
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JUMP-TEACHING: ULTRA ROBUST AND EFFICIENT
LEARNING WITH NOISY LABELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Sample selection is the most straightforward technique to combat noisy labels,
aiming to prevent mislabeled samples from degrading the robustness of neural net-
works. However, compounding selection bias and redundant selection operations
have always remained challenging in robustness and efficiency. To mitigate selec-
tion bias, existing methods utilize disagreement in partner networks or additional
forward propagation in a single network. For selection operations, they involve
dataset-wise modeling or batch-wise ranking. Any of the above methods yields sub-
optimal performance. In this work, we propose Jump-teaching, a novel framework
for optimizing the typical workflow of sample selection. Firstly, Jump-teaching is
the first work to discover significant disagreements within a single network between
different training iterations. Based on this discovery, we propose a jump-manner
strategy for model updating to bridge the disagreements. We further illustrate its
effectiveness from the perspective of error flow. Secondly, Jump-teaching designs
a lightweight plugin to simplify selection operations. It creates a detailed yet
simple loss distribution on an auxiliary encoding space, which helps select clean
samples more effectively. In the experiments, Jump-teaching not only outperforms
state-of-the-art works in terms of robustness, but also reduces peak memory usage
by 0.46⇥ and boosts training speed by up to 2.53⇥. Notably, existing methods can
also benefit from the integration with our framework.

1 INTRODUCTION

Learning with Noisy Labels (LNL) is the most promising technique in weakly supervised learning.
Generally, noisy labels stem from mistaken annotations of the dataset, such as in crowd-sourcing
(Welinder et al., 2010) and online query (Blum et al., 2003). As accurate annotations of large datasets
are a time-consuming endeavor, the existence of noisy labels becomes inevitable. Deep neural
networks can easily overfit to noisy labels, which is prone to poor generalization performance (Zhang
et al., 2021; Han et al., 2020). Furthermore, the efficiency challenge of LNL is often overlooked in
comparison to the robustness problem (Bakhshi and Can, 2024), which is vital in real-time (Mahajan
et al., 2018; Bakhshi and Can, 2024) or edge security scenarios (Aït-Sahalia et al., 2010). Therefore,
this work aims at finding an LNL solution characterized by efficiency and robustness.

Recent LNL methods can be categorized into three types: regularization, label correction, and sample
selection. Regularization methods focus on crafting noise-robust loss functions (Ghosh et al., 2017;
Wang et al., 2019) and regularization techniques (Liu et al., 2020; Zhang et al., 2020; Cao et al.,
2021), but they cannot fully avoid fitting to noisy labels during training, resulting in sub-optimal
outcomes. Label correction, integrating closely with semi-supervised learning, aims to refine or
recreate pseudo-labels (Han et al., 2019; Sohn et al., 2020; Pham et al., 2021). These methods make
use of corrected noisy labels but require computational resources for the estimation of noise transition
matrix (Goldberger and Ben-Reuven, 2022) or the ensemble prediction (Lu and He, 2022).

Sample selection is a direct approach for combating label noise (Song et al., 2019; Kim et al., 2021;
Wu et al., 2020; Malach and Shalev-Shwartz, 2017; Xia et al., 2023). It typically operates in an
iterative workflow, selecting possibly clean samples through a certain process and then updating the
parameters based on those samples. However, compounding selection bias and redundant selection
operations hinder the effectiveness of workflow.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Model

Identifiers

Generate

Identifier
Table

Update

Fetch
Update

Simplify selection operations

Model updates Sample selection

Mitigate selection bias

Fe
at

ur
e

Ex
tra

ct
or Semantic

Embedding

A
ux

ili
ar

y 
he

ad

La
be

ls

Hash
CodingPr

ep
ar

ed
C

od
eb

oo
k

Noise
Detection

Plugin Subspace

Jump-update Strategy Semantic Loss Decomposition

1

2

3

4

Workflow of Jump-teaching 

Figure 1: The overview of Jump-teaching. Motivated by two challenges in the sample selection
approach, Jump-teaching proposes a novel model-update strategy termed Jump-update to mitigate
the selection bias and a lightweight sample-selection plugin termed Semantic Loss Decomposition to
simplify selection operations.

Firstly, selection bias inevitably arises from the exposure of the classifier to noise. This bias causes
noisy samples to be included in the training data. When the neural network trains on these data,
the error erodes the robustness of the network, thus the bias is amplified. To mitigate this bias,
several approaches have been proposed, including Decoupling (Malach and Shalev-Shwartz, 2017),
Co-teaching (Han et al., 2018), and Co-teaching+ (Yu et al., 2019), among others. These methods
follow a similar paradigm: a partner network is integrated to give different predicted labels from
the original network. These disagreements, referring to the existence of differences of networks in
the selection behaviors, seek to diverge in each sample selection and guide the training process by
model update. However, the extra network commonly used in such methods requires double memory
and computation resources. Notably, some methods that use a single network implicitly mitigate the
bias by reducing the frequency of conducting selections, but they require additional forward passes
through the entire dataset before training begins, which increases computational cost (Yuan et al.,
2023; Wu et al., 2020).

Secondly, current selection operations are redundant. The redundancy is evident in the repeated need
to aggregate amounts of data for batch processing, which leads to inefficiencies. Specifically, some
methods (Han et al., 2018) rely on a small-loss criterion that ranks samples within each batch by their
loss magnitude, prioritizing those with smaller losses for training. Other methods (Li et al., 2020)
regard the sample selection as a binary classification problem, where the distribution of sample losses
is modeled by techniques like Gaussian mixture models (GMM). The core reason for this redundancy
lies in the limited information provided by the classification head. The loss is typically represented as
a floating-point value, calculated from the discrepancy between predicted probabilities and one-hot
encoded labels. It fails to provide enough meaningful information to guide effective sample selection.
Consequently, redundant operations are required to compensate for this lack of granularity.

