-
ate H3DP on 5 simulation benchmarks, encompassing a total of 44 tasks. These tasks span a variety
of manipulation challenges, including articulated object manipulation [2; 39; 66], deformable object
manipulation [16], bimanual manipulation [34], and dexterous manipulation [2; 39]. The details of
the expert demonstrations can be found in Appendix C. To comprehensively assess the performance
of H3DP, we compare it against three baselines: Diffusion Policy [6], one of the most widely used
visuomotor policy learning algorithms; Diffusion Policy (w/ depth), which extends Diffusion Policy
to incorporate RGB-D input to bridge the information gap; and DP3 [70], an enhanced version of
Diffusion Policy that leverages an efficient encoder for point cloud input. Comparison results with
more baselines can be found in Appendix E.8.

Evaluation metric: Each experiment is conducted with 3 different seeds to mitigate performance
variance. For each seed, we evaluate 20 episodes every 200 training epoches. In simpler MetaWorld,
Adroit and DexArt tasks, we compute the average of the highest five success rates as its success rate,
while in other environments, only the hightest success rate is recorded.
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Table 1: Simulation task results. Across 5 simulation benchmarks with various difficult levels,
H3DP obtains +27.5% relative performance gains on average over 44 tasks.

Method \ Tasks MetaWorld MetaWorld MetaWorld ManiSkill ManiSkill Adroit DexArt RoboTwin Average
(Medium 11) (Hard 5) (Hard++ 5) (Deformable 4) (Rigid 4) (3) (4) (8) (44)

H3DP 98.3 87.8 95.8 59.3 65.3 87.3 53.3 57.4 75.6± 18.6

DP 78.2 52.6 58.0 22.3 27.5 79.0 44.3 22.8 48.1± 23.1

DP (w/ depth) 77.7 57.2 71.2 44.5 40.8 76.0 42.0 12.6 52.8± 22.2

DP3 89.1 52.6 88.4 26.5 33.5 84.0 54.8 45.9 59.3± 24.9

Su
cc

es
s R

at
e

51

13 12

CF

65

24
41

PJ

63
50 48

ST

52

15

33

PB

Real-World Experiment Results
Ours
DP
DP3

Figure 5: Success rate in real-world. We evaluate the success rate of H3DP, DP and DP3 across 4
challenging real-world tasks. H3DP outperforms DP and DP3 in all 4 tasks.

4.1.2 SIMULATION PERFORMANCE

As shown in Table 1, the simulation experiment results exhibit that H3DP outperforms or achieves
comparable performance among the whole simulation benchmarks. Our method outperforms DP3
by a relative average margin of +27.5%. Notably, DP3 requires manual segmentation of the point
cloud to remove background and task-irrelevant elements. This process introduces additional human
effort and renders performance susceptible to segmentation quality. Relevant experimental results
are provided in Appendix E.9.

In contrast, benefiting from our design, H3DP obtains superior performance using only raw RGB-D
input, without the need for any pre-processing or segmentation. Furthermore, on the Adroit and
DexArt benchmark, while DP3 leverages multi-view cameras to restore the complete point clouds,
H3DP attains comparable performance using only one single-camera RGB-D image. The whole
simulation results in each task can be found in Appendix E.1. Notably, the hierarchical design in
H3DP introduces negligible overhead relative to DP3, while being significantly more efficient than
DP as detailed in Appendix E.11.

4.1.3 SPECTRAL ANALYSIS OF ACTIONS

0 7
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M
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de Basketball
MetaWorld
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t= τ3
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t= τ1
t= τ0
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Adroit
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100
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Figure 4: Action DFT results. As the denoising process
progresses, the Gaussian noise (t = τ4) is gradually trans-
formed into the predicted action (t = τ0). Timesteps τi is
arranged in descending order of noise levels. The results re-
veal a consistent frequency evolution pattern: low-frequency
components predominantly emerge during the early stages of
denoising, whereas high-frequency features are progressively
introduced in the latter phases of the process.

To gain a more comprehensive un-
derstanding of the action generation,
we apply Discrete Fourier Trans-
form (DFT) to examine how the
frequency composition of actions
evolves throughout the denoising
process. Specifically, we conduct
the analysis across 4 benchmarks
and visualize the spectral character-
istics of action chunks during gen-
eration. As shown in Figure 4,
the results consistently indicate that
the denoising process begins with
the synthesis of low-frequency fea-
tures, which are incrementally com-
plemented by higher-frequency fea-
tures in later stages. This observa-
tion not only shows that action, akin
to image, exhibits an intrinsic inductive bias in the diffusion process, but also elucidates the action
generation mechanism of H3DP, wherein actions are hierarchically composed to captured features
across varying levels of granularity.
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Table 2: Instance generalization results. H3DP achieves +21.0% relative performance gain on
average.

Method \ Tasks Place Bottle Sweep Trash Averagecoke bottle sprite can 8 cm3 64 cm3 216 cm3

H3DP 67 49 53 75 86 67 66.2
DP 25 16 28 52 72 60 42.2
DP3 43 30 37 72 79 67 54.7

4.2 REAL-WORLD EXPERIMENTS

In terms of real-world experiments, we choose Galaxea R1 robot as our platform. We design four
diverse challenging real-world tasks to evaluate the effectiveness of our method:
Clean Fridge (CF): In a cluttered refrigerator environment, the robot is required to relocate a trans-
parent bottle from the upper compartment to the lower one. The bottle is randomized within a 30
cm × 5 cm region on both the upper and lower shelves of the refrigerator.
Pour Juice (PJ): This is a long-horizon task. The robot is required to place a cup in front of a water
dispenser, scoop a spoonful of juice powder, then fill the cup with water, and finally put a straw in
the cup. The cup is placed within a 7 cm × 7 cm area, and both the color of the juice powder and
the position of the water dispenser are subject to variation across trials.
Sweep Trash (ST): This long-horizon task entails picking up a broom, sweeping scattered debris
on a table into a dustpan, and subsequently emptying the contents into a trash bin. The trash is
randomly distributed across the entire table surface, approximately within a 40 cm × 40 cm area.
Place Bottle (PB): The robot must place a bottle, initially located at a random position, onto a des-
ignated coaster. The bottle is placed within a 15 cm × 15 cm region, while the coaster is positioned
within an around 25 cm × 25 cm area.

4.2.1 EXPERIMENT SETUP

ZED camera Meta Quest3Galaxea R1

Figure 6: Experiment Setup.

We use the ZED camera to acquire the RGBD image.
The demonstrations are collected by Meta Quest3.
Each task is evaluated at 20 randomly sampled posi-
tions within the defined randomization range. We
record the success trials and calculate the corre-
sponding success rate. We compare H3DP with 2 baselines: Diffusion Policy [6] and DP3 [70].

