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ABSTRACT

Sample selection is the most straightforward technique to combat noisy labels,
aiming to prevent mislabeled samples from degrading the robustness of neural net-
works. However, compounding selection bias and redundant selection operations
have always remained challenging in robustness and efficiency. To mitigate selec-
tion bias, existing methods utilize disagreement in partner networks or additional
forward propagation in a single network. For selection operations, they involve
dataset-wise modeling or batch-wise ranking. Any of the above methods yields sub-
optimal performance. In this work, we propose Jump-teaching, a novel framework
for optimizing the typical workflow of sample selection. Firstly, Jump-teaching is
the first work to discover significant disagreements within a single network between
different training iterations. Based on this discovery, we propose a jump-manner
strategy for model updating to bridge the disagreements. We further illustrate its
effectiveness from the perspective of error flow. Secondly, Jump-teaching designs
a lightweight plugin to simplify selection operations. It creates a detailed yet
simple loss distribution on an auxiliary encoding space, which helps select clean
samples more effectively. In the experiments, Jump-teaching not only outperforms
state-of-the-art works in terms of robustness, but also reduces peak memory usage
by 0.46⇥ and boosts training speed by up to 2.53⇥. Notably, existing methods can
also benefit from the integration with our framework.

1 INTRODUCTION

Learning with Noisy Labels (LNL) is the most promising technique in weakly supervised learning.
Generally, noisy labels stem from mistaken annotations of the dataset, such as in crowd-sourcing
(Welinder et al., 2010) and online query (Blum et al., 2003). As accurate annotations of large datasets
are a time-consuming endeavor, the existence of noisy labels becomes inevitable. Deep neural
networks can easily overfit to noisy labels, which is prone to poor generalization performance (Zhang
et al., 2021; Han et al., 2020). Furthermore, the efficiency challenge of LNL is often overlooked in
comparison to the robustness problem (Bakhshi and Can, 2024), which is vital in real-time (Mahajan
et al., 2018; Bakhshi and Can, 2024) or edge security scenarios (Aït-Sahalia et al., 2010). Therefore,
this work aims at finding an LNL solution characterized by efficiency and robustness.

Recent LNL methods can be categorized into three types: regularization, label correction, and sample
selection. Regularization methods focus on crafting noise-robust loss functions (Ghosh et al., 2017;
Wang et al., 2019) and regularization techniques (Liu et al., 2020; Zhang et al., 2020; Cao et al.,
2021), but they cannot fully avoid fitting to noisy labels during training, resulting in sub-optimal
outcomes. Label correction, integrating closely with semi-supervised learning, aims to refine or
recreate pseudo-labels (Han et al., 2019; Sohn et al., 2020; Pham et al., 2021). These methods make
use of corrected noisy labels but require computational resources for the estimation of noise transition
matrix (Goldberger and Ben-Reuven, 2022) or the ensemble prediction (Lu and He, 2022).

Sample selection is a direct approach for combating label noise (Song et al., 2019; Kim et al., 2021;
Wu et al., 2020; Malach and Shalev-Shwartz, 2017; Xia et al., 2023). It typically operates in an
iterative workflow, selecting possibly clean samples through a certain process and then updating the
parameters based on those samples. However, compounding selection bias and redundant selection
operations hinder the effectiveness of workflow.
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Figure 1: The overview of Jump-teaching. Motivated by two challenges in the sample selection
approach, Jump-teaching proposes a novel model-update strategy termed Jump-update to mitigate
the selection bias and a lightweight sample-selection plugin termed Semantic Loss Decomposition to
simplify selection operations.

Firstly, selection bias inevitably arises from the exposure of the classifier to noise. This bias causes
noisy samples to be included in the training data. When the neural network trains on these data,
the error erodes the robustness of the network, thus the bias is amplified. To mitigate this bias,
several approaches have been proposed, including Decoupling (Malach and Shalev-Shwartz, 2017),
Co-teaching (Han et al., 2018), and Co-teaching+ (Yu et al., 2019), among others. These methods
follow a similar paradigm: a partner network is integrated to give different predicted labels from
the original network. These disagreements, referring to the existence of differences of networks in
the selection behaviors, seek to diverge in each sample selection and guide the training process by
model update. However, the extra network commonly used in such methods requires double memory
and computation resources. Notably, some methods that use a single network implicitly mitigate the
bias by reducing the frequency of conducting selections, but they require additional forward passes
through the entire dataset before training begins, which increases computational cost (Yuan et al.,
2023; Wu et al., 2020).