In this paper, we propose an ultra robust and efficient framework Jump-teaching that optimizes the
workflow of the sample selection approach. Its effectiveness comes from two aspects: firstly, it adopts
a jump-manner strategy to mitigate selection bias within a single network. Secondly, it designs a
lightweight plugin for a simplified sample-wise selection operation. The overview of Jump-teaching
is shown in Fig. 1. Jump-update Strategy is motivated by the discovery of significant disagreement
between different training iterations of a neural network, excluding neighboring iterations, from a
temporal perspective in Fig. 2. Therefore, this intrinsic disagreement enables the strong self-correction
of selection bias. Moreover, we design a lightweight plugin for efficient selection. As shown in
Fig. 1, it contains an auxiliary head and a prepared codebook, which transform the outputs and labels
into semantic embeddings and hash coding, respectively, within an auxiliary space. When training
on clean data, the goal of this plugin is to minimize the gap between semantic features and hash
coding as close to 0 as possible. The ideal distribution of elements of this vector is a mean value
distribution with a variance of 0. Conversely, for noisy data, this gap becomes too large to reach 0,
and its distribution is uncertain. According to the aforementioned characteristics, we can easily and
effectively distinguish between clean and noisy samples.

In summary, we make the following contributions: (1) We are the first work to discover significant and
persistent disagreement within a single network. Based on this discovery, we propose the jump-update
strategy for strong self-correction of bias. The strategy enables a single network to surpass the capacity

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Sym. ✏ = 0.5 (b) Sym. ✏ = 0.8 (c) Sym. ✏ = 0.5 (d) Sym. ✏ = 0.8

Figure 2: "Disagreement" and test accuracy of different strategies with symmetric noise ratio ✏ = 0.5,
✏ = 0.8. We use Intersection over Union (IoU) between two selections to represent the disagreement.
In the cross-update strategy, the disagreement emerges in a different network, while in the other two
strategies, it emerges during different epochs. More details are discussed in Appendix A.1.

of a dual network in the robustness and efficiency of LNL. (2) We propose a lightweight plugin for
efficient sample selection. It helps select clean data easily by intrinsic distribution characteristics.
(3) Jump-teaching outperforms state-of-the-art methods in robustness across various noise settings,
particularly under extreme noise conditions. It also achieves up to 2.53⇥ speedup and reduces peak
memory usage by 0.46⇥. (4) The framework is flexible in integrating with other LNL methods, from
which both supervised-only and semi-supervised methods benefit.

The rest of this paper is organized as follows. Related work is reviewed in Sec. 2. In Sec. 3, we
introduce the proposed framework Jump-teaching. Experiments are illustrated in Sec. 4. Conclusions
are given in Sec. 5.

2 RELATED WORK

Sample Selection. The core idea of the sample selection approach is to filter out noisy samples to
prevent the network from fitting to them. Since the loss of a single sample is insufficient for selection,
current approaches require additional operations. Most works employ a ranking operation with prior
knowledge of the noise ratio, e.g., Co-teaching (Han et al., 2018) and Co-teacing+ (Yu et al., 2019),
or probabilistic estimation on loss value, such as Gaussian Mixture Models (GMM) (Permuter et al.,
2006) and Beta Mixture Models (BMM) (Ma and Leijon, 2011), while some methods rely on a
complex statistical estimation process (Li et al., 2020; Wei et al., 2020; Arazo et al., 2019).

Sample-selection Bias. Sample selection inherently involves bias, leading to error accumulation.
To avoid this, many methods employ dual networks and correct this bias through disagreement in
their selection. Decoupling (Malach and Shalev-Shwartz, 2017) utilizes a teacher model to select
clean samples to guide the learning of a student model, Co-teaching (Han et al., 2018) simultaneously
trains two networks on data selected by peer network. Co-teaching+ (Yu et al., 2019) maintains
divergence between the two networks by limiting the training data to samples where the networks
disagree. JoCoR (Wei et al., 2020) trains two networks with the same data and employs regularization
to remain divergent. Additionally, many LNL methods integrate the co-training framework to achieve
advanced performance (Li et al., 2020; Liu et al., 2020; 2022; Chen et al., 2023). However, these
co-training methods significantly double computational overhead. Although some works have utilized
predictions in different iterations as selection criteria (Wei et al., 2022; Yuan et al., 2023), no related
work has explicitly addressed bias in a single network. Some implicit methods will be elaborated on
Sec. 3.

3 METHODOLOGY

Jump-teaching is a novel framework for optimizing typical workflow of the sample selection approach.
Specifically, it employs Jump-update Strategy to mitigate the bias and Semantic Loss Decomposition

to simplify selection operation. We demonstrate them in Sec. 3.1 and Sec. 3.2, respectively.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Self-Update Cross-Update Jump-Update

Model UpdateD M

M D Data SelectionInheritance

Different Error Flows

D

D

!!

!!

!!

!"

!"

!"

D

D

!

!

M

D

D

D

!

!

!

!!"#

!!

!!$#

!%

!!

"#

!!"#

!!

!!$#

(a) Model Update Strategy

Sample

Error Flow

Mini-batch

Dataset

Sequential Error Flow

Split Error Sub-flows

(b) Error Flow

Figure 3: The Left: The flow path of error under different update strategies. It leads to varying
degrees of accumulation. The Right: Two types of error flows. Different from methods that use
additional forward passes to reduce accumulation, our strategy splits the error into sub-flows.