In addition, during policy deployment, we adopt an asynchronous design to obtain an approxi-
mately double inference speed compared to baseline. We also introduce temporal ensembling and
p-masking to improve temporal consistency and alleviate overfitting to the proprioception state.
More details can be found in Appendix D.

4.2.2 EXPERIMENT RESULTS

Spatial generalization: As shown in Figure 5, H3DP significantly outperforms the baselines across
all four real-world tasks, achieving an average relative improvement of +72.4%. It should be noted
that in CF and PJ tasks, the policy is required to not only identify target objects in cluttered vi-
sual environments but also perform long-horizon reasoning to accomplish the tasks. While DP and
DP3 struggle to complete either task, H3DP achieves substantial improvements. Therefore, H3DP
demonstrates superior perceptual and decision-making capabilities compared to alternative algo-
rithms. Furthermore, H3DP surpasses DP and DP3 even when trained with only 20% of the expert
data, as detailed in Appendix E.12. This finding highlights the efficiency of H3DP in learning from
limited data.

Meanwhile, it should be noted that in terms of the point cloud based method DP3, it requires precise
segmentation and high-fidelity depth sensing, resulting in it being less effective in handling our four
cluttered real-world scenes that we designed.

Instance generalization: Regarding instance generalization, we evaluate the model on ST and PB
by varying the size and shape of bottles or trash items. As shown in Table 2, after replacing the
objects with variants of differing sizes and shapes, H3DP maintains strong generalization capabil-
ities attributable to its ability to hierarchically model features at multiple levels of granularity, and
consistently outperforms baseline approaches across all settings.
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Table 5: Comparison with DP with pre-trained visual encoder. While DP-DINOv2 yields small
improvement after paying additional cost, H3DP demonstrates superior performance.

Method \ Tasks MetaWorld Average
Hand Insert Pick Out of Hole Disassemble Stick Pull Soccer Sweep Into

H3DP 100 40 96 83 85 100 84.0
DP 73 13 81 64 43 74 58.0

DP-DINOv2 91 24 77 72 41 78 63.8

4.3 ABLATION STUDY

In this section, we ablate each key component of our framework and conduct experiments on three
benchmarks to further exhibit the effectiveness of H3DP. Furthermore, to fully demonstrate the
advantages of H3DP, we also conduct additional experiments to analyze the efficiency and effec-
tiveness of our method, especially in extracting task-relevant visual representations. We provide
the complete results of the ablation study in Appendix E.2. We use MW, MS, and RT to denote
MetaWorld, ManiSkill, and RoboTwin for brevity.

4.3.1 HIERARCHICAL DESIGNS
Table 3: Ablation on hierarchical features.

Methods \ Benchmarks MW MS RT Average

H3DP 65.7 68.0 45.0 59.6
w/o depth layering 55.0 52.5 32.0 46.5
w/o hierarchical action 57.0 50.0 40.0 49.0
w/o multi-scale representation 53.7 52.5 40.0 48.7
DP (w/ depth) 46.7 47.5 32.0 42.1

Hierarchical design. We ablate the
three hierarchical components intro-
duced in our framework and compare
them against DP with RGB-D input.
As shown in Table 3, each hierarchi-
cal component independently contributes to performance improvement, consistently outperforming
the DP (w/ depth). Furthermore, Table 3 also demonstrates that the integration of all three hierar-
chical designs leads to a substantial enhancement in overall performance. Furthermore, we conduct
experiments to analyze the impact of the hierarchical scales K on performance in Appendix E.3.

Table 4: Ablation on number of layers N .
Methods \ Benchmarks MW MS RT Average

H3DP (N = 1) 55.0 52.5 32.0 46.5
H3DP (N = 2) 55.7 60.0 35.0 50.2
H3DP (N = 3) 65.7 68.0 45.0 59.6
H3DP (N = 4) 67.0 61.5 50.0 59.5
H3DP (N = 5) 58.7 55.0 50.0 54.6
H3DP (N = 6) 56.0 51.0 40.0 49.0

Impact of N in depth-aware layering. For
the depth-aware layering component, we inves-
tigate whether the policy’s performance is sen-
sitive to the choice of the number of layers N .
As presented in Table 4, our policy achieves
optimal and comparable performance when N
is set to 3 or 4, a trend consistently observed
across all evaluated benchmarks. When N be-
comes excessively large, the image is over-partitioned, thus reducing the representation capacity of
the policy. Nevertheless, in such cases, the performance remains better than non-layered baseline.
The results highlight the critical role of depth-aware layering in enhancing the policy’s performance.

4.3.2 VISUAL REPRESENTATIONS

Efficiency and Effectiveness of H3DP Encoder. Prior work suggests that pre-trained visual repre-
sentation may enhance spatial generalization of policy [64]. Hence, we investigate the impact of inte-
grating a pre-trained visual encoder with the original DP. We specifically replace the standard ResNet
encoder [18] in DP with DINOv2 [35] and evaluate on randomly selected tasks from the MetaWorld
benchmark. The comparative results are presented in Table 5. Although DP-DINOv2 shows a
marginal improvement on some tasks compared to the original DP baseline, this comes with longer
training time, inference latency and larger number of parameters due to the DINOv2. In contrast,
H3DP utilizes an efficient visual encoder with less than 0.7M parameters, which achieves strong
performance improvements over the original DP without incurring the aforementioned overheads.
We show the effectiveness of adopting separate encoders for each depth layer in Appendix E.5.

Effectiveness in Significant Depth-variant Tasks. As introduced in Section 3.1, our depth-aware
layering mechanism partitions the image into distinct layers. This layering offers a crucial advantage
in scenarios with significant depth variations by providing a structured representation that preserves
visual detail while emphasizing foreground-background separation. As seen in Table 6, our obser-
vations reveal a consistent pattern: in tasks involving significant depth variations, point cloud–based
policy initially demonstrated superior performance compared to standard RGB-D processing, rep-
resented by DP (w/ depth). However, upon integrating the depth-aware layering mechanism, H3DP
consistently outperforms the baseline on these tasks, which strongly supports our claim.
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Table 6: Performance comparison demonstrating the effectiveness of depth-aware layering.
Tasks with significant depth variations show great improvement only with depth layering compared
to DP (w/ depth), surpassing the point cloud baseline (DP3).

Method \ Tasks MetaWorld Average
Push Shelf Place Disassemble Soccer Pick Place Wall Peg Insert Side

H3DP (only w/ depth layering) 100 95 98 55 100 86 89.0
DP (w/ depth) 79 29 76 37 80 53 59.0

DP3 96 86 98 57 97 92 87.7

H!DP H!DP

H!DP w/o VQ H!DP w/o VQ

w/o noise w/ noisebegin end

begin end begin end

begin end

Figure 7: Visualization of H3DP’s robustness to noisy depth. Under the noisy depth input, H3DP
(blue) successfully finish the soccer while keeping the similar action trajectory as w/o noise (red).
In contrast, H3DP w/o VQ (yellow) produces a deviated trajectory compared to the original (green).