Secondly, current selection operations are redundant. The redundancy is evident in the repeated need
to aggregate amounts of data for batch processing, which leads to inefficiencies. Specifically, some
methods (Han et al., 2018) rely on a small-loss criterion that ranks samples within each batch by their
loss magnitude, prioritizing those with smaller losses for training. Other methods (Li et al., 2020)
regard the sample selection as a binary classification problem, where the distribution of sample losses
is modeled by techniques like Gaussian mixture models (GMM). The core reason for this redundancy
lies in the limited information provided by the classification head. The loss is typically represented as
a floating-point value, calculated from the discrepancy between predicted probabilities and one-hot
encoded labels. It fails to provide enough meaningful information to guide effective sample selection.
Consequently, redundant operations are required to compensate for this lack of granularity.

In this paper, we propose an ultra robust and efficient framework Jump-teaching that optimizes the
workflow of the sample selection approach. Its effectiveness comes from two aspects: firstly, it adopts
a jump-manner strategy to mitigate selection bias within a single network. Secondly, it designs a
lightweight plugin for a simplified sample-wise selection operation. The overview of Jump-teaching
is shown in Fig. 1. Jump-update Strategy is motivated by the discovery of significant disagreement
between different training iterations of a neural network, excluding neighboring iterations, from a
temporal perspective in Fig. 2. Therefore, this intrinsic disagreement enables the strong self-correction
of selection bias. Moreover, we design a lightweight plugin for efficient selection. As shown in
Fig. 1, it contains an auxiliary head and a prepared codebook, which transform the outputs and labels
into semantic embeddings and hash coding, respectively, within an auxiliary space. When training
on clean data, the goal of this plugin is to minimize the gap between semantic features and hash
coding as close to 0 as possible. The ideal distribution of elements of this vector is a mean value
distribution with a variance of 0. Conversely, for noisy data, this gap becomes too large to reach 0,
and its distribution is uncertain. According to the aforementioned characteristics, we can easily and
effectively distinguish between clean and noisy samples.

In summary, we make the following contributions: (1) We are the first work to discover significant and
persistent disagreement within a single network. Based on this discovery, we propose the jump-update
strategy for strong self-correction of bias. The strategy enables a single network to surpass the capacity
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(a) Sym. ✏ = 0.5 (b) Sym. ✏ = 0.8 (c) Sym. ✏ = 0.5 (d) Sym. ✏ = 0.8

Figure 2: "Disagreement" and test accuracy of different strategies with symmetric noise ratio ✏ = 0.5,
✏ = 0.8. We use Intersection over Union (IoU) between two selections to represent the disagreement.
In the cross-update strategy, the disagreement emerges in a different network, while in the other two
strategies, it emerges during different epochs. More details are discussed in Appendix A.1.

of a dual network in the robustness and efficiency of LNL. (2) We propose a lightweight plugin for
efficient sample selection. It helps select clean data easily by intrinsic distribution characteristics.
(3) Jump-teaching outperforms state-of-the-art methods in robustness across various noise settings,
particularly under extreme noise conditions. It also achieves up to 2.53⇥ speedup and reduces peak
memory usage by 0.46⇥. (4) The framework is flexible in integrating with other LNL methods, from
which both supervised-only and semi-supervised methods benefit.

The rest of this paper is organized as follows. Related work is reviewed in Sec. 2. In Sec. 3, we
introduce the proposed framework Jump-teaching. Experiments are illustrated in Sec. 4. Conclusions
are given in Sec. 5.

2 RELATED WORK

Sample Selection. The core idea of the sample selection approach is to filter out noisy samples to
prevent the network from fitting to them. Since the loss of a single sample is insufficient for selection,
current approaches require additional operations. Most works employ a ranking operation with prior
knowledge of the noise ratio, e.g., Co-teaching (Han et al., 2018) and Co-teacing+ (Yu et al., 2019),
or probabilistic estimation on loss value, such as Gaussian Mixture Models (GMM) (Permuter et al.,
2006) and Beta Mixture Models (BMM) (Ma and Leijon, 2011), while some methods rely on a
complex statistical estimation process (Li et al., 2020; Wei et al., 2020; Arazo et al., 2019).