3.1 JUMP-UPDATE STRATEGY

Inspired by the observation in Fig. 2, we present the Jump-update strategy, a jump-manner model
update paradigm. This strategy aims at bridging the disagreement between iterations. First, we
provide a detailed description of the strategy. Afterward, we conduct an empirical analysis to explore
its debiasing principles and verify our insights in the experimental analysis.

Strategy Description. To simplify our discussion, we dive into the procedure of sample selection
and give some definitions. Sample selection is accomplished by the execution of model updates
and sample selection with multiple iterations. In other words, model updates and sample selection
are performed only once in every iteration. Previous strategies and ours are compared in Fig.
3(a). Suppose ti denotes the current i-th iteration, ancestor iteration refers to the former iteration
tj , 0  j  i� 2, excluding the previous (i � 1)-th iteration, during the procedure of sample
selection. Similarly, descendant iteration denotes the future iteration ts, i + 1  s  Niterations.
Niterations is the total number of training iterations. The ancestor iteration and descendant iteration will
not appear in the same epoch. In our paradigm, the current network in the i-th iteration is trained with
clean samples selected only by the network from an ancestor iteration tj . This behavior of sample
selection exhibits a jump form. The name of the algorithm is derived from this point. Concretely,
we leverage a binary identifier to represent the outcome of the label judgment after clean sample
selection. Thus, a binary identifier table I corresponds to the entire data. The jump-update strategy
is divided into four steps: 1) The neural network in current interaction ti generates the new binary
identifiers by the clean sample selection for the descendant iteration ts. 2) We fetch and cache the old
binary identifier table from the ancestor iteration tj . 3) The network updates the parameters based
on the clean data judged only by the old table. Before the update, the network inherits the weight
from the previous iteration ti�1. 4) We utilize the identifiers generated to update the table. When
the jump-update strategy is applied, disagreements between different training iterations of a neural
network appear and are bridged, leading to a decrease in the accumulated error. Suppose S denotes
the jump steps, it should be noted that 2  S  Niterations. The evidence of disagreement and the
setting of S are illustrated in Sec. 4.2. Moreover, we provide an example for describing this strategy
in Appendix A.3.

Empirical Analysis. Sample selection inevitably has a bias, leading to accumulated error in an
error flow. As shown in Fig. 3(b), the graph of error flow presents a sequential form by iterations
while the jump-update strategy splits a sequential error flow into multiple error sub-flows. Intuitively,
the more training iterations increase, the more rapidly the error is accumulated. Nonetheless, the
degree of error accumulation in the two is significantly different. In the sequential form, errors are
accumulated consecutively. As the error sub-flows are orthogonal in the jump-update strategy, each
error is accumulated only in its own error sub-flow. Thus, the jump-update strategy has a significantly

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

smaller degree of accumulated error compared to the sequential form. This is the source of the magic
of the jump-update strategy. We formalize the aforementioned procedure mathematically below and
give some detailed properties.

Suppose that NA is the total number of error accumulations, Na is the number of error accumulations
in an error sub-flow, and Nf is the number of error sub-flows. Besides, the constant e represents the
number of training epochs and n represents how many selections are made in one epoch. DA denotes
the overall degree of accumulated error, while d

k
a denotes the degree of accumulated error in the k-th

error sub-flow. In the absence of a specific reference, we can also denote the degree of accumulated
error in one error sub-flow by da.

Property 1 The overall degree of accumulated error DA is proportional to the total number of error

accumulation NA, DA / NA. Under the hypothesis that the error flow is an uninterrupted model,

the number of error accumulation NA equals the total number of training iterations Niterations, while

Niterations equals e⇥ n. Therefore, DA / n.

The overall degree of accumulated error DA depends on n stated in Property 1. When the network
selects data from a mini-batch, DA can be enormous because n is equal to the number of mini-batches,
e.g., Co-teaching. If the network selects data from the entire dataset, n can be reduced to 1, thereby
significantly reducing DA, e.g., TopoFilter (Wu et al., 2020) and LateStopping (Yuan et al., 2023).
However, this is inefficient because an additional forward over the entire dataset before training is
necessitated. Property 1 is proven in Appendix A.4.

Property 2 The accumulated error could be reduced by splitting the error flow into multiple error

sub-flows. The degree of accumulated error in the k-th error sub-flow d
k
a is proportional to the number

of error accumulations in each error sub-flow Na, d
k
a / Na. The number of error accumulations in

each error flow Na equals
NA
Nf

.

As stated in Property 1, DA can be reduced by minimizing n, while DA can also be reduced by
splitting into error sub-flows as illustrated in Property 2. The first property relates to the sample
selection mechanism, and the second property is associated with the different strategies of model
updates: 1) The self-update strategy follows a single error flow, resulting in da = DA, which leads
to rapid error accumulation. 2) The cross-update strategy has two error sub-flows and da = 0.5DA,
which mitigates the error accumulation to some extent. 3) The jump-update strategy reduces da to
0.5e, which is a significantly minimal value. Further insights are detailed in Appendix A.5.

(a) DA with different n (b) DA with different strategies

Figure 4: Test accuracies(%) on CIFAR-10 with Sym. ✏ = 0.8.

Experimental Analysis. We verify Property 1 and Property 2 with toy examples, respectively.
We employ the small-loss sample selection method from Co-teaching to establish the baselines for
self-update and cross-update. Our experiments choose CIFAR-10 (Krizhevsky et al., 2009) dataset
with the symmetric noise ratio ✏ = 80%. We utilize ResNet-18 (He et al., 2016b) as the backbone
and warm up it for one epoch before formal training.

To verify Property 1, we observe DA by testing the accuracy of the network with different values of
n. To control n, We set r as the proportion of sample selection that takes effects, DA equals r ⇥ n in
this way. We set r to 10%, 30%, 50%, 80%, and 100%. As shown in Fig. 4(a), rapidly accumulated
errors lead to extreme deterioration of the model such as when r = 100% and r = 80%, while slower

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

accumulated ones achieve better performance, with a moderate r = 50% yielding the best results.
This is consistent with Property 1.