Table 7: Ablation study on the effectiveness of VQ
and robustness to noisy depth. H3DP consistently
outperforms DP3 especially under noisy depth input,
demonstrating strong robustness to noisy depth input.
VQ design further enhances the model’s robustness to
noisy depth input, leading to improved performance.

Method \ Tasks MetaWorld (w/o noise) MetaWorld (w/ noise)
Box Close Soccer Box Close Soccer

H3DP 98 85 98 75
H3DP w/o VQ 98 82 90 65

DP3 78 57 28 17

Robustness to Noisy Depth. To simu-
late low-quality depth input, we add Gaus-
sian noise with a standard deviation of 0.1
to the normalized depth images (w/ noise
in Table 7) during training and evalua-
tion. As shown in Table 7, H3DP demon-
strates strong robustness to degraded depth
quality, maintaining high performance. In
contrast, DP3 is highly sensitive to depth
noise, exhibiting a significant drop in per-
formance.

To further understand the source of H3DP’s robustness to noisy depth, we compare it with a variant
of H3DP that does not use the feature vector quantization module (H3DP w/o VQ). As shown in
Table 7, this ablated version suffers from a substantial performance drop under the same noisy
depth input. This indicates that the robustness of H3DP can be largely attributed to the design of
the feature vector quantization module. As shown in Figure 7, by mapping visual features to the
nearest neighbor in a learned codebook, the codebook effectively projects representations back to
the in-distribution space, thereby enhancing robustness to noise.

Efficiency of depth-aware layering. To strengthen our understanding of the effectiveness of depth-
aware layering, we compare it with segmentation-based layering methods, which segment the image
into layers based on semantic information. We conduct experiments by replacing our depth-aware
layering with Gaussian Mixture Models (GMM) [43] and Ground SAM [42], respectively. As shown
in Table 8, our depth-aware layering outperforms these segmentation-based methods across all eval-
uated tasks, demonstrating purely depth-based layering can guide the policy effectively. We provide
more analysis in Appendix E.2.

4.4 COMPARISON WITH MORE BASELINES

Comparison with extensions of diffusion policy. Previous discussions have primarily focused on
comparing H3DP with original diffusion formulation, i.e., DDPM-based DP [19]. Recently, flow-
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Table 8: Comparison with segmentation-based layering variant. H3DP with depth-aware layer-
ing achieves superior performance compared to using segmentation-based layering.

Method \ Tasks MetaWorld ManiSkill RoboTwin Average
Soccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP 85 83 40 98 38 45 64.8
w/ GMM 45 67 32 75 27 37 47.2

w/ Grounded SAM 63 65 35 79 30 42 52.3
w/o layering 59 72 34 78 27 32 50.3

Table 9: Performance comparison with extensions of diffusion policy. We compare H3DP with
flow-based, equivariance-based, and 3D representation-based approaches, respectively. H3DP con-
sistently outperforms these baselines across all evaluated tasks, highlighting its superior capability
over various diffusion-based policy learning approaches.

Method \ Tasks MetaWorld Average
Assembly Pick Place Shelf Place Hand Insert Pick Out of Hole Push

H3DP 100 99 100 100 40 100 89.8
FlowPolicy [71] 100 12 83 42 29 100 61.0
ET-SEED [57] 100 23 79 89 37 96 70.7

3D Diffuser Actor [22] 100 0 65 33 26 100 54.0

Table 10: Performance comparison with other policy with hierarchical structures. We compare
H3DP with policies that utilize hierarchical designs. Our method outperforms these baselines across
all evaluated tasks, demonstrating the effectiveness of our hierarchical designs.

Method \ Tasks MetaWorld Adroit DexArt Average
Bin Picking Box Close Hammer Peg Insert Side Disassemble Shelf Place Door Pen Laptop

H3DP 100 98 100 98 96 100 79 83 81 92.8
2D Dense Policy 25 51 86 60 71 59 59 65 28 56.0
3D Dense Policy 47 69 100 82 98 77 72 61 85 76.7

based [71; 7; 10], equivariance-based [60; 57; 65], and other 3D representation-based [70; 22] policy
have been proposed to enhance the efficiency and effectiveness of diffusion-based policy learn-
ing. To provide a more comprehensive evaluation, we extend our comparisons to include additional
state-of-the-art baselines. Specifically, we compare H3DP with FlowPolicy [71] (flow-based), ET-
SEED [57] (equivariance-based), and 3D Diffuser Actor [22] (3D representation-based) on selected
tasks. As shown in Table 9, H3DP consistently outperforms these baselines across all evaluated
tasks, demonstrating its superior capability over various diffusion-based policy learning approaches.

Comparison with other hierarchical methods. To further validate the effectiveness of our hi-
erarchical design, we compare H3DP with Dense Policy [54], which predict action chunks coarse
to fine via autoregressive modeling. As shown in Table 10, H3DP outperforms Dense Policy by
a relative average margin of +21.0% across the evaluated tasks, demonstrating the superiority of
our hierarchical designs over simple coarse-to-fine action modeling. We compare H3DP with more
hierarchical baselines in Appendix E.8.

5 CONCLUSION

In this paper, we introduce H3DP, an efficient generalizable visuomotor policy learning framework
that can obtain superior performance in a wide range of simulations and challenging real-world
tasks. Extensive empirical evidence suggests that establishing a more cohesive integration between
visual representations and the action generation process can enhance the generalization capacity
and learning efficiency of policies. The proposed three hierarchical designs not only facilitate the
effective fusion of RGB and depth modalities, but also strengthen the correspondence between visual
features and the generated actions at different granularity levels. In the future, we expect to extend
the applicability of H3DP to more intricate and fine-grained dexterous real-world tasks.

6 LIMITATIONS

Although H3DP has demonstrated effectiveness in a variety of tasks, there exist several limitations.
First, despite our use of asynchronous execution to improve inference speed in real-world settings,
the overall inference time of diffusion-based models remains relatively slow. We could explore dis-
tilling the policy into a consistency model, to enhance real-time performance. Second, our method
relies on depth information for effective scene decomposition; in scenarios where depth data is
unavailable or unreliable, the performance of H3DP may be compromised. Future work could in-
vestigate alternative strategies for scene understanding that do not depend on depth data explicitly.
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7 ETHICS STATEMENT

The proposed method in this paper is intended to enhance the capabilities of robotic systems in per-
forming manipulation tasks. While the advancements in robotic manipulation can lead to significant
benefits in various fields, including manufacturing, healthcare, and service industries, it is crucial
to consider the ethical implications associated with the deployment of such technologies. Potential
concerns include job displacement due to automation, privacy issues related to data collection, and
the safety of human-robot interactions. It is imperative that researchers and practitioners in this field
adhere to ethical guidelines and regulations to ensure that the development and application of robotic
technologies are conducted responsibly and with consideration for societal impacts.