Sample-selection Bias. Sample selection inherently involves bias, leading to error accumulation.
To avoid this, many methods employ dual networks and correct this bias through disagreement in
their selection. Decoupling (Malach and Shalev-Shwartz, 2017) utilizes a teacher model to select
clean samples to guide the learning of a student model, Co-teaching (Han et al., 2018) simultaneously
trains two networks on data selected by peer network. Co-teaching+ (Yu et al., 2019) maintains
divergence between the two networks by limiting the training data to samples where the networks
disagree. JoCoR (Wei et al., 2020) trains two networks with the same data and employs regularization
to remain divergent. Additionally, many LNL methods integrate the co-training framework to achieve
advanced performance (Li et al., 2020; Liu et al., 2020; 2022; Chen et al., 2023). However, these
co-training methods significantly double computational overhead. Although some works have utilized
predictions in different iterations as selection criteria (Wei et al., 2022; Yuan et al., 2023), no related
work has explicitly addressed bias in a single network. Some implicit methods will be elaborated on
Sec. 3.

3 METHODOLOGY

Jump-teaching is a novel framework for optimizing typical workflow of the sample selection approach.
Specifically, it employs Jump-update Strategy to mitigate the bias and Semantic Loss Decomposition

to simplify selection operation. We demonstrate them in Sec. 3.1 and Sec. 3.2, respectively.
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Figure 3: The Left: The flow path of error under different update strategies. It leads to varying
degrees of accumulation. The Right: Two types of error flows. Different from methods that use
additional forward passes to reduce accumulation, our strategy splits the error into sub-flows.

3.1 JUMP-UPDATE STRATEGY

Inspired by the observation in Fig. 2, we present the Jump-update strategy, a jump-manner model
update paradigm. This strategy aims at bridging the disagreement between iterations. First, we
provide a detailed description of the strategy. Afterward, we conduct an empirical analysis to explore
its debiasing principles and verify our insights in the experimental analysis.

Strategy Description. To simplify our discussion, we dive into the procedure of sample selection
and give some definitions. Sample selection is accomplished by the execution of model updates
and sample selection with multiple iterations. In other words, model updates and sample selection
are performed only once in every iteration. Previous strategies and ours are compared in Fig.
3(a). Suppose ti denotes the current i-th iteration, ancestor iteration refers to the former iteration
tj , 0  j  i� 2, excluding the previous (i � 1)-th iteration, during the procedure of sample
selection. Similarly, descendant iteration denotes the future iteration ts, i + 1  s  Niterations.
Niterations is the total number of training iterations. The ancestor iteration and descendant iteration will
not appear in the same epoch. In our paradigm, the current network in the i-th iteration is trained with
clean samples selected only by the network from an ancestor iteration tj . This behavior of sample
selection exhibits a jump form. The name of the algorithm is derived from this point. Concretely,
we leverage a binary identifier to represent the outcome of the label judgment after clean sample
selection. Thus, a binary identifier table I corresponds to the entire data. The jump-update strategy
is divided into four steps: 1) The neural network in current interaction ti generates the new binary
identifiers by the clean sample selection for the descendant iteration ts. 2) We fetch and cache the old
binary identifier table from the ancestor iteration tj . 3) The network updates the parameters based
on the clean data judged only by the old table. Before the update, the network inherits the weight
from the previous iteration ti�1. 4) We utilize the identifiers generated to update the table. When
the jump-update strategy is applied, disagreements between different training iterations of a neural
network appear and are bridged, leading to a decrease in the accumulated error. Suppose S denotes
the jump steps, it should be noted that 2  S  Niterations. The evidence of disagreement and the
setting of S are illustrated in Sec. 4.2. Moreover, we provide an example for describing this strategy
in Appendix A.3.

Empirical Analysis. Sample selection inevitably has a bias, leading to accumulated error in an
error flow. As shown in Fig. 3(b), the graph of error flow presents a sequential form by iterations
while the jump-update strategy splits a sequential error flow into multiple error sub-flows. Intuitively,
the more training iterations increase, the more rapidly the error is accumulated. Nonetheless, the
degree of error accumulation in the two is significantly different. In the sequential form, errors are
accumulated consecutively. As the error sub-flows are orthogonal in the jump-update strategy, each
error is accumulated only in its own error sub-flow. Thus, the jump-update strategy has a significantly
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smaller degree of accumulated error compared to the sequential form. This is the source of the magic
of the jump-update strategy. We formalize the aforementioned procedure mathematically below and
give some detailed properties.

Suppose that NA is the total number of error accumulations, Na is the number of error accumulations
in an error sub-flow, and Nf is the number of error sub-flows. Besides, the constant e represents the
number of training epochs and n represents how many selections are made in one epoch. DA denotes
the overall degree of accumulated error, while d

k
a denotes the degree of accumulated error in the k-th

error sub-flow. In the absence of a specific reference, we can also denote the degree of accumulated
error in one error sub-flow by da.