To verify Property 2, we observe DA by testing the accuracy of the neural network with three
strategies, self-update, cross-update, and jump-update. As shown in Fig. 4(b), cross-update slightly
outperforms self-update, while jump-update is significantly more effective than both. Thus, splitting
error flows is an effective way to reduce error accumulation. Moreover, we also greatly improved the
performance of self-update by reducing n. Specifically, we employ two unbiased initial identifier
tables, with r set to 30% and 5%, respectively. This is discussed in Appendix A.6, which also includes
the impact of initial bias.

Conclusion. The jump-update strategy is more effective and efficient than previous works. Compared
to methods that implicitly leverage Property 1, it can reduce Da to a small number i.e., 0.5e at a
constant cost. Compared to the cross-update strategy that leverages Property 2, it can not only reduce
the degree of accumulated error significantly more but also halve the training cost.

3.2 SEMANTIC LOSS DECOMPOSITION

Motivation. According to memorization effects, neural networks prioritize learning simpler patterns
from data (Zhang et al., 2021). The previously followed small-loss criterion leverages this effect:
clean labels are learned first by the network, hence exhibiting smaller losses compared to noisy ones.
However, the relative magnitude of losses is determined by comparison with other samples e.g., rank
sample losses with Top-k algorithm (Han et al., 2018; Jiang et al., 2018) or modeling loss distribution
(Li et al., 2020; Permuter et al., 2006). To avoid such costly overheads, here comes a pure idea to
leverage memorization effects: In an encoding space where a single loss can be decomposed, the
flipped labels share some identical components with the original labels. For flipped labels, the clean
components will be learned first and incur smaller losses, while the noisy components result in larger
losses. This property can be utilized to identify whether a label contains noise.

Therefore, we design a lightweight plugin to create a detailed distribution in a single loss. The plugin
is structurally composed of a pre-prepared non-orthogonal codebook and an auxiliary head at the
last layer of the network. It spans an auxiliary space where a loss can be decomposed semantically.
Specifically, the codebook transforms the label into hash codes while the head map outputs into
feature embedding, respectively. We will first detail the codebook and auxiliary head respectively,
and then introduce the selection operation simplified by leveraging both.

Codebook. Inspired by Yang et al. (2015), we utilize the favorable properties of Hadamard matrices
to construct mappings for category encoding. A K-bit Hadamard matrix can generate 2K codewords,
each K bits long, with a minimum Hamming distance of K

2 . For K-bit hash codes, we construct a
K ⇥K Hadamard matrix. From this, we select c row vectors as category encodings, each with a
Hamming distance of K

2 . Noisy labels ỹ are mapped into hash codes ỹ0 through this codebook. Given
a classification task with C classes, the mapping is formalized as:

H : ỹi 2 {0, · · · , C � 1}! ỹ
0
i 2 {�1, 1}K .

Auxiliary Head. The auxiliary detection head is an additional three-layer MLP with a Tanh activation
function. It shares the same feature extractor with the original classification head and maps the
outputs x of neural networks to K-bit feature embeddings z, as represented by the function

f : xi 2 Rn ! zi 2 RK
.

For an ideally clean sample, the distance d(z(t)i ,yi) between the output zt of an ideally clean sample
indexed i at time t and its label y can be expressed as

lim
t!1

d(z(t)i ,yi) = 0. (1)

The notation 0 denotes a vector of zeros, indicating that the distances across different bits uniformly
converge towards zero as t approaches infinity.

Selection Operation. In this framework, we employ binary cross-entropy (BCE) (Ruby and Yenda-
palli, 2020) to define the distance d between predictions and the labels of the network, which indicates
whether the network adequately captures the semantics of each component, which is formulated as

d(zi, ỹ
0
i) = � [ỹ0

i � log(zi) + (1� ỹ0
i)� log(1� zi)] . (2)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We apply the arithmetic mean for supervising this head, where the loss function can be articulated as

LBCE
i = � 1

K

KX

j=1

⇥
ỹ
0
ij log(zij) + (1� ỹ

0
ij) log(1� zij)

⇤
. (3)

The distance vector d(zi, ỹ0
i) obtained through semantic decomposition directly describes the distribu-

tion of sample loss in semantic space. Compared to a single loss value, it provides richer information.
To leverage the memorization effect, we use variance to characterize the disparity in the learning
degree of the network across different semantic components.

Var(d(zi, ỹ
0
i)) =

1

K

�
d(zi, ỹ

0
i)� LBCE

i 1
�T �

d(zi, ỹ
0
i)� LBCE

i 1
�
. (4)

We set a fixed threshold to distinguish clean samples from noisy samples, which is independent of
different samples and different training phases. The identifier Idetection is updated by detection head
as follows:

Idetection =

⇢
True if Var(d(zi, ỹ0

i))  ⌧,

False otherwise.
(5)

Since this threshold is expected to approach zero infinitely, we set it to 0.001.