This paper has also benefited from the use of large language models (LLMs) to aid in refining and
polishing the writing. LLMs were employed to enhance the clarity and coherence of the manuscript,
ensuring that the ideas and contributions are communicated effectively. However, all technical con-
tent, experimental results, and conclusions were developed independently by the authors without
reliance on LLMs.

8 REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will release the complete codebase, including the implementation of
H3DP, training scripts, and pre-trained models upon publication. The code will be well-documented
to assist researchers in understanding and utilizing the framework effectively. Additionally, we will
provide detailed instructions for setting up the environment and running experiments, along with the
specific configurations used in our evaluations. All datasets and simulation environments referenced
in this work are publicly available, and we will include links to these resources in the released code.
Furthermore, we will share the hyperparameters and training protocols employed in our experiments
to enable others to replicate our results accurately.
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Table 11: Hyperparameters used for MetaWorld, DexArt.

Hyperparameter Value
Observation Horizon (To) 2
Action Horizon (Ta) 2
Prediction Action Horizon (Tp) 4
Optimizer AdamW [23]
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
Training Timesteps (T ) 50
Inference Timesteps 20
Prediction Type ϵ-prediction
Image Resolution 128 × 128
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,1),(3,3),(5,5),(7,7)}
Stage Boundiaries ({τk/T}Kk=0) {0,0.4,0.6,0.8,1.0}
Codebook Size 64

Table 12: Hyperparameters used for Adroit.

Hyperparameter Value
Observation Horizon (To) 2
Action Horizon (Ta) 2
Prediction Action Horizon (Tp) 4
Optimizer AdamW
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
Training Timesteps (T ) 50
Inference Timesteps 20
Prediction Type ϵ-prediction
Image Resolution 84 × 84
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,1),(3,3),(5,5),(6,6)}
Stage Boundiaries ({τk/T}Kk=0) {0,0.4,0.6,0.8,1.0}
Codebook Size 64

APPENDIX

A HYPERPARAMETERS

To effectively address the varying levels of difficulty and distinct properties inherent to different
benchmarks, we adapt our hyperparameter settings for each specific dataset. The chosen configura-
tions, detailed in Table 11, 12, 13, 14, are selected based on previous works [6; 70; 76; 34].

In addition to the hyperparameters reported in the table, the choice of the number of layers N
demonstrates great importance, as shown in Table 4. Empirically, we choose N = 4 in Adroit,
MetaWorld Hard and Hard++, and N = 3 in other benchmarks.

For the reverse process, we employ different formulations depending on the environment. The noise
scheduler for diffusion process is determined by αt, defined using function f(t)

αt =
f(t− 1)

f(t)
, where f(t) = cos

(
π

2

t

T

)
, (5)
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Table 13: Hyperparameters used for ManiSkill.

Hyperparameter Value
Observation Horizon (To) 2
Action Horizon (Ta) 8
Prediction Action Horizon (Tp) 16
Optimizer AdamW
Betas (β1, β2) [0.9, 0.95]
Learning Rate 1.0e-4
Weight Decay 1.0e-4
Learning Rate Scheduler One Cycle LR [50]
Training Timesteps (T ) 100
Inference Timesteps 100
Prediction Type ϵ-prediction
Image Resolution 128 × 128
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,1),(3,3),(5,5),(7,7)}
Stage Boundaries ({τk}Kk=0/T ) {0,0.4,0.6,0.8,1.0}
Codebook Size 64

Table 14: Hyperparameters used for RoboTwin.

Hyperparameter Value
Observation Horizon (To) 3
Action Horizon (Ta) 2
Prediction Action Horizon (Tp) 8
Optimizer AdamW
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
Training Timesteps (T ) 100
Inference Timesteps 100
Prediction Type ϵ-prediction
Image Resolution 180 × 320
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,3),(3,5),(5,7),(5,9)}
Stage Boundaries ({τk}Kk=0/T ) {0,0.4,0.6,0.8,1.0}
Codebook Size 64

where T is the total number of diffusion timesteps. In MetaWorld, Adroit and DexArt, we follow
the DDIM [51] approach, formulating the reverse process as an ODE, which corresponds to setting
σt = 0 for all t. In ManiSkill and RoboTwin, we follow the design of DDPM [19] and formulate
the reverse process as a Variance Preserving (VP) SDE [53]. Correspondingly,

γt =

t∏
i=1

α2
i , βt =

√
1− γt−1 − σ2

t −
√
1− γt

√
γt−1

γt
(6)

The boundary in Equation 1 is set following linear-increasing discretization [72], which is

di =
i(i+ 1)

N(N + 1)
(dmax − dmin) + dmin, i = 0, . . . , N, (7)

where dmin and dmax are the minimum and maximum depth values in the input depth image, re-
spectively. This discretization strategy allocates finer depth resolution to closer objects, which are
typically more relevant for manipulation tasks, while providing coarser resolution for distant objects.
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B METHOD DETAILS

This section outlines the implementation details of our multi-scale encoding. The encoder Em for
each depth layer m adopts the architecture from VQGAN [11], ensuring strong representational ca-
pacity while preserving spatial information. We use interpolate to denote a differentiable resizing
operation (e.g. bilinear or nearest-neighbor interpolation), which is crucial for enabling gradient
flow during training. The function Q represents the quantization process detailed in Section 3.2.
Finally, after interpolating a feature map fm,k to the highest resolution, we apply a lightweight con-
volutional network ϕm,k designed to help restore fine details from the potentially lower-resolution
source features.

The pseudocode for this process is outlined in Algorithm 1.

Algorithm 1: Multi-scale Encoding
1 Inputs: raw image I

2 Hyperparameters: depth layer number N , scale number K, resolutions {(hk, wk)}Kk=1

3 Partition image I into N images {Im}Nm=1 according to Equation 1
4 for m = 1, . . . , N − 1 do
5 fm ← Em(Im) ∈ RhK×wK×C

6 for k = 1, . . . ,K do
7 fm,k ← interpolate(fm, hk, wk) ∈ Rhk×wk×C

8 fm,k ← Q(fm,k)

9 fm,k ← ϕm,k(interpolate(fm,k, hK , wK)) ∈ RhK×wK×C

10 f̂m,k ←
∑

k′≤k fm,k′

11 fm ← fm − fm,k

12 Return: multi-scale features F = {f̂k = {f̂m,k}N−1
m=1}Kk=1

All trainable parameters, including the visual encoders {Em}N−1
m=1, the codebooks {Zm}N−1

m=1, the
CNN parameters {{ϕm,k}N−1

m=1}Kk=1, and the denoising network ϵθ, are trained jointly in an end-to-
end manner. The optimization minimizes the combined objective function L, defined as a weighted
sum of consistency loss (Equation 2) and the diffusion loss (Equation 4):

L = Ldiffusion + αLconsistency, (8)

where α is a hyperparameter balancing the two loss terms.