Property 1 The overall degree of accumulated error DA is proportional to the total number of error

accumulation NA, DA / NA. Under the hypothesis that the error flow is an uninterrupted model,

the number of error accumulation NA equals the total number of training iterations Niterations, while

Niterations equals e⇥ n. Therefore, DA / n.

The overall degree of accumulated error DA depends on n stated in Property 1. When the network
selects data from a mini-batch, DA can be enormous because n is equal to the number of mini-batches,
e.g., Co-teaching. If the network selects data from the entire dataset, n can be reduced to 1, thereby
significantly reducing DA, e.g., TopoFilter (Wu et al., 2020) and LateStopping (Yuan et al., 2023).
However, this is inefficient because an additional forward over the entire dataset before training is
necessitated. Property 1 is proven in Appendix A.4.

Property 2 The accumulated error could be reduced by splitting the error flow into multiple error

sub-flows. The degree of accumulated error in the k-th error sub-flow d
k
a is proportional to the number

of error accumulations in each error sub-flow Na, d
k
a / Na. The number of error accumulations in

each error flow Na equals
NA
Nf

.

As stated in Property 1, DA can be reduced by minimizing n, while DA can also be reduced by
splitting into error sub-flows as illustrated in Property 2. The first property relates to the sample
selection mechanism, and the second property is associated with the different strategies of model
updates: 1) The self-update strategy follows a single error flow, resulting in da = DA, which leads
to rapid error accumulation. 2) The cross-update strategy has two error sub-flows and da = 0.5DA,
which mitigates the error accumulation to some extent. 3) The jump-update strategy reduces da to
0.5e, which is a significantly minimal value. Further insights are detailed in Appendix A.5.

(a) DA with different n (b) DA with different strategies

Figure 4: Test accuracies(%) on CIFAR-10 with Sym. ✏ = 0.8.

Experimental Analysis. We verify Property 1 and Property 2 with toy examples, respectively.
We employ the small-loss sample selection method from Co-teaching to establish the baselines for
self-update and cross-update. Our experiments choose CIFAR-10 (Krizhevsky et al., 2009) dataset
with the symmetric noise ratio ✏ = 80%. We utilize ResNet-18 (He et al., 2016b) as the backbone
and warm up it for one epoch before formal training.

To verify Property 1, we observe DA by testing the accuracy of the network with different values of
n. To control n, We set r as the proportion of sample selection that takes effects, DA equals r ⇥ n in
this way. We set r to 10%, 30%, 50%, 80%, and 100%. As shown in Fig. 4(a), rapidly accumulated
errors lead to extreme deterioration of the model such as when r = 100% and r = 80%, while slower
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accumulated ones achieve better performance, with a moderate r = 50% yielding the best results.
This is consistent with Property 1.

To verify Property 2, we observe DA by testing the accuracy of the neural network with three
strategies, self-update, cross-update, and jump-update. As shown in Fig. 4(b), cross-update slightly
outperforms self-update, while jump-update is significantly more effective than both. Thus, splitting
error flows is an effective way to reduce error accumulation. Moreover, we also greatly improved the
performance of self-update by reducing n. Specifically, we employ two unbiased initial identifier
tables, with r set to 30% and 5%, respectively. This is discussed in Appendix A.6, which also includes
the impact of initial bias.

Conclusion. The jump-update strategy is more effective and efficient than previous works. Compared
to methods that implicitly leverage Property 1, it can reduce Da to a small number i.e., 0.5e at a
constant cost. Compared to the cross-update strategy that leverages Property 2, it can not only reduce
the degree of accumulated error significantly more but also halve the training cost.

3.2 SEMANTIC LOSS DECOMPOSITION

Motivation. According to memorization effects, neural networks prioritize learning simpler patterns
from data (Zhang et al., 2021). The previously followed small-loss criterion leverages this effect:
clean labels are learned first by the network, hence exhibiting smaller losses compared to noisy ones.
However, the relative magnitude of losses is determined by comparison with other samples e.g., rank
sample losses with Top-k algorithm (Han et al., 2018; Jiang et al., 2018) or modeling loss distribution
(Li et al., 2020; Permuter et al., 2006). To avoid such costly overheads, here comes a pure idea to
leverage memorization effects: In an encoding space where a single loss can be decomposed, the
flipped labels share some identical components with the original labels. For flipped labels, the clean
components will be learned first and incur smaller losses, while the noisy components result in larger
losses. This property can be utilized to identify whether a label contains noise.