3.3 TRAINING PIPELINE

Algorithm 1 Jump-teaching
Input: noisy training data D, network parameters wf , learning rate ⌘, maximum epochs Tmax, the

number of samples Smax, identifier table I, clean flag �

Output: wf

1: Initialize I[i] True for all i
2: for t = 1 to Tmax do
3: Permute D randomly
4: for s = 1 to Smax do
5: � I[s]
6: Fetch current sample D[s]
7: Update I[s] based on Eq. 8
8: if � then
9: Update: wf  wf � ⌘r(LBCE(wf ,D[s]) + LCE(wf ,D[s]))

10: end if
11: end for
12: end for
13: return wf

In this section, we discuss how the proposed plugin can assist in selection. During training, the
detection head is on top of the existing network, trained by Eq. 3. Meanwhile, the classification
head continues to train normally and is used for inference. However, the two heads exhibit different
convergence rates, which leaves room for optimization. The cross-entropy loss, the objective function
for classification tasks, is more readily optimizable and thus converges significantly faster than
the detection head and can lead to premature over-fitting of noise, resulting in error accumulation.
To balance the convergence rate of the two, we employ temperature scaling to calibrate the label
probabilities (Guo et al., 2017) p of the classification head. Thus, the soften softmax function will be:

�softmax (pij) =
exp (pij/T )P
j=1 exp (pij/T )

. (6)

where T is a temperature scaling factor, controlling the convergence rates of the heads. More details
are presented in Appendix A.7.

Building on the work of Xiao et al. (2023), we follow the widely accepted principle that assuming
the model is well-trained, predictions of clean samples should align with true labels. Based on this

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

principle, we also make use of the classifier head to apply a straightforward criterion, which further
recovers the discarded clean labels. The clean table of the classifier head is then evaluated as:

Iclassifier = (ŷi == ỹi). (7)

where ŷi = argmaxj p
j
i is the prediction label and p

j
i represents the probability of the j-th class for

the i-th sample. ỹi denotes the label of the i-th sample. Finally, we can update the table by combining
Eq. 5 and Eq. 7:

I 0 = Idetection _ Iclassifier. (8)
The algorithm of Jump-teaching is shown in Algorithm 1.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of our proposed method, Jump-teaching, compared
with the state-of-the-art in Sec. 4.1. The ablation study is illustrated in Appendix A.8. As the
jump-update strategy and semantic loss decomposition are the two orthogonal components of this
method, we thoroughly examine each of them in Sec. 4.2 and Appendix A.9. The details of selected
samples are described in Appendix A.10.

Noisy Benchmark Datasets. We verify the experiments on three benchmark datasets, including
CIFAR-10, CIFAR-100 and Clothing1M (Xiao et al., 2015). These datasets are popular for evaluating
noisy labels. They are summarized in Appendix A.11. Following the setup on (Li et al., 2020; Liu
et al., 2020), we simulate two types of label noise: symmetric noise, where a certain proportion
of labels are uniformly flipped across all classes, and asymmetric noise, where labels are flipped
to specific classes, e.g., bird ! airplane, cat $ dog. Assume ✏ denotes the noise ratio, their
mathematical definitions are in Appendix A.12. We also experiment on instance-dependent noise
(IDN) and pairflip-45 noise, results are reported in Appendix A.13.

Baselines. To be more convincing, we compare the competitive methods of LNL. These methods
are as follows: Standard, which is simply the standard deep network trained on noisy datasets,
Decoupling (Malach and Shalev-Shwartz, 2017), Co-teaching (Han et al., 2018), Co-teaching+ (Yu
et al., 2019), PENCIL (Yi and Wu, 2019), TopoFilter (Wu et al., 2020), ELR (Liu et al., 2020), FINE
(Kim et al., 2021), SPRL (Shi et al., 2023), RML (Li et al., 2024), APL (Ma et al., 2020), CDR (Xia
et al., 2021), MentorNet (Jiang et al., 2018), SIGUA (Han et al., 2020), JoCoR (Wei et al., 2020) and
CoDis (Xia et al., 2023). A brief overview of the available source code of these methods is illustrated
in Appendix A.14.

Experimental Settings. All experiments operate on a server equipped with an NVIDIA A800
GPU and PyTorch platform. In the following experiments, Jump-teaching almost employs the same
configuration. It trains the network for 200 epochs by SGD with a momentum of 0.9, a weight decay
of 1e � 3, and a batch size of 128. The initial learning rate is set to 0.2, and a cosine annealing
scheduler finally decreases the rate to 5e� 4. The warm-up strategy is utilized by Jump-teaching, and
the warm-up period is 30 epochs. After the warm-up period, we augmented the data as detailed in the
Appendix A.15. The threshold of variance ⌧ = 0.001 is discussed in Appendix A.16. The jump step
is stated in Appendix A.17. Exceptionally, we set the weight decay as 5e� 4 to facilitate learning
on fewer available samples when the noise ratio ✏ equals 50% and 80% in CIFAR-100, respectively.
The single network of Jump-teaching employs three types of backbone networks to fulfill different
requirements of the experimental design, such as PreActResNet-18 (He et al., 2016a), ResNet-18,
and three layers of neural network. Moreover, the architectures of these backbones and the auxiliary
head are illustrated in Appendix A.18. The baseline methods fully follow the experimental setup in
the literature (Han et al., 2018; Li et al., 2020).

4.1 COMPARISON WITH THE STATE-OF-THE-ARTS

Synthetic Noisy Benchmark. We compare our proposed method with the following representative
approaches: Standard, Decoupling, Co-teaching, Co-teaching+, PENCIL, TopoFilter, ELR, FINE,
and SPRL. As shown in Table 1, Jump-teaching demonstrates superior performance with different
noise settings. With the symmetric noise ratio ✏ = 0.8, its accuracy has improved by 13.3% and
16.2% on two datasets. This indicates its strong robustness.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Test accuracy(%) on CIFAR-10 and CIFAR-100 with symmetric and asymmetric noise.
All methods employ PreActResNet-18 and train 200 epochs with three trials. The best results are
highlighted in bold.

Dataset CIFAR-10 CIFAR-100

Noise Type Sym. Asym. Sym. Asym.