C EXPERT DEMONSTRATIONS

Regarding the MetaWorld [66] and the RoboTwin [34] benchmarks, we utilize scripted policies
to generate expert demonstrations. In the case of ManiSkill [16] tasks, we employ the officially
provided demonstrations. Trajectories for other simulation benchmarks are collected with agents
trained by RL algorithms [70; 47; 59]. The expert policies are evaluated over 200 episodes, and
their success rates are detailed in Table 34.

Given the varying difficulty levels across benchmarks, we provide a different number of demon-
strations for each. Specifically, we provide 50 trajectories per task for MetaWorld, Adroit, and
RoboTwin. For DexArt, we follow the setup in [70] and provide 100 trajectories per task. For
ManiSkill, we use all official demonstrations: 1000 for rigid tasks and 200 for deformable tasks.

In real-world experiments, we collect demonstrations of varying quantity, depending on the com-
plexity and horizon length of the tasks. For short-horizon tasks, the number of collected trajectories
is relatively limited — 100 for Clean Fridge and 200 for Place Bottle. In contrast, long-horizon tasks
demand more comprehensive data coverage. We collect more demonstrations: 270 for Pour Juice
and 500 for Sweep Trash. These demonstrations play a crucial role in guiding the training process,
especially in scenarios where exploration is challenging or unsafe.
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Table 15: Comparison of real-world inference speeds for different methods. The asynchronous
version of our method demonstrates a significant speed-up by decoupling inference from action
execution.

Method DP DP3 H3DP H3DP (asynchronous)

Inference Speed (FPS) 12.4 12.7 12.1 24.2

D REAL-WORLD TRAINING DETAILS

As mentioned in [15], DP-based methods often suffer from low inference speed, which can cause
the inference process to stall. Prior approaches, including DP3 [70], attempt to address this by
increasing action horizon (e.g. Ta = 4 or Ta = 8) or reducing the number of model parameters (e.g.
Simple DP3). However, these strategies often compromise manipulation accuracy and dexterity. A
further complication is that increasing Ta widens the temporal gap between consecutive inference
steps, leading to greater discrepancies in observed information, and consequently, divergence in
predicted actions. This often results in noticeable jitter and discontinuities in manipulation.

In general, DP-based methods are hindered by low inference speed, temporal inconsistency and
overfitting to proprioceptive information. To address these challenges and improve real-world per-
formance, we employ several empirical techniques.

D.1 HIGHER INFERENCE SPEED

To mitigate slow inference rooted in DP, we adopt an asynchronous design, achieving a final infer-
ence frequency of 10-15 Hz. Instead of waiting for the execution of all predicted actions before
initiating the next inference cycle, our method performs inference concurrently with action execu-
tion. The predicted action is stored in a queue to be executed at a fixed inference speed (10-15 Hz
in practice, 12 Hz as average).

The inference speeds achieved in real-world scenarios are presented in Table 15. H3DP (asyn-
chronous) demonstrates a superior inference speed compared to standard DP [6] and DP3 [70], as
well as our synchronous H3DP implementation. In addition to this speed advantage, H3DP fea-
tures a shorter action sequence length (Ta = 2), which contributes to more dexterous manipulation
capabilities.

D.2 TEMPORAL CONSISTENCY

Having adopted the asynchronous design, we have obtained action sequences with overlapping time
intervals. To ensure temporal smoothness and reduce discontinuities, we incorporate temporal en-
sembling mechanism from ACT [74]. As in ACT, H3DP performs a weighted average of actions
with the same timestep across multiple overlapping sequences. This ensembling mitigates the gap
between actions inferred from slightly different observations and effectively reduces jitter.

D.3 ALLEVIATE OVERFITTING

Similar to other real-world robotic systems, H3DP is susceptible to overfitting on proprioceptive
inputs, often neglecting the RGB-D information. This is evidenced by that the model generates
similar actions regardless of variations in object positions. We hypothesize that this occurs because
the simple, low-parameter MLP used to encode proprioception is easier to optimize than the more
complex CNN used for RGB-D input, leading to reliance on the former.

To mitigate this, we introduce a p-masking strategy during training. This mechanism stochastically
masks all proprioceptive inputs with probability p, which decays linearly over the training process.
Specifically, for training timestep t in a total horizon T , p(t) = 1− t/T . This schedule encourages
the model to rely more on RGB-D features early in training, helping it avoid early-stage overfitting
and develop stronger visual grounding.
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Table 17: Results of ablation study on hierarchical design.

Method \ Tasks MetaWorld ManiSkill RoboTwin Average
Soccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP 85 75 37 98 38 45 59.6
w/o depth layering 59 72 34 78 27 32 46.5
w/o hierarchical action 64 67 40 82 18 40 49.0
w/o multi-scale representation 55 72 34 73 32 40 48.7
DP (w/ depth) 37 71 32 72 23 32 42.1

E ADDITIONAL EXPERIMENT RESULTS

E.1 SIMULATION RESULTS FOR EACH TASK

We present the simulation results for each task in Table 33, which serves as a supplement to Table 1.
For each experiment, we report the average success rate over three different random seeds. The final
average result is obtained by averaging across all benchmarks.

We also provide the training progress of 4 algorithms on 12 various tasks across 3 different bench-
marks in Figure 9. The selected tasks span a range of difficulties and are included without cherry
picking to provide an unbiased view of each algorithm.

To further reducing the variance caused by different random seeds, we increase the number of train-
ing seeds from 3 to 5 for each method and report the mean and standard deviation of success rates
in Table 35. The results further confirm the effectiveness and robustness of H3DP.

E.2 THE WHOLE RESULTS OF ABLATION STUDY

Table 16: Comparison of inference speeds for DP, DP3
and H3DP in simulation tasks. The result indicates that
additional operations introduced in H3DP are lightweight
compared to the diffusion process.

Method H3DP w/ Grounded-SAM

Inference Speed (FPS) 12.0 2.6

We present the entire results of our
ablation study on each hierarchical
design and number of layers N in Ta-
ble 17 and Table 18, as a supplement
to Table 3 and Table 4. For each ex-
periment, the success rate is reported
by averaging over 3 different random
seeds. The final average result is ob-
tained by averaging across benchmarks.

Notably, in Table 8, we compare H3DP with a variant that replaces depth-aware layering with se-
mantic segmentation. While policies using Grounded-SAM or GMM learn visual representations
through semantics-driven layering, our method relies on a fundamentally different principle. The
depth-based layering adopted in H3DP does not assume semantic segmentation. Instead, it leverages
the intuition that grouping pixels within the same depth interval provides more coherent informa-
tion, making it easier for the policy to learn robust visual representations. This operation is therefore
distinct from semantic partitioning. Our experiments support this argument: when applied appro-
priately, purely depth-based layering guides visuomotor policy learning even better. Moreover, we
provide inference speed comparisons in Table 16. Grounded-SAM introduces significant latency,
greatly limiting its practicality for real-world deployment.