Therefore, we design a lightweight plugin to create a detailed distribution in a single loss. The plugin
is structurally composed of a pre-prepared non-orthogonal codebook and an auxiliary head at the
last layer of the network. It spans an auxiliary space where a loss can be decomposed semantically.
Specifically, the codebook transforms the label into hash codes while the head map outputs into
feature embedding, respectively. We will first detail the codebook and auxiliary head respectively,
and then introduce the selection operation simplified by leveraging both.

Codebook. Inspired by Yang et al. (2015), we utilize the favorable properties of Hadamard matrices
to construct mappings for category encoding. A K-bit Hadamard matrix can generate 2K codewords,
each K bits long, with a minimum Hamming distance of K

2 . For K-bit hash codes, we construct a
K ⇥K Hadamard matrix. From this, we select c row vectors as category encodings, each with a
Hamming distance of K

2 . Noisy labels ỹ are mapped into hash codes ỹ0 through this codebook. Given
a classification task with C classes, the mapping is formalized as:

H : ỹi 2 {0, · · · , C � 1}! ỹ
0
i 2 {�1, 1}K .

Auxiliary Head. The auxiliary detection head is an additional three-layer MLP with a Tanh activation
function. It shares the same feature extractor with the original classification head and maps the
outputs x of neural networks to K-bit feature embeddings z, as represented by the function

f : xi 2 Rn ! zi 2 RK
.

For an ideally clean sample, the distance d(z(t)i ,yi) between the output zt of an ideally clean sample
indexed i at time t and its label y can be expressed as

lim
t!1

d(z(t)i ,yi) = 0. (1)

The notation 0 denotes a vector of zeros, indicating that the distances across different bits uniformly
converge towards zero as t approaches infinity.

Selection Operation. In this framework, we employ binary cross-entropy (BCE) (Ruby and Yenda-
palli, 2020) to define the distance d between predictions and the labels of the network, which indicates
whether the network adequately captures the semantics of each component, which is formulated as

d(zi, ỹ
0
i) = � [ỹ0

i � log(zi) + (1� ỹ0
i)� log(1� zi)] . (2)

6
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We apply the arithmetic mean for supervising this head, where the loss function can be articulated as

LBCE
i = � 1

K

KX

j=1

⇥
ỹ
0
ij log(zij) + (1� ỹ

0
ij) log(1� zij)

⇤
. (3)

The distance vector d(zi, ỹ0
i) obtained through semantic decomposition directly describes the distribu-

tion of sample loss in semantic space. Compared to a single loss value, it provides richer information.
To leverage the memorization effect, we use variance to characterize the disparity in the learning
degree of the network across different semantic components.

Var(d(zi, ỹ
0
i)) =

1

K

�
d(zi, ỹ

0
i)� LBCE

i 1
�T �

d(zi, ỹ
0
i)� LBCE

i 1
�
. (4)

We set a fixed threshold to distinguish clean samples from noisy samples, which is independent of
different samples and different training phases. The identifier Idetection is updated by detection head
as follows:

Idetection =

⇢
True if Var(d(zi, ỹ0

i))  ⌧,

False otherwise.
(5)

Since this threshold is expected to approach zero infinitely, we set it to 0.001.

3.3 TRAINING PIPELINE

Algorithm 1 Jump-teaching
Input: noisy training data D, network parameters wf , learning rate ⌘, maximum epochs Tmax, the

number of samples Smax, identifier table I, clean flag �

Output: wf

1: Initialize I[i] True for all i
2: for t = 1 to Tmax do
3: Permute D randomly
4: for s = 1 to Smax do
5: � I[s]
6: Fetch current sample D[s]
7: Update I[s] based on Eq. 8
8: if � then
9: Update: wf  wf � ⌘r(LBCE(wf ,D[s]) + LCE(wf ,D[s]))

10: end if
11: end for
12: end for
13: return wf

In this section, we discuss how the proposed plugin can assist in selection. During training, the
detection head is on top of the existing network, trained by Eq. 3. Meanwhile, the classification
head continues to train normally and is used for inference. However, the two heads exhibit different
convergence rates, which leaves room for optimization. The cross-entropy loss, the objective function
for classification tasks, is more readily optimizable and thus converges significantly faster than
the detection head and can lead to premature over-fitting of noise, resulting in error accumulation.
To balance the convergence rate of the two, we employ temperature scaling to calibrate the label
probabilities (Guo et al., 2017) p of the classification head. Thus, the soften softmax function will be:

�softmax (pij) =
exp (pij/T )P
j=1 exp (pij/T )

. (6)

where T is a temperature scaling factor, controlling the convergence rates of the heads. More details
are presented in Appendix A.7.