Noise ratio 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4

Standard 84.6±0.1 62.4±0.3 27.3±0.3 75.9±0.4 56.1±0.1 33.6±0.2 8.2±0.1 40.1±0.2
Decoupling(’17) 86.4±0.1 72.9±0.2 48.4±0.6 83.3±0.2 53.3±0.1 28.0±0.1 7.9±0.1 39.9±0.4
Co-teaching(’18) 89.9±0.6 67.3±4.2 28.1±2.0 79.2±0.5 61.8±0.4 34.7±0.5 7.5±0.5 40.0±1.2
Co-teaching+(’19) 88.1±0.0 61.8±0.2 22.3±0.6 58.2±0.2 54.5±0.1 27.6±0.1 8.4±0.1 19.9±0.3
PENCIL(’19) 88.2±0.6 73.4±1.5 36.0±0.7 77.3±3.4 57.4±1.0 11.4±3.2 5.4±1.2 45.7±0.9
Topofilter(’20) 89.5±0.1 84.6±0.2 45.9±2.6 89.9±0.1 63.9±0.8 51.9±1.7 16.9±0.3 66.6±0.7
FINE(’21) 90.2±0.1 85.8±0.8 70.8±1.8 87.8±0.1 70.1±0.3 57.9±1.2 22.2±0.7 53.5±0.8
SPRL(’23) 91.7±0.2 88.4±0.6 63.9±1.4 89.8±0.5 69.5±0.8 57.2±1.6 23.8±2.2 58.7±1.3
RML(’24) 92.2±0.1 88.3±0.3 35.3±1.7 79.8±4.0 67.2±0.2 62.0±0.5 15.7±0.8 64.5±0.6

Jump-teaching 94.8±0.1 92.2±0.1 84.1±1.1 90.7±0.3 72.7±0.5 67.1±0.2 40.0±1.1 68.4±0.7

Efficiency Analysis. We compare the efficiency of Jump-teaching with the above representative
methods and follow the same settings as the synthetic noisy benchmark. The efficiency of these
methods is evaluated by throughput and peak memory usage. Throughput is the measurement of the
rate at which a method processes picture frames, expressed in thousands of frames per second (kfps).
Peak memory usage refers to the maximum amount of memory consumed by a method during its
execution. We observe the efficient metrics of these methods with symmetric noise ratio ✏ = 0.5
in Table 2, while the accuracy of these methods is illustrated in Table 1. As shown in Table 1 and
Table 2, our method achieves almost up to 2.5⇥ speedup, 0.46⇥ peak memory footprint, and superior
robustness over all methods. Thus, Jump-teaching achieves optimal empirical results in terms of
training speed, memory usage, and accuracy.

Table 2: Test computational and storage efficiencies.

Standard Decoupling PENCIL Co-teaching Co-teaching+ Topofilter FINE SPRL Jump-teaching
Single network X ⇥ X ⇥ ⇥ X X X X
Throughput (kfps) " 4.16 1.72 3.13 1.81 2.63 1.61 2.17 2.94 4.07
Peak mem (GB) # 0.68 1.50 0.73 1.53 1.53 1.40 0.94 0.77 0.70

Real-World Noisy Benchmark. We operate experiments with three trials and report mean value
on the Clothing1M dataset. Our proposed method is compared with the following representative
approaches: APL, CDR, MentorNet, Decoupling, Co-teaching, Co-teaching+, JoCoR, and CoDis.
Jump-teaching employs ResNet-50 as the backbone, which is pre-trained on ImageNet (Deng et al.,
2009) dataset and follows the same training setup in Xia et al. (2023). As shown in Table 3, the
robustness of Jump-teaching for real-world noisy labels is favorable when compared to other methods.

Table 3: Test accuracy(%) on Clothing1M.

Method APL CDR MentorNet SIGUA Co-teaching Decoupling Co-teaching+ JoCoR CoDis Jump-teaching
Accuracy 54.46 66.59 67.25 65.37 67.94 67.65 63.83 69.06 71.60 71.93

4.2 EXPERIMENTS ON JUMP-UPDATE STRATEGY

The jump-update strategy is not only suitable for Jump-teaching but also easily integrated into other
methods in LNL. Co-teaching (Han et al., 2018) and DivideMix (Li et al., 2020) can be regarded as
the candidates in supervised-only and semi-supervised methodologies of LNL. We collaborate the
jump-update strategy with these two methods respectively. The results of experiments on Clothing1M
are reported in Appendix A.19.

Collaboration with Supervised-Only Approaches. We utilize ResNet-18 as our backbone architec-
ture. We use only one network from co-teaching and replace cross-update strategy with jump-update
strategy, termed J-co-teaching. As Table 4 shows, J-Co-teaching achieves comparable results to

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Co-teaching with all noise conditions and significantly outperforms Co-teaching in extreme noise sce-
narios such as ✏ = 0.8 and ✏ = 0.9. In the case of using a single network, J-Co-teaching significantly
outperforms Co-teaching under all noise conditions.

Table 4: Comparison of test accuracies(%) for Co-teaching and J-Co-teaching on CIFAR-10 and
CIFAR-100 with different noise types and ratios.

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym. Asym.
Methods/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9 0.4
Co-teaching (2*ResNet18) 91.23 87.94 47.69 18.40 85.24 66.22 56.25 20.08 3.82 43.91
Co-teaching (1*ResNet18) 88.55 84.39 43.21 15.88 78.27 61.61 50.97 16.58 3.61 39.63
J-Co-teaching (1*ResNet18) 91.52 87.82 74.24 38.41 85.99 66.31 55.39 26.55 9.16 43.53

Collaboration with Semi-Supervised Approaches. DivideMix not only uses two networks to
exchange error flow but also employs them to collaboratively create pseudo-labels. Consequently,
we establish three baselines following Li et al. (2020): DivideMix, DivideMix with ✓1 test, and
DivideMix w/o co-training. DivideMix with ✓1 test utilizes a single network for sample selection,
while DivideMix w/o co-training retains a single sample and employs self-update for updating. In
each case, we replace the original update strategy with the jump-update strategy. As Tabel 5 shows,
the jump-update strategy significantly improves the accuracy of all baselines, particularly under
extreme noise ratios. This indicates that it can effectively overcome selection bias without incurring
additional costs.