E.3 IMPACT OF HIERARCHICAL SCALE K

To analyze the impact of hierarchical scale K, we conduct experiments with different K values,
as shown in Table 19. The performance remains largely stable when K is large, indicating limited
sensitivity to this hyperparameter. We choose K = 4 by default.

E.4 OBTAINING DEPTH FROM NEURAL NETWORK

In scenarios where depth sensors are unavailable, we explore the use of depth estimation networks
to generate depth maps from RGB images. We adopt Depth Anything [27], a state-of-the-art depth
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Table 18: Results of ablation study on number of layers N .

Method \ Tasks MetaWorld ManiSkill RoboTwin Average
Soccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP (N = 1) 59 72 34 78 27 32 46.5
H3DP (N = 2) 64 70 33 85 35 35 50.2
H3DP (N = 3) 85 75 37 98 38 45 59.6
H3DP (N = 4) 78 83 40 90 33 50 59.5
H3DP (N = 5) 62 75 39 87 23 50 54.6
H3DP (N = 6) 61 73 34 77 25 40 49.0

Table 19: Results of ablation study on number of hierarchical scales K.

Tasks \Method K = 1 K = 2 K = 3 K = 4 K = 5
(w/o hierarchical gen.) (Default)

Box Close 90 93 95 98 98
Soccer 64 64 70 85 83

Table 20: Performance comparison using depth estimated from neural networks. We compare
H3DP with depth layering using depth maps predicted by Depth Anything [27].

Method \ Tasks MetaWorld Average
Assembly Shelf Place Hand Insert Pick Out of Hole Push

H3DP 100 100 100 40 100 88.0
w/ Depth Anything (Small) 100 88 88 35 55 73.2
w/ Depth Anything (Base) 100 93 96 32 68 77.8

DP (w/ Depth) 100 29 75 32 79 63.0

estimation model, to predict depth maps from RGB inputs. Specifically, we choose ”Small” and
”Base” models to balance accuracy and efficiency. In Table 20, we compare H3DP using estimated
depth maps with our default H3DP that utilizes ground-truth depth.

The results indicate that H3DP with estimated depth still outperforms DP (w/ depth) by a significant
margin, demonstrating the robustness of our depth-aware layering mechanism even when using
predicted depth. This suggests that while depth estimation networks can be a viable alternative
in the absence of depth sensors, further improvements in depth prediction accuracy could enhance
overall performance.

However, there is a performance gap compared to using ground-truth depth, which may be attributed
to inaccuracies and inconsistencies in the estimated depth maps. In particular, models such as Depth
Anything do not take temporal information as input. Therefore, the predicted depth of the same
pixel can vary significantly across consecutive frames. Although such variations may be subtle to
human eyes, they can have a substantial negative effect on model training, aligning with observations
in [68].

E.5 EFFECTIVENESS OF SEPARATE ENCODERS

As mentioned in Section 3.2, we adopt separate encoders for each depth layer to allow specialization
across spatial regions. While this may appear redundant, our whole encoder is still lightweight
(< 0.7M parameters), and the overall model remains smaller than DP. We found that sharing a
single encoder across layers led to performance degradation, as shown in Table 21. This suggests
that separate encoders help capture the distinct characteristics of each depth layer more effectively,
while the negligible increase in model size does not impact efficiency.
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Table 21: Effectiveness of separate encoders for each depth layer. Using separate encoders for
each depth layer yields better performance compared to sharing a single encoder across layers with
negligible increase in model size.

Tasks \Method MetaWorld AverageBox Close Pick Place Stick Pull

H3DP 98 99 83 93.3
H3DP (shared encoder) 92 89 76 85.7

Table 22: Effectiveness of our codebook design. Using separate codebooks for each depth layer
yields better performance than sharing a single codebook across layers.

Tasks \Method MetaWorld AverageBox Close Pick Place Hand Insert Pick Out of Hole Stick Pull Shelf Place

H3DP 98 99 100 40 83 97 86.2
H3DP (visual frequency sharing) 97 89 81 36 76 97 79.3

E.6 EFFECTIVENESS OF CODEBOOK DESIGN

We evaluate the impact of our proposed codebook design in Table 22. Specifically, we compare
our default design of sharing codebooks across depth layers against a variant that shares codebooks
across visual frequency. Emperical results demonstrate that using separate codebooks across depth
layers yields better performance. We hypothesize that features within the same depth segment often
share more semantic similarities (e.g., foreground objects vs. background) compared to features at
the same scale but different depths. Therefore, separate codebooks can better capture these distinc-
tions.

E.7 COMPARISON WITH SAME CAPACITY ENCODERS

To ensure a fair comparison between H3DP and the without depth layering variant, we conduct an
experiment where the without depth layering model is equipped with encoders of equivalent total
capacity. Specifically, we increase the number of channels in the single encoder to match the total
number of parameters used in H3DP’s multiple encoders. As shown in Table 23, H3DP still out-
performs the same capacity variant by a significant margin. This result highlights the performance
benefits of our depth-aware layering mechanism doesn’t merely stem from increased model capacity,
but rather from its ability to effectively leverage depth information.

E.8 COMPARISON WITH MORE BASELINES

Except diffusion-based algorithms, we also compare H3DP with the recent state-of-the-art method
CARP [15], which uses multi-scale action VQ-VAE to build hierarchical action structures. Table 24
shows that H3DP outperforms CARP with an average improvement of 18.9%, indicating the impor-
tance of adopting hierarchical designs throughout visual features and action generation.

E.9 IMPORTANCE OF SEGMENTATION IN DP3

As highlighted in Section 4.1.2, DP3 relies on manual segmentation of point cloud for optimal
performance. To demonstrate this dependency, we evaluate DP3’s performance under two distinct
segmentation conditions using randomly selected tasks from the MetaWorld benchmark.

We compare the following two scenarios: DP3 with ideal segmentation, which utilizes clean seg-
mented point clouds containing only the robot and task-relevant objects, as implemented in the
original DP3 algorithm; DP3 without ideal segmentation, which utilizes point clouds that are inten-
tionally processed to include desk surface upon which objects rest, while other background elements
are still removed. This configuration simulates common real-world scenarios where simple or auto-
mated segmentation rules might fail to perfectly isolate the task-relevant objects.
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Table 23: Results of ablation study on depth-aware layering capacity. We compare H3DP with
and without depth layering, ensuring both variants have the same model capacity by adjusting the
number of layers and hidden dimensions.

Method \ Tasks MetaWorld ManiSkill RoboTwin Average
Soccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP 85 75 37 98 38 45 63.0
w/o depth layering 59 72 34 78 27 32 50.3
w/o depth layering & same capacity 61 69 35 80 30 31 51.0

Table 24: Comparison with CARP. H3DP outperforms CARP with an average improvement of
18.9%.