Building on the work of Xiao et al. (2023), we follow the widely accepted principle that assuming
the model is well-trained, predictions of clean samples should align with true labels. Based on this

7
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principle, we also make use of the classifier head to apply a straightforward criterion, which further
recovers the discarded clean labels. The clean table of the classifier head is then evaluated as:

Iclassifier = (ŷi == ỹi). (7)

where ŷi = argmaxj p
j
i is the prediction label and p

j
i represents the probability of the j-th class for

the i-th sample. ỹi denotes the label of the i-th sample. Finally, we can update the table by combining
Eq. 5 and Eq. 7:

I 0 = Idetection _ Iclassifier. (8)
The algorithm of Jump-teaching is shown in Algorithm 1.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed method, Jump-teaching, compared
with the state-of-the-art in Sec. 4.1. The ablation study is illustrated in Appendix A.8. As the
jump-update strategy and semantic loss decomposition are the two orthogonal components of this
method, we thoroughly examine each of them in Sec. 4.2 and Appendix A.9. The details of selected
samples are described in Appendix A.10.

Noisy Benchmark Datasets. We verify the experiments on three benchmark datasets, including
CIFAR-10, CIFAR-100 and Clothing1M (Xiao et al., 2015). These datasets are popular for evaluating
noisy labels. They are summarized in Appendix A.11. Following the setup on (Li et al., 2020; Liu
et al., 2020), we simulate two types of label noise: symmetric noise, where a certain proportion
of labels are uniformly flipped across all classes, and asymmetric noise, where labels are flipped
to specific classes, e.g., bird ! airplane, cat $ dog. Assume ✏ denotes the noise ratio, their
mathematical definitions are in Appendix A.12. We also experiment on instance-dependent noise
(IDN) and pairflip-45 noise, results are reported in Appendix A.13.

Baselines. To be more convincing, we compare the competitive methods of LNL. These methods
are as follows: Standard, which is simply the standard deep network trained on noisy datasets,
Decoupling (Malach and Shalev-Shwartz, 2017), Co-teaching (Han et al., 2018), Co-teaching+ (Yu
et al., 2019), PENCIL (Yi and Wu, 2019), TopoFilter (Wu et al., 2020), ELR (Liu et al., 2020), FINE
(Kim et al., 2021), SPRL (Shi et al., 2023), RML (Li et al., 2024), APL (Ma et al., 2020), CDR (Xia
et al., 2021), MentorNet (Jiang et al., 2018), SIGUA (Han et al., 2020), JoCoR (Wei et al., 2020) and
CoDis (Xia et al., 2023). A brief overview of the available source code of these methods is illustrated
in Appendix A.14.

Experimental Settings. All experiments operate on a server equipped with an NVIDIA A800
GPU and PyTorch platform. In the following experiments, Jump-teaching almost employs the same
configuration. It trains the network for 200 epochs by SGD with a momentum of 0.9, a weight decay
of 1e � 3, and a batch size of 128. The initial learning rate is set to 0.2, and a cosine annealing
scheduler finally decreases the rate to 5e� 4. The warm-up strategy is utilized by Jump-teaching, and
the warm-up period is 30 epochs. After the warm-up period, we augmented the data as detailed in the
Appendix A.15. The threshold of variance ⌧ = 0.001 is discussed in Appendix A.16. The jump step
is stated in Appendix A.17. Exceptionally, we set the weight decay as 5e� 4 to facilitate learning
on fewer available samples when the noise ratio ✏ equals 50% and 80% in CIFAR-100, respectively.
The single network of Jump-teaching employs three types of backbone networks to fulfill different
requirements of the experimental design, such as PreActResNet-18 (He et al., 2016a), ResNet-18,
and three layers of neural network. Moreover, the architectures of these backbones and the auxiliary
head are illustrated in Appendix A.18. The baseline methods fully follow the experimental setup in
the literature (Han et al., 2018; Li et al., 2020).