Table 5: Comparison of test accuracies(%) for DivideMix and J-DivideMix on CIFAR-10 and CIFAR-

100 with different noise. The best and the mean value of the last ten epochs of accuracy is reported.

Dataset CIFAR-10 CIFAR-100

Noise type Sym. Asym. Sym.

Methods/Noise ratio 0.2 0.5 0.8 0.9 0.4 0.2 0.5 0.8 0.9

DivideMix Best 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0

J-DivideMix Best 96.3 94.9 93.5 78.5 93.0 77.7 74.7 60.0 32.3
Last 96.0 94.6 93.2 77.7 91.9 77.3 74.2 59.7 32.5

DivideMix with ✓1 test Best 95.2 94.2 93.0 75.5 92.7 75.2 72.8 58.3 29.9
Last 95.0 93.7 92.4 74.2 91.4 74.8 72.1 57.6 29.2

J-DivideMix with ✓1 test Best 96.2 95.0 93.0 80.7 93.3 77.7 73.6 58.5 31.4
Last 95.8 94.8 92.7 79.4 92.2 77.3 73.2 57.8 30.8

DivideMix w/o co-training Best 95.0 94.0 92.6 74.3 91.9 74.8 72.3 56.7 27.7
Last 94.8 93.3 92.2 73.2 90.6 74.1 71.7 56.3 27.2

J-DivideMix w/o co-training Best 95.2 94.5 93.0 80.7 92.4 75.0 72.4 56.3 27.8
Last 94.7 94.0 92.3 79.3 91.3 74.2 71.7 55.3 27.6

5 CONCLUSION

We propose Jump-teaching, an ultra robust and efficient framework to combat label noise. Our work
effectively mitigates the sample-selection bias in a single network which enables our approach to
demonstrate outstanding performance across a broad array of experiments, particularly in extreme
noise conditions. Moreover, with decomposed semantic information of sample losses for selection,
Jump-teaching overcomes the limitations of the small-loss criterion and achieves more effective
selection. Extensive experimental validation confirms that our method surpasses current state-of-
the-art techniques in both robustness and efficiency. In the future, we hope to explore how the
fluctuations of parameters influence the selection capability of the network. We did not employ
popular semi-supervised techniques to further exploit the identified noisy samples, however, we
believe that our method can be further extended by these techniques.

REFERENCES

Yacine Aït-Sahalia, Jianqing Fan, and Dacheng Xiu. High-frequency covariance estimates with
noisy and asynchronous financial data. Journal of the American Statistical Association, 105(492):

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

1504–1517, 2010.

Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor, and Kevin McGuinness. Unsupervised
label noise modeling and loss correction. In International conference on machine learning, pages
312–321. PMLR, 2019.

Sepehr Bakhshi and Fazli Can. Balancing efficiency vs. effectiveness and providing missing label
robustness in multi-label stream classification. Knowledge-Based Systems, page 111489, 2024.

Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, and Tengyu Ma. Heteroskedas-
tic and imbalanced deep learning with adaptive regularization. In International Conference on

Learning Representations, 2021.

Mingcai Chen, Hao Cheng, Yuntao Du, Ming Xu, Wenyu Jiang, and Chongjun Wang. Two wrongs
don’t make a right: Combating confirmation bias in learning with label noise. In Proceedings of

the AAAI Conference on Artificial Intelligence, volume 37, pages 14765–14773, 2023.

Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V. Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Aritra Ghosh, Himanshu Kumar, and P Shanti Sastry. Robust loss functions under label noise for
deep neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 31,
2017.

Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a noise adaptation
layer. In International conference on learning representations, 2022.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pages 1321–1330. PMLR, 2017.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang, and Masashi
Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels.
Advances in neural information processing systems, 31, 2018.

Bo Han, Gang Niu, Xingrui Yu, Quanming Yao, Miao Xu, Ivor Tsang, and Masashi Sugiyama. Sigua:
Forgetting may make learning with noisy labels more robust. In International Conference on

Machine Learning, pages 4006–4016. PMLR, 2020.

Jiangfan Han, Ping Luo, and Xiaogang Wang. Deep self-learning from noisy labels. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11–14, 2016, Proceedings, Part IV 14, pages 630–645. Springer, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016b.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-
driven curriculum for very deep neural networks on corrupted labels. In International conference

on machine learning, pages 2304–2313. PMLR, 2018.

Abin Jose, Daniel Filbert, Christian Rohlfing, and Jens-Rainer Ohm. Deep hashing with hash center
update for efficient image retrieval. In ICASSP 2022-2022 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 4773–4777. IEEE, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Taehyeon Kim, Jongwoo Ko, JinHwan Choi, Se-Young Yun, et al. Fine samples for learning with
noisy labels. Advances in Neural Information Processing Systems, 34:24137–24149, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Fengpeng Li, Kemou Li, Jinyu Tian, and Jiantao Zhou. Regroup median loss for combating label noise.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 13474–13482,
2024.

Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with noisy labels as semi-
supervised learning. In International Conference on Learning Representations, 2020.

Yifan Li, Hu Han, Shiguang Shan, and Xilin Chen. Disc: Learning from noisy labels via dynamic
instance-specific selection and correction. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 24070–24079, 2023.

Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda. Early-learning
regularization prevents memorization of noisy labels. Advances in neural information processing

systems, 33:20331–20342, 2020.

Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under label noise by over-
parameterization. In International Conference on Machine Learning, pages 14153–14172. PMLR,
2022.

Yangdi Lu and Wenbo He. Selc: self-ensemble label correction improves learning with noisy labels.
arXiv preprint arXiv:2205.01156, 2022.

Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and James Bailey. Nor-
malized loss functions for deep learning with noisy labels. In Hal Daumé III and Aarti Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 6543–6553. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/ma20c.html.

Zhanyu Ma and Arne Leijon. Bayesian estimation of beta mixture models with variational inference.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11):2160–2173, 2011.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li,
Ashwin Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised
pretraining. In Proceedings of the European conference on computer vision (ECCV), pages
181–196, 2018.

Eran Malach and Shai Shalev-Shwartz. Decoupling" when to update" from" how to update". Advances

in neural information processing systems, 30, 2017.

Haim Permuter, Joseph Francos, and Ian Jermyn. A study of gaussian mixture models of color and
texture features for image classification and segmentation. Pattern recognition, 39(4):695–706,
2006.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, pages 11557–11568, 2021.

Usha Ruby and Vamsidhar Yendapalli. Binary cross entropy with deep learning technique for image
classification. Int. J. Adv. Trends Comput. Sci. Eng, 9(10), 2020.

Xiaoshuang Shi, Zhenhua Guo, Kang Li, Yun Liang, and Xiaofeng Zhu. Self-paced resistance
learning against overfitting on noisy labels. Pattern Recognition, 134:109080, 2023.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. Advances in neural information processing systems, 33:596–608,
2020.

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust deep
learning. In International conference on machine learning, pages 5907–5915. PMLR, 2019.

12

https://proceedings.mlr.press/v119/ma20c.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey. Symmetric cross
entropy for robust learning with noisy labels. In Proceedings of the IEEE/CVF international

conference on computer vision, pages 322–330, 2019.

Hongxin Wei, Lei Feng, Xiangyu Chen, and Bo An. Combating noisy labels by agreement: A joint
training method with co-regularization. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

Qi Wei, Haoliang Sun, Xiankai Lu, and Yilong Yin. Self-filtering: A noise-aware sample selection
for label noise with confidence penalization. In European Conference on Computer Vision, pages
516–532. Springer, 2022.

Peter Welinder, Steve Branson, Pietro Perona, and Serge Belongie. The multidimensional wisdom of
crowds. Advances in neural information processing systems, 23, 2010.

Pengxiang Wu, Songzhu Zheng, Mayank Goswami, Dimitris Metaxas, and Chao Chen. A topological
filter for learning with label noise. Advances in neural information processing systems, 33:
21382–21393, 2020.

Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, and Yi Chang.
Robust early-learning: Hindering the memorization of noisy labels. In International Conference on

Learning Representations, 2021. URL https://openreview.net/forum?id=Eql5b1_
hTE4.

Xiaobo Xia, Bo Han, Yibing Zhan, Jun Yu, Mingming Gong, Chen Gong, and Tongliang Liu. Com-
bating noisy labels with sample selection by mining high-discrepancy examples. In Proceedings of

the IEEE/CVF International Conference on Computer Vision, pages 1833–1843, 2023.

Ruixuan Xiao, Yiwen Dong, Haobo Wang, Lei Feng, Runze Wu, Gang Chen, and Junbo Zhao. Promix:
Combating label noise via maximizing clean sample utility. In Edith Elkind, editor, Proceedings

of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pages
4442–4450. International Joint Conferences on Artificial Intelligence Organization, 8 2023. doi:
10.24963/ijcai.2023/494. URL https://doi.org/10.24963/ijcai.2023/494. Main
Track.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy
labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2015.

Shuo Yang, Ping Luo, Chen Change Loy, Kenneth W Shum, and Xiaoou Tang. Deep representation
learning with target coding. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 29, 2015.

Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning with noisy labels.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
7017–7025, 2019.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor Tsang, and Masashi Sugiyama. How does
disagreement help generalization against label corruption? In International conference on machine

learning, pages 7164–7173. PMLR, 2019.

Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Jiashi Feng. Central
similarity quantization for efficient image and video retrieval. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pages 3083–3092, 2020.

Suqin Yuan, Lei Feng, and Tongliang Liu. Late stopping: Avoiding confidently learning from
mislabeled examples. In Proceedings of the IEEE/CVF International Conference on Computer

Vision, pages 16079–16088, 2023.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–115,
2021.

Zizhao Zhang, Han Zhang, Sercan O. Arik, Honglak Lee, and Tomas Pfister. Distilling effective
supervision from severe label noise. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

13

https://openreview.net/forum?id=Eql5b1_hTE4
https://openreview.net/forum?id=Eql5b1_hTE4
https://doi.org/10.24963/ijcai.2023/494

	Introduction
	Related Work
	Methodology
	Jump-update Strategy
	Semantic Loss Decomposition
	Training Pipeline

	Experiments
	Comparison with the State-of-the-Arts
	Experiments on Jump-update Strategy

	Conclusion
	Supplemental material
	Discussion about Disagreement
	Discussions about "Disagreement"
	Example of Jump-update Strategy
	Proof of Property 1
	Discussion On Error Flow
	Disccusion on Intial Bias
	Loss Convergence
	Ablation Study
	The Size of Hadamard Codebook
	Details of Sample Selecion
	The Summary of the Benchmark Datasets
	The Simulation of Noise
	More Experiments on Different Noise Types
	A Brief Overview of Compared Methods
	Data Augmentation
	Analysis of Threshold
	The Choice of Jump Step
	The Structures of Backbones and the Auxiliary Head
	Experiments of the Jump-Update Strategy on the Clothing1M Dataset