Method \ Tasks MetaWorld Average
Box Close Soccer Stick Pull Pick Out of Hole Peg Insert Side Hammer Sweep

H3DP 98 85 83 40 98 100 100 86.3
CARP 82 53 71 15 69 82 100 67.4

DP 83 43 64 13 62 64 96 60.7

Table 25: Comparison of DP3 under different segmentation qualities. We compare DP3 success
rates on selected tasks when provided with different segmentation qualities, highlighting significant
performance degradation.

Method \ Tasks MetaWorld Average
Push Shelf Place Stick Pull Soccer Bin Picking Pick Place Wall

H3DP 100 100 83 85 100 100 94.7
DP3 96 86 61 57 100 97 82.8

DP3 (w/o ideal segmentation) 89 26 48 29 50 84 54.3

As shown in Table 25, DP3’s performance degrades substantially when operating on point clouds
without ideal segmentation. This result confirms that DP3 is highly sensitive to the quality of the
input point cloud segmentation.

In contrast, H3DP operates directly on raw image without requiring such pre-processing, thereby
avoiding such failure mode and the associated need for careful, potentially manual, segmentation
tuning, especially common in real-world scenarios.

In our setup, the head-mounted camera is a ZED, which produces relatively low-quality visual in-
puts. This hinders the direct application of DP3 in our experimental setting. To ensure a fair com-
parison, we evaluate both H3DP and DP3 on four real-world tasks with same visual inputs.

E.10 SCALING BEHAVIOR OF H3DP

To investigate the scaling behavior of H3DP, we conduct experiments by varying the model size and
training data volume. Specifically, we adjust the number of layers and hidden dimensions in the
denoising network and the size of the visual encoders to create models of different capacities. As
shown in Table 26, we observe that increasing the model size leads to consistent performance im-
provements across various tasks. This indicates that H3DP effectively leverages additional capacity
to learn more complex representations and policies.

Furthermore, we explore the impact of training data volume by training H3DP on different numbers
of expert demonstrations. Results in Table 27 demonstrate that H3DP benefits from more training
data, with success rates improving as the amount of expert data increases. This scaling behavior
suggests that H3DP can effectively utilize larger datasets to enhance its performance, making it a
promising approach for scenarios where abundant expert demonstrations are available.

E.11 INFERENCE SPEED AND MODEL SIZE
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Table 26: Ablation study on model scaling. H3DP (Base) demonstrates significant performance
improvements over the smaller variant H3DP (Small) across various tasks and benchmarks.

Method \ Tasks MetaWorld Adroit DexArt Average
Soccer Pick Out of Hole Stick Pull Door Pen Laptop

H3DP (Small) 73 31 72 69 72 78 65.8
H3DP (Base) 85 40 83 83 75 79 75.2

Table 27: Ablation study on training data scale. H3DP benefits from increased training data,
achieving significant performance gains when trained with 200% of the original data.

Method \ Tasks MetaWorld Adroit DexArt Average
Soccer Pick Out of Hole Stick Pull Door Pen Laptop

H3DP (20% data) 73 31 72 69 72 78 65.8
H3DP 85 40 83 83 75 79 75.2

H3DP (200% data) 93 57 88 84 86 86 82.3

Table 28: Comparison of inference speeds for DP,
DP3 and H3DP in simulation tasks. The result indi-
cates that additional operations introduced in H3DP are
lightweight compared to the diffusion process.

Method DP DP3 H3DP

Inference Speed (FPS) 11.1 12.2 12.0

As shown in Table 28, we evaluate the in-
ference speed of different methods within
simulated environments. The results indi-
cate that the primary bottleneck of the in-
ference speed of H3DP lies in the diffusion
process itself, whereas the additional op-
erations introduced for processing visual
inputs and managing multi-scale represen-
tations incur only minimal computational
overhead. A corresponding analysis of in-
ference speed in real-world scenarios is
available in Appendix D.1.

Table 29: Comparison of model sizes for DP, DP3
and H3DP. H3DP introduces negligible overhead com-
pared to DP3 while being smaller than DP.

Method DP DP3 H3DP

Model Size (M) 389 255 261

As shown in Table 29, although H3DP in-
troduces multi-scale representation learn-
ing, it remains lightweight with negligible
overhead in size compared to DP3, and is
even smaller than the DP baseline.

E.12 RESULTS IN LOW-DATA REGIME

Table 30: H3DP in low-data regime. H3DP demonstrates
strong performance with only 20% expert data compared to
DP and DP3.

Method \ Tasks CF PJ ST PB Average

H3DP 51 65 63 52 57.8
H3DP (w/ 20% expert data) 37 44 58 33 43.0

DP3 12 41 48 33 33.5
DP 13 24 50 15 22.5

To further demonstrate the sample ef-
ficiency of our approach, we evalu-
ate the performance of H3DP under
limited expert demonstrations in real-
world settings. In particular, we train
H3DP using only 20% of the avail-
able training data. As shown in Table
30, H3DP consistently achieves supe-
rior results even in such low-data sce-
narios, highlighting its strong sample
efficiency.

E.13 VALIDATION ON SPECIAL TASKS

To fully validate the effectiveness of H3DP, we conduct additional experiments on two special tasks:
occulsion-heavy cluttered task (tool adjust), where several objects are stacked together, to show the
advantage of depth-aware layering in handling complex spatial arrangements; dimmed lighting task
(place bottle), where the ambient light is significantly reduced during inference, to demonstrate the
robustness of our hierarchical visual representation.
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Table 31: Validation on Special Tasks. Success rates of different dimmed light levels dimmed
lighting (place bottle).

Dimmed light level 0% 10% 20% 30% 40% 50%

Success rates 52 55 50 40 45 40

Table 32: Validation on Special Tasks. Success rates
of different methods occlusion-heavy cluttered (tool
adjust).

Method DP DP (w/ depth) H3DP

Success Rate 0 32 45

The results are summarized in Table 31
and Table 32. In the occulsion-heavy clut-
tered task, H3DP outperforms both DP
and DP (w/ depth) by a significant margin,
highlighting its ability to effectively utilize
depth information in complex scenes. In
the dimmed lighting task, H3DP maintains
robust performance even as lighting con-
ditions deteriorate, demonstrating the re-
silience of its hierarchical visual representation.

E.14 VISUALIZATION

We provide more visualization of our depth-aware layering results in Figure 8.

Apple Cabinet Storage Dual Bottles Pick Block Hammer Beat

Figure 8: Visualization of depth-aware layering on different tasks. From top to bottom: RGB image,
depth image, and four layers obtained via depth-aware layering. Each layer captures different depth
ranges, effectively segmenting the scene based on distance from the camera.
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Table 33: Success rates on 44 simulation tasks. Results of four different methods for each task are
provided in this table. The summary across domains is shown in Table 1.