4.1 COMPARISON WITH THE STATE-OF-THE-ARTS

Synthetic Noisy Benchmark. We compare our proposed method with the following representative
approaches: Standard, Decoupling, Co-teaching, Co-teaching+, PENCIL, TopoFilter, ELR, FINE,
and SPRL. As shown in Table 1, Jump-teaching demonstrates superior performance with different
noise settings. With the symmetric noise ratio ✏ = 0.8, its accuracy has improved by 13.3% and
16.2% on two datasets. This indicates its strong robustness.
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Table 1: Test accuracy(%) on CIFAR-10 and CIFAR-100 with symmetric and asymmetric noise.
All methods employ PreActResNet-18 and train 200 epochs with three trials. The best results are
highlighted in bold.

Dataset CIFAR-10 CIFAR-100

Noise Type Sym. Asym. Sym. Asym.

Noise ratio 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4

Standard 84.6±0.1 62.4±0.3 27.3±0.3 75.9±0.4 56.1±0.1 33.6±0.2 8.2±0.1 40.1±0.2
Decoupling(’17) 86.4±0.1 72.9±0.2 48.4±0.6 83.3±0.2 53.3±0.1 28.0±0.1 7.9±0.1 39.9±0.4
Co-teaching(’18) 89.9±0.6 67.3±4.2 28.1±2.0 79.2±0.5 61.8±0.4 34.7±0.5 7.5±0.5 40.0±1.2
Co-teaching+(’19) 88.1±0.0 61.8±0.2 22.3±0.6 58.2±0.2 54.5±0.1 27.6±0.1 8.4±0.1 19.9±0.3
PENCIL(’19) 88.2±0.6 73.4±1.5 36.0±0.7 77.3±3.4 57.4±1.0 11.4±3.2 5.4±1.2 45.7±0.9
Topofilter(’20) 89.5±0.1 84.6±0.2 45.9±2.6 89.9±0.1 63.9±0.8 51.9±1.7 16.9±0.3 66.6±0.7
FINE(’21) 90.2±0.1 85.8±0.8 70.8±1.8 87.8±0.1 70.1±0.3 57.9±1.2 22.2±0.7 53.5±0.8
SPRL(’23) 91.7±0.2 88.4±0.6 63.9±1.4 89.8±0.5 69.5±0.8 57.2±1.6 23.8±2.2 58.7±1.3
RML(’24) 92.2±0.1 88.3±0.3 35.3±1.7 79.8±4.0 67.2±0.2 62.0±0.5 15.7±0.8 64.5±0.6

Jump-teaching 94.8±0.1 92.2±0.1 84.1±1.1 90.7±0.3 72.7±0.5 67.1±0.2 40.0±1.1 68.4±0.7

Efficiency Analysis. We compare the efficiency of Jump-teaching with the above representative
methods and follow the same settings as the synthetic noisy benchmark. The efficiency of these
methods is evaluated by throughput and peak memory usage. Throughput is the measurement of the
rate at which a method processes picture frames, expressed in thousands of frames per second (kfps).
Peak memory usage refers to the maximum amount of memory consumed by a method during its
execution. We observe the efficient metrics of these methods with symmetric noise ratio ✏ = 0.5
in Table 2, while the accuracy of these methods is illustrated in Table 1. As shown in Table 1 and
Table 2, our method achieves almost up to 2.5⇥ speedup, 0.46⇥ peak memory footprint, and superior
robustness over all methods. Thus, Jump-teaching achieves optimal empirical results in terms of
training speed, memory usage, and accuracy.

Table 2: Test computational and storage efficiencies.

Standard Decoupling PENCIL Co-teaching Co-teaching+ Topofilter FINE SPRL Jump-teaching
Single network X ⇥ X ⇥ ⇥ X X X X
Throughput (kfps) " 4.16 1.72 3.13 1.81 2.63 1.61 2.17 2.94 4.07
Peak mem (GB) # 0.68 1.50 0.73 1.53 1.53 1.40 0.94 0.77 0.70

Real-World Noisy Benchmark. We operate experiments with three trials and report mean value
on the Clothing1M dataset. Our proposed method is compared with the following representative
approaches: APL, CDR, MentorNet, Decoupling, Co-teaching, Co-teaching+, JoCoR, and CoDis.
Jump-teaching employs ResNet-50 as the backbone, which is pre-trained on ImageNet (Deng et al.,
2009) dataset and follows the same training setup in Xia et al. (2023). As shown in Table 3, the
robustness of Jump-teaching for real-world noisy labels is favorable when compared to other methods.

Table 3: Test accuracy(%) on Clothing1M.