Method \ Tasks
MetaWorld [66] (Medium)

Basketball Bin Picking Box Close Coffee Pull Coffee Push Hammer Soccer Push Wall

H3DP 100 100 98 100 100 100 85 100

DP 100 96 83 82 84 64 43 76
DP (w/ depth) 100 98 77 79 79 64 37 70

DP3 100 100 78 100 100 97 57 95

Method \ Tasks
MetaWorld (Medium) MetaWorld (Hard)

Peg Insert Side Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place Push

H3DP 98 100 100 100 100 40 99 100

DP 62 96 74 100 73 13 0 77
DP (w/ depth) 53 98 100 100 75 32 0 79

DP3 92 100 61 100 37 30 0 96

Method \ Tasks
MetaWorld (Hard++) DexArt [2]

Shelf Place Diassemble Stick Pull Stick Push Pick Place Wall Laptop Faucet Toilet Bucket

H3DP 100 96 83 100 100 81 34 70 28

DP 20 81 64 70 55 69 23 58 27
DP (w/ depth) 29 76 71 100 80 63 20 62 23

DP3 86 98 61 100 97 80 33 79 27

Method \ Tasks
Adroit [39] ManiSkill [16] (Rigid)

Hammer Door Pen Peg Insertion Side (Grasp) Peg Insertion Side (Align) Pick Cube Turn Faucet

H3DP 100 79 83 88 15 85 73

DP 95 69 73 78 7 17 8
DP (w/ depth) 100 66 62 93 12 33 23

DP3 100 71 81 63 12 10 48

Method \ Tasks
ManiSkill (Deformable) RoboTwin [34]

Excavate Hang Pour Fill Apple Cabinet Storage Dual Bottles Pick (Easy) Dual Bottles Pick (Hard)

H3DP 38 93 8 98 98 48 53

DP 2 52 0 36 73 53 28
DP (w/ depth) 23 78 7 72 2 33 25

DP3 15 80 0 12 55 55 42

Method \ Tasks
RoboTwin Average

Block Handover Block Hammer Beat Diverse Bottles Pick Pick Apple Messy Tool Adjust

H3DP 70 85 25 35 45 75.6± 18.6

DP 28 0 0 0 0 48.1± 23.1

DP (w/ depth) 0 0 2 7 32 52.8± 22.2

DP3 85 47 30 8 45 59.3± 24.9
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Table 34: Success rates of experts on 44 simulation tasks. We evaluate 200 episodes for each task.
For ManiSkill tasks, the demonstrations are provided officially, and we record the success rates as
100%. The final average result is obtained by averaging across all benchmarks.

Method \ Tasks
MetaWorld [66] (Medium)

Basketball Bin Picking Box Close Coffee Pull Coffee Push Hammer Soccer Push Wall

Expert 100.0 97.0 90.0 100.0 100.0 100.0 90.5 100.0

Method \ Tasks
MetaWorld (Medium) MetaWorld (Hard)

Peg Insert Side Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place Push

Expert 92.0 100.0 90.0 100.0 100.0 100.0 100.0 100.0

Method \ Tasks
MetaWorld (Hard++) DexArt [2]

Shelf Place Diassemble Stick Pull Stick Push Pick Place Wall Laptop Faucet Toilet Bucket

Expert 99.5 92.5 95.0 100.0 99.5 86.5 58.0 66.5 80.0

Method \ Tasks
Adroit [39] ManiSkill [16] (Rigid)

Hammer Door Pen Peg Insertion Side (Grasp) Peg Insertion Side (Align) Pick Cube Turn Faucet

Expert 99.0 100.0 97.0 100.0 100.0 100.0 100.0

Method \ Tasks
ManiSkill (Deformable) RoboTwin [34]

Excavate Hang Pour Fill Apple Cabinet Storage Dual Bottles Pick (Easy) Dual Bottles Pick (Hard)

Expert 100.0 100.0 100.0 100.0 96.0 97.0 55.5

Method \ Tasks
RoboTwin Average

Block Handover Block Hammer Beat Diverse Bottles Pick Pick Apple Messy Tool Adjust

Expert 98.0 97.0 72.0 88.5 86.5 93.9
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Figure 9: Learning curves of the four methods on 12 randomly sampled diverse simulation
tasks. In most tasks, H3DP demonstrates faster convergence, higher final success rates, and lower
variance compared to other three methods.
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Table 35: Success rates on part of the simulation tasks with 5 different random seeds. Results
of four different methods for each task are provided in this table. Here, we report the mean and
standard deviation of success rates over 5 different random seeds.

Method \ Tasks
MetaWorld [66] (Medium)

Basketball Bin Picking Box Close Coffee Pull Coffee Push Hammer Soccer

H3DP 100± 0 99± 1 97± 2 100± 0 100± 0 100± 0 79± 8

DP 100± 0 95± 1 82± 1 81± 1 84± 0 64± 2 42± 6

DP (w/ depth) 99± 0 98± 1 77± 2 79± 3 78± 2 63± 3 34± 4

DP3 100± 0 100± 0 82± 8 100± 0 100± 0 96± 2 52± 14

Method \ Tasks
MetaWorld (Medium) MetaWorld (Hard)

Push Wall Peg Insert Side Sweep Sweep Into Assembly Hand Insert Pick Out of Hole

H3DP 100± 0 97± 1 100± 0 100± 0 100± 0 100± 0 37± 4

DP 75± 1 61± 1 95± 1 73± 1 99± 0 73± 5 12± 2

DP (w/ depth) 68± 3 52± 3 98± 1 99± 0 100± 0 74± 3 33± 2

DP3 96± 3 90± 6 100± 0 62± 4 99± 1 34± 15 31± 6

Method \ Tasks
MetaWorld (Hard) MetaWorld (Hard++)
Pick Place Push Shelf Place Diassemble Stick Pull Stick Push Pick Place Wall

H3DP 97± 2 100± 0 100± 0 95± 1 80± 4 100± 0 100± 0

DP 0± 0 77± 7 20± 2 80± 2 63± 1 69± 2 53± 1

DP (w/ depth) 0± 0 79± 1 30± 1 77± 3 71± 2 99± 1 80± 1

DP3 0± 0 96± 2 85± 2 97± 2 59± 2 99± 0 96± 2

Method \ Tasks
DexArt [2] Adroit [39] Average

Laptop Faucet Toilet Bucket Hammer Door Pen

H3DP 83± 4 32± 3 73± 4 27± 2 100± 0 83± 1 78± 3 84.3± 1.4

DP 67± 4 21± 4 56± 5 26± 3 94± 2 67± 2 71± 2 64.3± 2.1

DP (w/ depth) 61± 5 19± 2 59± 6 26± 6 99± 1 65± 3 64± 5 67.2± 2.3

DP3 82± 4 32± 1 76± 3 28± 2 100± 0 72± 3 80± 4 77.6± 2.9
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