Method APL CDR MentorNet SIGUA Co-teaching Decoupling Co-teaching+ JoCoR CoDis Jump-teaching
Accuracy 54.46 66.59 67.25 65.37 67.94 67.65 63.83 69.06 71.60 71.93

4.2 EXPERIMENTS ON JUMP-UPDATE STRATEGY

The jump-update strategy is not only suitable for Jump-teaching but also easily integrated into other
methods in LNL. Co-teaching (Han et al., 2018) and DivideMix (Li et al., 2020) can be regarded as
the candidates in supervised-only and semi-supervised methodologies of LNL. We collaborate the
jump-update strategy with these two methods respectively. The results of experiments on Clothing1M
are reported in Appendix A.19.

Collaboration with Supervised-Only Approaches. We utilize ResNet-18 as our backbone architec-
ture. We use only one network from co-teaching and replace cross-update strategy with jump-update
strategy, termed J-co-teaching. As Table 4 shows, J-Co-teaching achieves comparable results to
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Co-teaching with all noise conditions and significantly outperforms Co-teaching in extreme noise sce-
narios such as ✏ = 0.8 and ✏ = 0.9. In the case of using a single network, J-Co-teaching significantly
outperforms Co-teaching under all noise conditions.

Table 4: Comparison of test accuracies(%) for Co-teaching and J-Co-teaching on CIFAR-10 and
CIFAR-100 with different noise types and ratios.

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym. Asym.
Methods/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9 0.4
Co-teaching (2*ResNet18) 91.23 87.94 47.69 18.40 85.24 66.22 56.25 20.08 3.82 43.91
Co-teaching (1*ResNet18) 88.55 84.39 43.21 15.88 78.27 61.61 50.97 16.58 3.61 39.63
J-Co-teaching (1*ResNet18) 91.52 87.82 74.24 38.41 85.99 66.31 55.39 26.55 9.16 43.53

Collaboration with Semi-Supervised Approaches. DivideMix not only uses two networks to
exchange error flow but also employs them to collaboratively create pseudo-labels. Consequently,
we establish three baselines following Li et al. (2020): DivideMix, DivideMix with ✓1 test, and
DivideMix w/o co-training. DivideMix with ✓1 test utilizes a single network for sample selection,
while DivideMix w/o co-training retains a single sample and employs self-update for updating. In
each case, we replace the original update strategy with the jump-update strategy. As Tabel 5 shows,
the jump-update strategy significantly improves the accuracy of all baselines, particularly under
extreme noise ratios. This indicates that it can effectively overcome selection bias without incurring
additional costs.

Table 5: Comparison of test accuracies(%) for DivideMix and J-DivideMix on CIFAR-10 and CIFAR-

100 with different noise. The best and the mean value of the last ten epochs of accuracy is reported.

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym.

Methods/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9

DivideMix Best 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0

J-DivideMix Best 96.3 94.9 93.5 78.5 93.0 77.7 74.7 60.0 32.3
Last 96.0 94.6 93.2 77.7 91.9 77.3 74.2 59.7 32.5

DivideMix with ✓1 test Best 95.2 94.2 93.0 75.5 92.7 75.2 72.8 58.3 29.9
Last 95.0 93.7 92.4 74.2 91.4 74.8 72.1 57.6 29.2

J-DivideMix with ✓1 test Best 96.2 95.0 93.0 80.7 93.3 77.7 73.6 58.5 31.4
Last 95.8 94.8 92.7 79.4 92.2 77.3 73.2 57.8 30.8

DivideMix w/o co-training Best 95.0 94.0 92.6 74.3 91.9 74.8 72.3 56.7 27.7
Last 94.8 93.3 92.2 73.2 90.6 74.1 71.7 56.3 27.2

J-DivideMix w/o co-training Best 95.2 94.5 93.0 80.7 92.4 75.0 72.4 56.3 27.8
Last 94.7 94.0 92.3 79.3 91.3 74.2 71.7 55.3 27.6

5 CONCLUSION

We propose Jump-teaching, an ultra robust and efficient framework to combat label noise. Our work
effectively mitigates the sample-selection bias in a single network which enables our approach to
demonstrate outstanding performance across a broad array of experiments, particularly in extreme
noise conditions. Moreover, with decomposed semantic information of sample losses for selection,
Jump-teaching overcomes the limitations of the small-loss criterion and achieves more effective
selection. Extensive experimental validation confirms that our method surpasses current state-of-
the-art techniques in both robustness and efficiency. In the future, we hope to explore how the
fluctuations of parameters influence the selection capability of the network. We did not employ
popular semi-supervised techniques to further exploit the identified noisy samples, however, we
believe that our method can be further extended by these techniques.
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